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HOMOLOGICAL ASPECTS OF THE ADJOINT COTRANSPOSE

BY

XI TANG (Guilin) and ZHAOYONG HUANG (Nanjing)

Abstract. Let R and S be rings and RωS a semidualizing bimodule. We introduce
and study the adjoint cotransposes of modules and adjoint n-ω-cotorsionfree modules. We
show that the Auslander class with respect to RωS is the intersection of the class of adjoint
∞-ω-cotorsionfree modules and the right Tor-orthogonal class of ωS . As a consequence,
the classes of adjoint ∞-ω-cotorsionfree modules and of ∞-ω-cotorsionfree modules are
equivalent under Foxby equivalence if and only if they coincide with the Auslander and
Bass classes with respect to ω respectively. Moreover, we give some equivalent character-
izations when the left and right projective dimensions of RωS are finite in terms of the
properties of (adjoint) ∞-ω-cotorsionfree modules.

1. Introduction. One of the most powerful tools of Auslander–Reiten
theory in representation theory of artin algebras and in homological algebra
is the Auslander transpose [ASS, AB, ARS]. In [TH1] we dualized it and in-
troduced the notion of cotransposes of modules with respect to a semidualiz-
ing bimodule RωS by applying the functor HomR(ω,−) to minimal injective
resolutions of left R-modules; and we showed that many results about the
Auslander transpose have dual counterparts [TH1, TH2]. The motivation of
this paper comes from the fact that (ω ⊗S −, HomR(ω,−)) naturally forms
an adjoint pair. It is interesting to study what will happen if we apply the
functor ω ⊗S − to minimal flat resolutions of left S-modules. To this end,
we introduce and study the so-called adjoint cotransposes of modules with
respect to RωS . We show that many results about cotransposes of modules
have adjoint counterparts. The paper is organized as follows.

In Section 2, we give some terminology and preliminary results.
Let R and S be rings and RωS a semidualizing bimodule. In Section 3,

as adjoint counterparts of cotransposes with respect to RωS and n-ω-cotor-
sionfree modules of [TH1], we introduce the notions of adjoint cotransposes
of modules with respect to RωS and adjoint n-ω-cotorsionfree modules. We
prove that the Auslander class with respect to RωS is the intersection of
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the class of adjoint∞-ω-cotorsionfree modules and the right Tor-orthogonal
class of ωS , which generalizes a result of Enochs and Holm [EH, Proposi-
tion 3.6]. As a consequence, the class of adjoint ∞-ω-cotorsionfree modules
and that of ∞-ω-cotorsionfree modules are equivalent under Foxby equiva-
lence if and only if they coincide with the Auslander and Bass classes with
respect to ω respectively. Moreover, we prove that left S-modules with fi-
nite relative projective dimension with respect to adjoint∞-ω-cotorsionfree
modules are kernels and cokernels of homomorphisms from left S-modules
with finite relative projective dimension with respect to ω-injective modules
to adjoint ∞-ω-cotorsionfree modules.

In parallel to the contributions of the torsionfree dimensions of mod-
ules to the theory of Gorenstein rings [HH, Theorem 1.4], as applications
of the results obtained in the previous section, we give in Section 4 some
equivalent characterizations when the left and right projective dimensions of

RωS are finite in terms of the properties of the (adjoint) ∞-ω-cotorsionfree
dimensions of modules. For any n ≥ 0, we prove that the left and right pro-
jective dimensions of RωS are at most n if and only if the∞-ω-cotorsionfree
injective dimensions of (finitely presented) left R-modules and (finitely pre-
sented) right S-modules are at most n; and these are equivalent to the
adjoint∞-ω-cotorsionfree projective dimensions of (finitely presented) right
R-modules and (finitely presented) left S-modules being at most n when R
and S are artin algebras.

2. Preliminaries. Throughout this paper, all rings are associative rings
with unit. Let R be a ring. We use ModR (resp. ModRop) to denote the
category of left (resp. right) R-modules, and modR (resp. modRop) to de-
note the category of finitely presented left (resp. right) R-modules. Let
M ∈ ModR. We use AddRM (resp. addRM) to denote the subcategory
of ModR consisting of all direct summands of direct sums (resp. finite di-
rect sums) of copies of M .

Let X be a full subcategory of ModR. We write

X⊥ := {M ∈ ModR | Ext≥1R (X,M) = 0},
⊥X := {M ∈ ModR | Ext≥1R (M,X) = 0}.

A sequence
M := · · · →M1 →M2 →M3 → · · ·

in ModR is called HomR(X ,−)-exact (resp. HomR(−,X )-exact) if
HomR(X,M) (resp. HomR(M, X)) is exact for any X ∈ X . An exact se-
quence (of finite or infinite length)

· · · → Xn → · · · → X1 → X0 →M → 0

in ModR is called an X -resolution of M if all Xi are in X . The X -projective



ADJOINT COTRANSPOSE 295

dimension X -pdRM of M is defined as the infimum of n such that there
exists an X -resolution

0→ Xn → · · · → X1 → X0 →M → 0

of M in ModR. Dually, the notions of an X -coresolution and the X -injective
dimension X -idRM of M are defined. In particular, we use pdRM , fdRM
and idRM to denote the projective, flat and injective dimensions of M
respectively. We also write

X -pd<∞(R) := {M ∈ ModR | X -pdRM <∞},
X -id<∞(R) := {M ∈ ModR | X -idRM <∞}.

We first give the following

Definition 2.1 ([HW]). Let R and S be rings. An (R-S)-bimodule RωS
is called semidualizing if

(a1) Rω admits a degreewise finite R-projective resolution.
(a2) ωS admits a degreewise finite S-projective resolution.

(b1) The homothety map RRR
Rγ−−→ HomSop(ω, ω) is an isomorphism.

(b2) The homothety map SSS
γS−→ HomR(ω, ω) is an isomorphism.

(c1) Ext≥1R (ω, ω) = 0, that is, Rω is self-orthogonal.

(c2) Ext≥1Sop(ω, ω) = 0, that is, ωS is self-orthogonal.

Typical examples of semidualizing bimodules include the free module of
rank one, dualizing modules over a Cohen-Macaulay local ring.

From now on, R and S are arbitrary rings and we fix a semidualizing
bimodule RωS. For convenience, we write (−)∗ := Hom(ω,−), and

Rω
⊥ := {M ∈ ModR | Exti≥1R (ω,M) = 0},

ωS
> := {N ∈ ModS | TorSi≥1(ω,N) = 0}.

Following [HW], set

Fω(R) := {ω ⊗S F | F is flat in ModS},
Pω(R) := {ω ⊗S P | P is projective in ModS},
Iω(S) := {I∗ | I is injective in ModR}.

The modules in Fω(R), Pω(R) and Iω(S) are called ω-flat, ω-projective and
ω-injective respectively. Symmetrically, the classes of Fω(Sop), Pω(Sop) and
Iω(Rop) are defined. Let M ∈ ModR and N ∈ ModS. Then we have two
canonical valuation homomorphisms:

θM : ω ⊗S M∗ →M
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defined by θM (x⊗ f) = f(x) for any x ∈ ω and f ∈M∗, and

µN : N → (ω ⊗S N)∗

defined by µN (y)(x) = x⊗ y for any y ∈ N and x ∈ ω.

Definition 2.2 ([HW]).

(1) The Auslander class Aω(S) with respect to ω consists of all left S-
modules N satisfying the following conditions:

(A1) N ∈ ωS>.
(A2) ω ⊗S N ∈ Rω

⊥.
(A3) µN is an isomorphism in ModS.

(2) The Bass class Bω(R) with respect to ω consists of all left R-modules
M satisfying the following conditions:

(B1) M ∈ Rω
⊥.

(B2) M∗ ∈ ωS>.
(B3) θM is an isomorphism in ModR.

Let I(R) be the subcategory of ModR consisting of all injective modules.

Lemma 2.3 ([TH3, Lemma 2.5]).

(1) I(R) ∪ Fω(R)-pd<∞(R) ⊆ Bω(R) ⊆ Rω
⊥ = Pω(R)⊥.

(2) Iω(Rop) ⊆ ⊥Iω(Rop) and Iω(S) ⊆ ⊥Iω(S).

Let M ∈ ModR. We use

0→M → I0(M)
f0−→ I1(M)

f1−→ · · · f
i−1

−−−→ Ii(M)
f i−→ · · ·

to denote a minimal injective resolution of M .

Definition 2.4 ([TH1]). Let M ∈ ModR and n ≥ 1.

(1) cTrωM := Coker f0∗ is called the cotranspose of M with respect to RωS .
(2) M is called n-ω-cotorsionfree if TorS1≤i≤n(ω, cTrωM) = 0; and M is
∞-ω-cotorsionfree if it is n-ω-cotorsionfree for all n. In particular, every
module in ModR is 0-ω-cotorsionfree.

We use cT (R) to denote the subcategory of ModR consisting of all
∞-ω-cotorsionfree modules.

3. Adjoint cotransposes of modules. Recall from [E] that a homo-
morphism f : F → N in ModS with F flat is called a flat cover of N if
HomS(F ′, f) is epic for any flat module F ′ in ModS, and an endomorphism
h : F → F is an automorphism whenever f = fh. Let N ∈ ModS. Bican,
El Bashir and Enochs [BBE] proved that N has a flat cover. We use

· · · fn+1−−−→ Fn(N)
fn−→ · · · f2−→ F1(N)

f1−→ F0(N)
f0−→ N → 0
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to denote a minimal flat resolution ofN in ModS, where each Fi(N)→ Im fi
is a flat cover of Im fi. Note that (ω ⊗S −, HomR(ω,−)) is an adjoint pair.
In view of Definition 2.4, we make the following

Definition 3.1. Let N ∈ ModS and n ≥ 1.

(1) acTrωN := Ker(1ω ⊗ f1) is called the adjoint cotranspose of N with
respect to RωS .

(2) N is called adjoint n-ω-cotorsionfree if Ext1≤i≤nR (ω, acTrωN) = 0; and
N is adjoint∞-ω-cotorsionfree if it is adjoint n-ω-cotorsionfree for all n.
In particular, every left S-module is adjoint 0-ω-cotorsionfree.

Let acT (S) denote the subcategory of ModS consisting of all adjoint
∞-ω-cotorsionfree modules. The following result is an adjoint counterpart
of [TH1, Proposition 3.2].

Proposition 3.2. Let N ∈ ModS. Then there exists an exact sequence

0→ Ext1R(ω, acTrωN)→ N
µN−−→ (ω ⊗S N)∗ → Ext2R(ω, acTrωN)→ 0.

Proof. Let N ∈ ModS. Then by [HW, Lemma 4.1], both F0(N) and
F1(N) are in Aω(S), and so both µF0(N) and µF1(N) are isomorphisms. We
also have an exact sequence

ω ⊗S F1(N)
1ω⊗f1−−−−→ ω ⊗S F0(N)

1ω⊗f0−−−−→ ω ⊗S N → 0

in ModR with both ω ⊗S F1(N) and ω ⊗S F0(N) in Fω(R). By Lemma
2.3(1), both ω⊗S F0(N) and ω⊗S F1(N) are in ω⊥. Now we get the desired
exact sequence from [TH2, Proposition 6.7].

By Proposition 3.2 and the definition of adjoint n-ω-cotorsionfree mod-
ules, we immediately have

Corollary 3.3. Let N ∈ ModS.

(1) N is adjoint 1-ω-cotorsionfree if and only if µN is a monomorphism.
(2) N is adjoint 2-ω-cotorsionfree if and only if µN is an isomorphism.
(3) For n ≥ 3, N is adjoint n-ω-cotorsionfree if and only if µN is an iso-

morphism and Ext1≤i≤n−2R (ω, ω ⊗S N) = 0.

The following result gives an alternative description of the Auslander
class, which is the adjoint counterpart of a characterization of the Bass
class [TH1, Theorem 3.9].

Proposition 3.4. Aω(S) = acT (S) ∩ ωS>.

Proof. This follows from Corollary 3.3(3).

Let F(S) denote the subcategory of ModS consisting of all flat modules.
Compare the following result with Lemma 2.3(1).
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Corollary 3.5.

(1) F(S) ∪ Iω(S)-id<∞(S) ⊆ acT (S).
(2) F(S) ∪ Iω(S)-id<∞(S) ⊆ Aω(S) ⊆ ωS> = ⊥Iω(S).

Proof. By [HW, Lemma 4.1 and Corollary 6.1] and Proposition 3.4, we
have

F(S) ∪ Iω(S)-id<∞(S) ⊆ Aω(S) = acT (S) ∩ ωS>,
and the first assertion follows.

By [GT, Lemma 2.16(b)], for any injective module I ∈ ModR and i ≥ 1,
we have the following isomorphism of functors:

HomR(TorSi (ω,−), I) ∼= ExtiS(−, I∗).
Now by the definition of Iω(S), we have ωS

> = ⊥Iω(S), and the second
assertion follows.

Let
N := · · · → N1 → N2 → N3 → · · ·

be a sequence in ModS. Then N is called (ω⊗S −)-exact if ω⊗S N is exact.
We have the following easy observation.

Observation. A sequence S in ModS is (ω ⊗S −)-exact if and only if
it is HomS(−, Iω(S))-exact.

Proof. By the adjoint isomorphism theorem, for any injective module
I ∈ ModR we have the following isomorphism of functors:

HomR(ω ⊗S −, I) ∼= HomS(−, I∗).
Now the assertion follows directly from the definition of Iω(S).

The following result is an adjoint counterpart of [TH1, Proposition 3.5].

Proposition 3.6. Let n ≥ 1, and let

0→ L→M → N → 0

be an (ω⊗S−)-exact (equivalently HomS(−, Iω(S))-exact) exact sequence in
ModS with N adjoint n-ω-cotorsionfree. Then L is adjoint n-ω-cotorsion-
free if and only if so is M .

Proof. By assumption we have an exact sequence

0→ ω ⊗S L→ ω ⊗S M → ω ⊗S N → 0

in ModR. Then we get the commutative diagram with exact rows

0 // L

µL
��

//M

µM
��

// N

µN
��

// 0

0 // (ω ⊗S L)∗ // (ω ⊗S M)∗ // (ω ⊗S N)∗

and the exact sequence
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Exti−1R (ω, ω ⊗S N)→ ExtiR(ω, ω ⊗S L)→ ExtiR(ω, ω ⊗S M)

→ ExtiR(ω, ω ⊗S N)

for any i ≥ 2. Now the assertion follows easily from Corollary 3.3 and the
snake lemma.

Next, we will give an equivalent characterization of adjoint n-ω-cotor-
sionfree modules in terms of special Iω(S)-coresolutions of modules. First
we prove

Lemma 3.7. Let N ∈ ModS.

(1) N is adjoint 1-ω-cotorsionfree if and only if there exists an (ω ⊗S −)-
exact (equivalently HomS(−, Iω(S))-exact) exact sequence

0→ N → U0

in ModS with U0 ∈ Iω(S).
(2) M is adjoint 2-ω-cotorsionfree if and only if there exists an (ω ⊗S −)-

exact (equivalently HomS(−, Iω(S))-exact) exact sequence

0→ N → U0 → U1

in ModS with U0, U1 ∈ Iω(S).

Proof. (1) Let N ∈ ModS be adjoint 1-ω-cotorsionfree. Then µN
is monic by Corollary 3.3(1). Since there exists a monomorphism f :
ω ⊗S N � I0 in ModR with I0 injective, we get a monomorphism
f∗ : (ω ⊗S N)∗ � I0∗ in ModS with I0∗ ∈ Iω(S). So we have a monomor-
phism f∗ ·µN : N � I0∗ in ModS. Then by [HW, Proposition 5.3], N admits
a monic Iω(S)-preenvelope

g : N � I∗

with I injective in ModR. Take E to be an injective cogenerator in ModR.
Then Ext1S(Coker g,E∗) = 0 by Lemma 2.3(2). So, by [GT, Lemma 2.16(d)],

HomR(TorS1 (ω,Coker g), E) ∼= Ext1S(Coker g,E∗) = 0.

Thus TorS1 (ω,Coker g) = 0 and 1ω ⊗ g is monic.
Conversely, assume that there exists an (ω ⊗S −)-exact exact sequence

0→ N → U0

in ModS with U0 ∈ Iω(S). Because µU0 is an isomorphism by Corollary
3.5(2), from the commutative diagram with exact rows

0 // N //

µN
��

U0

µU0

��
0 // (ω ⊗S N)∗ // (ω ⊗S U0)∗

we see that µN is monic and N is adjoint 1-ω-cotorsionfree.



300 X. TANG AND Z. Y. HUANG

(2) Let N ∈ ModS be adjoint 2-ω-cotorsionfree. By (1), there exists an
(ω ⊗S −)-exact exact sequence

0→ N → U0 → N1 → 0

in ModS with U0 ∈ Iω(S). Then we have the following commutative dia-
gram with exact rows:

0 // N //

µN
��

U0 //

µU0

��

N1 //

µN1

��

0

0 // (ω ⊗S N)∗
// (ω ⊗S U0)∗

// (ω ⊗S N1)∗

(3.1)

Because both µN and µU0 are isomorphisms by assumption and Corollary
3.5(2), the snake lemma shows that µN1 is monic, and hence N1 is adjoint
1-ω-cotorsionfree by Corollary 3.3(1). It follows from (1) that there exists
an (ω ⊗S −)-exact exact sequence

0→ N1 → U1

in ModS with U1 ∈ Iω(S). Then the spliced sequence

0→ N → U0 → U1

is as desired.

Conversely, let 0 → N → U0 → U1 be an (ω ⊗S −)-exact exact se-
quence in ModS with U0, U1 ∈ Iω(S). Then N1 := Im(U0 → U1) is adjoint
1-ω-cotorsionfree by (1), and so µN1 is monic by Corollary 3.3(1). Now the
diagram (3.1) above implies that µN is an isomorphism. Thus N is adjoint
2-ω-cotorsionfree by Corollary 3.3(2).

By induction we get the following result, which is an adjoint counterpart
of [TH1, Proposition 3.7].

Proposition 3.8. Let N ∈ ModS and n ≥ 1. Then N is adjoint n-
ω-cotorsionfree if and only if there exists an (ω ⊗S −)-exact (equivalently
HomS(−, Iω(S))-exact) exact sequence

0→ N → U0 → · · · → Un−1 → Un

in ModS with all U i ∈ Iω(S).

Proof. We proceed by induction on n. The case of n ≤ 2 follows from
Lemma 3.7.

Now suppose that n ≥ 3 and N ∈ ModS is adjoint n-ω-cotorsionfree.
Then µN is an isomorphism and Ext1≤i≤n−2R (ω, ω ⊗S N) = 0 by Corollary
3.3(3). In addition, by Lemma 3.7, there exists an exact sequence

0→ N → U0 → N1 → 0



ADJOINT COTRANSPOSE 301

in ModS with U0 ∈ Iω(S) such that

0→ ω ⊗S N → ω ⊗S U0 → ω ⊗S N1 → 0

in ModR is also exact with ω ⊗S U0 injective. Then

ExtiR(ω, ω ⊗S N1) ∼= Exti+1
R (ω, ω ⊗S N) = 0

for 1 ≤ i ≤ n − 3, and we have the following commutative diagram with
exact rows:

0 // N

µN
��

// U0

µU0

��

// N1

µN1

��

// 0

0 // (ω ⊗S N)∗ // (ω ⊗S U0)∗ // (ω ⊗S N1)∗ // 0

Because both µN and µU0 are isomorphisms, so is µN1 . Thus N1 is adjoint
(n− 1)-ω-cotorsionfree by Corollary 3.3. Now the assertion follows from the
induction hypothesis.

Conversely, assume that there exists an (ω ⊗S −)-exact exact sequence

0→ N → U0 → · · · → Un−1 → Un

in ModS with U i ∈ Iω(S). Set N1 = Im(U0 → U1). Then

0→ ω ⊗S N → ω ⊗S U0 → ω ⊗S N1 → 0

in ModR is exact with ω ⊗S U0 injective. Because N1 is adjoint (n − 1)-
ω-cotorsionfree by the induction hypothesis, µN1 is an isomorphism and
Ext1≤i≤n−3R (ω, ω ⊗S N1) = 0 by Corollary 3.3.

Consider the following commutative diagram with the top row exact:

0 // N

µN
��

// U0

µU0

��

// N1

µN1

��

// 0

0 // (ω ⊗S N)∗ // (ω ⊗S U0)∗ // (ω ⊗S N1)∗ // 0

Because µU0 is an isomorphism, so is µN , and the bottom row in the
above diagram is exact. So Ext1R(ω, ω ⊗S N) = 0 and Exti+1

R (ω, ω ⊗S N) ∼=
ExtiR(ω, ω⊗SN1) = 0 for 1 ≤ i ≤ n−3, that is, Ext1≤i≤n−2R (ω, ω⊗SN) = 0.
Thus N is adjoint n-ω-cotorsionfree by Corollary 3.3(3).

The following result is an immediate consequence of Proposition 3.8.

Corollary 3.9. For N ∈ ModS, N ∈ acT (S) if and only if there exists
an (ω ⊗S −)-exact (equivalently HomS(−, Iω(S))-exact) exact sequence

0→ N → U0 → U1 → U2 → · · ·
in ModS with all U i ∈ Iω(S). In this case, TorS1 (ω,N i) = 0, where N i =
Im(U i−1 → U i) for any i ≥ 1.

As an adjoint counterpart of [TH2, Proposition 3.1], we have
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Proposition 3.10.

(1) If pdSop ω < ∞, then acT (S) ⊆ ωS>.
(2) If pdR ω < ∞, then ωS

> ⊆ acT (S).

Proof. (1) Let N ∈ acT (S). By Corollary 3.9, there exists an exact
sequence

0→ N → U0 → U1 → U2 → · · ·
in ModS with all U i ∈ Iω(S). Set N i = Im(U i−1 → U i) for any i ≥ 1. Note
that U i ∈ ωS> for any i ≥ 0 by Corollary 3.5(2). So, if pdSop ω = n (<∞),
then TorSi (ω,N) ∼= TorSi+n(ω,Nn) = 0 for any i ≥ 1. Thus N ∈ ωS>.

(2) Let pdR ω = n (< ∞) and N ∈ ωS>. Set Ω0(N) = N and Ωi(N) =
Im(Fi(N)→ Fi−1(N)) for any i ≥ 1. Then we get an exact sequence

0→ ω ⊗S Ωi+1(N)→ ω ⊗S Fi(N)→ ω ⊗S Ωi(N)→ 0

in ModR for i ≥ 0. It follows from Lemma 2.3(1) that

ExtjR(ω, ω ⊗S Ωi(N)) ∼= Extj+nR (ω, ω ⊗S Ωi+n(N)) = 0

for any i ≥ 0 and j ≥ 1; in particular, Ext1R(ω, ω ⊗S Ω2(N)) = 0. Thus we
get the following diagram with exact rows:

F1(N) //

µF1(N)

��

Ω1(N) //

µΩ1(N)

��

0

(ω ⊗S F1(N))∗ // (ω ⊗S Ω1(N))∗ // 0

Because µF1(N) is an isomorphism by Corollary 3.5(2), µΩ1(N) is an epi-
morphism. But Ω1(N) is a submodule of F0(N), so µΩ1(N) is a monomor-
phism and hence an isomorphism. Then Ω1(N) is adjoint 2-ω-cotorsionfree
by Corollary 3.3(2). On the other hand, because Ext1R(ω, ω ⊗S Ω1(N)) = 0
by the above argument, we have the following commutative diagram with
exact rows:

0 // Ω1(N)

µΩ1(N)

��

// F0(N)

µF0(N)

��

// N

µN
��

// 0

0 // (ω ⊗S Ω1(N))∗ // (ω ⊗S F0(N))∗ // (ω ⊗S N)∗ // 0

Since µF0(N) is an isomorphism, the snake lemma shows that so is µN and
N is 2-ω-cotorsionfree. So by Lemma 3.7, there exists an (ω ⊗S −)-exact
exact sequence

0→ N → U0 → N1 → 0

in ModS with U0 ∈ Iω(S). Then N1 ∈ ωS>. Now by an argument similar
to the above, we get an (ω ⊗S −)-exact exact sequence

0→ N1 → U1 → N2 → 0
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in ModS with U1 ∈ Iω(S) and N2 ∈ ωS>. Continuing this procedure, we
get an (ω ⊗S −)-exact exact sequence

0→ N → U0 → · · · → Un−1 → Un → · · ·
in ModS with all U i in Iω(S). Then Corollary 3.9 shows that N ∈ acT (S).

Summarizing Proposition 3.4, Corollary 3.9 and Proposition 3.10, we
have the following result, in which the first assertion means that [EH, Propo-
sition 3.6] still holds true without assuming the given ring is commutative
Noetherian.

Theorem 3.11.

(1) Aω(S) = acT (S)∩ ωS> = {N ∈ ModS | there exists an (ω⊗S −)-exact
(equivalently HomS(−, Iω(S))-exact) exact sequence

· · · → F2 → F1 → F0 → U0 → U1 → U2 → · · ·
in ModS with all Fi in F(S), all U i in Iω(S) and N ∼= Im(F0 → U0)}.

(2) If pdSop ω <∞, then Aω(S) = acT (S).
(3) If pdR ω <∞, then Aω(S) = ωS

>.

The following result characterizes when acT (S) and cT (R) are equivalent
under Foxby equivalence.

Theorem 3.12. The following statements are equivalent:

(1) There exists an equivalence of categories

acT (S) ∼
ω⊗S− //

cT (R).
HomR(ω,−)

oo

(2) acT (S) = Aω(S) and cT (R) = Bω(R).

Proof. (2)⇒(1) follows from [HW, Theorem 5.1].
(1)⇒(2). By Theorem 3.11(1) and [TH1, Theorem 3.9], it suffices to

prove that acT (S) ⊆ Aω(S) and cT (R) ⊆ Bω(R).
Let N ∈ acT (S). Then N ∼= (ω ⊗S N)∗. By Corollary 3.9, there exists

an (ω ⊗S −)-exact exact sequence

(3.2) 0→ N → U0 → U1 → U2 → · · ·
in ModS with all U i ∈ Iω(S) and TorS1 (ω,N i) = 0, where N i = Im(U i−1 →
U i) for any i ≥ 1. Applying the functor ω ⊗S − to (3.2) yields an exact
sequence

(3.3) 0→ ω ⊗S N → ω ⊗S U0 → ω ⊗S U1 → ω ⊗S U2 → · · ·
in ModR. All ω ⊗S U i are injective in ModR by [HW, Lemma 5.1(c)].
Because the functor HomR(ω,−) sends (3.3) to (3.2), it is easy to see that
N2 ∼= cTrω(ω ⊗S N) ⊕ U for some U ∈ Iω(S). Note that ω ⊗S N ∈ cT (R)
and U ∈ ωS> by assumption and Corollary 3.5(2). So cTrω(ω ⊗S N) ∈ ωS>
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and N2 ∈ ωS>, and hence N ∈ ωS>. Now it follows from Theorem 3.11(1)
that N ∈ Aω(S) and acT (S) ⊆ Aω(S). Similarly, cT (R) ⊆ Bω(R).

The following result shows that any module in ModS with finite acT (S)-
projective dimension is isomorphic to a kernel (resp. a cokernel) of a ho-
momorphism from a module with finite Iω(S)-projective dimension to an
adjoint ∞-ω-cotorsionfree module.

Theorem 3.13. Let N ∈ ModS with acT (S)-pdS N ≤ n (< ∞). Then
there exists an exact sequence

(3.4) 0→ UN → VN → UN → V N → 0

in ModS such that N ∼= Im(VN → UN ) and the following conditions are
satisfied:

(1) Iω(S)-pdS U
N ≤ n, V N ∈ acT (S) and

0→ N → UN → V N → 0

is exact and HomS(−, Iω(S))-exact (equivalently (ω ⊗S −)-exact).
(2) Iω(S)-pdS UN ≤ n− 1 and VN ∈ acT (S).

Proof. By Proposition 3.6 and Corollary 3.9, acT (S) is an Iω(S)-
coresolving subcategory of ModS admitting an Iω(S)-coproper cogener-
ator Iω(S) in the sense of [H]. Then by [H, Corollary 4.5], we have a
HomS(−, Iω(S))-exact (equivalently (ω ⊗S −)-exact) exact sequence

(3.5) 0→ N → UN → V N → 0

in ModS such that Iω(S)-pdS U
N ≤ n and V N ∈ acT (S). On the other

hand, by [H, Theorem 4.7] we have an exact sequence

(3.6) 0→ UN → VN → N → 0

in ModS such that Iω(S)-pdS UN ≤ n− 1 and VN ∈ acT (S). Now splicing
(3.5) and (3.6) we get the desired exact sequence (3.4).

The following result, as an adjoint counterpart of Theorem 3.13, shows
that any module in ModR with finite cT (R)-injective dimension is iso-
morphic to a kernel (resp. a cokernel) of a homomorphism from an ∞-ω-
cotorsionfree module to a module with finite Pω(R)-injective dimension.

Theorem 3.14. Let M ∈ ModR with cT (R)-idRM ≤ n (< ∞). Then
there exists an exact sequence

(3.7) 0→ YM → XM → YM → XM → 0

in ModR such that M ∼= Im(XM → YM ) and the following conditions are
satisfied:
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(1) Pω(R)-idRXM ≤ n, YM ∈ cT (R) and

0→ YM → XM →M → 0

is exact and HomR(Pω(R),−)-exact.
(2) Pω(R)-idRX

M ≤ n− 1 and YM ∈ cT (R).

Proof. By [TH1, Propositions 3.5 and 3.7], cT (R) is a Pω(R)-resolving
subcategory of ModR admitting a Pω(R)-proper generator Pω(R) in the
sense of [H]. Then by [H, Corollary 3.5], we have a HomR(Pω(R),−)-exact
exact sequence

(3.8) 0→ YM → XM →M → 0

in ModR such that Pω(R)-idRXM ≤ n and YM ∈ cT (R). On the other
hand, by [H, Theorem 3.7] we have an exact sequence

(3.9) 0→M → YM → XM → 0

in ModR such that Pω(R)-idRX
M ≤ n− 1 and YM ∈ cT (R). Now splicing

(3.8) and (3.9) we get the desired exact sequence (3.7).

We end this section with a non-trivial example of adjoint∞-ω-cotorsion-
free modules. The following example is due to Jorgensen and Şega [JS].

Example 3.15. Let k be a field which is not algebraic over a finite field
and let α ∈ k be an element of infinite multiplicative order. Suppose that
Rα = k[V,X, Y, Z]/Iα, where Iα = 〈V 2, Z2, XY, V X + αXZ, V Y + Y Z,
V X + Y 2, V Y −X2〉. Let m denote the unique maximal ideal of the local
artinian ring Rα, ω = I0(Rα/m) and Rα

2 = Rα ⊕ Rα. For i ≤ 0, let
di : Rα

2 → Rα
2 denote the map given by the matrix(

v α−ix

y z

)
,

where v, x, y, z denote the residue classes of the variables modulo Iα respec-
tively. Set M = Coker d−1. Then M is an adjoint∞-ω-cotorsionfree module,
but M /∈ Aω(Rα).

Proof. It follows from [JS, Lemma 1.4] that there exists an exact se-
quence

A : 0→M → Rα
2 d−3−−→ Rα

2 d−4−−→ · · · .
Since Rα is a commutative artinian local ring, ω is a semidualizing mod-
ule and Iω(Rα) = AddRα Rα. This implies that Rα

2 ∈ Iω(Rα). By [JS,
Lemma 1.5], the sequence HomRα(A, Rα) remains exact and M /∈ ⊥RαRα.
By Corollary 3.9, M is an adjoint ∞-ω-cotorsionfree module. Note that ω
is an injective cogenerator for ModRα. So by [CE, Proposition VI.5.3], we
have

TorRαi (ω,M) ∼= TorRαi (HomRα(Rα, ω),M) ∼= HomRα(ExtiRα(M,Rα), ω)
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for any i ≥ 0. Thus M /∈ ωRα>, and therefore M /∈ Aω(Rα) by Theorem
3.11(1).

Remark 3.16. By Theorem 3.12, the categories acT (R) and cT (R) are
not equivalent under Foxby equivalence when R = Rα is the ring of Example
3.15 and ω is the semidualizing R-module given in Example 3.15.

4. Finiteness of pdR ω and pdSop ω. As applications of Theorems 3.13
and 3.14, in this section we will characterize when pdR ω = pdSop ω < ∞
in terms of the properties of the (adjoint) ∞-ω-cotorsionfree dimensions of
modules. We begin with the following result, which was proved by Waka-
matsu [W, Proposition 7] when R and S are artin algebras.

Proposition 4.1. If pdR ω < ∞ and pdSop ω < ∞, then pdR ω =
pdSop ω.

Proof. Let pdR ω = m <∞ and pdSop ω = n <∞. It is easy to see that
pdR ω = addωS-idSop S and pdSop ω = addR ω-idRR. So we have an exact
sequence

0→ R→ C0 → C1 → · · · → Cn → 0

in ModR with all Ci in addR ω. Set Ki = Ker(Ci → Ci+1) for any 0 ≤
i ≤ n − 1. If m < n, then Ext1R(ω,Kn−1) ∼= Ext2R(ω,Kn−2) ∼= · · · ∼=
Extm+1

R (ω,Kn−m−1) = 0. So the exact sequence

0→ Kn−1 → Cn−1 → Cn → 0

splits and Kn−1 is isomorphic to a direct summand of Cn−1. This implies
that Kn−1 ∈ addR ω and addR ω-idRR ≤ n − 1, which is a contradiction.
So m ≥ n. Similarly, n ≥ m.

The aim of this section is to prove the following result.

Theorem 4.2. The following statements are equivalent for any n ≥ 0:

(1) pdR ω = pdSop ω ≤ n.
(2) Pω(R)-idRR = Pω(Sop)-idSop S ≤ n.
(3) Bω(R)-idRR = Bω(Sop)-idSop S ≤ n.
(4) cT (R)-idRR = cT (Sop)-idSop S ≤ n.
(5) Bω(R)-idRM ≤ n for any M ∈ ModR, and Bω(Sop)-idSop N ≤ n for

any N ∈ ModSop.
(6) Bω(R)-idRM ≤ n for any M ∈ modR, and Bω(Sop)-idSop N ≤ n for

any N ∈ modSop.
(7) cT (R)-idRM ≤ n for any M ∈ ModR, and cT (Sop)-idSop N ≤ n for

any N ∈ ModSop.
(8) cT (R)-idRM ≤ n for any M ∈ modR, and cT (Sop)-idSop N ≤ n for

any N ∈ modSop.
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(9) Rω
⊥-idRM ≤ n for any M ∈ ModR, and ωS

⊥-idSop N ≤ n for any
N ∈ ModSop.

(10) Rω
⊥-idRM ≤ n for any M ∈ modR, and ωS

⊥-idSop M ≤ n for any
M ∈ modSop.

To prove this theorem, we need the following three lemmas.

Lemma 4.3. We have

pdR ω = Pω(Sop)-idSop S = sup{Rω⊥-idRM |M ∈ ModR}
= sup{Rω⊥-idRM |M ∈ modR}.

Proof. Since pdR ω = addωS-idSop S, it is straightforward to verify
pdR ω = Pω(Sop)-idSop S by [TH2, Lemma 4.7]. It remains to prove that
sup{Rω⊥-idRM |M ∈ ModR} ≤ pdR ω ≤ sup{Rω⊥-idRM |M ∈ modR}.

Let pdR ω = n (< ∞) and pick M ∈ ModR. Define Kn =
Im(In−1(M) → In(M)). Then ExtiR(ω,Kn) ∼= Extn+iR (ω,M) = 0 for any
i ≥ 1. So Kn ∈ Rω

⊥ and Rω
⊥-idRM ≤ n.

Now let sup{Rω⊥-idRM |M ∈ modR} = n (<∞). Then by dimension

shifting, it is easy to see that Ext≥n+1
R (ω,M) = 0 for any M ∈ modR. Let

X ∈ ModR. Then X = lim−→Mi with all Mi in modR by [GT, Lemma 2.5].

It follows from [GT, Lemma 6.6] that Ext≥n+1
R (ω,X) = 0, which implies

pdR ω ≤ n.

Lemma 4.4. If pdR ω = pdSop ω ≤ n (< ∞), then Bω(R)-idRM =
cT (R)-idRM ≤ n for any M ∈ ModR.

Proof. If pdR ω = pdSop ω ≤ n, then Bω(R) = Rω
⊥ = cT (R) by [TH2,

Corollary 3.2]. Now the assertion follows from Lemma 4.3.

Lemma 4.5. cT (R)-idRR = Bω(R)-idRR = Pω(R)-idRR.

Proof. By Lemma 2.3(1) and [TH1, Theorem 3.9], we have Pω(R) ⊆
Bω(R) ⊆ cT (R). So cT (R)-idRR ≤ Bω(R)-idRR ≤ Pω(R)-idRR. Now let
cT (R)-idRR = n (< ∞). It follows from Theorem 3.14 that there exists a
module X ∈ ModR with Pω(R)-idRX ≤ n such that RR is isomorphic to
a direct summand of X. Thus Pω(R)-idRR ≤ n by [TH2, Lemma 4.6], and
therefore Pω(R)-idRR ≤ cT (R)-idRR.

Proof of Theorem 4.2. By Proposition 4.1, Lemma 4.3 and its symmet-
ric version, we have (1)⇔(2)⇔(9)⇔(10). By Lemma 4.4 and its symmetric
version, we deduce (1)⇒(5) and (1)⇒(7). By Lemma 4.5 and its symmet-
ric version, we obtain (2)⇔(3)⇔(4). The implications (7)⇒(8)⇒(4) and
(5)⇒(6)⇒(3) are clear.
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It should be pointed out that a semidualizing bimodule RωS satisfying
condition (1) in Theorem 4.2 is actually a tilting bimodule in the sense
of [M]. In the following, we will give an adjoint counterpart of Theorem 4.2.
We need some lemmas.

Lemma 4.6.
(1) pdSop ω = sup{ωS>-pdS N | N ∈ ModS} = sup{ωS>-pdS N | N ∈

modS}.
(2) If pdR ω = pdSop ω ≤ n (<∞), then Aω(S)-pdS N = acT (S)-pdS N ≤ n

for any N ∈ ModS.

Proof. (1) It suffices to prove

sup{ωS>-pdS N | N ∈ModS} ≤ pdSop ω ≤ sup{ωS>-pdS N | N ∈modS}.
Let pdSop ω≤n (<∞) and N ∈ModS. Set Kn = Coker(Fn+1(N)→Fn(N)).
Then TorSi (ω,Kn) ∼= TorSn+i(ω,N) = 0 for any i ≥ 1. It follows that
Kn ∈ ωS> and ωS

>-pdS N ≤ n. Conversely, note that ωS admits a degree-
wise finite S-projective resolution. Then by dimension shifting, it is easy to
get pdSop ω = fdSop ω ≤ sup{ωS>-pdS N | N ∈ modS}.

(2) Let pdR ω = pdωop ω ≤ n. Then Aω(S) = ωS
> = acT (S) by Theorem

3.11. Now the assertion follows from (1).

Lemma 4.7. Both Iω(Rop)-pd≤n(Rop) and Iω(S)-pd≤n(S) are closed
under direct summands.

Proof. By Lemma 2.3(2), we have Iω(S) ⊆ Iω(S)⊥. It is trivial that
Iω(S) is an Iω(S)-resolving subcategory of ModS with an Iω(S)-proper
generator Iω(S) in the sense of [H]. Note that Iω(S) is closed under direct
summands by [HW, Proposition 5.1(c)]. So Iω(S)-pd≤n(S) is closed un-
der direct summands by [H, Corollary 3.9]. Symmetrically, we deduce that
Iω(Rop)-pd≤n(Rop) is closed under direct summands.

Lemma 4.8. For any injective module I in ModS, we have

acT (S)-pdS I = Aω(S)-pdS I = Iω(S)-pdS I.

Proof. By Theorem 3.11(1) and Corollary 3.5, we have Iω(S) ⊆ Aω(S) ⊆
acT (S). So acT (S)-pdS N ≤ Aω(S)-pdS N ≤ Iω(S)-pdS N for any N ∈
ModS. Now let I ∈ ModS be injective with acT (S)-pdS I = n (< ∞). It
follows from Theorem 3.13 that there exists U ∈ ModS with Iω(S)-pdS U
≤ n such that I is isomorphic to a direct summand of U . Thus Iω(S)-pdS I
≤ n by Lemma 4.7, and therefore Iω(S)-pdS I ≤ acT (S)-pdS I.

Let R be an artin k-algebra over a commutative artin ring k. We denote
by D the ordinary Matlis duality, that is, D(−) := Homk(−, I0(k/J(k))),
where J(k) is the Jacobson radical of k. It is well known that D induces an
equivalence between modR and modRop.
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Lemma 4.9. Let R and S be artin algebras. Then

pdR ω = Iω(S)-pdS D(SS).

Proof. If Iω(S)-pdS D(SS) = n (< ∞), then there exists an exact se-
quence

(4.1) 0→ Un → · · · → U1 → U0 → D(SS)→ 0

in ModS with all Ui in Iω(S). Applying the duality D(−) to (4.1) yields
the following exact sequence:

(4.2) 0→ SS → D(U0)→ D(U1)→ · · · → D(Un)→ 0

in ModR with D(Ui) ∈ Pω(Sop). Now applying HomSop(−, ω) to (4.2) we
get pdR ω ≤ n. Therefore pdR ω ≤ Iω(S)-pdS D(SS). By a dual argument,
Iω(S)-pdS D(SS) ≤ pdR ω.

Now we are ready to prove

Theorem 4.10. Let R and S be artin algebras and n ≥ 0. Then the
following statements are equivalent:

(1) pdR ω = pdSop ω ≤ n.
(2) Iω(Rop)-pdRop D(RR) = Iω(S)-pdS D(SS) ≤ n.
(3) Aω(Rop)-pdRop D(RR) = Aω(S)-pdS D(SS) ≤ n.
(4) acT (Rop)-pdRop D(RR) = acT (S)-pdS D(SS) ≤ n.
(5) Aω(Rop)-pdRop M ≤ n for any M ∈ ModRop, and Aω(S)-pdS N ≤ n

for any N ∈ ModS.
(6) Aω(Rop)-pdRop M ≤ n for any M ∈ modRop, and Aω(S)-pdS N ≤ n

for any N ∈ modS
(7) acT (Rop)-pdRop M ≤ n for any M ∈ ModRop, and acT (S)-pdS N ≤ n

for any N ∈ ModS.
(8) acT (Rop)-pdRop M ≤ n for any M ∈ modRop, and acT (S)-pdS N ≤ n

for any N ∈ modS.
(9) Rω

>-pdRop M ≤ n for any M ∈ ModRop, and ωS
>-pdS N ≤ n for any

N ∈ ModS.
(10) Rω

>-pdRop M ≤ n for any M ∈ modRop, and ωS
>-pdS N ≤ n for any

N ∈ modS.

Proof. By Proposition 4.1, Lemma 4.6 and its symmetric version, we
have (9)⇔(10)⇔(1)⇒(5) and (1)⇒(7). By Lemma 4.8 and its symmetric
version, we obtain (2)⇔(3)⇔(4). The implications (7)⇒(8)⇒(4) and (5)⇒
(6)⇒(3) are clear. By Proposition 4.1, Lemma 4.9 and its symmetric version,
we deduce (1)⇔(2).

As a consequence of Theorems 4.2 and 4.10, we have the following
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Corollary 4.11. Let R and S be artin algebras and n ≥ 0. Then the
following statements are equivalent:

(1) pdR ω = pdSop ω ≤ n.
(2) cT (R)-idRM ≤ n for any M ∈ ModR, and acT (S)-pdS N ≤ n for any

N ∈ ModS.
(3) cT (R)-idRM ≤ n for any M ∈ modR, and acT (S)-pdS N ≤ n for any

N ∈ modS.
(4) cT (R)-idRR ≤ n and acT (S)-pdS D(SS) ≤ n.

Proof. (1)⇒(2) follows from Theorems 4.2 and 4.10.

(2)⇒(3)⇒(4) are trivial.

(4)⇒(1). Since cT (R)-idRR ≤ n and acT (S)-pdS D(SS) ≤ n by (4), we
have pdSop ω = Pω(R)-idRR ≤ n by Lemma 4.5 and the symmetric version
of Lemma 4.3, and pdR ω ≤ n by Lemmas 4.8 and 4.9. Now the assertion
follows from Proposition 4.1.

Recall that an artin algebra R is called Gorenstein if idRR = idRop R
< ∞. It is easy to see that the (R,R)-bimodule D(R) is semidualizing.
Taking R = S and ω = D(R) in Corollary 4.11, we immediately get

Corollary 4.12. Let R be an artin algebra and n ≥ 0. Then the fol-
lowing statements are equivalent:

(1) R is Gorenstein with idRR = idRop R ≤ n.
(2) cT (R)-idRM ≤ n for any M ∈ ModR, and acT (R)-pdRN ≤ n for any

N ∈ ModS.
(3) cT (R)-idRM ≤ n for any M ∈ modR, and acT (R)-pdRN ≤ n for any

N ∈ modS.
(4) cT (R)-idRR ≤ n and acT (R)-pdRD(RR) ≤ n.
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