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Abstract
LetA be an abelian category having enough projective objects and enough injective objects.
We prove that if A admits an additive generating object, then the extension dimension and
the weak resolution dimension of A are identical, and they are at most the representation
dimension of A minus two. By using it, for a right Morita ring �, we establish the relation
between the extension dimension of the category mod � of finitely generated right �-
modules and the representation dimension as well as the right global dimension of �. In
particular, we give an upper bound for the extension dimension of mod � in terms of the
projective dimension of certain class of simple right �-modules and the radical layer length
of �. In addition, we investigate the behavior of the extension dimension under some ring
extensions and recollements.

Keywords Extension dimension · Weak resolution dimension · Homological invariants ·
Radical layer length · Ring extensions · Recollements

1 Introduction

Following the work of Bondal and Van den Bergh [6], Rouquier introduced in [27] the
dimension of triangulated categories, which is an invariant that measures how quickly the
category can be built from one object. This dimension plays an important role in represen-
tation theory. For example, it can be used to compute the representation dimension of artin
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algebras [20, 26]. Let � be an artin algebra and mod � the category of finitely generated
right �-modules. Rouquier proved that the dimension of the bounded derived category of
mod � is at most LL(�) − 1, where LL(�) is the Loewy length of �, and this dimension
is at most the global dimension gl.dim � if � is a finite dimensional algebra over a perfect
field [27, Proposition 7.37 and Remark 7.26].

As an analogue of the dimension of triangulated categories, the (extension) dimension
dimA of an abelian category A was introduced by Beligiannis in [3], also see [7]. Let �

be an artin algebra. Note that the representation dimension of � is at most two (that is, � is
of finite representation type) if and only if dim mod � = 0 [3]. So, like the representation
dimension of �, the extension dimension dim mod � is also an invariant that measures how
far � is from having finite representation type. It was proved in [3] that dim mod � ≤
LL(�) − 1, which is a semi-counterpart of the above result of Rouquier. On the other hand,
Iyama introduced in [17] the weak resolution dimension of� (see also [20]). It is easy to see
that the weak resolution dimension of � is at most the representation dimension of � minus
two. Based on these works, in this paper we will study further properties of the extension
dimension of abelian categories, especially module categories. The paper is organized as
follows.

In Section 2, we give some terminology and some preliminary results.
In Section 3, we investigate the relationship between the extension dimension and some

other homological invariants. LetA be an abelian category having enough projective objects
and enough injective objects. We prove that if A admits an additive generating object, then
dimA and the weak resolution dimension of A are identical, and they are at most the rep-
resentation dimension of A minus two. As applications, we get that for a right Morita ring
�, dim mod � ≤ r.gl.dim � (which is the other semi-counterpart of the result of Rouquier)
and dim mod � is at most the representation dimension of � minus two, where r.gl.dim �

is the right global dimension of �; and we also get that dim mod � = n− 1 for the exterior
algebra� of kn, where k is a field. In addition, we establish the relation between dim mod �

and the finitistic dimension of �. Finally, we give an upper bound for dim mod � in terms
of the projective dimension of certain class of simple right �-modules and the radical layer
length of �, such that both gl.dim � and LL(�)−1 are properly special cases of this upper
bound.

In Section 4, we study the behavior of the extension dimension under ring extensions. Let
� ⊇ � be artin algebras. We prove that dim mod � = dim mod � if � ≥ � is an excellent
extension, and that dim mod � ≤ dim mod � + 2 if � ≥ � is a left idealized extension.
We also prove that if � and � are separably equivalent artin algebras, then dim mod � =
dim mod �.

LetA,B, C be abelian categories and

A i∗ �� B
i∗��

i!��
j∗ �� C
j!��

j∗��

a recollement. In Section 5, we prove that if either i! or i∗ is exact, then
max{dimA, dim C} ≤ dim B ≤ dimA + dim C + 1.

2 Preliminaries

LetA be an abelian category. The designation subcategory will be used for full and additive
subcategories of A which are closed under isomorphisms and the word functor will mean
an additive functor between additive categories. For a subclass U of A, we use add U to
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denote the subcategory of A consisting of direct summands of finite direct sums of objects
in U .

Let U1,U2, · · · ,Un be subcategories ofA. Define

U1 � U2 := add {A ∈ A | there exists an sequence 0 → U1 → A → U2 → 0

inA with U1 ∈ U1 and U2 ∈ U2}.
By [7, Proposition 2.2], the operator � is associative, that is, (U1�U2)�U3 = U1�(U2�U3).
The category U1 � U2 � · · · � Un can be inductively described as follows

U1 � U2 � · · · � Un := add {A ∈ A | there exists an sequence 0 → U → A → V → 0

inA with U ∈ U1 and V ∈ U2 � · · · � Un}.
For a subclass U of A, set 〈U〉0 = 0, 〈U〉1 = add U , 〈U〉n = 〈U〉1 � 〈U〉n−1 for any n ≥ 2,
and 〈U〉∞ = ⋃

n≥0〈U〉n [3]. Note that 〈U〉n = 〈〈U〉1〉n. If T is an object in A we write
〈T 〉n instead of 〈{T }〉n.

Throughout this paper, by convention, it is assumed that inf∅ = +∞ and sup∅ = −∞.

Definition 2.1 [7] For any subcategory X ofA, define

sizeAX := inf{n ≥ 0 | X ⊆ 〈T 〉n+1 with T ∈ A},
rankAX := inf{n ≥ 0 | X = 〈T 〉n+1 with T ∈ A}.

The extension dimension dimA ofA is defined to be dimA := rankAA.

It is easy to see that dimA = rankAA = sizeAA. We also have the following easy and
useful observations.

Proposition 2.2 Let U1 and U2 be subcategories ofA with U1 ⊆ U2. Then we have

(1) If V1 and V2 are subcategories ofA with V1 ⊆ V2, then U1 � V1 ⊆ U2 � V2;
(2) 〈U1〉n ⊆ 〈U2〉n for any n ≥ 1;
(3) 〈U1〉n ⊆ 〈U1〉n+1 for any n ≥ 1;
(4) sizeAU1 ≤ sizeAU2.

For two subcategories U ,V of A, we set U ⊕ V := {U ⊕ V | U ∈ U and V ∈ V}. Note
that if U is closed under finite direct sums, then U ⊕ U = U .

Corollary 2.3 For any T1, T2 ∈ A and m, n ≥ 1, we have

(1) 〈T1〉m � 〈T2〉n ⊆ 〈T1 ⊕ T2〉m+n;
(2) 〈T1〉m ⊕ 〈T2〉n ⊆ 〈T1 ⊕ T2〉max{m,n}.

Proof Since 〈T1〉1 ⊆ 〈T1 ⊕ T2〉1, we have 〈T1〉m ⊆ 〈T1 ⊕ T2〉m by Proposition 2.2(2).
Similarly, 〈T2〉n ⊆ 〈T1 ⊕ T2〉n. Thus we have
(1) 〈T1〉m � 〈T2〉n ⊆ 〈T1 ⊕ T2〉m � 〈T1 ⊕ T2〉n = 〈T1 ⊕ T2〉m+n.
(2) 〈T1〉m ⊕ 〈T2〉n ⊆ 〈T1 ⊕ T2〉m ⊕ 〈T1 ⊕ T2〉n = 〈T1 ⊕ T2〉max{m,n} by Proposition 2.2(3).

We need the following fact.
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Lemma 2.4 Let F : A → B be an exact functor of abelian categories. Then F(〈T 〉n) ⊆
〈F(T )〉n for any T ∈ A and n ≥ 1.

Proof We proceed by induction on n. Let X ∈ F(〈T 〉1). Then X = F(Y ) for some Y ∈
〈T 〉1(= add T ). Since Y ⊕ Z ∼= T l for some Z ∈ A and l ≥ 1, we have

X ⊕ F(Z) = F(Y ) ⊕ F(Z) ∼= F(Y ⊕ Z) ∼= F(T l) ∼= F(T )l .

So X ∈ 〈F(T )〉1 and F(〈T 〉1) ⊆ 〈F(T )〉1. The case for n = 1 is proved.
Now let X ∈ F(〈T 〉n) with n ≥ 2. Then X = F(Y ) for some Y ∈ 〈T 〉n and there exists

an exact sequence
0 −→ Y1 −→ Y ⊕ Y ′ −→ Y2 −→ 0

in A with Y1 ∈ 〈T 〉1, Y2 ∈ 〈T 〉n−1 and Y ′ ∈ 〈T 〉n. Since F is exact, we get the following
exact sequence

0 −→ F(Y1) −→ F(Y ) ⊕ F(Y ′) −→ F(Y2) −→ 0.

By the induction hypothesis, F(Y1) ∈ F(〈T 〉1) ⊆ 〈F(T )〉1 and F(Y2) ∈ F(〈T 〉n−1) ⊆
〈F(T )〉n−1. It follows that

X = F(Y ) ∈ 〈F(Y1)〉1 � 〈F(Y2)〉1 ⊆ 〈F(T )〉1 � 〈F(T )〉n−1 = 〈F(T )〉n
and F(〈T 〉n) ⊆ 〈F(T )〉n.

3 Relations with Some Homological Invariants

In this section,A is an abelian category.

Definition 3.1 (cf. [17, 20]) Let M ∈ A. The weak M-resolution dimension of an object X
inA, denoted by M-w.resol.dim X, is defined as inf{i ≥ 0 | there exists an exact sequence

0 −→ Mi −→ Mi−1 −→ · · · −→ M0 −→ X −→ 0

in A with all Mj in add M}. The weak M-resolution dimension ofA, M-w.resol.dim A, is
defined as sup{M-w.resol.dim X | X ∈ A}. The weak resolution dimension ofA is denoted
by w.resol.dimA and defined as inf{M-w.resol.dim A | M ∈ A}.

Let X ∈ A. Suppose there exists a monomorphism f : X −→ E in A such that E is an
injective object inA. Then we write �−1(X) =: Cokerf if f is right minimal, i.e. if f is an
injective envelope of X. Dually, if g : P −→ X is a right minimal epimorphism in A such
that P is a projective object in A, then we write �1(X) =: Kerf . Additionally, define �0

as the identity functor in A. Inductively, for any n ≥ 2, we write �n(X) := �1(�n−1(X))

and �−n(X) := �−1(�−(n−1)(X)).

Lemma 3.2 [32, Lemma 3.3] If A has enough projective objects and enough injective
objects, then for any exact sequence

0 −→ X1 −→ X2 −→ X3 −→ 0

inA, we have the following exact sequences

0 −→ �1(X3) −→ X1 ⊕ P −→ X2 −→ 0,

0 −→ X2 −→ E ⊕ X3 −→ �−1(X1) −→ 0,
where P is projective and E is injective inA.
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Using Lemma 3.2, we get the following lemma, which is a dual of [7, Lemma 5.8].

Lemma 3.3 IfA has enough injective objects and

0 −→ Mn −→ · · · −→ M1 −→ M0 −→ X −→ 0,

is an exact sequence in A with n ≥ 0, then

X ∈ 〈M0〉1 � 〈�−1(M1)〉1 � · · · � 〈�−n(Mn)〉1 ⊆ 〈⊕n
i=0�

−i (Mi)〉n+1.

Remark Note that if A has enough injectives and X ∈ 〈Y1〉1 � 〈Y2〉1, then �−1(X) ∈
〈�−1(Y1)〉1 � 〈�−1(Y2)〉1. This fact is a sequence of the Horseshoe Lemma and is used to
prove Lemma 3.3. This statement and its corresponding dual version will be throughout this
paper.

3.1 Representation and Global Dimensions

For a subclass X of A, recall that a sequence S in A is called HomA(X ,−)-exact (resp.
HomA(−,X )-exact) if HomA(X,S) (resp. HomA(S, X)) is exact for any X ∈ X .

Definition 3.4 [2, 8, 26] The representation dimension rep.dimA of A is the smallest
integer i ≥ 2 such that there exists M ∈ A satisfying the property that for any X ∈ A,

(1) there exists a HomA(add M,−)-exact exact sequence

0 −→ Mi−2 −→ Mi−3 −→ · · · −→ M0 −→ X −→ 0

inA with all Mj in add M; and
(2) there exists a HomA(−, add M)-exact exact sequence

0 −→ X −→ N0 −→ N1 −→ · · · −→ Ni−2 −→ 0

inA with all Nj in add M .

We call A ∈ A an additive generating object if add A is a generator for A. It is trivial
that if A ∈ A is an additive generating object, then all projective objects inA are in add A.

Theorem 3.5 Assume that A admits an additive generating object A. If A has enough
projective objects and enough injective objects, then

w.resol.dimA = dimA ≤ rep.dimA − 2.

Proof It is trivial that w.resol.dim A ≤ rep.dimA − 2.
Assume that dimA = n and T ∈ A such that A = 〈T 〉n+1. Let X ∈ A. Then we have

an exact sequence

0 −→ X1 −→ X −→ X2 −→ 0

in A with X1 ∈ 〈T 〉1 and X2 ∈ 〈T 〉n. Set M := ⊕n
i=0�

i(T ) ⊕ A. We will prove M-
w.resol.dim X ≤ n by induction on n. The case for n = 0 is trivial. If n = 1, then T -
w.resol.dim X2 = 0 and M-w.resol.dim �1(X2) = 0. By Lemma 3.2, we have an exact
sequence

0 −→ �1(X2) −→ X1 ⊕ P −→ X −→ 0
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in A with P projective. So M-w.resol.dim X ≤ 1. Now suppose n ≥ 2. By the
induction hypothesis, we have (⊕n−1

i=0 �i(T ) ⊕ A)-w.resol.dim X2 ≤ n − 1, hence M-
w.resol.dim �1(X2) ≤ n − 1. It follows that M-w.resol.dim X ≤ n. Thus we have
w.resol.dim A ≤ n.

Conversely, assume that w.resol.dimA = n and T ∈ A such that for any X ∈ A, there
exists an exact sequence

0 −→ Mn −→ · · · −→ M1 −→ M0 −→ X −→ 0

in A with all Mi in add T . By Lemma 3.3, we have that X ∈ 〈⊕n
i=0�

−i (Mi)〉n+1 ⊆
〈⊕n

i=0�
−i (T )〉n+1 and A ⊆ 〈⊕n

i=0�
−i (T )〉n+1. It follows that A = 〈⊕n

i=0�
−i (T )〉n+1.

Thus we have dimA ≤ n.

For a ring �, we use mod � to denote the category of finitely generated right �-
modules, and we write rep.dim � := rep.dim mod � if mod � is an abelian category.
Recall from [11] that a ring � is called right Morita if there exist a ring � and a Morita
duality from mod � to mod �op. It is known that a ring � is right Morita if and only
if it is right artinian and there exists a finitely generated injective cogenerator for the
category of right �-modules [11, p.165]. The class of right Morita rings includes right
pure-semisimple rings and artin algebras. For any right noetherian ring �, it is clear that
w.resol.dim mod � ≤ r.gl.dim �, where r.gl.dim � is the right global dimension of �. So,
as an immediate consequence of Theorem 3.5, we have the following

Corollary 3.6 If � is a right Morita ring, then

w.resol.dim mod � = dim mod � ≤ min{r.gl.dim �, rep.dim � − 2}.

Let � be an artin algebra. Recall that � is called n-Gorenstein if its left and right
self-injective dimensions are at most n. Let P be the subcategory of mod � consisting of
projective modules. A module G ∈ mod � is called Gorenstein projective if there exists a
Hom�(−,P)-exact exact sequence

· · · → P1 → P0 → P 0 → P 1 → · · ·
in mod � with all Pi, P

i in P such that G ∼= Im(P0 → P 0). Recall from [4] that � is
said to be of finite Cohen-Macaulay type (finite CM-type for short) if there are only finitely
many non-isomorphic indecomposable Gorenstein projective modules in mod �.

Corollary 3.7 If � is an n-Gorenstein artin algebra of finite CM-type, then dim mod � ≤
n.

Proof Let M ∈ mod �. Because � is an n-Gorenstein artin algebra, we have an exact
sequence

0 → Hn → · · · → H1 → H0 → M → 0

in mod � with all Hi Gorenstein projective by [12, Theorem 1.4]. Because � is of finite
CM-type, we may assume that {G1, · · · ,Gn} is the set of non-isomorphic indecomposable
Gorenstein projective modules in mod �. Set G := ⊕n

i=0Gi . Then G-w.resol.dim M ≤ n

and w.resol.dim mod � ≤ n. It follows from Theorem 3.5 that dim mod � ≤ n.
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For small dim mod �, we have the following

Corollary 3.8 Let � be an artin algebra. Then we have

(1) [3, Example 1.6(i)] rep.dim � ≤ 2 if and only if dim mod � = 0;
(2) if rep.dim � = 3, then dim mod � = 1.

Proof (1) It is trivial by Corollary 3.6.
(2) Let rep.dim � = 3. Then dim mod � ≥ 1 by (1); and dim mod � ≤ rep.dim �−2 =

1 by Corollary 3.6. The assertion follows.

For a field k and n ≥ 1, ∧(kn) is the exterior algebra of kn.

Corollary 3.9 dim mod ∧ (kn) = n − 1 for any n ≥ 1.

Proof By [17, Thoerem 4.6], we have w.resol.dim mod ∧ (kn) = n − 1. It follows from
Corollary 3.6 that dim mod ∧ (kn) = n − 1.

3.2 Finitistic Dimension

From Now on, � is an Artin Algebra. For a module M in mod �, pdM is the projective
dimension of M . Set P<∞ := {M ∈ mod � | pdM < ∞}. Recall that the finitistic
dimension fin.dim � of � is defined as sup{pdM | M ∈ P<∞}. It is an unsolved conjecture
that fin.dim � < ∞ for every artin algebra �. Igusa-Todorov introduced in [16] a powerful
function ψ from mod � to non-negative integers to study the finiteness of fin.dim �. The
following lemma gives some useful properties of the Igusa-Todorov function ψ .

Lemma 3.10 [16, Lemma 0.3 and Theorem 0.4]

(1) For any X, Y ∈ mod �, ψ(X) ≤ ψ(Y ) if 〈X〉1 ⊆ 〈Y 〉1;
(2) if 0 −→ X1 −→ X2 −→ X3 −→ 0 is an exact sequence in mod � with pdX3 < ∞,

then pdX3 ≤ ψ(X1 ⊕ X2) + 1.

For any subcategory X of mod � and n ≥ 0, set �n(X ) := {�n(M)|M ∈ X }; in
particular, �0(X ) = X .

Proposition 3.11 The following statements are equivalent.

(1) fin.dim � < ∞;
(2) there exists some n ≥ 0 such that sizemod ��n(P<∞) ≤ 1.

Proof (1) ⇒ (2) If fin.dim � = m < ∞, then �m(P<∞) ⊆ 〈�〉1 and
sizemod ��m(P<∞) = 0.

(2) ⇒ (1) Let sizemod ��n(P<∞) ≤ 1 with n ≥ 0. Then �n(P<∞) ⊆ 〈T 〉2 for some
T ∈ mod �. Let X ∈ P<∞. Then there exists an exact sequence

0 −→ T1 −→ �n(X) −→ T2 −→ 0
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in mod � with T1, T2 ∈ 〈T 〉1. By Lemma 3.2, we obtain the following exact
sequence

0 −→ �1(T2) −→ T1 ⊕ P −→ �n(X) −→ 0

with P ∈ 〈�〉1. Then we have
pdX ≤ pd�n(X) + n

≤ ψ(�1(T2) ⊕ T1 ⊕ P) + 1 + n(by Lemma 3.10(2))

≤ ψ(�1(T ) ⊕ T ⊕ �) + 1 + n, (by Lemma 3.10(1))

which implies fin.dim � ≤ ψ(�1(T ) ⊕ T ⊕ �) + 1 + n.

By Proposition 3.11, we have the following

Corollary 3.12 If dim mod � ≤ 1, then fin.dim � < ∞.

3.3 Igusa-Todorov Algebras

Definition 3.13 ([28] and [14, Lemma 3.6]) For an integer n ≥ 0, � is called (n-)Igusa-
Todorov if there exists V ∈ mod � such that for any M ∈ mod �, there exists an exact
sequence

0 −→ V1 −→ V0 −→ �n(M) ⊕ P −→ 0

in mod � with V1, V0 ∈ add V and P projective; equivalently, there exists a module V ∈
mod � such that for any M ∈ mod �, there exists an exact sequence

0 −→ V1 −→ V0 −→ �n(M) −→ 0

in mod � with V1, V0 ∈ add V .

The class of Igusa-Todorov algebras includes algebras with representation dimension at
most 3, algebras with radical cube zero, monomial algebras, left serial algebras and syzygy
finite algebras [28].

Theorem 3.14 For any n ≥ 0, the following statements are equivalent.

(1) � is n-Igusa-Todorov;
(2) sizemod ��n(mod �) ≤ 1.

Proof (1) ⇒ (2) Let � be n-Igusa-Todorov and X ∈ �n(mod �). Then there exists V ∈
mod � such that the following sequence

0 −→ V1 −→ V0 −→ X −→ 0,

in mod � with V1, V0 ∈ add V is exact. By Lemma 3.3, Proposition 2.2(1) and
Corollary 2.3(1), we have

X ∈ 〈V0〉1 � 〈�−1(V1)〉1 ⊆ 〈V 〉1 � 〈�−1(V )〉1 ⊆ 〈V ⊕ �−1(V )〉2.
And then sizemod ��n(mod �) ≤ 1 by Definition 2.1.
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(2) ⇒ (1) Let sizemod ��n(mod �) ≤ 1 and X ∈ mod �. Then there exists T ∈ mod �

such that the following sequence

0 −→ T1 −→ �n(X) −→ T2 −→ 0,

in mod � with T1, T2 ∈ 〈T 〉1 is exact. By Lemma 3.2, we obtain the following
exact sequence

0 −→ �1(T2) −→ T1 ⊕ P −→ �n(X) −→ 0

in mod �with P projective. Since both�1(T2) and T1⊕P are in add (�1(T )⊕
T ⊕ �), we have that � is n-Igusa-Todorov.

The first assertion in the following proposition means that dim mod � is an invariant for
measuring how far � is from being 0-Igusa-Todorov.

Proposition 3.15
(1) � is 0-Igusa-Todorov if and only if dim mod � ≤ 1;
(2) if � is n-Igusa-Todorov, then dim mod � ≤ n + 1.

Proof (1) It is trivial by Theorem 3.14.
(2) Let � be n-Igusa-Todorov and X ∈ �n(mod �). Then there exists V ∈ mod � such

that the following sequence

0 −→ V2 −→ V1 −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ X −→ 0

in mod �with V2, V1 ∈ add V and all Pi projective. Thus w.resol.dim mod � ≤ n+1,
and therefore dim mod � ≤ n + 1 by Theorem 3.5.

Moreover, we have the following

Corollary 3.16 dim mod � ≤ 2 if � is in one class of the following algebras.

(1) monomial algebras;
(2) left serial algebras;
(3) rad2n+1� = 0 and �/radn� is representation finite;
(4) 2-syzygy finite algebras.

Proof By [28, Corollaries 2.6, 3.5 and Proposition 2.5], these four classes of algebras are
1-Igusa-Todorov. So the assertions follow from Proposition 3.15.

3.4 tS -Radical Layer Length

We recall some notions from [15]. Let C be a length-category, that is, C is an abelian,
skeletally small category and every object of C has a finite composition series. We denote by
EndZ(C) the category of all additive functors from C to C, and denote by rad the Jacobson
radical lying in EndZ(C). Let α, β ∈ EndZ(C) and α be a subfunctor of β, we have the
quotient functor β/α ∈ EndZ(C) which is defined as follows.
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(1) (β/α)(M) := β(M)/α(M) for any M ∈ C; and
(2) (β/α)(f ) is the induced quotient morphism: for any f ∈ HomC(M,N),

0 �� α(M) ��

α(f )

��

β(M) ��

β(f )

��

β(M)/α(M) ��

(β/α)(f )

���
�
� 0

0 �� α(N) �� β(N) �� β(N)/α(N) �� 0.

For any α ∈ EndZ(C), set the α-radical functor Fα := rad ◦α. We define the following
two classes

Fα := {M ∈ C | α(M) = 0}, Tα = {M ∈ C | α(M) ∼= M}.

Definition 3.17 [15, Definition 3.1] For any α, β ∈ EndZ(C), the (α, β)-layer length of
M ∈ C, denoted by ��

β
α(M), is defined as ��

β
α(M) = inf{i ≥ 0 | α◦βi(M) = 0}. Moreover,

��
β
α goes from C to N ∪ {+∞}. And the α-radical layer length ��α := ��

Fα
α .

Lemma 3.18 [35, Lemma 2.6] Let α, β ∈ EndZ(C). For any M ∈ C, if ��
β
α(M) = n,

then ��
β
α(M) = ��

β
α(βi(M)) + i for any 0 ≤ i ≤ n; in particular, if ��α(M) = n, then

��α(Fn
α (M)) = 0.

Recall that a torsion pair (or torsion theory) for C is a pair of classes (T ,F) of objects
in C satisfying the following conditions.

(1) HomC(M,N) = 0 for any M ∈ T and N ∈ F ;
(2) an object X ∈ C is in T if HomC(X,−)|F = 0;
(3) an object Y ∈ C is in F if HomC(−, Y )|T = 0.

Let (T ,F) be a torsion pair for C. Recall that t := TraceT is the so called torsion radical
attached to (T ,F). Then t (M) := 	{Imf | f ∈ HomC(T , M) with T ∈ T } is the largest
subobject of M lying in T .

For a subfunctor α ∈ EndZ(C) of the identity functor 1C of C, we write qα := 1C/α. The
functor qα lies in EndZ(C). In this section, � is an artin algebra. Then mod � is a length-
category. We use rad� to denote the Jacobson radical of �. For a module M in mod �, we
use topM to denote the top of M . Set pdM = −1 if M = 0. For a subclass B of mod �,
the projective dimension pdB of B is defined as

pdB =
{
sup{pdM | M ∈ B}, if B �= ∅;
−1, if B = ∅.

We use S<∞ to denote the set of the simple modules in mod � with finite projective
dimension.

From now on, assume that S is a subset of S<∞ and S ′ is the set of all the others simple
modules in mod �. We write F (S) := {M ∈ mod � | there exists a finite chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M

of submodules of M such that each quotient Mi/Mi−1 is isomorphic to some module in S}.
By [15, Lemma 5.7 and Proposition 5.9], we have that (TS ,F(S)) is a torsion pair, where

TS = {M ∈ mod � | topM ∈ add S ′}.
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We denote the torsion radical tS = TraceTS . Then tS(M) ∈ TS and qtS
(M) ∈ F(S) for

any M ∈ mod �. By [15, Proposition 5.3], we have

F(S) = {M ∈ mod � | tS(M) = 0},
TS = {M ∈ mod � | tS(M) = M}.

Theorem 3.19 Let S be a subset of the set S<∞ of all pairwise non-isomorphism simple
�-modules with finite projective dimension. Then dim mod � ≤ pd S + ��tS (�).

Proof Let ��tS (�) = n and pdS = α.
If n = 0, that is, tS(�) = 0, then � ∈ F(S), which implies that S is the set of all simple

modules. Thus S = S<∞ and gl.dim � = α. So the assertion follows from Corollary 3.6.
Now let n ≥ 1 and M ∈ mod �. Consider the following exact sequence

0 −→ �α+2(M) −→ Lα+1 −→ · · · −→ L1 −→ L0 −→ M −→ 0

in mod � with all Li projective. By Lemma 3.3, we have

M ∈ 〈 L0〉1 � 〈�−1(L1)〉1 � · · · � 〈�−α−1(Lα+1)〉1 � 〈�−α−2(�α+2(M))〉1
⊆ 〈 ⊕−α−1

i=0 �i(�)〉α+2 � 〈�−α−2(�α+2(M))〉1.
We have the following exact sequences

0 → tS(M) → M → qtS (M) → 0,

0 → tS(�1(tS(M))) → �1(tS(M)) → qtS (�1(tS(M))) → 0,

0 → FtS (�1(tS(M))) → tS(�1(tS(M))) → top tS(�1(tS(M))) → 0,

0 → tSFtS (�1(tS(M))) → FtS (�1(tS(M))) → qtSFtS (�1(tS(M))) → 0,

0 → F 2
tS (�1(tS(M))) → tSFtS (�1(tS(M))) → top tSFtS (�1(tS(M))) → 0,

· · · · · · · · · · · ·
0 → tSFn−2

tS (�1(tS(M))) → Fn−2
tS (�1(tS(M))) → qtSFn−2

tS (�1(tS(M))) → 0,

0 → Fn−1
tS (�1(tS(M))) → tSFn−2

tS (�1(tS(M))) → top tSFn−2
tS (�1(tS(M))) → 0.

By [15, Lemma 6.3], we have ��tS (�1(tS(M))) ≤ ��tS (�) − 1 = n − 1. It follows from
Lemma 3.18 that ��tS (F n−1

tS �1(tS(M))) = 0, that is, tS(F n−1
tS �1(tS(M))) = 0. Then by

[15, Proposition 5.3], we have pdFn−1
tS �1(tS(M)) ≤ α.

We have the following
�α+2(M) ∼= �α+2(tS(M)),

�α+2(tS(M)) = �α+1(�1(tS(M))) ∼= �α+1(tS(�1(tS(M)))),

0 → �α+1(FtS (�1(tS(M)))) → �α+1(tS(�1(tS(M)))) ⊕ P1

→ �α+1(top tS(�1(tS(M)))) → 0, (exact)

�α+1(FtS (�1(tS(M)))) ∼= �α+1(tSFtS (�1(tS(M)))),

0 → �α+1(F 2
tS (�1(tS(M)))) → �α+1(tSFtS (�1(tS(M)))) ⊕ P2

→ �α+1(top tSFtS (�1(tS(M)))) → 0, (exact)

· · · · · · · · · · · ·
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�α+1(F n−2
tS (�1(tS(M)))) ∼= �α+1(tSFn−2

tS (�1(tS(M)))),

�α+1(tSFn−2
tS (�1(tS(M)))) ⊕ Pn−1 ∼= �α+1(top tSFn−2

tS (�1(tS(M)))),

where all Pi are projective in mod �; we also have the following

�−α−2(�α+2(M)) ∼= �−α−2(�α+2(tS(M))) = �−α−2(�α+1(�1(tS(M))))

∼= �−α−2(�α+1(tS(�1(tS(M))))),

0 → �−α−2(�α+1(FtS (�1(tS(M))))) → �−α−2(�α+1(tS(�1(tS(M)))))⊕�−α−2(P1)⊕E1

→ �−α−2(�α+1(top tS(�1(tS(M))))) → 0, (exact)

�−α−2(�α+1(FtS (�1(tS(M))))) ∼= �−α−2(�α+1(tSFtS (�1(tS(M))))),

0 → �−α−2(�α+1(F 2
tS (�1(tS (M))))) → �−α−2(�α+1(tSFtS (�1(tS (M)))))⊕�−α−2(P2)⊕E2

→ �−α−2(�α+1(top tSFtS (�1(tS(M))))) → 0, (exact)

· · · · · · · · · · · ·
�−α−2(�α+1(F n−2

tS (�1(tS(M))))) ∼= �−α−2(�α+1(tSFn−2
tS (�1(tS(M))))),

�−α−2(�α+1(tSFn−2
tS (�1(tS (M)))))⊕�−α−2(Pn−1) ∼= �−α−2(�α+1(top tSFn−2

tS (�1(tS (M))))),

where all Ei are injective in mod �. So

�−α−2(�α+2(M))

∼= �−α−2(�α+1(tS�1(tS (M))))

∈ 〈�−α−2(�α+1(FtS �1(tS (M))))〉1 � 〈�−α−2(�α+1(top tS�1(tS (M))))〉1
⊆ 〈�−α−2(�α+1(FtS �1(tS (M))))〉1 � 〈�−α−2(�α+1(�/ rad�))〉1
= 〈�−α−2(�α+1(tSFtS �1(tS (M))))〉1 � 〈�−α−2(�α+1(�/ rad�))〉1
⊆ 〈�−α−2(�α+1(F 2

tS �1(tS (M))))〉1 � 〈�−α−2(�α+1(�/ rad�))〉1 � 〈�−α−2(�α+1(�/ rad�))〉1
...

⊆ 〈�−α−2(�α+1(F n−2
tS �1(tS (M))))〉1 � 〈�−α−2(�α+1(�/ rad�))〉1� · · · �〈�−α−2(�α+1(�/ rad�))〉1

︸ ︷︷ ︸
n−2

= 〈�−α−2(�α+1(F n−2
tS �1(tS (M))))〉1 � 〈�−α−2(�α+1(�/ rad�))〉n−2

⊆ 〈�−α−2(�α+1(tSFn−2
tS �1(tS (M))) ⊕ Pn−1)〉1 � 〈�−α−2(�α+1(�/ rad�))〉n−2

= 〈�−α−2(�α+1(top tSFn−2
tS �1(tS (M))))〉1 � 〈�−α−2(�α+1(�/ rad�))〉n−2

⊆ 〈�−α−2(�α+1(�/ rad�))〉1 � 〈�−α−2(�α+1(�/ rad�))〉n−2

= 〈�−α−2(�α+1(�/ rad�))〉n−1,

and hence

M ∈ 〈 ⊕−α−1
i=0 �i(�)〉α+2 � 〈�−α−2(�α+2(M))〉1

⊆ 〈⊕−α−1
i=0 �i(�)〉α+2 � 〈�−α−2(�α+1(�/ rad�))〉n−1

⊆ 〈(⊕−α−1
i=0 �i(�)) ⊕ �−α−2(�α+1(�/ rad�))〉α+1+n. (by Corollary 2.3(1))
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It follows that

mod � = 〈(⊕−α−1
i=0 �i(�)) ⊕ �−α−2(�α+1(�/ rad�))〉α+1+n

and dim � ≤ α + n.

As an application of Theorem 3.19, we have the following

Corollary 3.20
(1) [3, Example 1.6(ii)] dim mod � ≤ LL(�) − 1;
(2) (cf. Corollary 3.6 and [17, 4.5.1(3)]) dim mod � ≤ gl.dim �.

Proof (1) Let S = ∅. Then pdS = −1 and the torsion pair (TS ,F(S)) = (mod �, 0). By
[15, Propposition 5.9(a)], we have tS(�) = � and ��tS (�) = LL(�). It follows from
Theorem 3.19 that dim mod � ≤ LL(�) − 1.

(2) Let S = S<∞ = {all simple modules in mod �}. Then pdS = gl.dim � and the
torsion pair (TS ,F(S)) = (0,mod �). By [15, Propposition 5.3], we have tS(�) = 0
and ��tS (�) = 0. It follows from Theorem 3.19 that dim mod � ≤ gl.dim �.

By choosing some suitable S and applying Theorem 3.19, we may obtain more precise
upper bounds for dim mod � than that in Corollary 3.20.

Example 3.21 Consider the bound quiver algebra � = kQ/I , where k is a field and Q is
given by

2n + 1

2n 1α2n
��

α2n+1

��

α1 ��

αn+1

��

2
α2 �� 3

α3 �� · · · αn−1 �� n

n + 1
αn+2 �� n + 2

αn+3 �� n + 3
αn+4 �� · · · α2n−1�� 2n − 1

and I is generated by {αiαi+1 | n + 1 ≤ i ≤ 2n − 2} with n ≥ 5. Then the indecomposable
projective �-modules are

1

��
�� ��

�
���

���
2

n + 1 2 2n 2n + 1 3 3 j

P (1) = 3 P(2) = 4 P(3) = 4 P(j) = j + 1, P (l) = l,

...
...

...

n, n, n,

where n + 1 ≤ j ≤ 2n − 2, 2n − 1 ≤ l ≤ 2n + 1 and P(i + 1) = radP(i) for any
2 ≤ i ≤ n − 1.
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We have

pdS(i) =

⎧
⎪⎪⎨

⎪⎪⎩

n − 1, if i = 1;
1, if 2 ≤ i ≤ n − 1;
0, if i = n, 2n, 2n + 1;
2n − 1 − i, if n + 1 ≤ i ≤ 2n − 1.

So S<∞ = {all simple modules in mod �}. Let S := {S(i) | 2 ≤ i ≤ n}(⊆ S<∞) and
S ′ be all the others simple modules in mod �. Then pdS = 1 and S ′ = {S(i) | i =
1 or n + 1 ≤ i ≤ 2n + 1}. Because � = ⊕2n+1

i=1 P(i), we have

��tS (�) = max{��tS (P (i)) | 1 ≤ i ≤ 2n + 1}
by [15, Lemma 3.4(a)].

In order to compute ��tS (P (1)), we need to find the least non-negative integer i such
that tSF i

tS (P (1)) = 0. Since topP(1) = S(1) ∈ add S ′, we have tS(P (1)) = P(1) by
[15, Proposition 5.9(a)]. Thus

FtS (P (1)) = rad tS(P (1)) = rad(P (1)) = S(n + 1) ⊕ P(2) ⊕ S(2n) ⊕ S(2n + 1).

Since top S(n+1) = S(n+1) ∈ add S ′, we have tS(S(n+1)) = S(n+1) by [15, Proposition
5.9(a)]. Similarly, tS(S(2n)) = S(2n) and tS(S(2n+ 1)) = S(2n+ 1). Since P(2) ∈ F(S),
we have tS(P (2)) = 0 by [15, Proposition 5.3]. So

tSFtS (P (1)) = tS(S(n+1)⊕P(2)⊕S(2n)⊕S(2n+1)) = S(n+1)⊕S(2n)⊕S(2n+1).

It follows that

F 2
tS (P (1)) = rad tSFtS (P (1)) = rad(S(n + 1) ⊕ S(2n) ⊕ S(2n + 1)) = 0

and tSF 2
tS (P (1)) = 0, which implies ��tS (P (1)) = 2. Similarly, we have

��tS (P (i)) =
⎧
⎨

⎩

0, if 2 ≤ i ≤ n;
2, if n + 1 ≤ i ≤ 2n − 2;
1, if 2n − 1 ≤ i ≤ 2n + 1.

Consequently, we conclude that ��tS (�) = max{��tS (P (i)) | 1 ≤ i ≤ 2n + 1} = 2.

(1) Because LL(�) = n and gl.dim � = n − 1, we have

dim mod � ≤ min{gl.dim �,LL(�) − 1} = n − 1

by Corollary 3.20.
(2) By Theorem 3.19, we have

dim mod � ≤ pdS + ��tS (�) = 1 + 2 = 3.

The upper bound here is better than that in (1) since n ≥ 5.

4 Ring Extensions

Let � be a subring of a ring � such that � and � have the same identity. Then A is called a
ring extension of �, and denoted by � ≥ �.

Definition 4.1 A ring extension � ≥ � is called
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(1) [13] a weak excellent extension if

(1.1) � is �-projective [21]; that is, for a submodule N� of M� , if N� is a
direct summand of M�, denoted by N� | M�, then N� | M�;

(1.2) � is a finite extension of �; that is, there exists a finite set {γ1, · · · , γn}
in � such that � = ∑n

i=1 γi�;
(1.3) �� is flat and �� is projective;

(2) [5, 21] an excellent extension if it is a weak excellent extension and �� and �� are
free with a common basis {γ1, · · · , γn}, such that �γi = γi� for any 1 ≤ i ≤ n.

(3) [29] a left idealized extension if rad� is a left ideal of �.

We have the following

Theorem 4.2 Let � ⊇ � be artin algebras. Then we have

(1) dim mod � ≥ dim mod � if � ≥ � is a weak excellent extension, and dim mod � =
dim mod � if � ≥ � is an excellent extension;

(2) dim mod � ≤ dim mod � + 2 if � ≥ � is a left idealized extension.

Proof (1) Let � ≥ � be a weak excellent extension and dim mod � = n and T ∈ mod �

such that mod � = 〈T 〉n+1. LetX ∈ mod � ⊆ mod �. Since �� is projective,−⊗��

is exact. So we haveX⊗�� ∈ 〈(T ⊗��)�〉n+1 by Lemma 2.4. SinceX� | (X⊗��)�
by [34, Lemma 1.1], we have X� ∈ 〈(T ⊗� �)�〉n+1. Thus mod � = 〈(T ⊗� �)�〉n+1
and dim mod � ≤ n.

Now let � ≥ � be an excellent extension and dim mod � = n and S ∈ mod � ⊆ mod �

such that mod � = 〈S〉n+1. Let X� ∈ mod �. Then there exists an exact sequence

0 −→ X1 −→ X ⊗� � −→ X2 −→ 0

in mod � with X1 ∈ 〈S�〉1 and X2 ∈ 〈S�〉n. Note that it is also an exact sequence in
mod �. So (X ⊗� �)� ∈ 〈S�〉n+1. Since X� | (X ⊗� �)�, we have X� ∈ 〈S�〉n+1. Thus
mod � = 〈S�〉n+1 and dim mod � ≤ n.

(2) Let dim mod � = n. Then w.resol.dim mod � = n by Theorem 3.5. Let X ∈ mod �.
Since �2

�(X) can be viewed as an �-module by [30, Lemma 0.2], there exists V ∈
mod � ⊆ mod � such that there is an exact sequence

0 −→ Vn −→ Vn−1 −→ · · · −→ V1 −→ V0 −→ �2
�(X) −→ 0

in mod � with all Vi in add V� . It is also an exact sequence in mod �. So (V� ⊕ �)-
w.resol.dim mod � ≤ n+2 and w.resol.dim mod � ≤ n+2. Thus dim mod � ≤ n+2
by Theorem 3.5.

In the following, we list some examples of (weak) excellent extensions, in which
Theorem 4.2(1) may be applied.

Example 4.3 [5, 14, 21, 33]

(1) For a ring �, Mn(�) (the matrix ring of � of degree n) is an excellent extension of �.
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(2) Let � be a ring and G a finite group. If |G|−1 ∈ �, then the skew group ring � ∗ G is
an excellent extension of �.

(3) Let � be a finite-dimensional algebra over a field k, and let F be a finite separable
field extension of k. Then � ⊗k F is an excellent extension of �.

(4) Let k be a field, and let G be a group and H a normal subgroup of G. If [G : H ] is
finite and is not zero in k, then kG is an excellent extension of kH .

(5) Let k be a field of charactertistic p, and let G a finite group and H a normal subgroup
of G. If H contains a Sylow p-subgroup of G, then kG is an excellent extension of
kH .

(6) Let k be a field and G a finite group. If G acts on k (as field automorphisms) with
kernel H . Then the skew group ring k ∗ G is an excellent extension of the group ring
kH , and the center Z(kH) of kH is an excellent extension of the center Z(k ∗ G) of
k ∗ G.

(7) Let H be a finite-dimensional semisimple Hopf algebra over a field k and � a twisted
H -module algebra. Then for any cocycle σ ∈ Homk(H ⊗ H,�), the crossed product
algebra �#σ H is a weak excellent extension of �, but not an excellent extension of �

in general.
(8) Recall from [25] that a ring � is called a right S-ring if any flat module in mod � is

projective. The class of right S-rings includes semiperfect rings, commutative semilo-
cal rings, subrings of right noetherian rings, subrings of right S-rings, right Ore
domains, right nonsingular ring of finite right Goldie dimension, endomorphism rings
of right artinian modules and rings with right Krull dimension [9, 25]. Let � ≥ � be
an excellent extension with � a right S-ring. If � has two ideals I and J such that
� ∩ I = 0 and � = I ⊕ J , then the canonical embedding � ↪→ �/I is a weak
excellent extension; and it is not an excellent extension if J� is not free.

We recall from [19] the separable equivalence of artin algebras, which includes the
derived equivalence of self-injective algebras, Morita equivalence and stable equivalence
(of Morita type) [19, 22].

Definition 4.4 [19] Two artin algebras � and � are called separably equivalent if there
exist �M� and �N� such that

(1) M and N are both finitely generated projective as one sided modules;
(2) M ⊗� N ∼= � ⊕ X as a (�, �)-bimodule for some �X�;
(3) N ⊗� M ∼= � ⊕ Y as a (�, �)-bimodule for some �Y�.

We have the following

Theorem 4.5 Let � and � be artin algebras. If they are separably equivalent, then
dim mod � = dim mod �.

Proof Let M and N be as in Definition 4.4. Let dim mod � = n. Then there exists T� ∈
mod � such that mod � = 〈T�〉n+1. LetL� ∈ mod �. ThenL⊗�N� ∈ mod � = 〈T�〉n+1.
Since �M is projective in �-mod , we have that the functor − ⊗� M : mod � −→ mod �
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is exact. By Lemma 2.4, we have (L⊗� N)⊗� M ∈ 〈T ⊗� M�〉n+1. By Definition 4.4(3),
there exists a (�, �)-bimodule Y such that

L ⊕ (L ⊗� Y) ∼= (L ⊗� �) ⊕ (L ⊗� Y)

∼= L ⊗� (� ⊕ Y )

∼= L ⊗� (N ⊗� M)

∼= (L ⊗� N) ⊗� M

∈ 〈T ⊗� M�〉n+1,

and so L� ∈ 〈T ⊗� M�〉n+1. It follows that mod � = 〈T ⊗� M�〉n+1 and dim mod � ≤
n = dim mod �. Symmetrically, we have dim mod � ≤ dim mod �.

As a consequence of Theorem 4.5, we have the following

Corollary 4.6 Let �, � and  be finite dimensional algebras over a field k. If � is
separably equivalent to �, then dim mod � ⊗k  = dim mod � ⊗k .

Proof If � is separably equivalent to �, then � ⊗k  is separably equivalent to � ⊗k  by
[22, p.227, Proposition]. The assertion follows from Theorem 4.5.

5 Recollements

We recall the notion of recollements of abelian categories.

Definition 5.1 [10] A recollement, denoted by (A,B, C), of abelian categories is a diagram

A i∗ �� B
i∗��

i!��
j∗ �� C
j!��

j∗��

of abelian categories and additive functors such that

(1) (i∗, i∗), (i∗, i!), (j!, j∗) and (j∗, j∗) are adjoint pairs;
(2) i∗, j! and j∗ are fully faithful;
(3) Imi∗ = Kerj∗.

We list some properties of recollements of abelian categories (see [10, 23, 24]), which
will be useful later.

Lemma 5.2 Let (A,B, C) be a recollement of abelian categories. Then we have

(1) i∗j! = 0 = i!j∗;
(2) the functors i∗ and j∗ are exact, i! and j∗ are left exact, and i∗ and j! are right exact;
(3) the functors i∗, i! and j∗ are dense;

(4) all the natural transformations i∗i∗ �� 1A, 1A �� i!i∗, 1C �� j∗j! and

j∗j∗ �� 1C are natural isomorphisms;
(5) for any object B ∈ B,

(a) if i∗ is exact, there is an exact sequence

0 �� j!j∗(B)εB
− �� B �� i∗i∗(B) �� 0
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(b) if i! is exact, there is an exact sequence

0 �� i∗i!(B) �� BηB
− �� j∗j∗(B) �� 0 .

Lemma 5.3 Let (A,B, C) be a recollement of abelian categories. Then we have

(1) If i∗ is exact, then j! is exact;
(2) If i! ie exact, then j∗ is exact.

Proof (1) Let

0 �� X �� Y �� Z �� 0

be an exact sequence in C. Since j! is right exact by Lemma 5.2(2), we get an exact
sequence

0 �� C �� j!(X) �� j!(Y ) �� j!(Z) �� 0 (5.1)

in B. Notice that j∗ is exact and j∗j! ∼= 1C by Lemma 5.2(2)(4), so j∗(C) = 0.
Since Im i∗ = Kerj∗, there exists C′ ∈ A such that C ∼= i∗(C′). Since i∗ is exact
and i∗j! = 0 by Lemma 5.2(2)(1), applying the functor i∗ to the exact sequence (5.1)
yields i∗(C) = 0. It follow that C′ ∼= i∗i∗(C′) ∼= i∗(C) = 0 and C = 0. Thus j! is
exact.

(2) It is dual to (1).

Let F : C → D be a functor of additive categories. Recall from [31] that F is called
quasi-dense if for any D ∈ D, there exists C ∈ C such that D is isomorphic to a direct
summand of F(C). Obviously, any dense functor is quasi-dense.

Lemma 5.4 Let F : A → B be an exact functor of abelian categories, and let A1 and
B1 be subcategories of A and B respectively. If the restriction functor F : A1 → B1 is
quasi-dense, then sizeAA1 ≥ sizeBB1; in particular, dimA ≥ dim B.

Proof Suppose sizeAA1 = n, that is,A1 ⊆ 〈T 〉n+1 for some T ∈ A. Let X ∈ B1. Since F

is quasi-dense, we have X ⊕ X1 ∼= F(Y ) for some Y ∈ A1 and X1 ∈ B1. It follows from
Lemma 2.4 that X ⊕ X1 ∈ F(A1) ⊆ F(〈T 〉n+1) ⊆ 〈F(T )〉n+1. So X ∈ 〈F(T )〉n+1 and
B1 ⊆ 〈F(T )〉n+1, which implies sizeBB1 ≤ n.

Let � be an artin algebra and e an idempotent of �. Then (mod �/e�e,mod �,

mod e�e) is a recollement by [23, Example 2.7]. So dim mod � ≥ dim mod e�e by
Lemma 5.4.

Theorem 5.5 Let (A,B, C) be a recollement of abelian categories. If either i! or i∗ is exact,
then

max{dimA, dim C} ≤ dim B ≤ dimA + dim C + 1.

Proof Let i! be exact. Since i! and j∗ are exact and dense Lemma 5.2(2)(3), it follows from
Lemma 5.4 that max{dim A, dim C} ≤ dim B.
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Let dimA = n and dim C = m. Then there exist X ∈ A and Y ∈ C such that A =
〈X〉n+1 and C = 〈Y 〉m+1. Let M ∈ B. Since i! is exact by assumption, we have an exact
sequence

0 �� i∗i!(M) �� M �� j∗j∗(M) �� 0

inB. Note that i∗ and j∗ are exact by Lemmas 5.2(2) and 5.3(2). Since i!(M) ∈ A = 〈X〉n+1
and j∗(M) ∈ C = 〈Y 〉m+1, we have i∗i!(M) ∈ 〈i∗(X)〉n+1 and j∗j∗(M) ∈ 〈j∗(Y )〉m+1 by
Lemma 2.4. Thus M ∈ 〈i∗X〉n+1 � 〈j∗Y 〉m+1 ⊆ 〈i∗X ⊕ j∗Y 〉n+m+2 by Corollary 2.3(1),
and therefore dim B ≤ n + m + 1.

For the case that i∗ is exact, the argument is similar.

Let �,�′,�′′ be artin algebras and (mod �′,mod �,mod �′′) be a recollement. If
dim mod � = 0, then dim mod �′ = 0 = dim mod �′′; that is, � is of finite representation
type implies that so are �′ and �′′ [23]. Conversely, if dim mod �′ = 0 = dim mod �′′,
then dim mod � = 0 does not hold true in general. For example, let �′ be the finite dimen-
sional algebra given by the quiver · (a unique vertex without arrows) and �′′ the finite
dimensional algebra given by the quiver

4

α

����
��

��

2 3
δ

��

λ

��������

with relation λα = 0. Then both �′ and �′′ are of finite representation type, and so
dim mod �′ = 0 = dim mod �′′ by [3, Example 1.6(i)] (see Corollary 3.8(1)). Define the
triangular matrix algebra � := (

�′ M
0 �′′

)
, where M ∼= �′ ⊕ �′, the right �′′-module structure

on M is induced by the unique algebra surjective homomorphism �′′ φ �� �′ satisfying
φ(e2) = e1, φ(e3) = 0 and φ(e4) = 0. Then � is the finite dimensional algebra given by
the quiver

4

α

����
��

��

1 2
β��

γ
�� 3

δ
��

λ

��������

with relations δγ = δβ = λα = αβ = αγ = 0. By [23, Example 2.12], we have that

mod �′ i∗ �� mod �
i∗��

i!��
j∗ �� mod �′′
j!��

j∗��

is a recollement, where

i∗(
(
X
Y

)
f
) = Cokerf, i∗(X) = (

X
0

)
, i!(

(
X
Y

)
f
) = X,

j!(Y ) = (
Y
Y

)
1, j∗(

(
X
Y

)
f
) = Y, j∗(Y ) = (0

Y

)
.

Because i! is exact by [18, Lemma 3.2(a)], dim mod � ≤ 1 by Theorem 5.5. Notice that �
is of infinite representation type and rep.dim � = 3 by [1, Example 5.9], so dim mod � = 1
by Corollary 3.8(2).
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