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ON THE FLATNESS AND INJECTIVITY
OF DUAL MODULES (III)

Zhaoyong Huang

Abstract. For a commutative ring R and an injective cogenerator
E in the category of R-modules, we characterize von Neumann reg-
ular rings and semisimple artinian rings in terms of the properties
of dual modules with respect to E.

1. Introduction

Throughout this paper, R is a commutative ring with identity and all
modules are unital. We use ModR to denote the category of R-modules
and unless stated otherwise E to denote a certain injective cogenerator
in ModR. Such an R-module E is called in [9] faithfully injective.

Let M ∈ModR. We call in [7] HomR(M, E) the dual module of M
with respect to E, and denote it by M e. We use σM : M → M ee

to denote the canonical evaluation homomorphism which is defined as
σM (x)(f) = f(x) for any x ∈ M and f ∈ M e. It follows from [2, Propo-
sition 20.14] that σe

M is an epimorphism, where σe
M =HomR(σM , E).

Notice that E is a cogenerator in ModR, so, by [2, Proposition 18.14],
σM is an embedding.

We characterize in [7] and [8] several classes of rings, such as coher-
ent rings, noetherian rings, artinian rings, quasi-Frobenius rings and IF
rings, by using the flatness, injectivity, FP-injectivity and projectivity
of duals with respect to E.

As the classes of rings having homological dimensions zero, both von
Neumann regular rings and semisimple artinian rings are very important
classes of rings in ring theory, which are characterized respectively as
follows (see [10] and [4]).

Theorem A. The following statements are equivalent.
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(1) R is a von Neumann regular ring.
(2) The weak global dimension of R is zero.
(3) Each R-module is flat.
(4) For any a ∈ R, there is an element a′ ∈ R with aa′a = a.

Theorem B. The following statements are equivalent.
(1) R is a semisimple artinian ring.
(2) The global dimension of R is zero.
(3) Each (finitely generated) R-module is projective.
(4) Each (finitely generated) R-module is quasi-projective.
(5) Each R-module is injective.
(6) R is a direct sum of simple R-modules.

In this paper we characterize von Neumann regular rings and semisim-
ple artinian rings by using the quasi-injectivity and quasi-projectivity of
duals with respect to E, respectively. We show that R is a von Neumann
regular ring (resp. a semisimple artinian ring) if and only if the dual
of each module in ModR is quasi-injective (resp. quasi-projective). As
corollaries, we have that R is a von Neumann regular ring if and only if
each pure-injective R-module is injective if and only if each pure-injective
R-module is quasi-injective if and only if each pure-injective R-module
is (quasi-)flat; and R is a semisimple artinian ring if and only if each
pure-injective R-module is projective if and only if each pure-injective
R-module is quasi-projective. These results generalize the classical ones
mentioned above.

2. Main results

Lemma 1. ([9, Proposition 3.6]) An R-module M is flat if and only
if M e is injective.

Recall that an exact sequence 0 → L → M → N → 0 in ModR is
called pure if 0 → L⊗R A → M ⊗R A → N ⊗R A → 0 is exact for any
(finitely presented) R-module A. In this case, 0 → L → M is called a
pure monomorphism (see [11]).

Lemma 2. If E is a cogenerator (not necessarily injective) in ModR,
then an exact sequence 0 → L → M → N → 0 in ModR is pure provided
0 → N e → M e → Le → 0 is exact and pure.

Proof. The argument in proving (2) ⇒ (1) of [7, Lemma 1] remains
valid in our assumption, we omit it.
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Recall that an R-module X is called quasi-injective if the induced ho-

momorphism HomR(X, X)
HomR(f,X)−→ HomR(Y, X) is epic for any mono-

morphism Y
f→ X (see [1]). We now characterize von Neumann regular

rings by using the (quasi-)injectivity of duals with respect to E as fol-
lows.

Theorem 3. The following statements are equivalent.

(1) R is a von Neumann regular ring.

(2) M e is flat for each M ∈ModR.
(3) M e is injective for each M ∈ModR.
(4) M e is quasi-injective for each M ∈ModR.
(5) N ee is injective for each N ∈ModR.
(6) N ee is quasi-injective for each N ∈ModR.

Proof. The implications that (1) ⇒ (2), (3) ⇒ (4) ⇒ (6) and (3) ⇒
(5) ⇒ (6) are trivial. From Lemma 1 we get the equivalence between
(2) and (5). So it suffices to prove (6) ⇒ (1).

Assume that the condition (6) is satisfied. We claim that any R-
module is flat. Otherwise, if there is a non-flat R-module M , then there
is a monomorphism f : A → B in ModR such that f⊗R 1M : A⊗R M →
B⊗RM is not monic. Put X =CokerσM . It follows from [2, Proposition

20.14] that the sequence 0 → Xe → M eee σe
M−→ M e → 0 is exact and split

and hence is certainly pure. Then, by Lemma 2, σM is pure.
Put N = B ⊕ M e and let g be the composition: B

σB−→ Bee →
Bee ⊕M eee(∼= N ee) and h the composition: M

σM−→ M ee → Be ⊕M ee

(∼= N e), where both Bee → Bee⊕M eee and M ee → Be⊕M ee are natural
embeddings. Then g and h are monomorphisms.

Suppose 0 6= ∑n
i=1(ai ⊗ mi) ∈Ker(f ⊗R 1M )(⊂ A ⊗R M), where

ai ∈ A and mi ∈ M for any 1 ≤ i ≤ n. Since σM is a pure monomor-
phism,

∑n
i=1(ai ⊗ σM (mi))(∈ A ⊗R M ee) is non-zero. Notice that M ee

→ Be ⊕ M ee(∼= N e) is a natural embedding, so
∑n

i=1(ai ⊗ h(mi))(∈
A ⊗R N e) is non-zero. On the other hand, (gf ⊗R 1Ne)[

∑n
i=1(ai⊗

h(mi))] = (g ⊗R h)(f ⊗R 1M )[
∑n

i=1(ai ⊗ mi)] = 0, which implies that
gf ⊗R 1Ne is not a monomorphism. Since E is cogenerator in ModR,
(gf ⊗R 1Ne)e : (N ee ⊗R N e)e → (A ⊗R N e)e is not an epimorphism by
[2, Proposition 18.14]. It follows from [10, Theorem 2.11] (Adjoint Iso-
morphism) that HomR(gf, Nee) : HomR(N ee, N ee) → HomR(A,N ee) is
not an epimorphism. We then conclude that N ee is not quasi-injective,
which induces a contradiction. So R is von Neumann regular.
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Definition 4. Let E be a cogenerator (not necessarily injective)
in ModR. An R-module M is called quasi-flat (with respect E) if for
any monomorphism f : N → Me in ModR the induced map f ⊗R 1M :
N ⊗R M → M e ⊗R M is a monomorphism.

Remark. A flat R-module is clearly quasi-flat. However, the con-
verse doesn’t hold in general. For example, let Z be integers and Q its
quotient field. Then E = Q/Z is an injective cogenerator in ModZ. Put
Z̄ = Z/(0 :Z Z2). It is clear that Z̄ = Z/(2) ∼= Z2, so Z2 is a projec-
tive (and hence a flat) Z̄-module. Because 0 :Z Z2 = 0 :Z Ze

2, both Z2

and Ze
2 are Z̄-modules. Now let 0 → M → Ze

2 be an exact sequence in
ModZ. Then it is also an exact sequence in ModZ̄ and we get an exact
sequence 0 → M ⊗Z̄ Z2 → Ze

2 ⊗Z̄ Z2. It is not difficult to verify that
M ⊗Z̄ Z2

∼= M ⊗Z Z2 and Ze
2 ⊗Z̄ Z2

∼= Ze
2 ⊗Z Z2. Thus we get an exact

sequence 0 → M⊗ZZ2 → Ze
2⊗ZZ2, which implies that Z2 is a quasi-flat

Z-module. However, Z2 is not torsionfree over Z, it then follows from
[10, Theorem 4.33] that Z2 is not a flat Z-module.

Lemma 5. Let M be in ModR. If E is a cogenerator in ModR and
M e is quasi-injective, then M is quasi-flat. The converse holds when E
is injective.

Proof. Let N → M e be a monomorphism in ModR. If Me is quasi-
injective, then HomR(M e,M e) → HomR(N, M e) → 0 is exact. By [10,
Theorem 2.11] we have that (M e ⊗R M)e → (N ⊗R M)e → 0 is exact.
Since E is a cogenerator, 0 → N ⊗R M → M e ⊗R M is also exact
by [2, Proposition 18.14]. Thus M is quasi-flat. Conversely, if M is
quasi-flat, then N ⊗R M → M e ⊗R M is a monomorphism. Under the
assumption that E is injective, we then have that (M e⊗RM)e → (N⊗R

M)e → 0 is exact. Again by [10, Theorem 2.11], HomR(M e,M e) →
HomR(N, M e) → 0 is also exact and M e is quasi-injective.

As an immediate consequence of Theorem 3 and Lemma 5, we have
the following

Theorem 6. If E is a cogenerator in ModR and N ee is quasi-injective
for each N ∈ModR (that is, the condition (6) in Theorem 3 is satisfied),
then we have that

(7) M e is quasi-flat for each M ∈ModR.
Moreover, if E is injective, then the conditions (1)− (6) in Theorem

3 and the condition (7) above are equivalent.

Recall that an R-module Q is called pure-injective if for any pure
exact sequence 0 → A → B → C → 0 in ModR the induced sequence
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0 → HomR(C,Q) → HomR(B, Q) → HomR(A, Q) → 0 is exact (see
[11]). It is trivial that an injective R-module is pure-injective. But the
converse doesn’t hold in general. From Corollary 8 below, which says
that each pure-injective R-module is injective if and only if R is a von
Neumann regular ring, we may give a counter-example easily.

From now on, E always denotes a certain injective cogenerator in
ModR.

Lemma 7. M e is pure-injective for each M ∈ModR.

Proof. Let M be in ModR and 0 → A → B → C → 0 a pure exact
sequence in ModR. Then we have that 0 → A ⊗R M → B ⊗R M →
C ⊗R M → 0 is exact and hence 0 → (C ⊗R M)e → (B ⊗R M)e →
(A ⊗R M)e → 0 is also exact by the injectivity of E. By [10, Theorem
2.11], we get an exact sequence 0 → HomR(C, M e) → HomR(B, M e) →
HomR(A,M e) → 0, which implies that M e is pure-injective.

The following result generalizes the classical characterizations of von
Neumann regular rings mentioned in Section 1.

Corollary 8. The following statements are equivalent.
(1) R is a von Neumann regular ring.
(2) Each pure-injective R-module is flat.
(3) Each pure-injective R-module is quasi-flat.
(4) Each pure-injective R-module is injective.
(5) Each pure-injective R-module is quasi-injective.
(6) M e is injective for each pure-injective R-module M .
(7) M e is quasi-injective for each pure-injective R-module M .

Proof. The implications that (1) ⇒ (2) ⇒ (3), (4) ⇒ (5) and (6) ⇒
(7) are trivial.

(3) ⇒ (1) Let M be in ModR. Then M e is pure-injective by Lemma 7,
and by (3) it is quasi-flat. From Theorems 6 and 3 we know that R is a
von Neumann regular ring. Similarly, we get (5) ⇒ (1) and (7) ⇒ (1).

(1) ⇒ (4) Let M be a pure-injective R-module. By (1) and Theo-
rem 3, M e is flat. Then, by Lemma 1, M ee is injective. Notice that
σM is a pure monomorphism (see the proof of Theorem 3) and M is
pure-injective, so σM splits and M is isomorphic to a direct summand
of M ee. It turns out that M is injective.

(1) ⇒ (6) It follows from Theorem A and Lemma 1.

Recall that an R-module X is called quasi-projective if the induced

homomorphism HomR(X,X)
HomR(X,g)−→ HomR(X, Y ) is epic for any epi-

morphism X
g→ Y (see [1]). We now characterize semisimple artinian
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rings by using the (quasi-)projectivity of duals with respect to E as
follows, where E is a certain injective cogenerator in ModR.

Theorem 9. The following statements are equivalent.
(1) R is a semisimple artinian ring.
(2) M e is projective for each M ∈ModR.
(3) M e is quasi-projective for each M ∈ModR.
(4) N ee is projective for each N ∈ModR.
(5) N ee is quasi-projective for each N ∈ModR.

To prove this theorem, we need two lemmas.

Lemma 10. Let M be a finitely presented R-module. If M e is quasi-
injective, then M is quasi-projective.

Proof. Assume that M → N is an epimorphism in ModR with
M finitely presented. Then N e → Me is monic. If M e is quasi-
injective, then HomR(M e, M e) → HomR(N e,M e) → 0 is exact. By
[10, Theorem 2.11] (M e ⊗R M)e → (N e ⊗R M)e → 0 is exact and then
by [10, Lemma 3.60] we have an exact sequence [HomR(M,M)]ee →
[HomR(N,M)]ee → 0. Thus we conclude that HomR(M,M) → HomR

(N, M) → 0 is also an exact sequence and M is quasi-projective.

Lemma 11. ([3, Corollary 2.3]) R is a quasi-Frobenius ring if and
only if each injective R-module is quasi-projective.

Proof of Theorem 9. The implications that (1) ⇒ (2) ⇒ (3) ⇒ (5)
and (2) ⇒ (4) ⇒ (5) are trivial. So we only need to prove (5) ⇒ (1).

Assume that (5) holds. Let N be an injective R-module. Since σN

is an embedding, N is isomorphic to a direct summand of N ee. By (5),
N ee is quasi-projective. So N is also quasi-projective by [1, Proposition
2.2] and hence R is a quasi-Frobenius ring by Lemma 11.

Let M be a finitely generated R-module. Then M is finitely presented
for R which is a quasi-Frobenius ring (and it is certainly noetherian).
Assume that B → M e is a monomorphism in ModR. Then the induced
homomorphism M eeee → Beee is epic. By (5), M eeee ⊕ Beee ∼= (Mee ⊕
Be)ee is quasi-projective. It follows from [5, Lemma 2.1] that M eeee →
Beee splits and we then yield an exact sequence HomR(M, M eeee) →
HomR(M, Beee) → 0. Applying [10, Theorem 2.11 and Lemma 3.60]
to this exact sequence, we get successively the exact sequences 0 →
M⊗RBee → M⊗RM eee, HomR(M,M ee) → HomR(M, Be) → 0, (M⊗R

M e)e → (M ⊗R B)e → 0 and HomR(M e,M e) → HomR(B, M e) → 0.
The exactness of the last sequence implies that M e is quasi-injective.
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Then, by Lemma 10, M is quasi-projective. Therefore R is a semisimple
artinian ring by Theorem B.

The following result contains [6, Theorem 3.4] and generalizes [4,
Theorem 1.3] and the classical characterizations of semisimple artinian
rings mentioned in Section 1.

Corollary 12. The following statements are equivalent.
(1) R is a semisimple artinian ring.
(2) Each pure-injective R-module is projective.
(3) Each pure-injective R-module is quasi-projective.
(4) M e is projective for each pure-injective R-module M .
(5) M e is quasi-projective for each pure-injective R-module M .

Proof. The implications that (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are
trivial, and both (2) ⇒ (4) and (3) ⇒ (5) follow from Lemma 7.

Assume that (5) holds. Let N be in ModR. Then N e is pure-injective
by Lemma 7 and so N ee is quasi-projective by (5). It follows from
Theorem 9 that R is a semisimple artinian ring. This shows (5) ⇒
(1).

For any M in ModR, HomZ(M,Q/Z) is denoted by M+ (which is
called the character module of M). By [11, Chapter I, Proposition 9.3],
we have that R+ is an injective cogenerator in ModR. On the other
hand, from [10, Theorem 2.11] it follows easily that HomR(M,R+) ∼=
M+ for any M in ModR. Consequently, the results obtained above
remains true when the notation of ( )e is replaced by that of ( )+.
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