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Abstract
Let R and S be rings and RωS a semidualizing bimodule, and let n � 1.We characterize
the extension closure of the category of adjoint k-cotorsionfree modules with respect
to ω for any 1 � k � n in terms of the (strong) cograde conditions of certain modules.

Keywords Semidualizing bimodules · (Strong) Ext-cograde · (Strong) Tor-cograde ·
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1 Introduction

Throughout this paper, all rings are associative rings with units. For a ring R, we
use Mod R to denote the category of left R-modules. Recall that a subcategory X of
Mod R is called extension closed provided that for any exact sequence

0 → A → B → C → 0

in Mod R, if A and C are in X , then so is B. The extension closure of certain sub-
categories has been proved to be important in characterizing rings. We mention a
well-known result about the extension closure of the category of n-syzygy modules
over a Noetherian algebra R ([2, Theorem 4.7]), which shows that the category of
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finitely generated i-syzygy modules is extension closed for any 1 � i � n if and only
if R is quasi n-Gorenstein in the sense of [9]. Applying this theorem, under Serre’s
condition, Goto and Takahashi characterized a commutative Noetherian local ring in
height less than n to be Gorenstein in terms of the extension closure of the category
of finitely generated n-syzygy modules ([6, Theorem B]). The extension closure of
various subcategories has been studied extensively, see [3, 4, 10, 11, 15] and references
therein.

In particular, Huang [10] initialed the study of extension closure of the category
of n-torsionfree modules with respect to a semidualizing bimodule RωS by using the
properties of the (strong) grade ofmodules. In [16] and [18] we dualized the Auslander
transpose and introduced the notions of n-ω-cotorsionfree modules and adjoint n-ω-
cotorsionfree modules respectively. These two classes have many dual properties of
relative n-torsionfree modules. It is thus natural to ask the following question:

Question 1.1 When are the category of n-ω-cotorsionfree modules and that of adjoint
n-ω-cotorsionfree modules extension closed?

This question has been partially solved by Zhao and Zhang so far, and they proved
that the category of i-ω-cotorsionfree modules is extension closed for any 1 � i � n
if and only if the strong Tor-cograde of Exti+1

R (ω, M) is at least i for any ω-i-syzygy
moduleM and 1 � i � n ([22, Theorem 3.10]). The purpose of this paper is to proceed
with the study of Question 1.1. Indeed, we will investigate the extension closure of
the category of adjoint n-ω-cotorsionfree modules.

The organization of this paper is as follows. Section 2 contains some basic
definitions and preliminary results. Let R, S be arbitrary rings and let RωS be a
semidualizing bimodule. In Section 3, we show that the categories of adjoint 1-
cotorsionfree modules and adjoint 2-cotorsionfree modules are extension closed if
and only if TorSk−1(ω,ExtkR(ω, M)) = 0 for any left R-module M and k = 1, 2, and
if and only if the Tor-cograde of ExtkR(ω, M) with respect to ω is at least k for any
left R-module M and k = 1, 2 (Theorem 3.10).

LetAω(S) be the Auslander class with respect to ω. In Section 4, we show that the
category of adjoint k-ω-cotorsionfree modules is extension closed for any 1 � k � n,
if and only if the category of k-Aω(S)-syzygy modules is extension closed for any
1 � k � n, if and only if the strong Ext-cograde of TorSk+1(ω, N ) with respect to ω is
at least k for any left S-module N and 1 � k � n, and if and only if the Tor-cograde
of ExtkR(ω, M) with respect to ω is at least k for any left R-module M and 1 � k � n
(Theorem 4.6). As a consequence, we obtain some equivalent characterizations of
right quasi n-Gorenstein rings (Corollary 4.8).

2 Preliminaries

This section is devoted to stating the definitions and basic properties of notions which
are needed in the sequel.

Definition 2.1 [1, 8]. Let R and S be rings. An (R, S)-bimodule RωS is called semid-
ualizing if the following conditions are satisfied.
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(a1) Rω admits a degreewise finite R-projective resolution.
(a2) ωS admits a degreewise finite Sop-projective resolution.

(b1) The homothety map R RR
Rγ→ HomSop (ω, ω) is an isomorphism.

(b2) The homothety map S SS
γS→ HomR(ω, ω) is an isomorphism.

(c1) Ext�1
R (ω, ω) = 0.

(c2) Ext�1
Sop (ω, ω) = 0.

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule
RωS . For convenience, we write

(−)∗ := Hom(ω,−),

Rω⊥ := {M ∈ Mod R | Ext�1
R (ω, M) = 0},

ωS
� := {N ∈ Mod S | TorS�1(ω, N ) = 0}.

Following [8], set

Fω(R) := {ω ⊗S F | F is flat in Mod S},
Pω(R) := {ω ⊗S P | P is projective in Mod S},
Iω(S) := {I∗ | I is injective in Mod R}.

The modules in Fω(R), Pω(R) and Iω(S) are called ω-flat, ω-projective and ω-
injective respectively. For a subcategory X of Mod R (resp. Mod S), we use AddX
(resp. ProdX ) to denote the subcategory of Mod R (resp. Mod S) consisting of mod-
ules isomorphic to direct summands of direct sums (resp. products) of modules in
X .

We write (−)+ := HomZ(−,Q/Z), where Z is the additive group of integers and
Q is the additive group of rational numbers. By [13, Proposition 2.4], we have

Pω(R) = AddR ω and Iω(S) = Prodω+.

Let M ∈ Mod R and N ∈ Mod S. Then we have the following two canonical
valuation homomorphisms

θM : ω ⊗S M∗ → M

defined by θM (x ⊗ f ) = f (x) for any x ∈ ω and f ∈ M∗; and

μN : N → (ω ⊗S N )∗

defined by μN (y)(x) = x ⊗ y for any y ∈ N and x ∈ ω. Recall that a module M ∈
Mod R is called ω-cotorsionless (resp. ω-coreflexive) if θM is an epimorphism (resp.
an isomorphism) ([16]); and a module N ∈ Mod S is called adjoint ω-cotorsionless
(resp. adjoint ω-coreflexive) if μN is a monomorphism (resp. an isomorphism) ([19]).
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Definition 2.2 [8].

(1) The Auslander class Aω(S) with respect to ω consists of all left S-modules N
satisfying the following conditions.

(A1) N ∈ ωS
�.

(A2) ω ⊗S N ∈ Rω⊥.
(A3) N is adjoint ω-coreflexive.

(2) TheBass classBω(R)with respect toω consists of all left R-modulesM satisfying
the following conditions.

(B1) M ∈ Rω⊥.
(B2) M∗ ∈ ωS

�.
(B3) M is ω-coreflexive.

For a module M ∈ Mod R, we use

0 → M → I 0(M)
g0−→ I 1(M) (2.1)

to denote the minimal injective copresentation of M in Mod R. For a module N ∈
Mod S, we use

F1(N )
f0−→ F0(N ) → N → 0 (2.2)

to denote the minimal flat presentation of N in Mod S.

Definition 2.3 [16, 18]. Let M ∈ Mod R and N ∈ Mod S, and let n � 1.

(1) cTrω M := Coker(g0∗) is called the cotranspose of M with respect to ω, where
g0 is as in (2.1).

(2) M is called n-ω-cotorsionfree if TorS1�i�n(ω, cTrω M) = 0.
(3) acTrω N := Ker(1ω ⊗ f0) is called the adjoint cotranspose of N with respect to

ω, where f0 is as in (2.2).
(4) N is called adjoint n-ω-cotorsionfree if Ext1�i�n

R (ω, acTrω N ) = 0.

We use cT n
ω(R) (resp. acT n

ω(S)) to denote the subcategory of Mod R (resp.
Mod S) consisting of n-ω-cotorsionfree (resp, adjoint n-ω-cotorsionfree) modules.
By [16, Proposition 3.2], we have that a module in Mod R is ω-cotorsionless (resp.
ω-coreflexive) if and only if it is in cT 1

ω(R) (resp. cT 2
ω(R)). In particular, we have

Fω(R) ⊆ Bω(R) ⊆ cT i
ω(R)

for any i � 1 by [8, Corollary 6.1] and [16, Theorem 3.9]. On the other hand, by [18,
Proposition 3.2], we have that a module in Mod S is adjoint ω-cotorsionless (resp.
adjoint ω-coreflexive) if and only if it is in acT 1

ω(S) (resp. acT 2
ω(S)). We have

Iω(S) ⊆ Aω(S) ⊆ acT i
ω(S)

for any i � 1 by [8, Corollary 6.1] and [18, Proposition 3.4].
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Definition 2.4 [17]

(1) Let M ∈ Mod R and n � 0. The Ext-cograde of M with respect to ω is defined
as E-cogradeω M := inf{i � 0 | ExtiR(ω, M) 
= 0}; and the strong Ext-cograde
of M with respect to ω, denoted by s.E-cogradeω M , is said to be at least n if
E-cogradeω X � n for any quotient module X of M .

(2) Let N ∈ Mod S and n � 0. The Tor-cograde of N with respect to ω is defined
as T-cogradeω N := inf{i � 0 | TorSi (ω, N ) 
= 0}; and the strong Tor-cograde
of N with respect to ω, denoted by s.T-cogradeω N , is said to be at least n if
T-cogradeω Y � n for any submodule Y of N .

Definition 2.5 [20] Let X be a subcategory of an abelian category E and n � 1. If
there exists an exact sequence

0 → N → X0 → · · · → Xn−1 → M → 0

in E with all Xi in X , then N is called an n-X -syzygy of M and M is called an
n-X -cosyzygy of N .

For subcategories X ,Y of an abelian category E and n � 1, we write

�n
X (Y) := {N ∈ E | N is an n-X -syzygy of some object in Y},

co�n
X (Y) := {M ∈ E | M is an n-X -cosyzygy of some object in Y}.

In particular, �0
X (Y) = Y = co�0

X (Y) and �−1
X (Y) = 0 = co�−1

X (Y). For conve-
nience, we write

�n
A(S) := �n

Aω(S)(Mod S), �n
Iω

(S) := �n
Iω(S)(Mod S),

�n
acT i

ω

(S) := �n
acT i

ω

(Mod S),

co�n
B(R) := co�n

Bω(R)(Mod R), co�n
Fω

(R) := co�n
Fω(R)(Mod R),

co�n
Pω

(R) := co�n
Pω(R)(Mod R), co�n

cT i
ω

(R) := co�n
cT i

ω

(Mod R).

3 Tor-Cograde and Extension Closure

Our aim in this section is to show how the extension closure of the subcategories
acT 1

ω(S) and acT 2
ω(S) is connected with the Tor-cograde of ExtkR(ω, M) for any

M ∈ Mod R and k = 1, 2.
In what follows, for any i � 1, we use Ci (resp. Di ) to denote a subcategory of

Mod R (resp. Mod S) satisfying

Fω(R) ⊆ Ci ⊆ cT i
ω(R) (resp. Iω(S) ⊆ Di ⊆ acT i

ω(S)).

We begin by proving the following lemma.

Lemma 3.1 For any i � 1, it holds that
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(1) �1
Di

(S) = acT 1
ω(S).

(2) co�1
Ci (R) = cT 1

ω(R).

Proof (1) Since Iω(S) ⊆ Di , we have acT 1
ω(S) ⊆ �1

Di
(S) by [18, Lemma 3.7(1)].

Now let N ∈ �1
Di

(S).Wemay assume that f 0 : N � H is amonomorphism inMod S

with H ∈ Di . As Di ⊆ acT i
ω(S) ⊆ acT 1

ω(S), we have that μH is a monomorphism.
Then from the following commutative diagram

N
f 0

μN

H

μH

(ω ⊗S N )∗
(1ω⊗ f 0)∗

(ω ⊗S H)∗,

we get that μN is a monomorphism. Thus N ∈ acT 1
ω(S) and �1

Di
(S) ⊆ acT 1

ω(S).

(2) SincePω(R) ⊆ Ci , we have cT 1
ω(R) ⊆ co�1

Ci (R) by [16, Lemma 3.6(1)]. Now

let M ∈ co�1
Ci (R). We may assume that f0 : L � M is an epimorphism in Mod R

with L ∈ Ci . As Ci ⊆ cT i
ω(R) ⊆ cT 1

ω(R), we have that θL is an epimorphism. Then
from the following commutative diagram

ω ⊗S L∗
1ω⊗ f0∗

θL

ω ⊗S M∗
θM

L
f0

M,

we get that θM is an epimorphism. Thus M ∈ cT 1
ω(R) and co�1

Ci (R) ⊆ cT 1
ω(R). ��

Lemma 3.2 The following statements are equivalent for any i � 2.

(1) M ∈ co�2
Pω

(R).

(2) M ∈ co�2
Ci (R).

(3) There is a module N ∈ Mod S such that M ∼= ω ⊗S N .

Proof (1) ⇒ (2) It is obvious.
(2) ⇒ (3) Let M ∈ co�2

Ci (R) and let

L0 f→ L1 → M → 0

be an exact sequence in Mod R with L0, L1 ∈ Ci ⊆ cT i
ω(R). As cT i

ω(R) ⊆ cT 2
ω(R),

we have that θL0 and θL1 are isomorphisms. Then from the following commutative
diagram with exact rows
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ω ⊗S L0∗
1ω⊗ f∗

θL0

ω ⊗S L1∗
θL1

ω ⊗S Coker f∗

h

0

L0 f
L1 M 0,

we get that the induced homomorphism h is an isomorphism, and thus M ∼= ω ⊗S

Coker f∗.
(3) ⇒ (1) Suppose M ∼= ω ⊗S N for some N ∈ Mod S, and let

Q1 → Q0 → N → 0

be a projective presentation of N . Applying the functor ω ⊗S − to it yields an exact
sequence

ω ⊗S Q1 → ω ⊗S Q0 → ω ⊗S N → 0.

Since ω ⊗S Q1, ω ⊗S Q0 ∈ Pω(R), we have M ∈ co�2
Pω (R). ��

We give an analogue of Lemma 3.2.

Lemma 3.3 The following statements are equivalent for any i � 2.

(1) N ∈ �2
Iω

(S).

(2) N ∈ �2
Di

(S).
(3) There is a module M ∈ Mod R such that N ∼= M∗.

Proof (1) ⇒ (2) It is obvious.
(2) ⇒ (3) Let N ∈ �2

Di
(R) and let

0 → N → H0 g−→ H1

be an exact sequence in Mod S with H0, H1 ∈ Di ⊆ acT i
ω(S). As acT i

ω(S) ⊆
acT 2

ω(S), we have that μH0 and μH1 are isomorphisms. Then from the following
commutative diagram with exact rows

0 N

h

H0 g

μH0

H1

μH1

0 (Ker(1ω ⊗ g))∗ (ω ⊗S H0)∗
(1ω⊗g)∗

(ω ⊗S H1)∗,

we get that the induced homomorphism h is an isomorphism, and thus N ∼= (Ker(1ω⊗
g))∗.
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(3) ⇒ (1) Suppose N ∼= M∗ for some M ∈ Mod R, and let

0 → M → I 0 → I 1

be an injective copresentation of M . Applying the functor (−)∗ to it yields an exact
sequence

0 → M∗ → I 0∗ → I 1∗ .

Since I 0∗ , I 1∗ ∈ Iω(S), we have N ∈ �2
Iω (S). ��

Proposition 3.4 The following statements are equivalent for any i � 2.

(1) M∗ ∈ acT 2
ω(S) for any M ∈ Mod R.

(2) ω ⊗S N ∈ cT 2
ω(R) for any N ∈ Mod S.

(3) cT 2
ω(R) = co�2

Ci (R).

(4) acT 2
ω(S) = �2

Di
(S).

Proof (1) ⇒ (4) Let N ∈ �2
Di

(S). Then by Lemma 3.3 and (1) there is a module

M ∈ Mod R such that N ∼= M∗ ∈ acT 2
ω(S), and so �2

Di
(S) ⊆ acT 2

ω(S). The

inclusion acT 2
ω(S) ⊆ �2

Di
(S) follows from [18, Lemma 3.7(2)].

(4) ⇒ (1) Let M ∈ Mod R. Then by Lemma 3.3 and (4), we have M∗ ∈ �2
Di

(S) =
acT 2

ω(S).
Similarly, we get (2) ⇔ (3) by Lemma 3.2 and [16, Lemma 3.6(2)].
(1) ⇔ (2) It follows from [20, Lemma 4.18]. ��

Proposition 3.5 For any n � 1, the following statements are equivalent.

(1) T-cogradeω ExtkR(ω, M) � k − 1 for any M ∈ Mod R and 1 � k � n.
(2) T-cogradeω ExtkR(ω, M) � k − 1 for any M ∈ �k

Cn (R) and 1 � k � n.

(3) E-cogradeω TorSk (ω, N ) � k − 1 for any N ∈ Mod S and 1 � k � n.
(4) E-cogradeω TorSk (ω, N ) � k − 1 for any N ∈ co�k

Dn
(S) and 1 � k � n.

(5) cT k
ω(R) = co�k

Cn (R) for any 1 � k � n.

(6) acT k
ω(S) = �k

Dn
(S) for any 1 � k � n.

Proof (2) ⇒ (5) By [16, Proposition 3.7], it suffices to prove co�k
Cn (R) ⊆ cT k

ω(R)

for any 1 � k � n. We proceed by induction on n. The case for n = 1 follows from
Lemma 3.1.

Now let M ∈ co�n
Cn (R) with n � 2 and let

Wn−1
fn−1−→ · · · → W1

f1−→ W0
f0−→ M → 0 (3.1)

be an exact sequence in Mod R with all Wi in Cn . By the induction hypothesis, we
have Im f1 ∈ cT n−1

ω (R) and there is an exact sequence

Vn−1
gn−1−→ · · · → V1

g1−→ W0
f0−→ M → 0 (3.2)
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in Mod R with all Vi in Pω(R) by [16, Proposition 3.7]. Applying the functor (−)∗ to
(3.2) gives an exact sequence

0 → (Im g1)∗ → W0∗
f0∗−→ M∗ → ExtnR(ω,Ker gn−1) → 0. (3.3)

Set N := Im( f0∗) and let f0∗ := απ (where π : W0∗ � N and α : N ↪→ M∗) be the
natural epic-monic decomposition of f0∗. Then we have the following commutative
diagram with exact rows

TorS1 (ω, N )
h

ω ⊗S (Im g1)∗
θIm g1

ω ⊗S W0∗
1ω⊗π

θW0

ω ⊗S N

g

0

0 Im g1 W0
f0

M 0.

Diagram (3.1)

So we have

θM (1ω ⊗ α)(1ω ⊗ π) = θM (1ω ⊗ f0∗) = f0θW0 = g(1ω ⊗ π).

Because 1ω ⊗ π is epic, we have θM · (1ω ⊗ α) = g and the following commutative
diagram with exact rows

ω ⊗S N

g

1ω⊗α
ω ⊗S M∗

θM

ω ⊗S ExtnR(ω,Ker gn−1) 0

M M .

Diagram (3.2)

Since Im g1 = Im f1 ∈ cT n−1
ω (R), we have that θIm g1 is an epimorphism. So g is

an isomorphism by the snake lemma, and hence 1ω ⊗ α is a monomorphism. Since
ω ⊗S ExtnR(ω,Ker gn−1) = 0 by assumption, we see that θM is an isomorphism and
M ∈ cT 2

ω(R) by Diagram (3.2). This shows that the assertion holds true for n = 2.
If n > 2, then θIm g1 is an isomorphism as Im g1 ∈ cT n−1

ω (R), we also have
TorS1 (ω,W0∗) = 0 by [16, Corollary 3.4(3)]. So h is monic and TorS1 (ω, N ) = 0
by Diagram (3.1). Moreover, it is clear that TorS1�k�n−3(ω, (Im g1)∗) = 0 by [16,
Corollary 3.4(3)]. Because T-cogradeω ExtnR(ω,Ker fn−1) � n − 1 by assumption,
applying the dimension shifting to (3.3) yields TorS1�k�n−2(ω, M∗) = 0. Therefore
M ∈ cT n

ω(R) by [16, Corollary 3.4(3)] again.
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(5) ⇒ (1) For any 1 � k � n, since cT k
ω(R) ⊆ co�k

Pω
(R) ⊆ co�k

Cn (R), we have

cT k
ω(R) = co�k

Pω
(R) by (5), and hence cT k

ω(R) = co�k
B(R) by [20, Proposition

4.17]. Now (1) follows from [20, Theorem 4.19].
The implications (1) ⇒ (2) and (3) ⇒ (4) are obvious.
(1) ⇔ (3) It follows from [20, Theorem 4.19].
The proofs of (4) ⇒ (6) and (6) ⇒ (2) are similar to that of (2) ⇒ (5) and

(5) ⇒ (1) respectively. ��
Lemma 3.6 For any M ∈ Mod R, there are two exact sequences

0 → Ext1R(ω, M) → cTrω M
π−→ H → 0,

0 → H
λ−→ (ω ⊗S cTrω M)∗ → Ext2R(ω, M) → 0

inMod S such that HomS(π, ω+) is an isomorphism.

Proof By [17, Corollary 6.8], there is an exact sequence

0 → Ext1R(ω, M) → cTrω M
μcTrω M−→ (ω ⊗S cTrω M)∗ → Ext2R(ω, M) → 0

inMod S. Put H := ImμcTrω M and assume thatμcTrω M = λπ , whereπ : cTrω M →
H is an epimorphism and λ : H → (ω ⊗S cTrω M)∗ is a monomorphism. Then we
have the following exact sequences

0 → Ext1R(ω, M) → cTrω M
π−→ H → 0,

0 → H
λ−→ (ω ⊗S cTrω M)∗ → Ext2R(ω, M) → 0.

In view of [17, Lemma 6.1(2)], 1ω ⊗μcTrω M is a monomorphism, and so 1ω ⊗π is an
isomorphism. It follows from the adjoint isomorphism theorem that HomS(π, ω+) ∼=
(1ω ⊗ π)+ is also an isomorphism. ��
Lemma 3.7 The following statements are equivalent for any i � 1.

(1) acT 1
ω(S) is extension closed.

(2) T-cogradeω Ext1R(ω, M) � 1 for any M ∈ �2
Ci (R).

(3) T-cogradeω Ext1R(ω, M) � 1 for any M ∈ Mod R.

Proof (2) ⇒ (1) Let

0 → A
f−→ B

g−→ C → 0

be an exact sequence in Mod S with A,C ∈ acT 1
ω(S). By [18, Proposition 3.2],

KerμB ∼= Ext1R(ω, acTrω B). Notice that acTrω B ∈ �2
Ci (R), so

ω ⊗S Ext
1
R(ω, acTrω B) = 0
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by (2), and hence ω ⊗S KerμB = 0. Moreover, since μCg = (1ω ⊗ g)∗μB and μC

is a monomorphism, we get KerμB ⊆ Ker g ∼= A. Note that A ∈ acT 1
ω(S) and

HomS(KerμB, ω+) ∼= (ω ⊗S KerμB)+ = 0.

It follows from [18, Lemma 3.7] and [13, Proposition 2.4] that HomS(KerμB, A) = 0,
which implies KerμB = 0, and thus B ∈ acT 1

ω(S).
(1) ⇒ (3) By Lemma 3.6, there is an exact sequence

0 → Ext1R(ω, M) → cTrω M
π−→ H → 0

in Mod S such that HomS(π, ω+) is an isomorphism. Then

Ker Ext1S(π, ω+) ∼= HomS(Ext
1
R(ω, M), ω+) ∼= (ω ⊗S Ext

1
R(ω, M))+.

Suppose

α : 0 → ω+ → X
f→ H → 0

is an element in Ker Ext1S(π, ω+), that is, Ext1S(π, ω+)(α) = 0. Then we have the
following pull-back diagram with the first row splitting:

0 ω+ Y
u

t

cTrω M

π

0

0 ω+ X
f

H 0.

So there is a homomorphism u′ : cTrω M → Y such that uu′ = 1cTrω M . Since
πu = f t , we have π = f tu′. Note that (ω ⊗S cTrω M)∗ ∈ acT 1

ω(S) by [17, Lemma
6.1(1)]. Thus H ∈ acT 1

ω(S) since H is a submodule of (ω ⊗S cTrω M)∗ by Lemma
3.6. So X ∈ acT 1

ω(S) by (1), and hence there is a monomorphism 0 → X → U 0 in
Mod S with U 0 ∈ Iω(S) = Prodω+. As HomS(π, ω+) is an isomorphism, we have
that HomS(π,U 0), and hence HomS(π, X), is an isomorphism by [11, Lemma 2.1].
Then there is a homomorphism f ′ : H → X such f ′π = tu′, and so π = f f ′π .
But π is an epimorphism, thus f f ′ = 1H , which implies that α splits, and thus
ω ⊗S Ext1R(ω, M) = 0.

(3) ⇒ (2) It is trivial. ��
Lemma 3.8 For any N ∈ Mod S, the following statements are equivalent.

(1) ω ⊗S N ∈ cT 2
ω(R).

(2) ω ⊗S CokerμN = 0.

Proof By [17, Lemma 6.1(2)], we have θω⊗S N (1ω ⊗ μN ) = 1ω⊗S N . It follows that
θω⊗S N is a split epimorphism and

Ker θω⊗S N
∼= Coker(1ω ⊗ μN ) ∼= ω ⊗S CokerμN .
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Now the assertion follows easily. ��
Lemma 3.9 If acT 1

ω(S) is extension closed, then ω ⊗S N ∈ cT 2
ω(R) for any N ∈

Mod S.

Proof By the definition of adjoint cotranspose, there is an exact sequence

0 → acTrω N → ω ⊗S F1 → ω ⊗S F0 → ω ⊗S N → 0

in Mod R with F0, F1 flat. Let K := Im(ω ⊗S F1 → ω ⊗S F0). We have

CokerμN ∼= Ext2R(ω, acTrω N ) ∼= Ext1R(ω, K )

by [18, Proposition 3.2]. By assumption andLemma 3.7,we haveω⊗SCokerμN = 0.
Thus ω ⊗S N ∈ cT 2

ω(R) by Lemma 3.8. ��
We are now in a position to prove the main result of this section.

Theorem 3.10 The following statements are equivalent for any i � 1.

(1) acT k
ω(S) is extension closed for k = 1, 2.

(2) TorSk−1(ω,ExtkR(ω, M)) = 0 for any M ∈ �2
Ci (R) and k = 1, 2.

(3) T-cogradeω ExtkR(ω, M) � k for any M ∈ �2
Ci (R) and k = 1, 2.

(4) TorSk−1(ω,ExtkR(ω, M)) = 0 for any M ∈ Mod R and k = 1, 2.
(5) T-cogradeω ExtkR(ω, M) � k for any M ∈ Mod R and k = 1, 2.

Proof (1) ⇒ (5) By Lemma 3.6, there are two exact sequences

0 → Ext1R(ω, M) → cTrω M
π−→ H → 0, (3.4)

0 → H
λ−→ (ω ⊗S cTrω M)∗

β−→ Ext2R(ω, M) → 0 (3.5)

in Mod S such that HomS(π, ω+) is an isomorphism and λπ = μcTrω M . Since
HomS(π, ω+) ∼= (ω ⊗ π)+ by the adjoint isomorphism theorem, it follows that
(ω ⊗ π)+ and ω ⊗ π are isomorphisms.

By Lemma 3.7, it is easy to see that T-cogradeω Ext1R(ω, M) � 1 and ω ⊗S

Ext1R(ω, M) = 0. Then by the adjoint isomorphism theorem, we have that

HomS(Ext
1
R(ω, M), ω+) ∼= (ω ⊗S Ext

1
R(ω, M))+ = 0

and Ext1S(π, ω+) is a monomorphism. We know from [17, Lemma 6.1(2)] that
HomS(μcTrω M , ω+) is an epimorphism. Then the fact that

HomS(μcTrω M , ω+) = HomS(π, ω+)HomS(λ, ω+)

in which HomS(π, ω+) is an isomorphism (by Lemma 3.6) implies that HomS(λ, ω+)

is also an epimorphism. On the other hand, note that

Ext1S(μcTrω M , ω+) = Ext1S(π, ω+)Ext1S(λ, ω+)
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and Ext1S(π, ω+) is a monomorphism by the above argument. Applying the functor
HomS(−, ω+) to (3.5) gives

Ker Ext1S(μcTrω M , ω+) ∼= Ker Ext1S(λ, ω+) ∼= Ext1S(Ext
2
R(ω, M), ω+).

Let

α : 0 → ω+ → X
f→ (ω ⊗S cTrω M)∗ → 0

be an element in Ker Ext1S(μcTrω M , ω+), that is, Ext1S(μcTrω M , ω+)(α) = 0. Then we
have the following pull-back diagram with the first row splitting:

0 ω+ Y
u

t

cTrω M

μcTrω M

0

0 ω+ X (ω ⊗S cTrω M)∗ 0.

So there is a homomorphism u′ : cTrω M → Y such that uu′ = 1cTrω M . Since
μcTrω Mu = f t , we have

μcTrω M = f tu′.

By Lemma 3.9, we have ω ⊗S cTrω M ∈ cT 2
ω(R). It follows from [19, Proposition

6.4] that (ω ⊗S cTrω M)∗ ∈ acT 2
ω(S). Since acT 2

ω(S) is extension closed by (1), we
have X ∈ acT 2

ω(S). As μX tu′ = (1ω ⊗ tu′)∗μcTrω M , we have

μcTrω M = f tu′ = f μ−1
X (1ω ⊗ tu′)∗μcTrω M and

(1(ω⊗ScTrω M)∗ − f μ−1
X (1ω ⊗ tu′)∗)μcTrω M = 0,

and hence

(1(ω⊗ScTrω M)∗ − f μ−1
X (1ω ⊗ tu′)∗)λ = 0.

By the universal property of cokernels, there is a homomorphism g : Ext2R(ω, M) →
(ω ⊗S cTrω M)∗ such that

1(ω⊗ScTrω M)∗ − f μ−1
X (1ω ⊗ tu′)∗ = gβ.

In addition, since Ext2R(ω, M) ∼= CokerμcTrω M , we have

ω ⊗S Ext
2
R(ω, M) = 0

by Lemma 3.8. It follows from the adjoint isomorphism theorem that

HomS(Ext
2
R(ω, M), ω+) ∼= (ω ⊗S Ext

2
R(ω, M))+ = 0.
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Moreover, since (ω ⊗S cTrω M)∗ ∈ acT 2
ω(S), we have that (ω ⊗S cTrω M)∗ is iso-

morphic to a submodule of some module in Prodω+ by [18, Lemma 3.7]. Then

HomS(Ext
2
R(ω, M), (ω ⊗S cTrω M)∗) = 0.

So g = 0 and

1(ω⊗ScTrω M)∗ = f μ−1
X (1ω ⊗ tu′)∗,

which means α = 0. It follows from [5, Theorem 3.2.1] that TorS1 (ω,Ext2R(ω, M)) =
0, and thus T-cogradeω Ext2R(ω, M) � 2.

The implications (3) ⇒ (2), (4) ⇒ (2) and (5) ⇒ (3) + (4) are trivial.
(2) ⇒ (1) Let

0 → A → B
f−→ C → 0

be an exact sequence in Mod S with A,C ∈ acT 2
ω(S). Then B ∈ acT 1

ω(S) by (2) and
Lemma 3.7. It follows from [18, Proposition 3.2] that

CokerμB ∼= Ext2R(ω, acTrω B).

Consider the following diagram with exact rows

0 A

h

B
f

μB

C

μC

0

0 A′ (ω ⊗S B)∗
(1ω⊗ f )∗

(ω ⊗S C)∗,

where A′ ∼= Ker(1ω ⊗ f )∗ and h is an induced homomorphism. By the snake lemma,
we get an exact sequence

0 → A
h−→ A′ → Ext2R(ω, acTrω B) → 0. (3.6)

Since acTrω B ∈ �2
Ci (R), we have

ω ⊗S CokerμB ∼= ω ⊗S Ext
2
R(ω, acTrω B) = 0

by Lemmas 3.8 and 3.9. Also we have TorS1 (ω,Ext2R(ω, acTrω B)) = 0 by (2). Apply-
ing the functor ω ⊗ − to (3.6) yields that 1ω ⊗ h is an isomorphism. Since A′ is a
submodule of (ω ⊗S B)∗, we have A′ ∈ acT 1

ω(S), and thus μA′ is a monomorphism.
On the other hand, since μA is an isomorphism and

(1ω ⊗ h)∗μA = μA′h,
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we get that μA′ is an epimorphism, and hence an isomorphism, which implies that h
is also an isomorphism. Thus μB is an isomorphism and B ∈ acT 2

ω(S). ��

4 Strong Ext-Cograde and Extension Closure

In this section, we characterize the extension closure of the class acT k
ω(S) for any

1 � k � n in terms of the strong cograde of TorSk+1(ω,C) for any C ∈ co�k
Di

(S) and
1 � k � n.

Let

0 → A
f−→ B

g−→ C → 0

be an exact sequence in Mod R. Then one gets two exact sequences

0 → Im(1ω ⊗ f ) → ω ⊗S B
1ω⊗g−→ ω ⊗S C → 0, (4.1)

0 → Ker(1ω ⊗ f ) → ω ⊗S A → Im(1ω ⊗ f ) → 0. (4.2)

Applying the functor (−)∗ to (4.1) yields the following diagram with exact rows

0 A
f

α

B
g

μB

C

μC

0

0 (Im(1ω ⊗ f ))∗ (ω ⊗S B)∗ (ω ⊗S C)∗,

Diagram (4.1)

where α is an induced homomorphism. It is easy to check that the following diagram

A

μA

A

α

0 (Ker(1ω ⊗ f ))∗ (ω ⊗S A)∗ (Im(1ω ⊗ f ))∗ Ext1R(ω,Ker(1ω ⊗ f ))

Diagram (4.2)

is commutative with the bottom row exact.
The following two lemmas are useful in this section.

Lemma 4.1 The following statements are equivalent for any C ∈ acT 1
ω(S).

(1) s.E-cogradeω TorS1 (ω,C) � 1.
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(2) If

0 → A
f−→ B

g−→ C → 0

is an exact sequence inMod R with A ∈ acT 1
ω(S), then B ∈ acT 1

ω(S).

Proof (1) ⇒ (2) Since Ker(1ω ⊗ f ) is a quotient module of TorS1 (ω,C), we
have (Ker(1ω ⊗ f ))∗ = 0 by (1). Then it follows from Diagram (4.2) that α is a
monomorphism. Applying the snake lemma to Diagram (4.1) gives that μB is also a
monomorphism, and so B ∈ acT 1

ω(S).
(2) ⇒ (1) Let L be a quotient module of TorS1 (ω,C). Then L+ is a submodule

of Ext1S(C, ω+)(∼= [TorS1 (ω,C)]+). Since ω ∈ Bω(Sop), for any cardinal ζ , we have

ω+ζ ∈ Aω(S) by [12, Theorem 3.3]. Thus

Ext1S(ω
+ζ

, ω+) ∼= [Tor1S(ω, ω+ζ

)]+ = 0.

It follows from the proof of [21, Lemma 6.9] or the dual result of [22, Lemma 3.4]
that there is a cardinal λ such that there is an exact sequence

0 → ω+λ f−→ D → C → 0 (4.3)

in Mod R with Coker HomS( f , ω+) ∼= L+. Then we get the following commutative
diagram with the top and bottom rows exact:

HomS(D, ω+) ⊗R ω
g

∼=

HomS(ω
+λ

, ω+) ⊗R ω

∼=

L+ ⊗R ω 0

[(ω ⊗S D)∗]+

(μD)+

[(ω ⊗S ω+λ
)∗]+

(μ
ω+λ )+

D+ (ω+λ
)+ 0.

Diagram (4.3)

Since ω+λ ∈ acT 2
ω(S), we have D ∈ acT 1

ω(S) by (2). It follows that g is an epimor-
phism and L+ ⊗R ω = 0. Since ω admits a degreewise finite projective resolution,
we have

L+ ⊗R ω ∼= HomR(ω, L)+ = 0 (4.4)

by [5, Theorem 3.2.11]. Thus HomR(ω, L) = 0 and s.E-cogradeω TorS1 (ω,C) � 1. ��
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Lemma 4.2 The following statements are equivalent for any C ∈ acT 2
ω(S).

(1) s.E-cogradeω TorS1 (ω,C) � 2.
(2) If

0 → A
f−→ B

g−→ C → 0

is an exact sequence inMod R with A ∈ acT 2
ω(S), then B ∈ acT 2

ω(S).

Proof (1) ⇒ (2) Since Ker(1ω ⊗ f ) is a quotient module of TorS1 (ω,C), we have

[Ker(1ω ⊗ f )]∗ = 0 = Ext1R(ω,Ker(1ω ⊗ f ))

by (1). Since A ∈ acT 2
ω(S) by assumption, from Diagram (4.2) we know that α is an

isomorphism. Notice that C ∈ acT 2
ω(S), so B ∈ acT 2

ω(S) by Diagram (4.1).

(2) ⇒ (1) By [12, Theorem 3.3], we have that ω+λ ∈ Aω(S)with λ same as that in
the proof of (2) ⇒ (1) in Lemma 4.1. Then the middle term D in the exact sequence
(4.3) is in acT 2

ω(S) by (2). It follows from Diagram (4.3) that L+ ⊗R ω = 0. Thus

HomR(ω, L) = 0

by the exact sequence (4.4).
Applying the functor HomS(−, ω+) to the exact sequence (4.3) gives an exact

sequence

0 → HomS(C, ω+)
δ−→ HomS(D, ω+)

θ−→ HomS(ω
+λ

, ω+) → L+ → 0(4.5)

in Mod Rop. Then we get the following commutative diagram with exact rows

HomS(C, ω+) ⊗R ω
δ⊗1ω

∼=

HomS(D, ω+) ⊗R ω

∼=

Im θ ⊗R ω 0

((ω ⊗S C)∗)+

(μC )+

((ω ⊗S D)∗)+

(μD)+

Im θ ⊗R ω

h

0

0 C+ D+ ω+λ+
0,

where h is an induced homomorphism. AsC, D ∈ acT 2
ω(S), we have that both (μC )+

and (μD)+ are isomorphisms, and so h is also an isomorphism. On the other hand,

123



   57 Page 18 of 22 X. Tang, Z. Huang

from the exact sequence (4.5) we get the following commutative diagram with the top
row exact:

0 TorS1 (L+, ω) Im θ ⊗R ω

h

((ω ⊗S ω+λ
)∗)+(∼= HomS(ω

+λ
, ω+) ⊗R ω)

(μ
ω+λ )+

(ω+λ
)+ (ω+λ

)+.

Because both h and (μ
ω+λ )+ are isomorphisms, we have TorS1 (L

+, ω) = 0, and thus

Ext1R(ω, L) = 0. The proof is finished. ��
Theorem 4.3 The following statements are equivalent for any C ∈ acT n

ω(S) and
n � 1.

(1) s.E-cogradeω TorS1 (ω,C) � n.
(2) If

0 → A
f→ B

g→ C → 0

is an exact sequence inMod S with A ∈ acT n
ω(S), then B ∈ acT n

ω(S).

Proof The cases for n = 1 and n = 2 follow from Lemmas 4.1 and 4.2 respectively.
Now suppose n � 3.

(1) ⇒ (2) By Lemma 4.2, we have B ∈ acT 2
ω(S). Since C ∈ acT n

ω(S), we
have ExtiR(ω, ω ⊗S C) = 0 for any 1 � i � n − 2 by [18, Corollary 3.3(3)]. On
the other hand, since Ker(1ω ⊗ f ) is a quotient module of TorS1 (ω,C), we have
ExtiR(ω,Ker(1ω ⊗ f )) = 0 for any 0 � i � n − 1 by (1). Then it is induced from
the exact sequence (4.2) that ExtiR(ω, Im(1ω ⊗ f )) = 0 for any 1 � i � n − 2.
Thus it follows from the exact sequence (4.1) that ExtiR(ω, ω ⊗S B) = 0 for any
1 � i � n − 2, and so B ∈ acT n

ω(S).
(2) ⇒ (1) It follows from the exact sequence (4.4) that there are two exact

sequences

0 → HomS(C, ω+)
δ−→ HomS(D, ω+) → Im θ → 0,

0 → Im θ → HomS(ω
+λ

, ω+) → L+ → 0.

By (2), we have D ∈ acT n
ω(S). From the proof of Lemma 4.2, we know that δ ⊗R 1ω

is a monomorphism and

TorS1 (L
+, ω) = 0 = L+ ⊗R ω.

Moreover, it is easy to verify that TorS2�i�n−1(L
+, ω) = 0. Since

[ExtiR(ω, L)]+ ∼= TorSi (L
+, ω)
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for any i � 0 by [5, Theorem 3.2.1], it follows that [Ext0�i�n−1
R (ω, L)]+ = 0, and

hence Ext0�i�n−1
R (ω, L) = 0. The proof is finished. ��

Proposition 4.4 Suppose n � 1 and Dn ⊆ ωS
�. Then the following assertions hold.

(1) If �k
Dn

(S) is extension closed for any 1 � k < n, then acT k
ω(S) = �k

Dn
(S) for

any 1 � k � n, and hence Add�k
Dn

(S) = �k
Dn

(S) for any 1 � k � n.

(2) If Add�k
Dn

(S) is extension closed for any 1 � k � n, then Add�k
Dn

(S) =
�k
Dn

(S) for any 1 � k � n.

Proof (1) We proceed by induction on n. When n = 1, the assertion follows from
Lemma 3.1.

Now suppose n � 2 and acT k
ω(S) = �k

Dn
(S) for any 1 � k � n − 1. Let

N ∈ co�n
Dn

(S) and let

An−1 → · · · → A0 → N → 0

be an exact sequence in Mod S with all A j inDn . Set L := Im(An−1 → An−2). Then
L ∈ �n−1

Dn
(S) = acT n−1

ω (S). By Theorem 4.3, we have

s.E-cogradeω TorSn (ω, N ) = s.E-cogradeω TorS1 (ω, L) � n − 1.

Then acT k
ω(S) = �k

Dn
(S) for any 1 � k � n by Proposition 3.5. Because acT k

ω(S) is

closed under direct sums and direct summands for any k � 1, we have Add�k
Dn

(S) =
�k
Dn

(S) for any 1 � k � n.

(2) We proceed by induction on n. By Lemma 3.1, we have �1
Dn

(S) = acT 1
ω(S).

Since Add acT 1
ω(S) = acT 1

ω(S), the case for n = 1 follows. Let n � 2. By the
induction hypothesis, we have that Add�k

Dn
(S) = �k

Dn
(S) is extension closed for

any 1 � k < n, it follows from (1) that acT n
ω(S) = �n

Dn
(S). Thus �n

Dn
(S) is closed

under direct sums and direct summands and Add�n
Dn

(S) = �n
Dn

(S). ��

Theorem 4.5 Suppose n � 1 and Dn ⊆ ωS
�. Then the following statements are

equivalent.

(1) s.E-cogradeω TorSk+1(ω, N ) � k for any N ∈ co�k
Dn

(S) and 1 � k � n.

(2) �k
Dn

(S) is extension closed for any 1 � k � n.

(3) �k
Dn

(S) is extension closed and acT k
ω(S) = �k

Dn
(S) for any 1 � k � n.

(4) acT k
ω(S) is extension closed for any 1 � k � n.

(5) Add�k
Dn

(S) is extension closed for any 1 � k � n.

Proof (1) ⇒ (2)By Proposition 3.5, we have acT k
ω(S) = �k

Dn
(S) for any 1 � k � n.

Let N ∈ acT k
ω(S). Then there is an exact sequence

0 → N → U0 → U1 → · · · → Uk−1 → L → 0
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in Mod S with all Ui in Dn by [18, Proposition 3.8]. Notice that L ∈ co�k
Dn

(S), so

s.E-cogradeω TorS1 (ω, N ) = s.E-cogradeω TorSk+1(ω, L) � k.

It follows from Theorem 4.3 that �k
Dn

(S) is extension closed for any 1 � k � n.
(5) ⇔ (2) ⇒ (3) It follows from Proposition 4.4.
(3) ⇒ (4) It is obvious.
(4) ⇒ (1) We proceed by induction on n. Let N ∈ co�1

Dn
(S) and let

0 → L → D → N → 0

be an exact sequence in Mod S with D ∈ Dn . By Lemma 3.1, we have L ∈ acT 1
ω(S).

Thus

s.E-cogradeω TorS2 (ω, N ) = s.E-cogradeω TorS1 (ω, L) � 1

by Theorem 4.3. The case for n = 1 follows.
Supposen � 2.By the inductionhypothesis,wehave s.E-cogradeω TorSk+1(ω, N ) �

k for any N ∈ co�k
Dn

(S) and 1 � k � n − 1. From Proposition 3.5, we know that

acT k
ω(S) = �k

Dn
(S) for any 1 � k � n. Now let N ∈ co�n

Dn
(S) and let

0 → L → D0 → D1 → · · · → Dn−1 → N → 0

be an exact sequence in Mod S with all Di in Dn . Then L ∈ acT n
ω(S), and hence

s.E-cogradeω TorSn+1(ω, N ) = s.E-cogradeω TorS1 (ω, L) � n

by Theorem 4.3. ��
Since Aω(S) contains all projective left S-modules by [8, Lemma 4.1], any left

S-module is in co�k
A(S) for any k � 1. Moreover, we have Aω(S) = acT (S) ∩ ωS

�
by [18, Theorem 3.11].

Theorem 4.6 The following statements are equivalent.

(1) s.E-cogradeω TorSk+1(ω, N ) � k for any N ∈ Mod S and 1 � k � n.

(2) T-cogradeω ExtkR(ω, M) � k for any M ∈ Mod R for any 1 � k � n.
(3) �k

A(S) is extension closed for any 1 � k � n.
(4) �k

A(S) is extension closed and acT k
ω(S) = �k

A(S) for any 1 � k � n.
(5) acT k

ω(S) is extension closed for any 1 � k � n.
(6) Add�k

A(S) is extension closed for any 1 � k � n.

Proof By [20, Proposition 4.12], we have (1) ⇔ (2). The other implications follow
from Theorem 4.5 by replacing Dn with Aω(S). ��
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Recall from [14] that a ring R is called semiregular if R/J (R) is von Neumann
regular and idempotents can be lifted modulo J (R), where J (R) is the Jacobson
radical of R. The class of semiregular rings includes: (i) von Neumann regular rings;
(ii) semiperfect rings; (iii) left cotorsion rings; and (iv) right cotorsion rings. See [7]
for the definitions of left cotorsion rings and right cotorsion rings.

Corollary 4.7 Let R be semiregular and n � 1. Then the following statements are
equivalent.

(1) s.E-cogradeω TorSk+1(ω, N ) � k for any N ∈ Mod S and 1 � k � n.

(2) s.T-cogradeω Extk+1
Sop (ω, N ′) � k for any N ′ ∈ Mod Sop and 1 � k � n.

(3) cT k
ω(Sop) is extension closed for any 1 � k � n.

(4) acT k
ω(S) is extension closed for any 1 � k � n.

Proof By the dual proof of Theorem 4.6, we get (2) ⇔ (3). The assertions (1) ⇔ (2)
and (1) ⇔ (4) follow from from [20, Theorem 4.14] and Theorem 4.6 respectively. ��

Recall that an artin algebra R is called right quasi n-Gorenstein if the projective
dimension of the i-term in a minimal injective resolution of RR is at most i for any
1 � i � n ([9]). Let D be the ordinary duality between mod R and mod Rop. Then
D(R) is a semidualizing (R, R)-bimodule. It is induced from [20, Example 4.20] that
R is right quasi n-Gorenstein if and only if s.E-cogradeω TorRi+1(D(R), N ) � i for
any N ∈ Mod R and 1 � i � n.

Corollary 4.8 Let R be an artin algebra and n � 1. Then the following statements are
equivalent.

(1) R is right quasi n-Gorenstein.
(2) cT k

D(R)(R
op) is extension closed for any 1 � k � n.

(3) acT k
D(R)(R) is extension closed for any 1 � k � n.

Proof It is a consequence of Corollary 4.7. ��
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