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Abstract

Let R and S berings and rwg a semidualizing bimodule, and letn > 1. We characterize
the extension closure of the category of adjoint k-cotorsionfree modules with respect
tow forany 1 < k < n in terms of the (strong) cograde conditions of certain modules.
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1 Introduction

Throughout this paper, all rings are associative rings with units. For a ring R, we
use Mod R to denote the category of left R-modules. Recall that a subcategory X’ of
Mod R is called extension closed provided that for any exact sequence

0A—-B—->C—=0

in Mod R, if A and C are in X, then so is B. The extension closure of certain sub-
categories has been proved to be important in characterizing rings. We mention a
well-known result about the extension closure of the category of n-syzygy modules
over a Noetherian algebra R ([2, Theorem 4.7]), which shows that the category of
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finitely generated i-syzygy modules is extension closed for any 1 < i < n if and only
if R is quasi n-Gorenstein in the sense of [9]. Applying this theorem, under Serre’s
condition, Goto and Takahashi characterized a commutative Noetherian local ring in
height less than n to be Gorenstein in terms of the extension closure of the category
of finitely generated n-syzygy modules ([6, Theorem B]). The extension closure of
various subcategories has been studied extensively, see [3, 4, 10, 11, 15] and references
therein.

In particular, Huang [10] initialed the study of extension closure of the category
of n-torsionfree modules with respect to a semidualizing bimodule rwg by using the
properties of the (strong) grade of modules. In [16] and [ 18] we dualized the Auslander
transpose and introduced the notions of n-w-cotorsionfree modules and adjoint n-w-
cotorsionfree modules respectively. These two classes have many dual properties of
relative n-torsionfree modules. It is thus natural to ask the following question:

Question 1.1 When are the category of n-w-cotorsionfree modules and that of adjoint
n-w-cotorsionfree modules extension closed?

This question has been partially solved by Zhao and Zhang so far, and they proved
that the category of i-w-cotorsionfree modules is extension closed for any 1 <i < n
if and only if the strong Tor-cograde of Ext’RJrl (w, M) is at least i for any w-i-syzygy
module M and 1 < i < n([22, Theorem 3.10]). The purpose of this paper is to proceed
with the study of Question 1.1. Indeed, we will investigate the extension closure of
the category of adjoint n-w-cotorsionfree modules.

The organization of this paper is as follows. Section 2 contains some basic
definitions and preliminary results. Let R, S be arbitrary rings and let rwgs be a
semidualizing bimodule. In Section 3, we show that the categories of adjoint 1-
cotorsionfree modules and adjoint 2-cotorsionfree modules are extension closed if
and only if Tor,f_1 (w, Extll‘e (w, M)) = 0 for any left R-module M and k = 1, 2, and
if and only if the Tor-cograde of Ext]j,e (w, M) with respect to w is at least k for any
left R-module M and k = 1, 2 (Theorem 3.10).

Let A, (S) be the Auslander class with respect to w. In Section 4, we show that the
category of adjoint k-w-cotorsionfree modules is extension closed for any 1 < k < n,
if and only if the category of k-A, (S)-syzygy modules is extension closed for any
1 < k < n, if and only if the strong Ext-cograde of Tor,f +1(@, N) with respect to w is
at least k for any left S-module N and 1 < k < n, and if and only if the Tor-cograde
of Ext’l‘e (w, M) with respect to w is at least k for any left R-module M and 1 < k < n
(Theorem 4.6). As a consequence, we obtain some equivalent characterizations of
right quasi n-Gorenstein rings (Corollary 4.8).

2 Preliminaries

This section is devoted to stating the definitions and basic properties of notions which
are needed in the sequel.

Definition 2.1 [1, 8]. Let R and S be rings. An (R, S)-bimodule gws is called semid-
ualizing if the following conditions are satisfied.
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(al) pw admits a degreewise finite R-projective resolution.
(a2) wg admits a degreewise finite S°P-projective resolution.

(bl) The homothety map g Rg LI Homgop (w, w) is an isomorphism.
(b2) The homothety map sSg ” Hom r(w, ®) is an isomorphism.
(cl) Ext%l(w, w) = 0.

(c2) ExtZp (@, ) = 0.

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule
Rrws. For convenience, we write

(=)« := Hom(w, —),

R :={M € Mod R | Ext?l(w, M) = 0},

ws' := (N €Mod S | Torl (w, N) = 0}.

Following [8], set

Fo(R) :={w®s F | F isflat in Mod S},
Pu(R) :={w ®s P | P isprojective in Mod S},
Z,(S) :={I. | I isinjective in Mod R}.

The modules in F,(R), P,(R) and Z,(S) are called w-flat, w-projective and w-
injective respectively. For a subcategory X of Mod R (resp. Mod §), we use Add X
(resp. Prod &) to denote the subcategory of Mod R (resp. Mod S) consisting of mod-
ules isomorphic to direct summands of direct sums (resp. products) of modules in
X.

We write (—)" := Homg(—, Q/Z), where Z is the additive group of integers and
Q is the additive group of rational numbers. By [13, Proposition 2.4], we have

P,(R) = Addg w and Z,(S) = Prod w™.

Let M € Mod R and N € Mod S. Then we have the following two canonical
valuation homomorphisms

Oy - woQ@s M, > M
defined by 0y (x ® f) = f(x) forany x € w and f € M,; and

UN i N = (0 ®s N)y
defined by uy(y)(x) = x ® y forany y € N and x € w. Recall that a module M €
Mod R is called w-cotorsionless (resp. w-coreflexive) if 6y is an epimorphism (resp.
an isomorphism) ([16]); and a module N € Mod S is called adjoint w-cotorsionless

(resp. adjoint w-coreflexive) if | is a monomorphism (resp. an isomorphism) ([19]).
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Definition 2.2 [8].
(1) The Auslander class A,(S) with respect to @ consists of all left S-modules N
satisfying the following conditions.

(A1) N e ws .
(A2) ® ®s N € gro.
(A3) N is adjoint w-coreflexive.

(2) The Bass class B, (R) with respect to w consists of all left R-modules M satisfying
the following conditions.

(B1) M € gro.
(B2) M, € ws'.
(B3) M is w-coreflexive.

For a module M € Mod R, we use

0—> M — 1°(M) iR 1'(M) 2.1

to denote the minimal injective copresentation of M in Mod R. For a module N €
Mod S, we use

FI(N) 2% Fo(N) = N = 0 2.2)

to denote the minimal flat presentation of N in Mod S.

Definition 2.3 [16, 18].Let M € Mod R and N € Mod S, and let n > 1.

(1) cTruy M = Coker(go*) is called the cotranspose of M with respect to w, where
g isasin (2.1).

(2) M is called n-w-cotorsionfree if Torfgl.gn(a), cTr, M) =0.

(3) acTry N := Ker(1y, ® fo) is called the adjoint cotranspose of N with respect to
w, where fj is as in (2.2).

(4) N is called adjoint n-w-cotorsionfree if Extf’gn (w, acTr, N) = 0.

We use c7 (R) (resp. ac7 (S)) to denote the subcategory of Mod R (resp.
Mod S) consisting of n-w-cotorsionfree (resp, adjoint n-w-cotorsionfree) modules.
By [16, Proposition 3.2], we have that a module in Mod R is w-cotorsionless (resp.
w-coreflexive) if and only if it is in CTCIU(R) (resp. c¢7 i(R)). In particular, we have

Fo(R) S By(R) S T ,(R)
for any i > 1 by [8, Corollary 6.1] and [16, Theorem 3.9]. On the other hand, by [18,
Proposition 3.2], we have that a module in Mod S is adjoint w-cotorsionless (resp.
adjoint w-coreflexive) if and only if it is in aCT(L(S) (resp. ac’Tczu(S)). We have

Z(S) € Ay(S) C acT' ()

for any i > 1 by [8, Corollary 6.1] and [18, Proposition 3.4].
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Definition 2.4 [17]

(1) Let M € Mod R and n > 0. The Ext-cograde of M with respect to w is defined
as E-cograde, M :=inf{i > 0O | Ext‘k (w, M) # 0}; and the strong Ext-cograde
of M with respect to w, denoted by s.E-cograde,, M, is said to be at least n if
E-cograde,, X > n for any quotient module X of M.

(2) Let N € Mod S and n > 0. The Tor-cograde of N with respect to w is defined
as T-cograde, N := inf{i > 0 | Tor;g (w, N) # 0}; and the strong Tor-cograde
of N with respect to w, denoted by s.T-cograde,, N, is said to be at least n if
T-cograde,, Y > n for any submodule Y of N.

Definition 2.5 [20] Let X" be a subcategory of an abelian category £ and n > 1. If
there exists an exact sequence

O>N—->Xy—>-—>X,.1>M-—>0

in £ with all X; in &, then N is called an n-X-syzygy of M and M is called an
n-X-cosyzygy of N.

For subcategories X', ) of an abelian category £ and n > 1, we write

Q% () :={N € £ | N is an n-X-syzygy of some object in )},
coQy (V) :={M € £ | M is an n-X-cosyzygy of some object in )}.

In particular, Q?v D) =YY= COQ?\, (Y) and Q:‘,l Q) =0= COQ:YI ()). For conve-
nience, we write

"0 (S) 1= QY5 (Mod S), @ (8) = Q% s (Mod 5),
Q:chU(S) = Q;’CTL(Mod S),
coQp(R) = COQ”BM(R) (Mod R), COQn}—w (R) := COQn]_—w(R) (Mod R),
coQ%w(R) = COanw(R)(MOd R), COQZTQ(R) = COQZT; (Mod R).

3 Tor-Cograde and Extension Closure

Our aim in this section is to show how the extension closure of the subcategories
aCT(ID(S) and aCTCZU(S) is connected with the Tor-cograde of Extll‘e (w, M) for any
M eModRandk =1, 2.

In what follows, for any i > 1, we use C; (resp. D;) to denote a subcategory of
Mod R (resp. Mod §) satisfying
Fu(R) CC; CcT! (R) (resp. Z,,(S) € D; € acT’ (S)).

We begin by proving the following lemma.

Lemma 3.1 Foranyi > 1, it holds that
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(1) Qp, ($) = acT,(S).
(2) coQéi(R) =cTL(R).

Proof (1) Since Z,(S) C D;, we have acTclo(S) C QB(S) by [18, Lemma 3.7(1)].
NowletN € Qé[ (S). We may assume that f° : N — H is amonomorphismin Mod S

with H € D;. As D; C acTﬁU(S) C acT}U(S), we have that g is a monomorphism.
Then from the following commutative diagram

0
T S

(1o® %)
(0 ®g5 N)y —— (0 Q@5 H)sx,

we get that p is a monomorphism. Thus N € aCTi)(S) and Q%)l_ (S C acT({)(S).
(2) Since P, (R) C C;, we have cT‘]O(R) - clecl_ (R) by [16, Lemma 3.6(1)]. Now
let M € COQ]C,- (R). We may assume that fo : L — M is an epimorphism in Mod R

with L € C;. AsC; C c’TﬁU(R) - CTCIU(R), we have that 67, is an epimorphism. Then
from the following commutative diagram

1o® *
w ®s Ly A—a)@s M,

Jo f Jow

L 0 M,

we get that 6, is an epimorphism. Thus M € C'TCIU(R) and coQéi (R) C cTclo(R). O

Lemma 3.2 The following statements are equivalent for any i > 2.

(1) M € coQ?, (R).
(2) M € coQ (R).
(3) There is a module N € Mod S such that M = o Qg N.

Proof (1) = (2) It is obvious.
2)= B)LetM e COQ%I_ (R) and let

JAEA S )
be an exact sequence in Mod R with L°, L' € ¢; cTﬁU(R). As CTZ)(R) - CTZ)(R),

we have that 6;0 and 6,1 are isomorphisms. Then from the following commutative
diagram with exact rows
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1o *
0®s L% % @s L] — = w ®5 Coker fu —= 0

l@Lo \LGLI h
N

L0 L! M 0,

we get that the induced homomorphism / is an isomorphism, and thus M = o ®g
Coker f.
(3) = (1) Suppose M = w ®s N for some N € Mod S, and let

Q1—>Q0—>N—>O

be a projective presentation of N. Applying the functor w ®g — to it yields an exact
sequence

w®s Q1 > w®s Qp —> w®s N — 0.
Since w ®s Q1,w ®s Qo € P,(R), we have M € coQi (R)" O

We give an analogue of Lemma 3.2.

Lemma 3.3 The following statements are equivalent for any i > 2.

(1) N € Q2 (S).
(2) N € Q% ().
(3) There is a module M € Mod R such that N = M,.

Proof (1) = (2) Itis obvious.
(2) = B)LetN e sz%,_(R) and let

0> N—H-5 g
be an exact sequence in Mod S with HY H! ¢ D; C ac’Tfu(S). As achD(S) -

acTZ)(S), we have that pyo and py are isomorphisms. Then from the following
commutative diagram with exact rows

0 N HO H!

h K0 2578

\
(1o®g)s
00— (Ker(ly ® g))s — (0 ®5 HO)y —2% (0 @5 H)s,

we get that the induced homomorphism # is an isomorphism, and thus N = (Ker(1,®

8))x-
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(3) = (1) Suppose N = M, for some M € Mod R, and let
0>M—1°= 1!

be an injective copresentation of M. Applying the functor (—), to it yields an exact
sequence

00— M, — Ii) — I*l.
Since 19, I € Zo,(S), we have N € Q7 (.. a]
Proposition 3.4 The following statements are equivalent for any i > 2.

(1) My € acT>(S) for any M € Mod R.
(2) @ ®s N € cT2(R) forany N € Mod S.
(3) cT2(R) = coQé(R).

(4) acT;(S) = QF, (5).

Proof (1) = (4) Let N € QZDi (S). Then by Lemma 3.3 and (1) there is a module
M € ModR such that N = M, € acTZ)(S), and so Q%i(S) C acTi(S). The
inclusion acTi(S) - Q2D,- (S) follows from [18, Lemma 3.7(2)].

(4) = (1) Let M € Mod R. Then by Lemma 3.3 and (4), we have M, € Q%)l_ S =
acT2(S).

Similarly, we get (2) < (3) by Lemma 3.2 and [16, Lemma 3.6(2)].

(1) & (2) It follows from [20, Lemma 4.18]. O
Proposition 3.5 For any n > 1, the following statements are equivalent.
(1) T-cogradewEthl‘z(a), M) >k —1forany M e ModR and 1 < k < n.
(2) T-cograde,, Ext];{,(w, M) >k —1forany M € Q]én(R) and 1 <k < n.
(3) E-cograde,, Tor;f(a), N)Z>k—1forany N e ModS and 1 < k < n.
(4) E-cograde,, Tor;f(a), N) >k —1forany N € COQ%H (S)yand1 <k <n.
(5) T (R) = coQ’én (R) forany 1 <k < n.
(6) acT}(S) = @, (S) forany 1 <k <n.

Proof (2) = (5) By [16, Proposition 3.7], it suffices to prove coQ’én (R) C chU(R)
for any 1 < k < n. We proceed by induction on n. The case for n = 1 follows from
Lemma 3.1.

Now let M € coSZ’én (R) withn > 2 and let

W 2 sw Dwy om0 3.1)

be an exact sequence in Mod R with all W; in C,. By the induction hypothesis, we
have Im f| € ¢cT :’U_l (R) and there is an exact sequence

Vo 2 vy w0 (3.2)
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in Mod R with all V; in P,,(R) by [16, Proposition 3.7]. Applying the functor (—), to
(3.2) gives an exact sequence

0— (Imgp)s — Wou ﬂ M, — Extp (o, Ker g,—1) — 0. (3.3)

Set N := Im( fy,) and let foy, := amw (where 7 : Wy, — N ando : N — M,) be the
natural epic-monic decomposition of fy,. Then we have the following commutative
diagram with exact rows

lo
Torf(w’N) $w®5 (Img1)x —— 0 @s Wo, ﬂ'&)@SNHO

[
\Lelmgl \LHWO 18
fi Y

0 Im g Wo 0 M 0.

Diagram (3.1)
So we have

Oy @a)(ly@m) =041, ® fO*) = fOeWO =g, ®m).

Because 1, ® 7 is epic, we have 0y - (1, ® @) = g and the following commutative
diagram with exact rows

Lo
w®s N Lo® ®®s My — o ®s Ext’y (0, Ker g, 1) —0

-

M:M.

Diagram (3.2)

Since Img; = Im f] € CTZ)_I(R), we have that Oy ¢, is an epimorphism. So g is
an isomorphism by the snake lemma, and hence 1, ® « is a monomorphism. Since
o ®s Extly (w, Ker g, 1) = 0 by assumption, we see that 6 is an isomorphism and
M e cTi(R) by Diagram (3.2). This shows that the assertion holds true for n = 2.

If n > 2, then O, is an isomorphism as Im g; € CTZ)’I(R), we also have
Torls(w, Wo.) = 0 by [16, Corollary 3.4(3)]. So & is monic and Torls(a), N) =0
by Diagram (3.1). Moreover, it is clear that Torfgkgn_3 (w, Imgy)x) = 0 by [16,
Corollary 3.4(3)]. Because T-cograde,, Ext’}e (w, Ker f,—1) =2 n — 1 by assumption,
applying the dimension shifting to (3.3) yields Torfg k<n—2 (@, My) = 0. Therefore
M e cT7 (R) by [16, Corollary 3.4(3)] again.
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Gﬁﬁﬂﬂ%mwl<k<nﬁMﬁ&%@)ng%UDguﬂamxmmwe
chU(R) = coQ’%m(R) by (5), and hence chU(R) = COQ%(R) by [20, Proposition
4.17]. Now (1) follows from [20, Theorem 4.19].

The implications (1) = (2) and (3) = (4) are obvious.

(1) & (3) It follows from [20, Theorem 4.19].

The proofs of (4) = (6) and (6) = (2) are similar to that of (2) = (5) and
(5) = (1) respectively. O

Lemma 3.6 Forany M € Mod R, there are two exact sequences
0— Ext}g(w, M) — cTr, M BNy & N 0,
00— H —)L> (w ®s cTry, M)y — Ext%e(a), M) — 0
in Mod S such that Homg(wr, w™) is an isomorphism.
Proof By [17, Corollary 6.8], there is an exact sequence

McTrgy M

0— Ext}e(w, M) — cTr, M — (0 ®gscTry, M), — Ext%(a), M) — 0

inMod S. Put H := Im p¢tyr,, & and assume that pety, v = Az, where w @ cTr, M —
H is an epimorphism and A : H — (o ®g cTr,, M), is a monomorphism. Then we
have the following exact sequences
00— Ext}e(a), M) — cTr, M 2o H > 0,
0— H —A> (w ®s cTry, M), — Ext%e(w, M) — 0.
In view of [17, Lemma 6.1(2)], 1, ® ttcTr,, m 1S @ monomorphism, and so 1, ® 7 is an

isomorphism. It follows from the adjoint isomorphism theorem that Homg (w, w™) =
(1o ® 7)™ is also an isomorphism. ]

Lemma 3.7 The following statements are equivalent for any i > 1.

(1) aCTCIU(S) is extension closed.
(2) T-cograde,, Ext}e(a), M) > 1 forany M € Qéi(R).
(3) T-cograde,, Ext}z(a), M) > 1 for any M € Mod R.

Proof (2) = (1) Let

f

0>A-B-5Cc>0

be an exact sequence in Mod § with A, C € ac7, }l)(S). By [18, Proposition 3.2],
Kerup = Ext}e(a), acTr, B). Notice that acTr,, B € Qé (R), so

0 ®s Ext}e (w, acTr, B) =0
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by (2), and hence w ®s Ker up = 0. Moreover, since ucg = (1, ® g)«p and ¢
is a monomorphism, we get Ker up C Ker g = A. Note that A € acT(]D(S) and

Homg(Ker g, ") = (w ®5 Ker ug)™ = 0.
It follows from [18, Lemma 3.7] and [ 13, Proposition 2.4] that Homg(Ker up, A) = 0,
which implies Ker up = 0, and thus B € ac7 LIU(S).
(1) = (3) By Lemma 3.6, there is an exact sequence
0— Ext}e(a), M) — cTr, M T H -0
in Mod S such that Homg (7, ™) is an isomorphism. Then

Ker Ext} (7, o) = Homg (Extk (0, M), o) = (0 ®s Exth (0, M))™.

Suppose

a:0—>w+—>X—f>H—>0

is an element in Ker Ext} (7, o), that is, Ext}(, ®)(a) = 0. Then we have the
following pull-back diagram with the first row splitting:

cTr, M ——0

So there is a homomorphism u” : ¢Tr, M — Y such that uu’ = lcrr, pm. Since
mu = ft, we have m = fru’. Note that (w ®g cTr, M), € acTclo(S) by [17, Lemma
6.1(1)]. Thus H € acTclu(S) since H is a submodule of (w ®g cTry,, M), by Lemma
36.50 X € acTLlU(S) by (1), and hence there is a monomorphism 0 — X — U in
Mod S with U? € Z,,(S) = Prod wt. As Homg(r, w™) is an isomorphism, we have
that Homg (7, U), and hence Homg (7, X), is an isomorphism by [11, Lemma 2.1].
Then there is a homomorphism f’ : H — X such f'mr = tu/, and som = ff'm.
But 7 is an epimorphism, thus ff’ = 1g, which implies that o splits, and thus
0 Qs Ext}e(a), M) =0.

3) = (2) It is trivial. O

Lemma 3.8 Forany N € Mod S, the following statements are equivalent.

(1) ®®s N € cT>(R).
(2) v ®s Coker uy = 0.

Proof By [17, Lemma 6.1(2)], we have O,e,n (1o ® tN) = luggn. It follows that
OwesN 1s a split epimorphism and

Ker 0,gsn = Coker(l, ® un) = o ®g Coker py .
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Now the assertion follows easily. O

Lemma 3.9 IfacT(L(S) is extension closed, then v @5 N € CTZ)(R) for any N €
Mod S.

Proof By the definition of adjoint cotranspose, there is an exact sequence
0— acTr, N > wQ®s F| > w®s Fp > o®s N — 0
in Mod R with Fy, F; flat. Let K := Im(w ®s F| — © Qs Fp). We have
Coker uy = Ext}(w, acTr,, N) = Exth(w, K)
by [18, Proposition 3.2]. By assumption and Lemma 3.7, we have o®gCoker uy = 0.
Thus w ®s N € CTLZL,(R) by Lemma 3.8. O

We are now in a position to prove the main result of this section.

Theorem 3.10 The following statements are equivalent for any i > 1.
(1) achU(S) is extension closed for k = 1, 2.

(2) Tor} | (w, Exth(w, M)) = 0 forany M € szgi (R) andk =1, 2.
(3) T-cograde,, Ext];e(a), M) > k forany M € Qé_ (R)andk =1, 2.
(4) Tor,f_l(w, Extl;e(a), M)) =0 forany M e Mod R and k =1, 2.
(5) T-cograde,, Extlje(a), M) >k forany M € Mod R and k = 1, 2.

Proof (1) = (5) By Lemma 3.6, there are two exact sequences

0— Ext}e(a), M) — cTr, M 2o H - 0, (3.4)
0= H 25 (0®s cTry M), 2 Exti(w, M) — 0 3.5)
in Mod S such that Homg(w, w™) is an isomorphism and Az = McTr, M- Since

Homg(w, ™) = (0w ® w)T by the adjoint isomorphism theorem, it follows that
(w®m)T and @ ® 7 are isomorphisms.

By Lemma 3.7, it is easy to see that T-cograde,, Ext}e(a), M) > 1 and v Qg
Ext}e (w, M) = 0. Then by the adjoint isomorphism theorem, we have that

Homg (Extk(w, M), ") = (0 ®s Exth(w, M) =0

and Exté(ﬂ, ™) is a monomorphism. We know from [17, Lemma 6.1(2)] that
Homg (peetr, m» wT)isan epimorphism. Then the fact that

Homg (ptetr, M, 1) = Homg(rr, ™) Homg (%, w™)

in which Homg (7, ™) is an isomorphism (by Lemma 3.6) implies that Homg (A, »™)
is also an epimorphism. On the other hand, note that

Ext (e, m» 1) = Extg(r, ™) Extg(h, o)
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and Extfq(n, ™) is a monomorphism by the above argument. Applying the functor
Homg(—, w™) to (3.5) gives

Ker Ext} (jtetr, i, ) = Ker Exti (4, ™) = ExtL (Extk (0, M), o™).
Let
a:0—> w0 —> X—f> (0 ®s cTry, M), — 0

be an element in Ker Ext]S(,ucTrw u,wT), that s, Extls(ucTrw m,w ) () = 0. Then we
have the following pull-back diagram with the first row splitting:

u

0 ot Y Tty M ———0

lt iHcTrw M

0 ot X (0 s cTry M), — 0.

So there is a homomorphism u’ : ¢Tr, M — Y such that uu’ = le¢tr, pm. Since
UeTr, MU = ft, we have

UcTr, M = ftul~
By Lemma 3.9, we have w ® s cTr, M € c’T?J(R). It follows from [19, Proposition

6.4] that (w ®g cTr, M), € acTi(S). Since ac’Ti(S) is extension closed by (1), we
have X € ac’TCzU(S). As pxtu' = (1 ® tu')spietr, M, We have

—1
UcTr, M = ft“/ = fMX 1y ® l‘u/)*,U«cTer and

(LwsseTry, M), — fiy (o ® tu)))itete, m = 0,
and hence
(Lw®scTry My, — fiy (L ® tu) )4 = 0.

By the universal property of cokernels, there is a homomorphism g : Ext% (w0, M) —
(w ®s cTry, M), such that

LosseTr, ay. — fity (1o ® tu) = gP.
In addition, since Ext%e (w, M) = Coker ey, M, We have
o ®s Exth(w, M) =0
by Lemma 3.8. It follows from the adjoint isomorphism theorem that

HomS(Ext%e(a), M), 0" = (v ®s EXt%g(w, M)t =o0.
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Moreover, since (w ®g cTr, M), € acT Z)(S), we have that (w ®g cTr, M), 18 is0-
morphic to a submodule of some module in Prod w™ by [18, Lemma 3.7]. Then

Homg (Ext% (@, M), (0 ®s cTr,, M),) = 0.
So g =0and
lowsetr, i, = [y (Lo ® tu)s,
which means a = 0. It follows from [5, Theorem 3.2.1] that Tor‘f (w, Ext?e (w, M)) =
0, and thus T-cograde,, Ext% (w, M) > 2.

The implications (3) = (2), (4) = (2) and (5) = (3) + (4) are trivial.
2) = (1) Let

O—>A—>BL>C—>O

be an exact sequence in Mod S with A, C € acTZ)(S). Then B € acT}U(S) by (2) and
Lemma 3.7. It follows from [18, Proposition 3.2] that

Coker ug = Ext%e (w, acTry, B).
Consider the following diagram with exact rows

0 A B / c 0

h lus luc

v .

, (1o®f)x
0—— A —— (0®s B)xs — (0 ®s C)s,

where A" = Ker(1, ® f) and h is an induced homomorphism. By the snake lemma,
we get an exact sequence

0> A5 A - Ext%(w, acTr,, B) — 0. (3.6)

Since acTr, B € Q%, (R), we have

o ®s Coker j1p = w ®g Extk(w, acTr,, B) =0
by Lemmas 3.8 and 3.9. Also we have Torf(a), Ext%e (w, acTr, B)) = 0by (2). Apply-
ing the functor v ® — to (3.6) yields that 1, ® h is an isomorphism. Since A’ is a

submodule of (w ®g B)4, we have A’ € acTclo(S), and thus w4/ is @ monomorphism.
On the other hand, since 1t 4 is an isomorphism and

(o ® h)spea = parh,
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we get that w4/ is an epimorphism, and hence an isomorphism, which implies that &
is also an isomorphism. Thus g is an isomorphism and B € acTZ)(S). m]

4 Strong Ext-Cograde and Extension Closure
In this section, we characterize the extension closure of the class ac7¥ (S) for any
1 < k < ninterms of the strong cograde of Tor,fH(w, C) forany C € COQ%_ (S) and

1 <k<n.
Let

0>A-B5 co0

be an exact sequence in Mod R. Then one gets two exact sequences

0—Im(l, ® f) — 0®s B 2= wesC — 0, @.1)
0— Ker(l, ® f) = 0 ®s A — Im(1, @ f) — 0. 42)

Applying the functor (—), to (4.1) yields the following diagram with exact rows

0 A f B J

o \L#B l#c
\

0 ——(Im(ly ® /) — (@ ®s B)x —— (@ Q5 ),

Diagram (4.1)
where « is an induced homomorphism. It is easy to check that the following diagram
A ———————— A

0—— (Ker(lp ® s —> (@ @5 A)x —> (Im(1p, ® ))x —> EXt}g(ws Ker(lo ® 1))

Diagram (4.2)

is commutative with the bottom row exact.
The following two lemmas are useful in this section.

Lemma 4.1 The following statements are equivalent for any C € aCT}U(S ).

(1) s.E-cograde,, Torls(a), C)>1.
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(2) If
0>A-5B5 co5o0

is an exact sequence in Mod R with A € ac’Tclu(S), then B € ac’Tclu(S).

Proof (1) = (2) Since Ker(l, ® f) is a quotient module of Torf(a), C), we
have (Ker(1, ® f))x = 0 by (1). Then it follows from Diagram (4.2) that « is a
monomorphism. Applying the snake lemma to Diagram (4.1) gives that g is also a
monomorphism, and so B € acTCIU(S).

(2) = (1) Let L be a quotient module of Torf (@, C). Then L™ is a submodule
of Extg(C, wT) (= [Torf(a), C)I™). Since w € B, (5°P), for any cardinal ¢, we have
™ € Ay(S) by [12, Theorem 3.3]. Thus

Extk (ot oh) = [Tork(w, 0™)]" = 0.

It follows from the proof of [21, Lemma 6.9] or the dual result of [22, Lemma 3.4]
that there is a cardinal A such that there is an exact sequence

+ _f

0w —-D—-C—0 “4.3)

in Mod R with Coker Homg(f, ™) = LT. Then we get the following commutative
diagram with the top and bottom rows exact:

Homg(D, o) @ @ —-= Homg(wt ", o) @p 0 —> Lt @ & —> 0

[(@ ®5 D)u]t ——— [(0 ®s 0+ )]t

l(un)Jr l(”mﬂﬁ

Dt (a)+x)+ — 0.

Diagram (4.3)
Since w™ € aCTi(S), we have D € acT(ID(S) by (2). It follows that g is an epimor-
phism and L™ ®g » = 0. Since w admits a degreewise finite projective resolution,
we have

LT ®r w X Homg(w, L)T =0 (4.4)

by [5, Theorem 3.2.11]. Thus Homg (w, L) = 0 and s.E-cograde,, Torls(a), C)y>1.0
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Lemma 4.2 The following statements are equivalent for any C € acTi(S).

(1) s.E-cograde,, Torf(a), C)>2
(2) If

f

0>A-LB-5Cc—0
is an exact sequence in Mod R with A € ac’TZ)(S), then B € ac’TZ)(S).
Proof (1) = (2) Since Ker(1,, ® f) is a quotient module of Tor; (w, C), we have
[Ker(l, ® f)lx = 0 = Exth(w, Ker(l, ® f))

by (1). Since A € ac’TZ)(S) by assumption, from Diagram (4.2) we know that « is an
isomorphism. Notice that C € ac7 i(S), so B € acTZ)(S) by Diagram (4.1).

(2) = (1) By [12, Theorem 3.3], we have that a)JrA € A, (S) with A same as that in
the proof of (2) = (1) in Lemma 4.1. Then the middle term D in the exact sequence
(4.3)isin acTZJ(S) by (2). It follows from Diagram (4.3) that L* ® g @ = 0. Thus

Hompg(w, L) =0

by the exact sequence (4.4).
Applying the functor Homg(—, ™) to the exact sequence (4.3) gives an exact
sequence

0 — Homs(C, o) — Homg(D, o) — Homs(w* , w™) — LT — 0(4.5)

in Mod R°P. Then we get the following commutative diagram with exact rows

5®1,
Homg(C, ™) @ @ 8l Homs(D, wt) g 0 — ImO Qg v — 0

S

(@®s O))t ———— (0 ®s D))t ———=Imb Qo —> 0

l(ucfr \L(MD)Jr h
N

0 ct Dt ot 0,

where / is an induced homomorphism. As C, D € ac7 i(S), we have that both (uc)™
and (up)* are isomorphisms, and so & is also an isomorphism. On the other hand,
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from the exact sequence (4.5) we get the following commutative diagram with the top
Tow exact:

0——=Tor{ (LT, 0) —=Im0 ®r 0 — (0 s o)) (E Homg (o, ™) @r o)

h \L(#w#\ )

(@)t (@)

Because both / and (,uw )T are isomorphisms, we have Torf(L+, w) = 0, and thus
Ext}e (w, L) = 0. The proof is finished. m|

Theorem 4.3 The following statements are equivalent for any C € acT(S) and
n>1.

(1) s.E-cograde,, Torf(a), C)>n.

(2) If

0s>ALBSCco0

is an exact sequence in Mod S with A € acT? (S), then B € acT, (S).

Proof The cases for n = 1 and n = 2 follow from Lemmas 4.1 and 4.2 respectively.
Now suppose n > 3.

(1) = (2) By Lemma 4.2, we have B € acho(S). Since C € ac7,(S), we
have Ext’k(w, w®sC) =0forany 1 < i < n— 2 by [18, Corollary 3.3(3)]. On
the other hand, since Ker(l, ® f) is a quotient module of Torf (w, C), we have
Ext’.R(a), Ker(l, ® f)) = 0 for any 0 <i < n—1by (1). Then it is induced from
the exact sequence (4.2) that Exty(w,Im(l, ® f)) = Oforany 1 < i < n—2.
Thus it follows from the exact sequence (4.1) that ExtiR (w,w ®s B) = 0 for any
1<i<n-—2andso B € acT ) (S).

(2) = (1) It follows from the exact sequence (4.4) that there are two exact
sequences

0 — Homg(C, w™) —6> Homg(D, ") — Im6 — 0,

0— Im6 — Homs(a)"’l, o) > LT = 0.

By (2), we have D € ac7 (S). From the proof of Lemma 4.2, we know that § @ 1,,
is a monomorphism and

Torf(L+, ) =0=L" Q@ w.
Moreover, it is easy to verify that Torg <i<n—i (LT, w) = 0. Since
[Exth (w, L)]T = Torf (LT, w)
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for any i > 0 by [5, Theorem 3.2.1], it follows that [Ext(l)fign_l(a), )]t =0, and
hence Ext(;glg"*] (w, L) = 0. The proof is finished. O

Proposition 4.4 Suppose n > 1 and D, C ws . Then the following assertions hold.

(1) IkaD,, (S) is extension closed for any 1 < k < n, then acTﬁ)(S) = QI{)”(S) for
any 1 < k < n, and hence Add Qan S = Q%n (S) forany 1 <k < n.

(2) If Add QIZ‘)” (S) is extension closed for any 1 < k < n, then Add Qan S =
Q’;Jn (S) forany 1 < k < n.

Proof (1) We proceed by induction on n. When n = 1, the assertion follows from

Lemma 3.1.
Now suppose n > 2 and achu(S) = Q%ﬂ (S) forany 1 < k < n— 1. Let
N e COQnDn (S) and let

An_1—>-~-—>A0—>N—>0

be an exact sequence in Mod S with all A in D,,. Set L := Im(A, | — A,_2). Then
Le Q"DZI(S) = acTZ)_1 (S). By Theorem 4.3, we have

s.E-cograde,, Tor,sl(a), N) = s.E-cograde,, Torls(a), Ly>n—1.

Then acT’C‘U(S) = Q%ﬂ (S) for any 1 < k < n by Proposition 3.5. Because acTﬁ)(S) is
closed under direct sums and direct summands for any k£ > 1, we have Add QkD,, S =
Qé‘)n (S) forany 1 < k < n.

(2) We proceed by induction on n. By Lemma 3.1, we have Qan S) = aCT}U(S).

Since Add ach)(S) = ac’TClU(S), the case for n = 1 follows. Let n > 2. By the
induction hypothesis, we have that Add Q%ﬂ S) = Q%ﬂ (S) is extension closed for
any 1 < k < n, it follows from (1) that ac7 7, (S) = Q”Dn (S). Thus Q”Dn (S) is closed
under direct sums and direct summands and Add Q”Dn (S) = Q%ﬂ (S). O

Theorem 4.5 Suppose n > 1 and D, C ws'. Then the following statements are
equivalent.

(1) s.E-cograde,, Tor;f+1 (w, N) = k forany N € COQIZ‘)” (S)and1 <k <n.
(2) QkD (S) is extension closed for any 1 < k < n.
(3) Qan (S) is extension closed and aCTﬁ,(S) = QkD,,(S) forany 1 <k < n.

(4) achU(S) is extension closed for any 1 < k < n.
(5) Add Q% (S) is extension closed for any 1 < k < n.

Proof (1) = (2) By Proposition 3.5, we have acT';)(S) = Q%n (S)forany 1 < k < n.
Let N € achu(S ). Then there is an exact sequence

O->-N—->Uy—-U —>-+—>Ui.1—>L—>0

@ Springer



57  Page 20 of 22 X.Tang, Z. Huang

in Mod § with all U; in D,, by [18, Proposition 3.8]. Notice that L € coQan (S), so
s.E-cograde,, Torf(w, N) = s.E-cograde,, Tor;(g (o, L) =k

It follows from Theorem 4.3 that 52]2‘) (S) is extension closed for any 1 < k < n.
5) & (2) = (3) It follows from Proposmon 4.4.
(3) = (4) It is obvious.
(4) = (1) We proceed by induction on n. Let N € coQIDn (S) and let

0O—-L—-D—-N-=0

be an exact sequence in Mod S with D € D,. By Lemma 3.1, we have L € acTi,(S).
Thus

s.E-cograde,, Torg (w, N) = s.E-cograde,, Torf (w,L) > 1

by Theorem 4.3. The case for n = 1 follows.
Supposen > 2. By the induction hypothesis, we have s.E-cograde Tor,f (0, N) >

k for any N € COQ  (S) and 1 < k < n — 1. From Proposition 3.5, we know that
acTh(8) = Q’;)"(S) forany 1 < k < n. Now let N ¢ coQ, (S) and let

0O—-L—->Dy—> D —---—D,_ 1 —>N-—=>0
be an exact sequence in Mod S with all D; in D,,. Then L € ac7} (S), and hence
s.E-cograde,, Tor,fﬂ(a), N) = s.E-cograde,, Torf(a), Ly>n

by Theorem 4.3. O

Since A, (S) contains all projective left S-modules by [8, Lemma 4.1], any left
S-module is in 009154(5) for any k > 1. Moreover, we have A4, (S) = ac7 (S) N ws |
by [18, Theorem 3.11].

Theorem 4.6 The following statements are equivalent.

(1) s.E-cograde,, Tork_H(a) N) > kforany N e ModS and 1 < k < n.
(2) T-cograde,, ExtR(a) M) > k for any M € Mod R forany 1 < k < n.
(3) QF "A(S) is extension closed for any 1 < k < n.

(4) Q/;\(S) is extension closed and aCTIZ)(S) = Q]j‘l(S) forany 1 <k < n.
(5) ach (S) is extension closed for any 1 < k <

(6) Add QF (S) is extension closed for any 1 < k < n.

Proof By [20, Proposition 4.12], we have (1) < (2). The other implications follow
from Theorem 4.5 by replacing D, with A, (S). O
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Recall from [14] that a ring R is called semiregular if R/J(R) is von Neumann
regular and idempotents can be lifted modulo J(R), where J(R) is the Jacobson
radical of R. The class of semiregular rings includes: (i) von Neumann regular rings;
(i1) semiperfect rings; (iii) left cotorsion rings; and (iv) right cotorsion rings. See [7]
for the definitions of left cotorsion rings and right cotorsion rings.

Corollary 4.7 Let R be semiregular and n > 1. Then the following statements are
equivalent.

(1) s.E-cograde,, Tor,f_H(a), N) > kforany N e Mod S and 1 < k < n.
(2) s.T-cograde,, Extlgﬁfpl (w, N') > k forany N' € Mod S°? and 1 < k < n.
(3) CTZ(SOP) is extension closed for any 1 < k < n.

(4) acT];(S) is extension closed for any 1 < k < n.

Proof By the dual proof of Theorem 4.6, we get (2) < (3). The assertions (1) < (2)
and (1) < (4) follow from from [20, Theorem 4.14] and Theorem 4.6 respectively. O

Recall that an artin algebra R is called right quasi n-Gorenstein if the projective
dimension of the i-term in a minimal injective resolution of Ry is at most i for any
1 < i < n ([9). Let D be the ordinary duality between mod R and mod R°’. Then
D(R) is a semidualizing (R, R)-bimodule. It is induced from [20, Example 4.20] that
R is right quasi n-Gorenstein if and only if s.E-cograde,, Torl.RJrl (D(R),N) > i for
any Ne ModRand 1 <i < n.

Corollary 4.8 Let R be an artin algebra and n > 1. Then the following statements are
equivalent.

(1) R is right quasi n-Gorenstein.
(2) CT’;)(R)(ROP) is extension closed for any 1 < k < n.

(3) achD(R)(R) is extension closed for any 1 < k < n.

Proof 1t is a consequence of Corollary 4.7. O
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