The Extension Dimension of Abelian Categories

Junling Zheng ${ }^{1} \cdot$ Xin Ma ${ }^{2} \cdot$ Zhaoyong Huang ${ }^{1}$

Received: 28 February 2018 / Accepted: 23 January 2019 / Published online: 19 February 2019
© Springer Nature B.V. 2019

Abstract

Let \mathcal{A} be an abelian category having enough projective objects and enough injective objects. We prove that if \mathcal{A} admits an additive generating object, then the extension dimension and the weak resolution dimension of \mathcal{A} are identical, and they are at most the representation dimension of \mathcal{A} minus two. By using it, for a right Morita ring Λ, we establish the relation between the extension dimension of the category $\bmod \Lambda$ of finitely generated right Λ modules and the representation dimension as well as the right global dimension of Λ. In particular, we give an upper bound for the extension dimension of mod Λ in terms of the projective dimension of certain class of simple right Λ-modules and the radical layer length of Λ. In addition, we investigate the behavior of the extension dimension under some ring extensions and recollements.

Keywords Extension dimension • Weak resolution dimension • Homological invariants • Radical layer length • Ring extensions \cdot Recollements

1 Introduction

Following the work of Bondal and Van den Bergh [6], Rouquier introduced in [27] the dimension of triangulated categories, which is an invariant that measures how quickly the category can be built from one object. This dimension plays an important role in representation theory. For example, it can be used to compute the representation dimension of artin

[^0]Zhaoyong Huang
huangzy@nju.edu.cn

Junling Zheng
zjlshuxue@163.com
Xin Ma
maxin0719@126.com

[^1]algebras [20,26]. Let Λ be an artin algebra and mod Λ the category of finitely generated right Λ-modules. Rouquier proved that the dimension of the bounded derived category of $\bmod \Lambda$ is at most $\operatorname{LL}(\Lambda)-1$, where $\operatorname{LL}(\Lambda)$ is the Loewy length of Λ, and this dimension is at most the global dimension gl.dim Λ if Λ is a finite dimensional algebra over a perfect field [27, Proposition 7.37 and Remark 7.26].

As an analogue of the dimension of triangulated categories, the (extension) dimension $\operatorname{dim} \mathcal{A}$ of an abelian category \mathcal{A} was introduced by Beligiannis in [3], also see [7]. Let Λ be an artin algebra. Note that the representation dimension of Λ is at most two (that is, Λ is of finite representation type) if and only if $\operatorname{dim} \bmod \Lambda=0$ [3]. So, like the representation dimension of Λ, the extension dimension $\operatorname{dim} \bmod \Lambda$ is also an invariant that measures how far Λ is from having finite representation type. It was proved in [3] that dim $\bmod \Lambda \leq$ $\operatorname{LL}(\Lambda)-1$, which is a semi-counterpart of the above result of Rouquier. On the other hand, Iyama introduced in [17] the weak resolution dimension of Λ (see also [20]). It is easy to see that the weak resolution dimension of Λ is at most the representation dimension of Λ minus two. Based on these works, in this paper we will study further properties of the extension dimension of abelian categories, especially module categories. The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.
In Section 3, we investigate the relationship between the extension dimension and some other homological invariants. Let \mathcal{A} be an abelian category having enough projective objects and enough injective objects. We prove that if \mathcal{A} admits an additive generating object, then $\operatorname{dim} \mathcal{A}$ and the weak resolution dimension of \mathcal{A} are identical, and they are at most the representation dimension of \mathcal{A} minus two. As applications, we get that for a right Morita ring $\Lambda, \operatorname{dim} \bmod \Lambda \leq \operatorname{r} . g l . \operatorname{dim} \Lambda$ (which is the other semi-counterpart of the result of Rouquier) and $\operatorname{dim} \bmod \Lambda$ is at most the representation dimension of Λ minus two, where r.gl.dim Λ is the right global dimension of Λ; and we also get that $\operatorname{dim} \bmod \Lambda=n-1$ for the exterior algebra Λ of k^{n}, where k is a field. In addition, we establish the relation between $\operatorname{dim} \bmod \Lambda$ and the finitistic dimension of Λ. Finally, we give an upper bound for $\operatorname{dim} \bmod \Lambda$ in terms of the projective dimension of certain class of simple right Λ-modules and the radical layer length of Λ, such that both gl.dim Λ and $\operatorname{LL}(\Lambda)-1$ are properly special cases of this upper bound.

In Section 4, we study the behavior of the extension dimension under ring extensions. Let $\Gamma \supseteq \Lambda$ be artin algebras. We prove that $\operatorname{dim} \bmod \Lambda=\operatorname{dim} \bmod \Gamma$ if $\Gamma \geq \Lambda$ is an excellent extension, and that $\operatorname{dim} \bmod \Lambda \leq \operatorname{dim} \bmod \Gamma+2$ if $\Gamma \geq \Lambda$ is a left idealized extension. We also prove that if Λ and Γ are separably equivalent artin algebras, then $\operatorname{dim} \bmod \Lambda=$ $d i m \bmod \Gamma$.

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories and

a recollement. In Section 5, we prove that if either $i^{!}$or i^{*} is exact, then $\max \{\operatorname{dim} \mathcal{A}, \operatorname{dim} \mathcal{C}\} \leq \operatorname{dim} \mathcal{B} \leq \operatorname{dim} \mathcal{A}+\operatorname{dim} \mathcal{C}+1$.

2 Preliminaries

Let \mathcal{A} be an abelian category. The designation subcategory will be used for full and additive subcategories of \mathcal{A} which are closed under isomorphisms and the word functor will mean an additive functor between additive categories. For a subclass \mathcal{U} of \mathcal{A}, we use add \mathcal{U} to
denote the subcategory of \mathcal{A} consisting of direct summands of finite direct sums of objects in \mathcal{U}.

Let $\mathcal{U}_{1}, \mathcal{U}_{2}, \cdots, \mathcal{U}_{n}$ be subcategories of \mathcal{A}. Define
$\mathcal{U}_{1} \diamond \mathcal{U}_{2}:=\operatorname{add}\left\{A \in \mathcal{A} \mid\right.$ there exists an sequence $0 \rightarrow U_{1} \rightarrow A \rightarrow U_{2} \rightarrow 0$ in \mathcal{A} with $U_{1} \in \mathcal{U}_{1}$ and $\left.U_{2} \in \mathcal{U}_{2}\right\}$.

By [7, Proposition 2.2], the operator \diamond is associative, that is, $\left(\mathcal{U}_{1} \diamond \mathcal{U}_{2}\right) \diamond \mathcal{U}_{3}=\mathcal{U}_{1} \diamond\left(\mathcal{U}_{2} \diamond \mathcal{U}_{3}\right)$. The category $\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}$ can be inductively described as follows
$\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}:=\operatorname{add}\{A \in \mathcal{A} \mid$ there exists an sequence $0 \rightarrow U \rightarrow A \rightarrow V \rightarrow 0$ in \mathcal{A} with $U \in \mathcal{U}_{1}$ and $\left.V \in \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}\right\}$.
For a subclass \mathcal{U} of \mathcal{A}, set $\langle\mathcal{U}\rangle_{0}=0,\langle\mathcal{U}\rangle_{1}=\operatorname{add} \mathcal{U},\langle\mathcal{U}\rangle_{n}=\langle\mathcal{U}\rangle_{1} \diamond\langle\mathcal{U}\rangle_{n-1}$ for any $n \geq 2$, and $\langle\mathcal{U}\rangle_{\infty}=\bigcup_{n>0}\langle\mathcal{U}\rangle_{n}$ [3]. Note that $\langle\mathcal{U}\rangle_{n}=\left\langle\langle\mathcal{U}\rangle_{1}\right\rangle_{n}$. If T is an object in \mathcal{A} we write $\langle T\rangle_{n}$ instead of $\langle\{T\}\rangle_{n}$.

Throughout this paper, by convention, it is assumed that inf $\emptyset=+\infty$ and $\sup \emptyset=-\infty$.
Definition 2.1 [7] For any subcategory \mathcal{X} of \mathcal{A}, define

$$
\begin{aligned}
& \operatorname{size}_{\mathcal{A}} \mathcal{X}:=\inf \left\{n \geq 0 \mid \mathcal{X} \subseteq\langle T\rangle_{n+1} \text { with } T \in \mathcal{A}\right\} \\
& \operatorname{rank}_{\mathcal{A}} \mathcal{X}:=\inf \left\{n \geq 0 \mid \mathcal{X}=\langle T\rangle_{n+1} \text { with } T \in \mathcal{A}\right\}
\end{aligned}
$$

The extension dimension $\operatorname{dim} \mathcal{A}$ of \mathcal{A} is defined to be $\operatorname{dim} \mathcal{A}:=\operatorname{rank}_{\mathcal{A}} \mathcal{A}$.
It is easy to see that $\operatorname{dim} \mathcal{A}=\operatorname{rank}_{\mathcal{A}} \mathcal{A}=\operatorname{size}_{\mathcal{A}} \mathcal{A}$. We also have the following easy and useful observations.

Proposition 2.2 Let \mathcal{U}_{1} and \mathcal{U}_{2} be subcategories of \mathcal{A} with $\mathcal{U}_{1} \subseteq \mathcal{U}_{2}$. Then we have
(1) If \mathcal{V}_{1} and \mathcal{V}_{2} are subcategories of \mathcal{A} with $\mathcal{V}_{1} \subseteq \mathcal{V}_{2}$, then $\mathcal{U}_{1} \diamond \mathcal{V}_{1} \subseteq \mathcal{U}_{2} \diamond \mathcal{V}_{2}$;
(2) $\left\langle\mathcal{U}_{1}\right\rangle_{n} \subseteq\left\langle\mathcal{U}_{2}\right\rangle_{n}$ for any $n \geq 1$;
(3) $\left\langle\mathcal{U}_{1}\right\rangle_{n} \subseteq\left\langle\mathcal{U}_{1}\right\rangle_{n+1}$ for any $n \geq 1$;
(4) $\operatorname{size}_{\mathcal{A}} \mathcal{U}_{1} \leq \operatorname{size}_{\mathcal{A}} \mathcal{U}_{2}$.

For two subcategories \mathcal{U}, \mathcal{V} of \mathcal{A}, we set $\mathcal{U} \oplus \mathcal{V}:=\{U \oplus V \mid U \in \mathcal{U}$ and $V \in \mathcal{V}\}$. Note that if \mathcal{U} is closed under finite direct sums, then $\mathcal{U} \oplus \mathcal{U}=\mathcal{U}$.

Corollary 2.3 For any $T_{1}, T_{2} \in \mathcal{A}$ and $m, n \geq 1$, we have
(1) $\left\langle T_{1}\right\rangle_{m} \diamond\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{m+n}$;
(2) $\left\langle T_{1}\right\rangle_{m} \oplus\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{\max \{m, n\}}$.

Proof Since $\left\langle T_{1}\right\rangle_{1} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{1}$, we have $\left\langle T_{1}\right\rangle_{m} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{m}$ by Proposition 2.2(2). Similarly, $\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{n}$. Thus we have
(1) $\left\langle T_{1}\right\rangle_{m} \diamond\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{m} \diamond\left\langle T_{1} \oplus T_{2}\right\rangle_{n}=\left\langle T_{1} \oplus T_{2}\right\rangle_{m+n}$.
(2) $\left\langle T_{1}\right\rangle_{m} \oplus\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{m} \oplus\left\langle T_{1} \oplus T_{2}\right\rangle_{n}=\left\langle T_{1} \oplus T_{2}\right\rangle_{\max \{m, n\}}$ by Proposition 2.2(3).

We need the following fact.

Lemma 2.4 Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an exact functor of abelian categories. Then $F\left(\langle T\rangle_{n}\right) \subseteq$ $\langle F(T)\rangle_{n}$ for any $T \in \mathcal{A}$ and $n \geq 1$.

Proof We proceed by induction on n. Let $X \in F\left(\langle T\rangle_{1}\right)$. Then $X=F(Y)$ for some $Y \in$ $\langle T\rangle_{1}(=$ add $T)$. Since $Y \oplus Z \cong T^{l}$ for some $Z \in \mathcal{A}$ and $l \geq 1$, we have

$$
X \oplus F(Z)=F(Y) \oplus F(Z) \cong F(Y \oplus Z) \cong F\left(T^{l}\right) \cong F(T)^{l} .
$$

So $X \in\langle F(T)\rangle_{1}$ and $F\left(\langle T\rangle_{1}\right) \subseteq\langle F(T)\rangle_{1}$. The case for $n=1$ is proved.
Now let $X \in F\left(\langle T\rangle_{n}\right)$ with $n \geq 2$. Then $X=F(Y)$ for some $Y \in\langle T\rangle_{n}$ and there exists an exact sequence

$$
0 \longrightarrow Y_{1} \longrightarrow Y \oplus Y^{\prime} \longrightarrow Y_{2} \longrightarrow 0
$$

in \mathcal{A} with $Y_{1} \in\langle T\rangle_{1}, Y_{2} \in\langle T\rangle_{n-1}$ and $Y^{\prime} \in\langle T\rangle_{n}$. Since F is exact, we get the following exact sequence

$$
0 \longrightarrow F\left(Y_{1}\right) \longrightarrow F(Y) \oplus F\left(Y^{\prime}\right) \longrightarrow F\left(Y_{2}\right) \longrightarrow 0
$$

By the induction hypothesis, $F\left(Y_{1}\right) \in F\left(\langle T\rangle_{1}\right) \subseteq\langle F(T)\rangle_{1}$ and $F\left(Y_{2}\right) \in F\left(\langle T\rangle_{n-1}\right) \subseteq$ $\langle F(T)\rangle_{n-1}$. It follows that

$$
X=F(Y) \in\left\langle F\left(Y_{1}\right)\right\rangle_{1} \diamond\left\langle F\left(Y_{2}\right)\right\rangle_{1} \subseteq\langle F(T)\rangle_{1} \diamond\langle F(T)\rangle_{n-1}=\langle F(T)\rangle_{n}
$$

and $F\left(\langle T\rangle_{n}\right) \subseteq\langle F(T)\rangle_{n}$.

3 Relations with Some Homological Invariants

In this section, \mathcal{A} is an abelian category.
Definition 3.1 (cf. [17, 20]) Let $M \in \mathcal{A}$. The weak M-resolution dimension of an object X in \mathcal{A}, denoted by M-w.resol. $\operatorname{dim} X$, is defined as $\inf \{i \geq 0 \mid$ there exists an exact sequence

$$
0 \longrightarrow M_{i} \longrightarrow M_{i-1} \longrightarrow \cdots \longrightarrow M_{0} \longrightarrow X \longrightarrow 0
$$

in \mathcal{A} with all M_{j} in add $\left.M\right\}$. The weak M-resolution dimension of \mathcal{A}, M-w.resol.dim \mathcal{A}, is defined as $\sup \{M$-w.resol. $\operatorname{dim} X \mid X \in \mathcal{A}\}$. The weak resolution dimension of \mathcal{A} is denoted by w.resol. $\operatorname{dim} \mathcal{A}$ and defined as $\inf \{M$-w.resol. $\operatorname{dim} \mathcal{A} \mid M \in \mathcal{A}\}$.

Let $X \in \mathcal{A}$. Suppose there exists a monomorphism $f: X \longrightarrow E$ in \mathcal{A} such that E is an injective object in \mathcal{A}. Then we write $\Omega^{-1}(X)=$: $\operatorname{Coker} f$ if f is right minimal, i.e. if f is an injective envelope of X. Dually, if $g: P \longrightarrow X$ is a right minimal epimorphism in \mathcal{A} such that P is a projective object in \mathcal{A}, then we write $\Omega^{1}(X)=: \operatorname{Ker} f$. Additionally, define Ω^{0} as the identity functor in \mathcal{A}. Inductively, for any $n \geq 2$, we write $\Omega^{n}(X):=\Omega^{1}\left(\Omega^{n-1}(X)\right)$ and $\Omega^{-n}(X):=\Omega^{-1}\left(\Omega^{-(n-1)}(X)\right)$.

Lemma 3.2 [32, Lemma 3.3] If \mathcal{A} has enough projective objects and enough injective objects, then for any exact sequence

$$
0 \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow X_{3} \longrightarrow 0
$$

in \mathcal{A}, we have the following exact sequences

$$
\begin{gathered}
0 \longrightarrow \Omega^{1}\left(X_{3}\right) \longrightarrow X_{1} \oplus P \longrightarrow X_{2} \longrightarrow 0 \\
0 \longrightarrow X_{2} \longrightarrow E \oplus X_{3} \longrightarrow \Omega^{-1}\left(X_{1}\right) \longrightarrow 0
\end{gathered}
$$

where P is projective and E is injective in \mathcal{A}.

Using Lemma 3.2, we get the following lemma, which is a dual of [7, Lemma 5.8].
Lemma 3.3 If \mathcal{A} has enough injective objects and

$$
0 \longrightarrow M_{n} \longrightarrow \cdots \longrightarrow M_{1} \longrightarrow M_{0} \longrightarrow X \longrightarrow 0
$$

is an exact sequence in \mathcal{A} with $n \geq 0$, then

$$
X \in\left\langle M_{0}\right\rangle_{1} \diamond\left\langle\Omega^{-1}\left(M_{1}\right)\right\rangle_{1} \diamond \cdots \diamond\left\langle\Omega^{-n}\left(M_{n}\right)\right\rangle_{1} \subseteq\left\langle\oplus_{i=0}^{n} \Omega^{-i}\left(M_{i}\right)\right\rangle_{n+1} .
$$

Remark Note that if \mathcal{A} has enough injectives and $X \in\left\langle Y_{1}\right\rangle_{1} \diamond\left\langle Y_{2}\right\rangle_{1}$, then $\Omega^{-1}(X) \in$ $\left\langle\Omega^{-1}\left(Y_{1}\right)\right\rangle_{1} \diamond\left\langle\Omega^{-1}\left(Y_{2}\right)\right\rangle_{1}$. This fact is a sequence of the Horseshoe Lemma and is used to prove Lemma 3.3. This statement and its corresponding dual version will be throughout this paper.

3.1 Representation and Global Dimensions

For a subclass \mathcal{X} of \mathcal{A}, recall that a sequence \mathbb{S} in \mathcal{A} is called $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X},-$)-exact (resp. $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{X})$-exact) if $\operatorname{Hom}_{\mathcal{A}}(X, \mathbb{S})\left(\right.$ resp. $\operatorname{Hom}_{\mathcal{A}}(\mathbb{S}, X)$) is exact for any $X \in \mathcal{X}$.

Definition 3.4 [2, 8, 26] The representation dimension rep.dim \mathcal{A} of \mathcal{A} is the smallest integer $i \geq 2$ such that there exists $M \in \mathcal{A}$ satisfying the property that for any $X \in \mathcal{A}$,
(1) there exists a $\operatorname{Hom}_{\mathcal{A}}(\operatorname{add} M,-)$-exact exact sequence

$$
0 \longrightarrow M_{i-2} \longrightarrow M_{i-3} \longrightarrow \cdots \longrightarrow M_{0} \longrightarrow X \longrightarrow 0
$$

in \mathcal{A} with all M_{j} in add M; and
(2) there exists a $\operatorname{Hom}_{\mathcal{A}}(-$, add $M)$-exact exact sequence

$$
0 \longrightarrow X \longrightarrow N_{0} \longrightarrow N_{1} \longrightarrow \cdots \longrightarrow N_{i-2} \longrightarrow 0
$$

in \mathcal{A} with all N_{j} in add M.
We call $A \in \mathcal{A}$ an additive generating object if add A is a generator for \mathcal{A}. It is trivial that if $A \in \mathcal{A}$ is an additive generating object, then all projective objects in \mathcal{A} are in add A.

Theorem 3.5 Assume that \mathcal{A} admits an additive generating object A. If \mathcal{A} has enough projective objects and enough injective objects, then

$$
\text { w.resol. } \operatorname{dim} \mathcal{A}=\operatorname{dim} \mathcal{A} \leq \operatorname{rep} \cdot \operatorname{dim} \mathcal{A}-2 .
$$

Proof It is trivial that w.resol. $\operatorname{dim} \mathcal{A} \leq \operatorname{rep} . \operatorname{dim} \mathcal{A}-2$.
Assume that $\operatorname{dim} \mathcal{A}=n$ and $T \in \mathcal{A}$ such that $\mathcal{A}=\langle T\rangle_{n+1}$. Let $X \in \mathcal{A}$. Then we have an exact sequence

$$
0 \longrightarrow X_{1} \longrightarrow X \longrightarrow X_{2} \longrightarrow 0
$$

in \mathcal{A} with $X_{1} \in\langle T\rangle_{1}$ and $X_{2} \in\langle T\rangle_{n}$. Set $M:=\oplus_{i=0}^{n} \Omega^{i}(T) \oplus A$. We will prove M w.resol. $\operatorname{dim} X \leq n$ by induction on n. The case for $n=0$ is trivial. If $n=1$, then T w.resol.dim $X_{2}=0$ and M-w.resol.dim $\Omega^{1}\left(X_{2}\right)=0$. By Lemma 3.2, we have an exact sequence

$$
0 \longrightarrow \Omega^{1}\left(X_{2}\right) \longrightarrow X_{1} \oplus P \longrightarrow X \longrightarrow 0
$$

in \mathcal{A} with P projective. So M-w.resol.dim $X \leq 1$. Now suppose $n \geq 2$. By the induction hypothesis, we have $\left(\oplus_{i=0}^{n-1} \Omega^{i}(T) \oplus A\right)$-w.resol. $\operatorname{dim} X_{2} \leq n-1$, hence M w.resol. $\operatorname{dim} \Omega^{1}\left(X_{2}\right) \leq n-1$. It follows that M-w.resol. $\operatorname{dim} X \leq n$. Thus we have w.resol. $\operatorname{dim} \mathcal{A} \leq n$.

Conversely, assume that w.resol. $\operatorname{dim} \mathcal{A}=n$ and $T \in \mathcal{A}$ such that for any $X \in \mathcal{A}$, there exists an exact sequence

$$
0 \longrightarrow M_{n} \longrightarrow \cdots \longrightarrow M_{1} \longrightarrow M_{0} \longrightarrow X \longrightarrow 0
$$

in \mathcal{A} with all M_{i} in add T. By Lemma 3.3, we have that $X \in\left\langle\oplus_{i=0}^{n} \Omega^{-i}\left(M_{i}\right)\right\rangle_{n+1} \subseteq$ $\left\langle\oplus_{i=0}^{n} \Omega^{-i}(T)\right\rangle_{n+1}$ and $\mathcal{A} \subseteq\left\langle\oplus_{i=0}^{n} \Omega^{-i}(T)\right\rangle_{n+1}$. It follows that $\mathcal{A}=\left\langle\oplus_{i=0}^{n} \Omega^{-i}(T)\right\rangle_{n+1}$. Thus we have $\operatorname{dim} \mathcal{A} \leq n$.

For a ring Λ, we use $\bmod \Lambda$ to denote the category of finitely generated right Λ modules, and we write rep. $\operatorname{dim} \Lambda:=r e p . \operatorname{dim} \bmod \Lambda$ if $\bmod \Lambda$ is an abelian category. Recall from [11] that a ring Λ is called right Morita if there exist a ring Γ and a Morita duality from $\bmod \Lambda$ to $\bmod \Gamma^{o p}$. It is known that a ring Λ is right Morita if and only if it is right artinian and there exists a finitely generated injective cogenerator for the category of right Λ-modules [11, p.165]. The class of right Morita rings includes right pure-semisimple rings and artin algebras. For any right noetherian ring Λ, it is clear that w.resol. $\operatorname{dim} \bmod \Lambda \leq$ r.gl.dim Λ, where r.gl. $\operatorname{dim} \Lambda$ is the right global dimension of Λ. So, as an immediate consequence of Theorem 3.5, we have the following

Corollary 3.6 If Λ is a right Morita ring, then

$$
\text { w.resol.dim } \bmod \Lambda=\operatorname{dim} \bmod \Lambda \leq \min \{\text { r.gl.dim } \Lambda, \operatorname{rep} \cdot \operatorname{dim} \Lambda-2\} .
$$

Let Λ be an artin algebra. Recall that Λ is called n-Gorenstein if its left and right self-injective dimensions are at most n. Let \mathcal{P} be the subcategory of $\bmod \Lambda$ consisting of projective modules. A module $G \in \bmod \Lambda$ is called Gorenstein projective if there exists a $\operatorname{Hom}_{\Lambda}(-, \mathcal{P})$-exact exact sequence

$$
\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow P^{0} \rightarrow P^{1} \rightarrow \cdots
$$

in $\bmod \Lambda$ with all P_{i}, P^{i} in \mathcal{P} such that $G \cong \operatorname{Im}\left(P_{0} \rightarrow P^{0}\right)$. Recall from [4] that Λ is said to be of finite Cohen-Macaulay type (finite CM-type for short) if there are only finitely many non-isomorphic indecomposable Gorenstein projective modules in $\bmod \Lambda$.

Corollary 3.7 If Λ is an n-Gorenstein artin algebra of finite CM-type, then $\operatorname{dim} \bmod \Lambda \leq$ n.

Proof Let $M \in \bmod \Lambda$. Because Λ is an n-Gorenstein artin algebra, we have an exact sequence

$$
0 \rightarrow H_{n} \rightarrow \cdots \rightarrow H_{1} \rightarrow H_{0} \rightarrow M \rightarrow 0
$$

in $\bmod \Lambda$ with all H_{i} Gorenstein projective by [12, Theorem 1.4]. Because Λ is of finite CM-type, we may assume that $\left\{G_{1}, \cdots, G_{n}\right\}$ is the set of non-isomorphic indecomposable Gorenstein projective modules in $\bmod \Lambda$. Set $G:=\oplus_{i=0}^{n} G_{i}$. Then G-w.resol.dim $M \leq n$ and w.resol.dim $\bmod \Lambda \leq n$. It follows from Theorem 3.5 that $\operatorname{dim} \bmod \Lambda \leq n$.

For small $\operatorname{dim} \bmod \Lambda$, we have the following
Corollary 3.8 Let Λ be an artin algebra. Then we have
(1) $[3$, Example 1.6(i)] rep. $\operatorname{dim} \Lambda \leq 2$ if and only if $\operatorname{dim} \bmod \Lambda=0$;
(2) if rep. $\operatorname{dim} \Lambda=3$, then $\operatorname{dim} \bmod \Lambda=1$.

Proof (1) It is trivial by Corollary 3.6.
(2) Let rep. $\operatorname{dim} \Lambda=3$. Then $\operatorname{dim} \bmod \Lambda \geq 1$ by (1); and $\operatorname{dim} \bmod \Lambda \leq r e p . \operatorname{dim} \Lambda-2=$ 1 by Corollary 3.6. The assertion follows.

For a field k and $n \geq 1, \wedge\left(k^{n}\right)$ is the exterior algebra of k^{n}.
Corollary 3.9 $\operatorname{dim} \bmod \wedge\left(k^{n}\right)=n-1$ for any $n \geq 1$.

Proof By [17, Thoerem 4.6], we have w.resol.dim $\bmod \wedge\left(k^{n}\right)=n-1$. It follows from Corollary 3.6 that dim $\bmod \wedge\left(k^{n}\right)=n-1$.

3.2 Finitistic Dimension

From Now on, $\boldsymbol{\Lambda}$ is an Artin Algebra. For a module M in $\bmod \Lambda, \operatorname{pd} M$ is the projective dimension of M. Set $\mathcal{P}^{<\infty}:=\{M \in \bmod \Lambda \mid \operatorname{pd} M<\infty\}$. Recall that the finitistic dimension fin. $\operatorname{dim} \Lambda$ of Λ is defined as $\sup \left\{\operatorname{pd} M \mid M \in \mathcal{P}^{<\infty}\right\}$. It is an unsolved conjecture that fin. $\operatorname{dim} \Lambda<\infty$ for every artin algebra Λ. Igusa-Todorov introduced in [16] a powerful function ψ from $\bmod \Lambda$ to non-negative integers to study the finiteness of fin.dim Λ. The following lemma gives some useful properties of the Igusa-Todorov function ψ.

Lemma 3.10 [16, Lemma 0.3 and Theorem 0.4]
(1) For any $X, Y \in \bmod \Lambda, \psi(X) \leq \psi(Y)$ if $\langle X\rangle_{1} \subseteq\langle Y\rangle_{1}$;
(2) if $0 \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow X_{3} \longrightarrow 0$ is an exact sequence in $\bmod \Lambda$ with $\operatorname{pd} X_{3}<\infty$, then $\operatorname{pd} X_{3} \leq \psi\left(X_{1} \oplus X_{2}\right)+1$.

For any subcategory \mathcal{X} of $\bmod \Lambda$ and $n \geq 0$, set $\Omega^{n}(\mathcal{X}):=\left\{\Omega^{n}(M) \mid M \in \mathcal{X}\right\} ;$ in particular, $\Omega^{0}(\mathcal{X})=\mathcal{X}$.

Proposition 3.11 The following statements are equivalent.
(1) f in $\cdot \operatorname{dim} \Lambda<\infty$;
(2) there exists some $n \geq 0$ such that $\operatorname{size}_{\bmod \Lambda} \Omega^{n}\left(\mathcal{P}^{<\infty}\right) \leq 1$.

Proof (1) \Rightarrow (2) If fin.dim $\Lambda=m<\infty$, then $\Omega^{m}\left(\mathcal{P}^{<\infty}\right) \subseteq\langle\Lambda\rangle_{1}$ and $\operatorname{size}_{\bmod \Lambda} \Omega^{m}\left(\mathcal{P}^{<\infty}\right)=0$.
(2) \Rightarrow (1) Let size $\bmod \Lambda \Omega^{n}\left(\mathcal{P}^{<\infty}\right) \leq 1$ with $n \geq 0$. Then $\Omega^{n}\left(\mathcal{P}^{<\infty}\right) \subseteq\langle T\rangle_{2}$ for some $T \in \bmod \Lambda$. Let $X \in \mathcal{P}^{<\infty}$. Then there exists an exact sequence

$$
0 \longrightarrow T_{1} \longrightarrow \Omega^{n}(X) \longrightarrow T_{2} \longrightarrow 0
$$

in $\bmod \Lambda$ with $T_{1}, T_{2} \in\langle T\rangle_{1}$. By Lemma 3.2, we obtain the following exact sequence

$$
0 \longrightarrow \Omega^{1}\left(T_{2}\right) \longrightarrow T_{1} \oplus P \longrightarrow \Omega^{n}(X) \longrightarrow 0
$$

with $P \in\langle\Lambda\rangle_{1}$. Then we have

$$
\begin{aligned}
\operatorname{pd} X & \leq \operatorname{pd} \Omega^{n}(X)+n \\
& \leq \psi\left(\Omega^{1}\left(T_{2}\right) \oplus T_{1} \oplus P\right)+1+n(\text { by Lemma 3.10(2)) } \\
& \leq \psi\left(\Omega^{1}(T) \oplus T \oplus \Lambda\right)+1+n,(\text { by Lemma 3.10(1)) }
\end{aligned}
$$

which implies fin. $\operatorname{dim} \Lambda \leq \psi\left(\Omega^{1}(T) \oplus T \oplus \Lambda\right)+1+n$.

By Proposition 3.11, we have the following
Corollary 3.12 If $\operatorname{dim} \bmod \Lambda \leq 1$, then $\operatorname{fin} \cdot \operatorname{dim} \Lambda<\infty$.

3.3 Igusa-Todorov Algebras

Definition 3.13 ([28] and [14, Lemma 3.6]) For an integer $n \geq 0, \Lambda$ is called (n-)IgusaTodorov if there exists $V \in \bmod \Lambda$ such that for any $M \in \bmod \Lambda$, there exists an exact sequence

$$
0 \longrightarrow V_{1} \longrightarrow V_{0} \longrightarrow \Omega^{n}(M) \oplus P \longrightarrow 0
$$

in $\bmod \Lambda$ with $V_{1}, V_{0} \in$ add V and P projective; equivalently, there exists a module $V \in$ $\bmod \Lambda$ such that for any $M \in \bmod \Lambda$, there exists an exact sequence

$$
0 \longrightarrow V_{1} \longrightarrow V_{0} \longrightarrow \Omega^{n}(M) \longrightarrow 0
$$

in $\bmod \Lambda$ with $V_{1}, V_{0} \in \operatorname{add} V$.
The class of Igusa-Todorov algebras includes algebras with representation dimension at most 3, algebras with radical cube zero, monomial algebras, left serial algebras and syzygy finite algebras [28].

Theorem 3.14 For any $n \geq 0$, the following statements are equivalent.
(1) Λ is n-Igusa-Todorov;
(2) $\operatorname{size}_{\bmod \Lambda} \Omega^{n}(\bmod \Lambda) \leq 1$.

Proof (1) \Rightarrow (2) Let Λ be n-Igusa-Todorov and $X \in \Omega^{n}(\bmod \Lambda)$. Then there exists $V \in$ $\bmod \Lambda$ such that the following sequence

$$
0 \longrightarrow V_{1} \longrightarrow V_{0} \longrightarrow X \longrightarrow 0,
$$

in $\bmod \Lambda$ with $V_{1}, V_{0} \in \operatorname{add} V$ is exact. By Lemma 3.3, Proposition 2.2(1) and Corollary 2.3(1), we have

$$
X \in\left\langle V_{0}\right\rangle_{1} \diamond\left\langle\Omega^{-1}\left(V_{1}\right)\right\rangle_{1} \subseteq\langle V\rangle_{1} \diamond\left\langle\Omega^{-1}(V)\right\rangle_{1} \subseteq\left\langle V \oplus \Omega^{-1}(V)\right\rangle_{2} .
$$

And then $\operatorname{size}_{\bmod \Lambda} \Omega^{n}(\bmod \Lambda) \leq 1$ by Definition 2.1.
(2) \Rightarrow (1) $\quad \operatorname{Let} \operatorname{size}_{\bmod \Lambda} \Omega^{n}(\bmod \Lambda) \leq 1$ and $X \in \bmod \Lambda$. Then there exists $T \in \bmod \Lambda$ such that the following sequence

$$
0 \longrightarrow T_{1} \longrightarrow \Omega^{n}(X) \longrightarrow T_{2} \longrightarrow 0,
$$

in $\bmod \Lambda$ with $T_{1}, T_{2} \in\langle T\rangle_{1}$ is exact. By Lemma 3.2, we obtain the following exact sequence

$$
0 \longrightarrow \Omega^{1}\left(T_{2}\right) \longrightarrow T_{1} \oplus P \longrightarrow \Omega^{n}(X) \longrightarrow 0
$$

in $\bmod \Lambda$ with P projective. Since both $\Omega^{1}\left(T_{2}\right)$ and $T_{1} \oplus P$ are in add $\left(\Omega^{1}(T) \oplus\right.$ $T \oplus \Lambda$), we have that Λ is n-Igusa-Todorov.

The first assertion in the following proposition means that $\operatorname{dim} \bmod \Lambda$ is an invariant for measuring how far Λ is from being 0 -Igusa-Todorov.

Proposition 3.15

(1) Λ is 0-Igusa-Todorov if and only if $\operatorname{dim} \bmod \Lambda \leq 1$;
(2) if Λ is n-Igusa-Todorov, then $\operatorname{dim} \bmod \Lambda \leq n+1$.

Proof (1) It is trivial by Theorem 3.14.
(2) Let Λ be n-Igusa-Todorov and $X \in \Omega^{n}(\bmod \Lambda)$. Then there exists $V \in \bmod \Lambda$ such that the following sequence

$$
0 \longrightarrow V_{2} \longrightarrow V_{1} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow X \longrightarrow 0
$$

in $\bmod \Lambda$ with $V_{2}, V_{1} \in$ add V and all P_{i} projective. Thus w.resol.dim $\bmod \Lambda \leq n+1$, and therefore $\operatorname{dim} \bmod \Lambda \leq n+1$ by Theorem 3.5.

Moreover, we have the following
Corollary 3.16 dim $\bmod \Lambda \leq 2$ if Λ is in one class of the following algebras.
(1) monomial algebras;
(2) left serial algebras;
(3) $\operatorname{rad}^{2 n+1} \Lambda=0$ and $\Lambda / \operatorname{rad}^{n} \Lambda$ is representation finite;
(4) 2-syzygy finite algebras.

Proof By [28, Corollaries 2.6, 3.5 and Proposition 2.5], these four classes of algebras are 1-Igusa-Todorov. So the assertions follow from Proposition 3.15.

$3.4 \boldsymbol{t}_{\mathcal{S}}$-Radical Layer Length

We recall some notions from [15]. Let \mathcal{C} be a length-category, that is, \mathcal{C} is an abelian, skeletally small category and every object of \mathcal{C} has a finite composition series. We denote by $E \operatorname{End} \mathbb{Z}_{\mathbb{Z}}(\mathcal{C})$ the category of all additive functors from \mathcal{C} to \mathcal{C}, and denote by rad the Jacobson radical lying in $\operatorname{End}_{\mathbb{Z}}(\mathcal{C})$. Let $\alpha, \beta \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ and α be a subfunctor of β, we have the quotient functor $\beta / \alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ which is defined as follows.
(1) $\quad(\beta / \alpha)(M):=\beta(M) / \alpha(M)$ for any $M \in \mathcal{C}$; and
(2) $(\beta / \alpha)(f)$ is the induced quotient morphism: for any $f \in \operatorname{Hom}_{\mathcal{C}}(M, N)$,

For any $\alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$, set the α-radical functor $F_{\alpha}:=\operatorname{rad} \circ \alpha$. We define the following two classes

$$
\mathcal{F}_{\alpha}:=\{M \in \mathcal{C} \mid \alpha(M)=0\}, \quad \mathcal{T}_{\alpha}=\{M \in \mathcal{C} \mid \alpha(M) \cong M\} .
$$

Definition 3.17 [15, Definition 3.1] For any $\alpha, \beta \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$, the (α, β)-layer length of $M \in \mathcal{C}$, denoted by $\ell \ell_{\alpha}^{\beta}(M)$, is defined as $\ell \ell_{\alpha}^{\beta}(M)=\inf \left\{i \geq 0 \mid \alpha \circ \beta^{i}(M)=0\right\}$. Moreover, $\ell \ell_{\alpha}^{\beta}$ goes from \mathcal{C} to $\mathbb{N} \cup\{+\infty\}$. And the α-radical layer length $\ell \ell^{\alpha}:=\ell \ell_{\alpha}^{F_{\alpha}}$.

Lemma 3.18 [35, Lemma 2.6] Let $\alpha, \beta \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$. For any $M \in \mathcal{C}$, if $\ell \ell_{\alpha}^{\beta}(M)=n$, then $\ell \ell_{\alpha}^{\beta}(M)=\ell \ell_{\alpha}^{\beta}\left(\beta^{i}(M)\right)+i$ for any $0 \leq i \leq n$; in particular, if $\ell \ell^{\alpha}(M)=n$, then $\ell \ell^{\alpha}\left(F_{\alpha}^{n}(M)\right)=0$.

Recall that a torsion pair (or torsion theory) for \mathcal{C} is a pair of classes $(\mathcal{T}, \mathcal{F})$ of objects in \mathcal{C} satisfying the following conditions.
(1) $\operatorname{Hom}_{\mathcal{C}}(M, N)=0$ for any $M \in \mathcal{T}$ and $N \in \mathcal{F}$;
(2) an object $X \in \mathcal{C}$ is in \mathcal{T} if $\left.\operatorname{Hom}_{\mathcal{C}}(X,-)\right|_{\mathcal{F}}=0$;
(3) an object $Y \in \mathcal{C}$ is in \mathcal{F} if $\operatorname{Hom}_{\mathcal{C}}(-, Y) \mid \mathcal{T}=0$.

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair for \mathcal{C}. Recall that $t:=\operatorname{Trace}_{\mathcal{T}}$ is the so called torsion radical attached to $(\mathcal{T}, \mathcal{F})$. Then $t(M):=\Sigma\left\{\operatorname{Im} f \mid f \in \operatorname{Hom}_{\mathcal{C}}(T, M)\right.$ with $\left.T \in \mathcal{T}\right\}$ is the largest subobject of M lying in \mathcal{T}.

For a subfunctor $\alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ of the identity functor $1_{\mathcal{C}}$ of \mathcal{C}, we write $q_{\alpha}:=1_{\mathcal{C}} / \alpha$. The functor q_{α} lies in $\operatorname{End}_{\mathbb{Z}}(\mathcal{C})$. In this section, Λ is an artin algebra. Then $\bmod \Lambda$ is a lengthcategory. We use rad Λ to denote the Jacobson radical of Λ. For a module M in $\bmod \Lambda$, we use top M to denote the top of M. Set $\operatorname{pd} M=-1$ if $M=0$. For a subclass \mathcal{B} of $\bmod \Lambda$, the projective dimension $\operatorname{pd} \mathcal{B}$ of \mathcal{B} is defined as

$$
\operatorname{pd} \mathcal{B}= \begin{cases}\sup \{\operatorname{pd} M \mid M \in \mathcal{B}\}, & \text { if } \mathcal{B} \neq \emptyset ; \\ -1, & \text { if } \mathcal{B}=\emptyset .\end{cases}
$$

We use $\mathcal{S}^{<\infty}$ to denote the set of the simple modules in $\bmod \Lambda$ with finite projective dimension.

From now on, assume that \mathcal{S} is a subset of $\mathcal{S}^{<\infty}$ and \mathcal{S}^{\prime} is the set of all the others simple modules in $\bmod \Lambda$. We write $\mathfrak{F}(\mathcal{S}):=\{M \in \bmod \Lambda \mid$ there exists a finite chain

$$
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{m}=M
$$

of submodules of M such that each quotient M_{i} / M_{i-1} is isomorphic to some module in $\left.\mathcal{S}\right\}$. By [15, Lemma 5.7 and Proposition 5.9], we have that $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S})\right.$) is a torsion pair, where

$$
\mathcal{T}_{\mathcal{S}}=\left\{M \in \bmod \Lambda \mid \operatorname{top} M \in \operatorname{add} \mathcal{S}^{\prime}\right\} .
$$

We denote the torsion radical $t_{\mathcal{S}}=\operatorname{Trace}_{\mathcal{T}_{\mathcal{S}}}$. Then $t_{\mathcal{S}}(M) \in \mathcal{T}_{\mathcal{S}}$ and $q_{t_{\mathcal{S}}}(M) \in \mathfrak{F}(\mathcal{S})$ for any $M \in \bmod \Lambda$. By [15, Proposition 5.3], we have

$$
\begin{gathered}
\mathfrak{F}(\mathcal{S})=\left\{M \in \bmod \Lambda \mid t_{\mathcal{S}}(M)=0\right\}, \\
\mathcal{T}_{\mathcal{S}}=\left\{M \in \bmod \Lambda \mid t_{\mathcal{S}}(M)=M\right\}
\end{gathered}
$$

Theorem 3.19 Let \mathcal{S} be a subset of the set $\mathcal{S}^{<\infty}$ of all pairwise non-isomorphism simple Λ-modules with finite projective dimension. Then $\operatorname{dim} \bmod \Lambda \leq \operatorname{pd} \mathcal{S}+\ell \ell^{t} \mathcal{S}(\Lambda)$.

Proof Let $\ell \ell^{t} \mathcal{S}(\Lambda)=n$ and $\operatorname{pd} \mathcal{S}=\alpha$.
If $n=0$, that is, $t_{\mathcal{S}}(\Lambda)=0$, then $\Lambda \in \mathfrak{F}(\mathcal{S})$, which implies that \mathcal{S} is the set of all simple modules. Thus $\mathcal{S}=\mathcal{S}^{<\infty}$ and gl.dim $\Lambda=\alpha$. So the assertion follows from Corollary 3.6.

Now let $n \geq 1$ and $M \in \bmod \Lambda$. Consider the following exact sequence

$$
0 \longrightarrow \Omega^{\alpha+2}(M) \longrightarrow L_{\alpha+1} \longrightarrow \cdots \longrightarrow L_{1} \longrightarrow L_{0} \longrightarrow M \longrightarrow 0
$$

in $\bmod \Lambda$ with all L_{i} projective. By Lemma 3.3, we have

$$
\begin{aligned}
M & \in\left\langle L_{0}\right\rangle_{1} \diamond\left\langle\Omega^{-1}\left(L_{1}\right)\right\rangle_{1} \diamond \cdots \diamond\left\langle\Omega^{-\alpha-1}\left(L_{\alpha+1}\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+2}(M)\right)\right\rangle_{1} \\
& \subseteq\left\langle\oplus_{i=0}^{-\alpha-1} \Omega^{i}(\Lambda)\right\rangle_{\alpha+2} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+2}(M)\right)\right\rangle_{1} .
\end{aligned}
$$

We have the following exact sequences

$$
\begin{aligned}
0 \rightarrow t_{\mathcal{S}}(M) \rightarrow & M \rightarrow q_{t_{\mathcal{S}}}(M) \rightarrow 0, \\
0 \rightarrow t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow & \Omega^{1}\left(t_{\mathcal{S}}(M)\right) \rightarrow q_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow 0, \\
0 \rightarrow F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow & t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow \operatorname{top} t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow 0, \\
0 \rightarrow t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow & F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow q_{t_{\mathcal{S}}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow 0, \\
0 \rightarrow F_{t_{\mathcal{S}}}^{2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow & t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow \operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow 0, \\
& \cdots \cdots \cdots \cdots \cdots \\
0 \rightarrow t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow & F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow q_{t_{\mathcal{S}}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow 0, \\
0 \rightarrow F_{t_{\mathcal{S}}}^{n-1}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow & t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow \operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \rightarrow 0 .
\end{aligned}
$$

By [15, Lemma 6.3], we have $\ell \ell^{t \mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \leq \ell \ell^{t} \mathcal{S}(\Lambda)-1=n-1$. It follows from Lemma 3.18 that $\ell \ell^{t_{\mathcal{S}}}\left(F_{t_{\mathcal{S}}}^{n-1} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)=0$, that is, $t_{\mathcal{S}}\left(F_{t_{\mathcal{S}}}^{n-1} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)=0$. Then by [15, Proposition 5.3], we have $\operatorname{pd}_{t_{\mathcal{S}}}^{n-1} \Omega^{1}\left(t_{\mathcal{S}}(M)\right) \leq \alpha$.

We have the following

$$
\begin{gathered}
\Omega^{\alpha+2}(M) \cong \Omega^{\alpha+2}\left(t_{\mathcal{S}}(M)\right), \\
\Omega^{\alpha+2}\left(t_{\mathcal{S}}(M)\right)=\Omega^{\alpha+1}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \cong \Omega^{\alpha+1}\left(t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right), \\
0 \rightarrow \Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \rightarrow \Omega^{\alpha+1}\left(t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \oplus P_{1} \\
\rightarrow \Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \rightarrow 0,(\text { exact }) \\
\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \cong \Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right), \\
0 \rightarrow \Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \rightarrow \Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \oplus P_{2} \\
\rightarrow \Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \rightarrow 0,(\text { exact })
\end{gathered}
$$

$$
\begin{gathered}
\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \cong \Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \\
\Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \oplus P_{n-1} \cong \Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)
\end{gathered}
$$

where all P_{i} are projective in $\bmod \Lambda$; we also have the following

$$
\begin{gathered}
\Omega^{-\alpha-2}\left(\Omega^{\alpha+2}(M)\right) \cong \Omega^{-\alpha-2}\left(\Omega^{\alpha+2}\left(t_{\mathcal{S}}(M)\right)\right)=\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \\
\cong \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right), \\
0 \rightarrow \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \rightarrow \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \oplus \Omega^{-\alpha-2}\left(P_{1}\right) \oplus E_{1} \\
\rightarrow \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \rightarrow 0,(\text { exact }) \\
\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \cong \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right), \\
0 \rightarrow \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \rightarrow \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \oplus \Omega^{-\alpha-2}\left(P_{2}\right) \oplus E_{2} \\
\rightarrow \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \rightarrow 0,(\text { exact }) \\
\cdots \cdots \omega^{\ldots} \\
\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right) \cong \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right),\right. \\
\Omega^{-\alpha-2}\left(\Omega ^ { \alpha + 1 } (t _ { \mathcal { S } } F _ { t _ { \mathcal { S } } } ^ { n - 2 } (\Omega ^ { 1 } (t _ { \mathcal { S } } (M)))) \oplus \Omega ^ { - \alpha - 2 } (P _ { n - 1 }) \cong \Omega ^ { - \alpha - 2 } \left(\Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2}\left(\Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right),\right.\right.
\end{gathered}
$$

where all E_{i} are injective in $\bmod \Lambda$. So

$$
\begin{aligned}
& \Omega^{-\alpha-2}\left(\Omega^{\alpha+2}(M)\right) \\
& \cong \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right) \\
& \in\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \\
& \subseteq\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1}\right. \\
& =\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \\
& \subseteq\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{2} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \\
& \quad \vdots \\
& \subseteq \\
& \subseteq\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{n-2} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \diamond \underbrace{\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond \cdots \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1}}_{n-2} \\
& =\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(F_{t_{\mathcal{S}}}^{n-2} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& \subseteq\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{n-2} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right) \oplus P_{n-1}\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& =\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}\left(\operatorname{top} t_{\mathcal{S}} F_{t_{\mathcal{S}}-2} \Omega^{1}\left(t_{\mathcal{S}}(M)\right)\right)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& \subseteq\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& =\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-1},
\end{aligned}
$$

and hence

$$
\begin{aligned}
M \in & \left\langle\oplus_{i=0}^{-\alpha-1} \Omega^{i}(\Lambda)\right\rangle_{\alpha+2} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+2}(M)\right)\right\rangle_{1} \\
& \subseteq\left\langle\oplus_{i=0}^{-\alpha-1} \Omega^{i}(\Lambda)\right\rangle_{\alpha+2} \diamond\left\langle\Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-1} \\
& \left.\subseteq\left\langle\left(\oplus_{i=0}^{-\alpha-1} \Omega^{i}(\Lambda)\right) \oplus \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{\alpha+1+n} . \quad \text { (by Corollary } 2.3(1)\right)
\end{aligned}
$$

Springer

It follows that

$$
\bmod \Lambda=\left\langle\left(\oplus_{i=0}^{-\alpha-1} \Omega^{i}(\Lambda)\right) \oplus \Omega^{-\alpha-2}\left(\Omega^{\alpha+1}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{\alpha+1+n}
$$

and $\operatorname{dim} \Lambda \leq \alpha+n$.
As an application of Theorem 3.19, we have the following

Corollary $\mathbf{3 . 2 0}$

(1) $[3$, Example $1.6(i i)] \operatorname{dim} \bmod \Lambda \leq L L(\Lambda)-1$;
(2) (cf. Corollary 3.6 and $[17,4.5 .1(3)]) \operatorname{dim} \bmod \Lambda \leq \operatorname{gl} . \operatorname{dim} \Lambda$.

Proof (1) Let $\mathcal{S}=\emptyset$. Then $\operatorname{pd} \mathcal{S}=-1$ and the torsion pair $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S})\right)=(\bmod \Lambda, 0)$. By [15, Propposition 5.9(a)], we have $t_{\mathcal{S}}(\Lambda)=\Lambda$ and $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\operatorname{LL}(\Lambda)$. It follows from Theorem 3.19 that $\operatorname{dim} \bmod \Lambda \leq \operatorname{LL}(\Lambda)-1$.
(2) Let $\mathcal{S}=\mathcal{S}^{<\infty}=\{$ all simple modules in $\bmod \Lambda\}$. Then $\operatorname{pd} \mathcal{S}=$ gl.dim Λ and the torsion pair $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S})\right)=(0, \bmod \Lambda)$. By [15, Propposition 5.3], we have $t_{\mathcal{S}}(\Lambda)=0$ and $\ell \ell^{t} \mathcal{S}(\Lambda)=0$. It follows from Theorem 3.19 that $\operatorname{dim} \bmod \Lambda \leq \operatorname{gl} . \operatorname{dim} \Lambda$.

By choosing some suitable \mathcal{S} and applying Theorem 3.19, we may obtain more precise upper bounds for $\operatorname{dim} \bmod \Lambda$ than that in Corollary 3.20.

Example 3.21 Consider the bound quiver algebra $\Lambda=k Q / I$, where k is a field and Q is given by

and I is generated by $\left\{\alpha_{i} \alpha_{i+1} \mid n+1 \leq i \leq 2 n-2\right\}$ with $n \geq 5$. Then the indecomposable projective Λ-modules are

where $n+1 \leq j \leq 2 n-2,2 n-1 \leq l \leq 2 n+1$ and $P(i+1)=\operatorname{rad} P(i)$ for any $2 \leq i \leq n-1$.

We have

$$
\operatorname{pdS}(i)= \begin{cases}n-1, & \text { if } i=1 \\ 1, & \text { if } 2 \leq i \leq n-1 \\ 0, & \text { if } i=n, 2 n, 2 n+1 \\ 2 n-1-i, & \text { if } n+1 \leq i \leq 2 n-1\end{cases}
$$

So $\mathcal{S}^{<\infty}=\{$ all simple modules in $\bmod \Lambda\}$. Let $\mathcal{S}:=\{S(i) \mid 2 \leq i \leq n\}\left(\subseteq \mathcal{S}^{<\infty}\right)$ and \mathcal{S}^{\prime} be all the others simple modules in $\bmod \Lambda$. Then $\operatorname{pd} \mathcal{S}=1$ and $\mathcal{S}^{\prime}=\{S(i) \mid i=$ 1 or $n+1 \leq i \leq 2 n+1\}$. Because $\Lambda=\oplus_{i=1}^{2 n+1} P(i)$, we have

$$
\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\max \left\{\ell \ell^{t_{\mathcal{S}}}(P(i)) \mid 1 \leq i \leq 2 n+1\right\}
$$

by [15, Lemma 3.4(a)].
In order to compute $\ell \ell^{t} \mathcal{S}(P(1))$, we need to find the least non-negative integer i such that $t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{i}(P(1))=0$. Since top $P(1)=S(1) \in$ add \mathcal{S}^{\prime}, we have $t_{\mathcal{S}}(P(1))=P(1)$ by [15, Proposition 5.9(a)]. Thus

$$
F_{t_{\mathcal{S}}}(P(1))=\operatorname{rad} t_{\mathcal{S}}(P(1))=\operatorname{rad}(P(1))=S(n+1) \oplus P(2) \oplus S(2 n) \oplus S(2 n+1)
$$

Since top $S(n+1)=S(n+1) \in$ add \mathcal{S}^{\prime}, we have $t_{\mathcal{S}}(S(n+1))=S(n+1)$ by [15, Proposition 5.9(a)]. Similarly, $t_{\mathcal{S}}(S(2 n))=S(2 n)$ and $t_{\mathcal{S}}(S(2 n+1))=S(2 n+1)$. Since $P(2) \in \mathfrak{F}(\mathcal{S})$, we have $t_{\mathcal{S}}(P(2))=0$ by [15, Proposition 5.3]. So
$t_{\mathcal{S}} F_{t_{\mathcal{S}}}(P(1))=t_{\mathcal{S}}(S(n+1) \oplus P(2) \oplus S(2 n) \oplus S(2 n+1))=S(n+1) \oplus S(2 n) \oplus S(2 n+1)$.
It follows that

$$
F_{t_{\mathcal{S}}}^{2}(P(1))=\operatorname{rad} t_{\mathcal{S}} F_{t_{\mathcal{S}}}(P(1))=\operatorname{rad}(S(n+1) \oplus S(2 n) \oplus S(2 n+1))=0
$$

and $t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{2}(P(1))=0$, which implies $\ell \ell^{t_{\mathcal{S}}}(P(1))=2$. Similarly, we have

$$
\ell \ell^{t_{\mathcal{S}}}(P(i))=\left\{\begin{array}{l}
0, \text { if } 2 \leq i \leq n \\
2, \text { if } n+1 \leq i \leq 2 n-2 \\
1, \text { if } 2 n-1 \leq i \leq 2 n+1
\end{array}\right.
$$

Consequently, we conclude that $\ell \ell^{t \mathcal{S}}(\Lambda)=\max \left\{\ell \ell^{t} \mathcal{S}(P(i)) \mid 1 \leq i \leq 2 n+1\right\}=2$.
(1) $\operatorname{Because} \operatorname{LL}(\Lambda)=n$ and gl.dim $\Lambda=n-1$, we have

$$
\operatorname{dim} \bmod \Lambda \leq \min \{\operatorname{gl} \operatorname{dim} \Lambda, \operatorname{LL}(\Lambda)-1\}=n-1
$$

by Corollary 3.20.
(2) By Theorem 3.19, we have

$$
\operatorname{dim} \bmod \Lambda \leq \operatorname{pd} \mathcal{S}+\ell \ell^{t \mathcal{S}}(\Lambda)=1+2=3
$$

The upper bound here is better than that in (1) since $n \geq 5$.

4 Ring Extensions

Let Λ be a subring of a ring Γ such that Λ and Γ have the same identity. Then A is called a ring extension of Λ, and denoted by $\Gamma \geq \Lambda$.

Definition 4.1 A ring extension $\Gamma \geq \Lambda$ is called
(1) [13] a weak excellent extension if
(1.1) Γ is Λ-projective [21]; that is, for a submodule N_{Γ} of M_{Γ}, if N_{Λ} is a direct summand of M_{Λ}, denoted by $N_{\Lambda} \mid M_{\Lambda}$, then $N_{\Gamma} \mid M_{\Gamma}$;
(1.2) Γ is a finite extension of Λ; that is, there exists a finite set $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$ in Γ such that $\Gamma=\sum_{i=1}^{n} \gamma_{i} \Lambda$;
(1.3) Γ_{Λ} is flat and ${ }_{\Lambda} \Gamma$ is projective;
(2) $[5,21]$ an excellent extension if it is a weak excellent extension and Γ_{Λ} and ${ }_{\Lambda} \Gamma$ are free with a common basis $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$, such that $\Lambda \gamma_{i}=\gamma_{i} \Lambda$ for any $1 \leq i \leq n$.
(3) [29] a left idealized extension if $\operatorname{rad} \Lambda$ is a left ideal of Γ.

We have the following
Theorem 4.2 Let $\Gamma \supseteq \Lambda$ be artin algebras. Then we have
(1) $\operatorname{dim} \bmod \Lambda \geq \operatorname{dim} \bmod \Gamma$ if $\Gamma \geq \Lambda$ is a weak excellent extension, and $\operatorname{dim} \bmod \Lambda=$ $\operatorname{dim} \bmod \Gamma$ if $\Gamma \geq \Lambda$ is an excellent extension;
(2) $\operatorname{dim} \bmod \Lambda \leq \operatorname{dim} \bmod \Gamma+2$ if $\Gamma \geq \Lambda$ is a left idealized extension.

Proof (1) Let $\Gamma \geq \Lambda$ be a weak excellent extension and $\operatorname{dim} \bmod \Lambda=n$ and $T \in \bmod \Lambda$ such that $\bmod \Lambda=\langle T\rangle_{n+1}$. Let $X \in \bmod \Gamma \subseteq \bmod \Lambda$. Since ${ }_{\Lambda} \Gamma$ is projective, $-\otimes_{\Lambda} \Gamma$ is exact. So we have $X \otimes_{\Lambda} \Gamma \in\left\langle\left(T \otimes_{\Lambda} \Gamma\right)_{\Gamma}\right\rangle_{n+1}$ by Lemma 2.4. Since $X_{\Gamma} \mid\left(X \otimes_{\Lambda} \Gamma\right)_{\Gamma}$ by [34, Lemma 1.1], we have $X_{\Gamma} \in\left\langle\left(T \otimes_{\Lambda} \Gamma\right)_{\Gamma}\right\rangle_{n+1}$. Thus mod $\Gamma=\left\langle\left(T \otimes_{\Lambda} \Gamma\right)_{\Gamma}\right\rangle_{n+1}$ and $\operatorname{dim} \bmod \Gamma \leq n$.
Now let $\Gamma \geq \Lambda$ be an excellent extension and $\operatorname{dim} \bmod \Gamma=n$ and $S \in \bmod \Gamma \subseteq \bmod \Lambda$ such that $\bmod \Gamma=\langle S\rangle_{n+1}$. Let $X_{\Lambda} \in \bmod \Lambda$. Then there exists an exact sequence

$$
0 \longrightarrow X_{1} \longrightarrow X \otimes_{\Lambda} \Gamma \longrightarrow X_{2} \longrightarrow 0
$$

in $\bmod \Gamma$ with $X_{1} \in\left\langle S_{\Gamma}\right\rangle_{1}$ and $X_{2} \in\left\langle S_{\Gamma}\right\rangle_{n}$. Note that it is also an exact sequence in $\bmod \Lambda . \operatorname{So}\left(X \otimes_{\Lambda} \Gamma\right)_{\Lambda} \in\left\langle S_{\Lambda}\right\rangle_{n+1}$. Since $X_{\Lambda} \mid\left(X \otimes_{\Lambda} \Gamma\right)_{\Lambda}$, we have $X_{\Lambda} \in\left\langle S_{\Lambda}\right\rangle_{n+1}$. Thus $\bmod \Lambda=\left\langle S_{\Lambda}\right\rangle_{n+1}$ and $\operatorname{dim} \bmod \Lambda \leq n$.
(2) Let $\operatorname{dim} \bmod \Gamma=n$. Then w.resol.dim $\bmod \Gamma=n$ by Theorem 3.5. Let $X \in \bmod \Lambda$. Since $\Omega_{\Lambda}^{2}(X)$ can be viewed as an Γ-module by [30, Lemma 0.2], there exists $V \in$ $\bmod \Gamma \subseteq \bmod \Lambda$ such that there is an exact sequence

$$
0 \longrightarrow V_{n} \longrightarrow V_{n-1} \longrightarrow \cdots \longrightarrow V_{1} \longrightarrow V_{0} \longrightarrow \Omega_{\Lambda}^{2}(X) \longrightarrow 0
$$

in $\bmod \Gamma$ with all V_{i} in add V_{Γ}. It is also an exact sequence in $\bmod \Lambda$. So $\left(V_{\Lambda} \oplus \Lambda\right)$ w.resol. $\operatorname{dim} \bmod \Lambda \leq n+2$ and w.resol.dim $\bmod \Lambda \leq n+2 . \operatorname{Thus} \operatorname{dim} \bmod \Lambda \leq n+2$ by Theorem 3.5.

In the following, we list some examples of (weak) excellent extensions, in which Theorem 4.2(1) may be applied.

Example 4.3 [5, 14, 21, 33]
(1) For a ring $\Lambda, M_{n}(\Lambda)$ (the matrix ring of Λ of degree n) is an excellent extension of Λ.
(2) Let Λ be a ring and G a finite group. If $|G|^{-1} \in \Lambda$, then the skew group ring $\Lambda * G$ is an excellent extension of Λ.
(3) Let Λ be a finite-dimensional algebra over a field k, and let F be a finite separable field extension of k. Then $\Lambda \otimes_{k} F$ is an excellent extension of Λ.
(4) Let k be a field, and let G be a group and H a normal subgroup of G. If $[G: H$] is finite and is not zero in k, then $k G$ is an excellent extension of $k H$.
(5) Let k be a field of charactertistic p, and let G a finite group and H a normal subgroup of G. If H contains a Sylow p-subgroup of G, then $k G$ is an excellent extension of $k H$.
(6) Let k be a field and G a finite group. If G acts on k (as field automorphisms) with kernel H. Then the skew group ring $k * G$ is an excellent extension of the group ring $k H$, and the center $Z(k H)$ of $k H$ is an excellent extension of the center $Z(k * G)$ of $k * G$.
(7) Let H be a finite-dimensional semisimple Hopf algebra over a field k and Λ a twisted H-module algebra. Then for any cocycle $\sigma \in \operatorname{Hom}_{k}(H \otimes H, \Lambda)$, the crossed product algebra $\Lambda \#_{\sigma} H$ is a weak excellent extension of Λ, but not an excellent extension of Λ in general.
(8) Recall from [25] that a ring Λ is called a right S-ring if any flat module in $\bmod \Lambda$ is projective. The class of right S-rings includes semiperfect rings, commutative semilocal rings, subrings of right noetherian rings, subrings of right S-rings, right Ore domains, right nonsingular ring of finite right Goldie dimension, endomorphism rings of right artinian modules and rings with right Krull dimension [9, 25]. Let $\Gamma \geq \Lambda$ be an excellent extension with Λ a right S-ring. If Γ has two ideals I and J such that $\Lambda \cap I=0$ and $\Gamma=I \oplus J$, then the canonical embedding $\Lambda \hookrightarrow \Gamma / I$ is a weak excellent extension; and it is not an excellent extension if J_{Λ} is not free.

We recall from [19] the separable equivalence of artin algebras, which includes the derived equivalence of self-injective algebras, Morita equivalence and stable equivalence (of Morita type) [19, 22].

Definition 4.4 [19] Two artin algebras Λ and Γ are called separably equivalent if there exist ${ }_{\Gamma} M_{\Lambda}$ and ${ }_{\Lambda} N_{\Gamma}$ such that
(1) $\quad M$ and N are both finitely generated projective as one sided modules;
(2) $M \otimes_{\Lambda} N \cong \Gamma \oplus X$ as a (Γ, Γ)-bimodule for some ${ }_{\Gamma} X_{\Gamma}$;
(3) $N \otimes_{\Gamma} M \cong \Lambda \oplus Y$ as a (Λ, Λ)-bimodule for some ${ }_{\Lambda} Y_{\Lambda}$.

We have the following
Theorem 4.5 Let Λ and Γ be artin algebras. If they are separably equivalent, then $\operatorname{dim} \bmod \Lambda=d i m \bmod \Gamma$.

Proof Let M and N be as in Definition 4.4. Let dim $\bmod \Gamma=n$. Then there exists $T_{\Gamma} \in$ $\bmod \Gamma$ such that $\bmod \Gamma=\left\langle T_{\Gamma}\right\rangle_{n+1}$. Let $L_{\Lambda} \in \bmod \Lambda$. Then $L \otimes_{\Lambda} N_{\Gamma} \in \bmod \Gamma=\left\langle T_{\Gamma}\right\rangle_{n+1}$. Since ${ }_{\Gamma} M$ is projective in $\Gamma-\bmod$, we have that the functor $-\otimes_{\Gamma} M: \bmod \Gamma \longrightarrow \bmod \Lambda$
is exact. By Lemma 2.4, we have $\left(L \otimes_{\Lambda} N\right) \otimes_{\Gamma} M \in\left\langle T \otimes_{\Gamma} M_{\Lambda}\right\rangle_{n+1}$. By Definition 4.4(3), there exists a (Λ, Λ)-bimodule Y such that

$$
\begin{aligned}
L \oplus\left(L \otimes_{\Lambda} Y\right) & \cong\left(L \otimes_{\Lambda} \Lambda\right) \oplus\left(L \otimes_{\Lambda} Y\right) \\
& \cong L \otimes_{\Lambda}(\Lambda \oplus Y) \\
& \cong L \otimes_{\Lambda}\left(N \otimes_{\Gamma} M\right) \\
& \cong\left(L \otimes_{\Lambda} N\right) \otimes_{\Gamma} M \\
& \in\left\langle T \otimes_{\Gamma} M_{\Lambda}\right\rangle_{n+1},
\end{aligned}
$$

and so $L_{\Lambda} \in\left\langle T \otimes_{\Gamma} M_{\Lambda}\right\rangle_{n+1}$. It follows that $\bmod \Lambda=\left\langle T \otimes_{\Gamma} M_{\Lambda}\right\rangle_{n+1}$ and $\operatorname{dim} \bmod \Lambda \leq$ $n=\operatorname{dim} \bmod \Gamma$. Symmetrically, we have $\operatorname{dim} \bmod \Gamma \leq \operatorname{dim} \bmod \Lambda$.

As a consequence of Theorem 4.5, we have the following
Corollary 4.6 Let Λ, Γ and Δ be finite dimensional algebras over a field k. If Λ is separably equivalent to Γ, then $\operatorname{dim} \bmod \Lambda \otimes_{k} \Delta=\operatorname{dim} \bmod \Gamma \otimes_{k} \Delta$.

Proof If Λ is separably equivalent to Γ, then $\Lambda \otimes_{k} \Delta$ is separably equivalent to $\Gamma \otimes_{k} \Delta$ by [22, p.227, Proposition]. The assertion follows from Theorem 4.5.

5 Recollements

We recall the notion of recollements of abelian categories.
Definition 5.1 [10] A recollement, denoted by $(\mathcal{A}, \mathcal{B}, \mathcal{C})$, of abelian categories is a diagram

of abelian categories and additive functors such that
(1) $\left(i^{*}, i_{*}\right),\left(i_{*}, i^{!}\right),\left(j_{!}, j^{*}\right)$ and $\left(j^{*}, j_{*}\right)$ are adjoint pairs;
(2) $i_{*}, j_{!}$and j_{*} are fully faithful;
(3) $\operatorname{Im} i_{*}=\operatorname{Ker} j^{*}$.

We list some properties of recollements of abelian categories (see [10, 23, 24]), which will be useful later.

Lemma 5.2 Let $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ be a recollement of abelian categories. Then we have
(1) $i^{*} j_{!}=0=i^{!} j_{*}$;
(2) the functors i_{*} and j^{*} are exact, $i^{!}$and j_{*} are left exact, and i^{*} and $j_{!}$are right exact;
(3) the functors $i^{*}, i^{!}$and j^{*} are dense;
(4) all the natural transformations $i^{*} i_{*} \longrightarrow 1_{\mathcal{A}}, \quad 1_{\mathcal{A}} \longrightarrow i^{!} i_{*}, \quad 1_{\mathcal{C}} \longrightarrow j^{*} j_{!}$and $j^{*} j_{*} \longrightarrow 1_{\mathcal{C}}$ are natural isomorphisms;
(5) for any object $B \in \mathcal{B}$,
(a) if i^{*} is exact, there is an exact sequence

$$
0 \longrightarrow j!j^{*}(B) \epsilon_{B}{ }^{-} \longrightarrow B \longrightarrow i_{*} i^{*}(B) \longrightarrow 0
$$

(b) if $i^{!}$is exact, there is an exact sequence

$$
0 \longrightarrow i_{* i}!^{!}(B) \longrightarrow B \eta_{B} \longrightarrow j_{*} j^{*}(B) \longrightarrow 0
$$

Lemma 5.3 Let $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ be a recollement of abelian categories. Then we have
(1) If i^{*} is exact, then j ! is exact;
(2) If $i^{!}$ie exact, then j_{*} is exact.

Proof (1) Let

$$
0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0
$$

be an exact sequence in \mathcal{C}. Since j ! is right exact by Lemma 5.2(2), we get an exact sequence

$$
\begin{equation*}
0 \longrightarrow C \longrightarrow j!(X) \longrightarrow j!(Y) \longrightarrow j!(Z) \longrightarrow 0 \tag{5.1}
\end{equation*}
$$

in \mathcal{B}. Notice that j^{*} is exact and $j^{*} j_{!} \cong 1_{\mathcal{C}}$ by Lemma $5.2(2)(4)$, so $j^{*}(C)=0$. Since $\operatorname{Im} i_{*}=\operatorname{Ker} j^{*}$, there exists $C^{\prime} \in \mathcal{A}$ such that $C \cong i_{*}\left(C^{\prime}\right)$. Since i^{*} is exact and $i^{*} j!=0$ by Lemma 5.2(2)(1), applying the functor i^{*} to the exact sequence (5.1) yields $i^{*}(C)=0$. It follow that $C^{\prime} \cong i^{*} i_{*}\left(C^{\prime}\right) \cong i^{*}(C)=0$ and $C=0$. Thus $j!$ is exact.
(2) It is dual to (1).

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor of additive categories. Recall from [31] that F is called quasi-dense if for any $D \in \mathcal{D}$, there exists $C \in \mathcal{C}$ such that D is isomorphic to a direct summand of $F(C)$. Obviously, any dense functor is quasi-dense.

Lemma 5.4 Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an exact functor of abelian categories, and let \mathcal{A}_{1} and \mathcal{B}_{1} be subcategories of \mathcal{A} and \mathcal{B} respectively. If the restriction functor $F: \mathcal{A}_{1} \rightarrow \mathcal{B}_{1}$ is quasi-dense, then $\boldsymbol{\operatorname { s i z e }}_{\mathcal{A}} \mathcal{A}_{1} \geq \operatorname{size}_{\mathcal{B}} \mathcal{B}_{1}$; in particular, $\operatorname{dim} \mathcal{A} \geq \operatorname{dim} \mathcal{B}$.

Proof Suppose $\operatorname{size}_{\mathcal{A}} \mathcal{A}_{1}=n$, that is, $\mathcal{A}_{1} \subseteq\langle T\rangle_{n+1}$ for some $T \in \mathcal{A}$. Let $X \in \mathcal{B}_{1}$. Since F is quasi-dense, we have $X \oplus X_{1} \cong F(Y)$ for some $Y \in \mathcal{A}_{1}$ and $X_{1} \in \mathcal{B}_{1}$. It follows from Lemma 2.4 that $X \oplus X_{1} \in F\left(\mathcal{A}_{1}\right) \subseteq F\left(\langle T\rangle_{n+1}\right) \subseteq\langle F(T)\rangle_{n+1}$. So $X \in\langle F(T)\rangle_{n+1}$ and $\mathcal{B}_{1} \subseteq\langle F(T)\rangle_{n+1}$, which implies size $\mathcal{B}_{\mathcal{B}} \mathcal{B}_{1} \leq n$.

Let Λ be an artin algebra and e an idempotent of Λ. Then $(\bmod \Lambda / e \Lambda e, \bmod \Lambda$, $\bmod e \Lambda e$) is a recollement by [23, Example 2.7]. So $\operatorname{dim} \bmod \Lambda \geq \operatorname{dim} \bmod e \Lambda e$ by Lemma 5.4.

Theorem 5.5 Let $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ be a recollement of abelian categories. If either i ! or i^{*} is exact, then

$$
\max \{\operatorname{dim} \mathcal{A}, \operatorname{dim} \mathcal{C}\} \leq \operatorname{dim} \mathcal{B} \leq \operatorname{dim} \mathcal{A}+\operatorname{dim} \mathcal{C}+1
$$

Proof Let $i^{!}$be exact. Since $i^{!}$and j^{*} are exact and dense Lemma 5.2(2)(3), it follows from Lemma 5.4 that $\max \{\operatorname{dim} A, \operatorname{dim} C\} \leq \operatorname{dim} B$.

Let $\operatorname{dim} \mathcal{A}=n$ and $\operatorname{dim} \mathcal{C}=m$. Then there exist $X \in \mathcal{A}$ and $Y \in \mathcal{C}$ such that $\mathcal{A}=$ $\langle X\rangle_{n+1}$ and $\mathcal{C}=\langle Y\rangle_{m+1}$. Let $M \in \mathcal{B}$. Since $i^{!}$is exact by assumption, we have an exact sequence

$$
0 \longrightarrow i_{*} i^{!}(M) \longrightarrow M \longrightarrow j_{*} j^{*}(M) \longrightarrow 0
$$

in \mathcal{B}. Note that i_{*} and j_{*} are exact by Lemmas 5.2(2) and 5.3(2). Since $i^{!}(M) \in \mathcal{A}=\langle X\rangle_{n+1}$ and $j^{*}(M) \in \mathcal{C}=\langle Y\rangle_{m+1}$, we have $i_{*} i^{!}(M) \in\left\langle i_{*}(X)\right\rangle_{n+1}$ and $j_{*} j^{*}(M) \in\left\langle j_{*}(Y)\right\rangle_{m+1}$ by Lemma 2.4. Thus $M \in\left\langle i_{*} X\right\rangle_{n+1} \diamond\left\langle j_{*} Y\right\rangle_{m+1} \subseteq\left\langle i_{*} X \oplus j_{*} Y\right\rangle_{n+m+2}$ by Corollary 2.3(1), and therefore $\operatorname{dim} \mathcal{B} \leq n+m+1$.

For the case that i^{*} is exact, the argument is similar.
Let $\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}$ be artin algebras and $\left(\bmod \Lambda^{\prime}, \bmod \Lambda, \bmod \Lambda^{\prime \prime}\right)$ be a recollement. If $\operatorname{dim} \bmod \Lambda=0$, then $\operatorname{dim} \bmod \Lambda^{\prime}=0=\operatorname{dim} \bmod \Lambda^{\prime \prime}$; that is, Λ is of finite representation type implies that so are Λ^{\prime} and $\Lambda^{\prime \prime}[23]$. Conversely, if $\operatorname{dim} \bmod \Lambda^{\prime}=0=\operatorname{dim} \bmod \Lambda^{\prime \prime}$, then $\operatorname{dim} \bmod \Lambda=0$ does not hold true in general. For example, let Λ^{\prime} be the finite dimensional algebra given by the quiver • (a unique vertex without arrows) and $\Lambda^{\prime \prime}$ the finite dimensional algebra given by the quiver

with relation $\lambda \alpha=0$. Then both Λ^{\prime} and $\Lambda^{\prime \prime}$ are of finite representation type, and so $\operatorname{dim} \bmod \Lambda^{\prime}=0=\operatorname{dim} \bmod \Lambda^{\prime \prime}$ by [3, Example 1.6(i)] (see Corollary 3.8(1)). Define the triangular matrix algebra $\Lambda:=\left(\begin{array}{cc}\Lambda^{\prime} \\ 0 & \Lambda^{\prime \prime}\end{array}\right)$, where $M \cong \Lambda^{\prime} \oplus \Lambda^{\prime}$, the right $\Lambda^{\prime \prime}$-module structure on M is induced by the unique algebra surjective homomorphism $\Lambda^{\prime \prime} \xrightarrow{\phi} \Lambda^{\prime}$ satisfying $\phi\left(e_{2}\right)=e_{1}, \phi\left(e_{3}\right)=0$ and $\phi\left(e_{4}\right)=0$. Then Λ is the finite dimensional algebra given by the quiver

with relations $\delta \gamma=\delta \beta=\lambda \alpha=\alpha \beta=\alpha \gamma=0$. By [23, Example 2.12], we have that

is a recollement, where

$$
\begin{aligned}
& i^{*}\left(\binom{X}{Y}_{f}\right)=\operatorname{Coker} f, i_{*}(X)=\binom{X}{0}, \quad i^{!}\left(\binom{X}{Y}_{f}\right)=X, \\
& j_{!}(Y)=\binom{Y}{Y}_{1}, \quad j^{*}\left(\binom{X}{Y}_{f}\right)=Y, \quad j_{*}(Y)=\binom{0}{Y} .
\end{aligned}
$$

Because i ! is exact by [18, Lemma 3.2(a)], dim $\bmod \Lambda \leq 1$ by Theorem 5.5. Notice that Λ is of infinite representation type and rep. $\operatorname{dim} \Lambda=3$ by [1, Example 5.9], so $\operatorname{dim} \bmod \Lambda=1$ by Corollary 3.8(2).

Acknowledgements This work was partially supported by NSFC (No. 11571164), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0019). The authors thank the referee for very useful and detailed suggestions.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Assem, I., Coelho, F.U., Wagner, H.: On subcategories closed under predecessors and the representation dimension. J. Algebra 418, 174-196 (2014)
2. Auslander, M.: Representation Dimension of Artin Algebras, Queen Mary College Math. Notes, Queen Mary College, London (1971)
3. Beligiannis, A.: Some ghost lemmas, survey for 'The representation dimension of artin algebras', Bielefeld, http://www.mathematik.uni-bielefeld.de/ $\sim \operatorname{sek} / 2008 /$ ghosts.pdf (2008)
4. Beligiannis, A.: On algebras of finite Cohen-Macaulay type. Adv. Math. 226, 1973-2019 (2011)
5. Bonami, L.: On the Structure of Skew Group Rings Algebra Berichte, vol. 48. Verlag Reinhard Fischer, Munich (1984)
6. Bondal, A., Van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3, 1-36 (2003)
7. Dao, H., Takahashi, R.: The radius of a subcategory of modules. Algebra Number Theory 8, 141-172 (2014)
8. Erdmann, K., Holm, T., Iyama, O., Schröer, J.: Radical embeddings and representation dimension. Adv. Math. 185, 159-177 (2004)
9. Facchini, A., Herbera, D., Sakhajev, I.: Finitely generated flat modules and a characterization of semiperfect rings. Comm. Algebra 31, 4195-4214 (2003)
10. Franjou, V., Pirashvili, T.: Comparison of abelian categories recollements. Doc. Math. 9, 41-56 (2004). (electronic)
11. Herzog, I.: A test for finite representation type. J. Pure Appl. Algebra 95, 151-182 (1994)
12. Huang, C., Huang, Z.: Torsionfree dimension of modules and self-injective dimension of rings. Osaka J. Math. 49, 21-35 (2012)
13. Huang, Z., Sun, J.: Invariant properties of representations under excellent extensions. J. Algebra 358, 87-101 (2012)
14. Huang, Z., Sun, J.: Endomorphism algebras and Igusa-Todorov algebras. Acta Math. Hungar. 140, 60-70 (2013)
15. Huard, F., Lanzilotta, M., Mendoza Hernández, O.: Layer lengths, torsion theories and the finitistic dimension. Appl. Categ. Struct. 21, 379-392 (2013)
16. Igusa, K., Todorov, G.: On the finitistic global dimension conjecture for artin algebras. In: Representations of Algebras and Related Topics, Fields Inst. Commun., vol. 45, pp. 201-204. Amer. Math. Soc., Providence (2005)
17. Iyama, O.: Rejective subcategories of artin algebras and orders. arXiv:math/0311281 (2003)
18. Lu, M.: Gorenstein defect categories of triangular matrix algebras. J. Algebra 480, 346-367 (2017)
19. Linckelmann, M.: Finite generation of Hochschild cohomology of Hecke algebras of finite classical type in characteristic zero. Bull. Lond. Math. Soc. 43, 871-885 (2011)
20. Oppermann, S.: Lower bounds for Auslander's representation dimension. Duke Math. J. 148, 211-249 (2009)
21. Passman, D.S.: The Algebraic Structure of Group Rings. Wiley-Interscience, New York (1977)
22. Peacock, S.F.: Separable equivalence, complexity and representation type. J. Algebra 490, 219-240 (2017)
23. Psaroudakis, C.: Homological theory of recollements of abelian categories. J. Algebra 398, 63-110 (2014)
24. Psaroudakis, C., Vitória, J.: Recollements of module categories. Appl. Categ. Struct. 22, 579-593 (2014)
25. Puninski, G., Rothmaler, P.: When every finitely generated flat module is projective. J. Algebra 277, 542-558 (2004)
26. Rouquier, R.: Representation dimension of exterior algebras. Invent. Math. 165, 357-367 (2006)
27. Rouquier, R.: Dimensions of triangulated categories. J. K-Theory 1, 193-256 (2008)
28. Wei, J.: Finitistic dimension and Igusa-Todorov algebras. Adv. Math. 222, 2215-2226 (2009)
29. Xi, C.: On the finitistic dimension conjecture I, related to representation-finite algebras. J. Pure Appl. Algebra 193, 287-305 (2004)
30. Xi, C.: Erratum to: "On the finitistic dimension conjecture I, Related to representation-finite algebras. J. Pure Appl. Algebra 193, 287-305 (2004)". J. Pure Appl. Algebra 202, 325-328 (2005)
31. Xi, C.: Adjoint functors and representation dimensions. Math. Sin. (Engl. Ser.) 22, 625-640 (2006)
32. $\mathrm{Xu}, \mathrm{D} .: 1$ Idealized extensions of artin algebras and finitistic dimensions. Commun. Algebra 44, 965-976 (2016)
33. Xue, W.: On a generalization of excellent extensions. Acta Math. Viet. 19, 31-38 (1994)
34. Xue, W.: On almost excellent extensions. Algebra Colloq. 3, 125-134 (1996)
35. Zheng, J., Huang, Z.: An upper bound for the dimension of bounded derived categories, preprint (2017)

[^0]: Presented by: Jan Stovicek

[^1]: 1 Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, People's Republic of China
 2 College of Science, Henan University of Engineering, Zhengzhou 451191, Henan Province, People's Republic of China

