HOMOLOGICAL ASPECTS OF THE ADJOINT COTRANSPOSE

BY
XI TANG (Guilin) and ZHAOYONG HUANG (Nanjing)

Abstract

Let R and S be rings and ${ }_{R} \omega_{S}$ a semidualizing bimodule. We introduce and study the adjoint cotransposes of modules and adjoint n - ω-cotorsionfree modules. We show that the Auslander class with respect to ${ }_{R} \omega_{S}$ is the intersection of the class of adjoint $\infty-\omega$-cotorsionfree modules and the right Tor-orthogonal class of ω_{S}. As a consequence, the classes of adjoint ∞ - ω-cotorsionfree modules and of ∞ - ω-cotorsionfree modules are equivalent under Foxby equivalence if and only if they coincide with the Auslander and Bass classes with respect to ω respectively. Moreover, we give some equivalent characterizations when the left and right projective dimensions of ${ }_{R} \omega_{S}$ are finite in terms of the properties of (adjoint) ∞ - ω-cotorsionfree modules.

1. Introduction. One of the most powerful tools of Auslander-Reiten theory in representation theory of artin algebras and in homological algebra is the Auslander transpose [ASS, AB, ARS]. In [TH1] we dualized it and introduced the notion of cotransposes of modules with respect to a semidualizing bimodule ${ }_{R} \omega_{S}$ by applying the functor $\operatorname{Hom}_{R}(\omega,-)$ to minimal injective resolutions of left R-modules; and we showed that many results about the Auslander transpose have dual counterparts [TH1, TH2]. The motivation of this paper comes from the fact that $\left(\omega \otimes_{S}-, \operatorname{Hom}_{R}(\omega,-)\right)$ naturally forms an adjoint pair. It is interesting to study what will happen if we apply the functor $\omega \otimes_{S}$ - to minimal flat resolutions of left S-modules. To this end, we introduce and study the so-called adjoint cotransposes of modules with respect to ${ }_{R} \omega_{S}$. We show that many results about cotransposes of modules have adjoint counterparts. The paper is organized as follows.

In Section 2, we give some terminology and preliminary results.
Let R and S be rings and $R_{R} \omega_{S}$ a semidualizing bimodule. In Section 3, as adjoint counterparts of cotransposes with respect to ${ }_{R} \omega_{S}$ and n - ω-cotorsionfree modules of TH1], we introduce the notions of adjoint cotransposes of modules with respect to ${ }_{R} \omega_{S}$ and adjoint n - ω-cotorsionfree modules. We prove that the Auslander class with respect to ${ }_{R} \omega_{S}$ is the intersection of

[^0]the class of adjoint $\infty-\omega$-cotorsionfree modules and the right Tor-orthogonal class of ω_{S}, which generalizes a result of Enochs and Holm [EH] Proposition 3.6]. As a consequence, the class of adjoint $\infty-\omega$-cotorsionfree modules and that of ∞ - ω-cotorsionfree modules are equivalent under Foxby equivalence if and only if they coincide with the Auslander and Bass classes with respect to ω respectively. Moreover, we prove that left S-modules with finite relative projective dimension with respect to adjoint $\infty-\omega$-cotorsionfree modules are kernels and cokernels of homomorphisms from left S-modules with finite relative projective dimension with respect to ω-injective modules to adjoint $\infty-\omega$-cotorsionfree modules.

In parallel to the contributions of the torsionfree dimensions of modules to the theory of Gorenstein rings [HH, Theorem 1.4], as applications of the results obtained in the previous section, we give in Section 4 some equivalent characterizations when the left and right projective dimensions of ${ }_{R} \omega_{S}$ are finite in terms of the properties of the (adjoint) $\infty-\omega$-cotorsionfree dimensions of modules. For any $n \geq 0$, we prove that the left and right projective dimensions of ${ }_{R} \omega_{S}$ are at most n if and only if the $\infty-\omega$-cotorsionfree injective dimensions of (finitely presented) left R-modules and (finitely presented) right S-modules are at most n; and these are equivalent to the adjoint $\infty-\omega$-cotorsionfree projective dimensions of (finitely presented) right R-modules and (finitely presented) left S-modules being at most n when R and S are artin algebras.
2. Preliminaries. Throughout this paper, all rings are associative rings with unit. Let R be a ring. We use $\operatorname{Mod} R\left(\operatorname{resp} . \operatorname{Mod} R^{\mathrm{op}}\right)$ to denote the category of left (resp. right) R-modules, and $\bmod R\left(\right.$ resp. $\left.\bmod R^{\text {op }}\right)$ to denote the category of finitely presented left (resp. right) R-modules. Let $M \in \operatorname{Mod} R$. We use $\operatorname{Add}_{R} M\left(\right.$ resp. $\left.\operatorname{add}_{R} M\right)$ to denote the subcategory of $\operatorname{Mod} R$ consisting of all direct summands of direct sums (resp. finite direct sums) of copies of M.

Let \mathcal{X} be a full subcategory of $\operatorname{Mod} R$. We write

$$
\begin{aligned}
& \mathcal{X}^{\perp}:=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(X, M)=0\right\}, \\
& { }^{\perp} \mathcal{X}:=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(M, X)=0\right\} .
\end{aligned}
$$

A sequence

$$
\mathbb{M}:=\cdots \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow \cdots
$$

in $\operatorname{Mod} R$ is called $\operatorname{Hom}_{R}(\mathcal{X},-)$-exact (resp. $\operatorname{Hom}_{R}(-, \mathcal{X})$-exact) if $\operatorname{Hom}_{R}(X, \mathbb{M})\left(\right.$ resp. $\left.\operatorname{Hom}_{R}(\mathbb{M}, X)\right)$ is exact for any $X \in \mathcal{X}$. An exact sequence (of finite or infinite length)

$$
\cdots \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow M \rightarrow 0
$$

in $\operatorname{Mod} R$ is called an \mathcal{X}-resolution of M if all X_{i} are in \mathcal{X}. The \mathcal{X}-projective
dimension $\mathcal{X}-\operatorname{pd}_{R} M$ of M is defined as the infimum of n such that there exists an \mathcal{X}-resolution

$$
0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow M \rightarrow 0
$$

of M in $\operatorname{Mod} R$. Dually, the notions of an \mathcal{X}-coresolution and the \mathcal{X}-injective dimension $\mathcal{X}-\mathrm{-id}_{R} M$ of M are defined. In particular, we use $\operatorname{pd}_{R} M, \operatorname{fd}_{R} M$ and $\operatorname{id}_{R} M$ to denote the projective, flat and injective dimensions of M respectively. We also write

$$
\begin{aligned}
\mathcal{X}-\mathrm{pd}^{<\infty}(R) & :=\left\{M \in \operatorname{Mod} R \mid \mathcal{X}-\mathrm{pd}_{R} M<\infty\right\} \\
\mathcal{X}-\mathrm{id}^{<\infty}(R) & :=\left\{M \in \operatorname{Mod} R \mid \mathcal{X}-\mathrm{id}_{R} M<\infty\right\} .
\end{aligned}
$$

We first give the following
Definition 2.1 ([HW). Let R and S be rings. An (R - S)-bimodule ${ }_{R} \omega_{S}$ is called semidualizing if
(a1) ${ }_{R} \omega$ admits a degreewise finite R-projective resolution.
(a2) ω_{S} admits a degreewise finite S-projective resolution.
(b1) The homothety map ${ }_{R} R_{R} \xrightarrow{R^{\gamma}} \operatorname{Hom}_{S^{\circ p}}(\omega, \omega)$ is an isomorphism.
(b2) The homothety map ${ }_{S} S_{S} \xrightarrow{\gamma_{S}} \operatorname{Hom}_{R}(\omega, \omega)$ is an isomorphism.
(c1) $\operatorname{Ext}_{R}^{\geq 1}(\omega, \omega)=0$, that is, ${ }_{R} \omega$ is self-orthogonal.
(c2) $\operatorname{Ext}{\underset{S}{\text { op }}}_{\geq 1}(\omega, \omega)=0$, that is, ω_{S} is self-orthogonal.
Typical examples of semidualizing bimodules include the free module of rank one, dualizing modules over a Cohen-Macaulay local ring.

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule ${ }_{R} \omega_{S}$. For convenience, we write $(-)_{*}:=\operatorname{Hom}(\omega,-)$, and

$$
\begin{aligned}
{ }_{R} \omega^{\perp} & :=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{i \geq 1}(\omega, M)=0\right\}, \\
\omega_{S} & :=\left\{N \in \operatorname{Mod} S \mid \operatorname{Tor}_{i \geq 1}^{S}(\omega, N)=0\right\} .
\end{aligned}
$$

Following [HW, set

$$
\begin{aligned}
& \mathcal{F}_{\omega}(R):=\left\{\omega \otimes_{S} F \mid F \text { is flat in } \operatorname{Mod} S\right\}, \\
& \mathcal{P}_{\omega}(R):=\left\{\omega \otimes_{S} P \mid P \text { is projective in } \operatorname{Mod} S\right\}, \\
& \mathcal{I}_{\omega}(S):=\left\{I_{*} \mid I \text { is injective in } \operatorname{Mod} R\right\} .
\end{aligned}
$$

The modules in $\mathcal{F}_{\omega}(R), \mathcal{P}_{\omega}(R)$ and $\mathcal{I}_{\omega}(S)$ are called ω-flat, ω-projective and ω-injective respectively. Symmetrically, the classes of $\mathcal{F}_{\omega}\left(S^{\mathrm{op}}\right), \mathcal{P}_{\omega}\left(S^{\mathrm{op}}\right)$ and $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)$ are defined. Let $M \in \operatorname{Mod} R$ and $N \in \operatorname{Mod} S$. Then we have two canonical valuation homomorphisms:

$$
\theta_{M}: \omega \otimes_{S} M_{*} \rightarrow M
$$

defined by $\theta_{M}(x \otimes f)=f(x)$ for any $x \in \omega$ and $f \in M_{*}$, and

$$
\mu_{N}: N \rightarrow\left(\omega \otimes_{S} N\right)_{*}
$$

defined by $\mu_{N}(y)(x)=x \otimes y$ for any $y \in N$ and $x \in \omega$.
Definition 2.2 ($\left[\begin{array}{ll}\mathrm{HW}\end{array}\right)$.
(1) The Auslander class $\mathcal{A}_{\omega}(S)$ with respect to ω consists of all left S modules N satisfying the following conditions:
(A1) $N \in \omega_{S}{ }^{\top}$.
(A2) $\omega \otimes_{S} N \in{ }_{R} \omega^{\perp}$.
(A3) μ_{N} is an isomorphism in $\operatorname{Mod} S$.
(2) The Bass class $\mathcal{B}_{\omega}(R)$ with respect to ω consists of all left R-modules M satisfying the following conditions:
(B1) $M \in{ }_{R} \omega^{\perp}$.
(B2) $M_{*} \in \omega_{S}{ }^{\top}$.
(B3) θ_{M} is an isomorphism in $\operatorname{Mod} R$.
Let $\mathcal{I}(R)$ be the subcategory of Mod R consisting of all injective modules.
Lemma 2.3 ([TH3, Lemma 2.5]).
(1) $\mathcal{I}(R) \cup \mathcal{F}_{\omega}(R)-$ pd $^{<\infty}(R) \subseteq \mathcal{B}_{\omega}(R) \subseteq{ }_{R} \omega^{\perp}=\mathcal{P}_{\omega}(R)^{\perp}$.
(2) $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right) \subseteq{ }^{\perp} \mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)$ and $\mathcal{I}_{\omega}(S) \subseteq{ }^{\perp} \mathcal{I}_{\omega}(S)$.

Let $M \in \operatorname{Mod} R$. We use

$$
0 \rightarrow M \rightarrow I^{0}(M) \xrightarrow{f^{0}} I^{1}(M) \xrightarrow{f^{1}} \cdots \xrightarrow{f^{i-1}} I^{i}(M) \xrightarrow{f^{i}} \cdots
$$

to denote a minimal injective resolution of M.
Definition 2.4 ([TH] $]$. Let $M \in \operatorname{Mod} R$ and $n \geq 1$.
(1) $\operatorname{cTr}_{\omega} M:=\operatorname{Coker} f^{0}{ }_{*}$ is called the cotranspose of M with respect to ${ }_{R} \omega_{S}$.
(2) M is called n - ω-cotorsionfree if $\operatorname{Tor}_{1 \leq i \leq n}^{S}\left(\omega, \operatorname{cTr}_{\omega} M\right)=0$; and M is $\infty-\omega$-cotorsionfree if it is n - ω-cotorsionfree for all n. In particular, every module in $\operatorname{Mod} R$ is $0-\omega$-cotorsionfree.
We use $\mathfrak{c} \mathcal{T}(R)$ to denote the subcategory of $\operatorname{Mod} R$ consisting of all $\infty-\omega$-cotorsionfree modules.
3. Adjoint cotransposes of modules. Recall from E that a homomorphism $f: F \rightarrow N$ in $\operatorname{Mod} S$ with F flat is called a flat cover of N if $\operatorname{Hom}_{S}\left(F^{\prime}, f\right)$ is epic for any flat module F^{\prime} in $\operatorname{Mod} S$, and an endomorphism $h: F \rightarrow F$ is an automorphism whenever $f=f h$. Let $N \in \operatorname{Mod} S$. Bican, El Bashir and Enochs [BBE] proved that N has a flat cover. We use

$$
\cdots \xrightarrow{f_{n+1}} F_{n}(N) \xrightarrow{f_{n}} \cdots \xrightarrow{f_{2}} F_{1}(N) \xrightarrow{f_{1}} F_{0}(N) \xrightarrow{f_{0}} N \rightarrow 0
$$

to denote a minimal flat resolution of N in $\operatorname{Mod} S$, where each $F_{i}(N) \rightarrow \operatorname{Im} f_{i}$ is a flat cover of $\operatorname{Im} f_{i}$. Note that $\left(\omega \otimes_{S}-, \operatorname{Hom}_{R}(\omega,-)\right)$ is an adjoint pair. In view of Definition 2.4, we make the following

Definition 3.1. Let $N \in \operatorname{Mod} S$ and $n \geq 1$.
(1) $\operatorname{acTr}_{\omega} N:=\operatorname{Ker}\left(1_{\omega} \otimes f_{1}\right)$ is called the adjoint cotranspose of N with respect to ${ }_{R} \omega_{S}$.
(2) N is called adjoint n - ω-cotorsionfree if $\operatorname{Ext}_{R}^{1 \leq i \leq n}\left(\omega, \operatorname{acTr}_{\omega} N\right)=0$; and N is adjoint ∞ - ω-cotorsionfree if it is adjoint n - ω-cotorsionfree for all n. In particular, every left S-module is adjoint $0-\omega$-cotorsionfree.

Let ac $\mathcal{T}(S)$ denote the subcategory of $\operatorname{Mod} S$ consisting of all adjoint $\infty-\omega$-cotorsionfree modules. The following result is an adjoint counterpart of TH1, Proposition 3.2].

Proposition 3.2. Let $N \in \operatorname{Mod} S$. Then there exists an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{1}\left(\omega, \operatorname{acTr}_{\omega} N\right) \rightarrow N \xrightarrow{\mu_{N}}\left(\omega \otimes_{S} N\right)_{*} \rightarrow \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} N\right) \rightarrow 0
$$

Proof. Let $N \in \operatorname{Mod} S$. Then by [HW, Lemma 4.1], both $F_{0}(N)$ and $F_{1}(N)$ are in $\mathcal{A}_{\omega}(S)$, and so both $\mu_{F_{0}(N)}$ and $\mu_{F_{1}(N)}$ are isomorphisms. We also have an exact sequence

$$
\omega \otimes_{S} F_{1}(N) \xrightarrow{1_{\omega} \otimes f_{1}} \omega \otimes_{S} F_{0}(N) \xrightarrow{1_{\omega} \otimes f_{0}} \omega \otimes_{S} N \rightarrow 0
$$

in $\operatorname{Mod} R$ with both $\omega \otimes_{S} F_{1}(N)$ and $\omega \otimes_{S} F_{0}(N)$ in $\mathcal{F}_{\omega}(R)$. By Lemma 2.3(1), both $\omega \otimes_{S} F_{0}(N)$ and $\omega \otimes_{S} F_{1}(N)$ are in ω^{\perp}. Now we get the desired exact sequence from [TH2, Proposition 6.7].

By Proposition 3.2 and the definition of adjoint n - ω-cotorsionfree modules, we immediately have

Corollary 3.3. Let $N \in \operatorname{Mod} S$.
(1) N is adjoint $1-\omega$-cotorsionfree if and only if μ_{N} is a monomorphism.
(2) N is adjoint $2-\omega$-cotorsionfree if and only if μ_{N} is an isomorphism.
(3) For $n \geq 3, N$ is adjoint n - ω-cotorsionfree if and only if μ_{N} is an isomorphism and $\operatorname{Ext}_{R}^{1 \leq i \leq n-2}\left(\omega, \omega \otimes_{S} N\right)=0$.
The following result gives an alternative description of the Auslander class, which is the adjoint counterpart of a characterization of the Bass class [TH1, Theorem 3.9].

Proposition 3.4. $\mathcal{A}_{\omega}(S)=\operatorname{ac} \mathcal{T}(S) \cap \omega_{S}{ }^{\top}$.
Proof. This follows from Corollary 3.3(3).
Let $\mathcal{F}(S)$ denote the subcategory of $\operatorname{Mod} S$ consisting of all flat modules. Compare the following result with Lemma 2.3(1).

Corollary 3.5.
(1) $\mathcal{F}(S) \cup \mathcal{I}_{\omega}(S)-\mathrm{id}^{<\infty}(S) \subseteq \operatorname{ac} \mathcal{T}(S)$.
(2) $\mathcal{F}(S) \cup \mathcal{I}_{\omega}(S)-\mathrm{id}^{<\infty}(S) \subseteq \mathcal{A}_{\omega}(S) \subseteq \omega_{S}{ }^{\top}={ }^{\perp} \mathcal{I}_{\omega}(S)$.

Proof. By [HW, Lemma 4.1 and Corollary 6.1] and Proposition 3.4, we have

$$
\mathcal{F}(S) \cup \mathcal{I}_{\omega}(S)-\operatorname{id}^{<\infty}(S) \subseteq \mathcal{A}_{\omega}(S)=\operatorname{ac} \mathcal{T}(S) \cap \omega_{S}^{\top},
$$

and the first assertion follows.
By [GT, Lemma 2.16(b)], for any injective module $I \in \operatorname{Mod} R$ and $i \geq 1$, we have the following isomorphism of functors:

$$
\operatorname{Hom}_{R}\left(\operatorname{Tor}_{i}^{S}(\omega,-), I\right) \cong \operatorname{Ext}_{S}^{i}\left(-, I_{*}\right) .
$$

Now by the definition of $\mathcal{I}_{\omega}(S)$, we have $\omega_{S}{ }^{\top}={ }^{\perp} \mathcal{I}_{\omega}(S)$, and the second assertion follows.

Let

$$
\mathbb{N}:=\cdots \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow \cdots
$$

be a sequence in $\operatorname{Mod} S$. Then \mathbb{N} is called $\left(\omega \otimes_{S}-\right)$-exact if $\omega \otimes_{S} \mathbb{N}$ is exact. We have the following easy observation.

Observation. A sequence \mathbb{S} in $\operatorname{Mod} S$ is $\left(\omega \otimes_{S}-\right)$-exact if and only if it is $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact.

Proof. By the adjoint isomorphism theorem, for any injective module $I \in \operatorname{Mod} R$ we have the following isomorphism of functors:

$$
\operatorname{Hom}_{R}\left(\omega \otimes_{S}-, I\right) \cong \operatorname{Hom}_{S}\left(-, I_{*}\right)
$$

Now the assertion follows directly from the definition of $\mathcal{I}_{\omega}(S)$.
The following result is an adjoint counterpart of [TH1, Proposition 3.5].
Proposition 3.6. Let $n \geq 1$, and let

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

be an $\left(\omega \otimes_{S}-\right)$-exact (equivalently $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact) exact sequence in $\operatorname{Mod} S$ with N adjoint n - ω-cotorsionfree. Then L is adjoint n - ω-cotorsionfree if and only if so is M.

Proof. By assumption we have an exact sequence

$$
0 \rightarrow \omega \otimes_{S} L \rightarrow \omega \otimes_{S} M \rightarrow \omega \otimes_{S} N \rightarrow 0
$$

in $\operatorname{Mod} R$. Then we get the commutative diagram with exact rows

and the exact sequence

$$
\begin{aligned}
& \operatorname{Ext}_{R}^{i-1}\left(\omega, \omega \otimes_{S} N\right) \rightarrow \operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} L\right) \rightarrow \operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} M\right) \\
& \rightarrow \operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} N\right)
\end{aligned}
$$

for any $i \geq 2$. Now the assertion follows easily from Corollary 3.3 and the snake lemma.

Next, we will give an equivalent characterization of adjoint n - ω-cotorsionfree modules in terms of special $\mathcal{I}_{\omega}(S)$-coresolutions of modules. First we prove

Lemma 3.7. Let $N \in \operatorname{Mod} S$.

(1) N is adjoint 1- ω-cotorsionfree if and only if there exists an $\left(\omega \otimes_{S}-\right)$ exact (equivalently $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact) exact sequence

$$
0 \rightarrow N \rightarrow U^{0}
$$

in $\operatorname{Mod} S$ with $U^{0} \in \mathcal{I}_{\omega}(S)$.
(2) M is adjoint $2-\omega$-cotorsionfree if and only if there exists an $\left(\omega \otimes_{S}-\right)$ exact (equivalently $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact) exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1}
$$

in $\operatorname{Mod} S$ with $U^{0}, U^{1} \in \mathcal{I}_{\omega}(S)$.
Proof. (1) Let $N \in \operatorname{Mod} S$ be adjoint $1-\omega$-cotorsionfree. Then μ_{N} is monic by Corollary 3.3(1). Since there exists a monomorphism f : $\omega \otimes_{S} N \nrightarrow I^{0}$ in $\operatorname{Mod} R$ with I^{0} injective, we get a monomorphism $f_{*}:\left(\omega \otimes_{S} N\right)_{*} \mapsto I^{0}{ }_{*}$ in $\operatorname{Mod} S$ with $I^{0}{ }_{*} \in \mathcal{I}_{\omega}(S)$. So we have a monomorphism $f_{*} \cdot \mu_{N}: N \rightharpoondown I^{0}$ in $\operatorname{Mod} S$. Then by [HW, Proposition 5.3], N admits a monic $\mathcal{I}_{\omega}(S)$-preenvelope

$$
g: N \multimap I_{*}
$$

with I injective in $\operatorname{Mod} R$. Take E to be an injective cogenerator in $\operatorname{Mod} R$. Then $\operatorname{Ext}_{S}^{1}\left(\operatorname{Coker} g, E_{*}\right)=0$ by Lemma 2.3(2). So, by [GT, Lemma 2.16(d)],
$\operatorname{Hom}_{R}\left(\operatorname{Tor}_{1}^{S}(\omega, \operatorname{Coker} g), E\right) \cong \operatorname{Ext}_{S}^{1}\left(\operatorname{Coker} g, E_{*}\right)=0$.
Thus $\operatorname{Tor}_{1}^{S}(\omega, \operatorname{Coker} g)=0$ and $1_{\omega} \otimes g$ is monic.
Conversely, assume that there exists an $\left(\omega \otimes_{S}-\right)$-exact exact sequence

$$
0 \rightarrow N \rightarrow U^{0}
$$

in $\operatorname{Mod} S$ with $U^{0} \in \mathcal{I}_{\omega}(S)$. Because $\mu_{U_{0}}$ is an isomorphism by Corollary $3.5(2)$, from the commutative diagram with exact rows

we see that μ_{N} is monic and N is adjoint $1-\omega$-cotorsionfree.
(2) Let $N \in \operatorname{Mod} S$ be adjoint 2 - ω-cotorsionfree. By (1), there exists an ($\omega \otimes_{S}$-)-exact exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow N^{1} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $U^{0} \in \mathcal{I}_{\omega}(S)$. Then we have the following commutative diagram with exact rows:

Because both μ_{N} and $\mu_{U 0}$ are isomorphisms by assumption and Corollary $3.5(2)$, the snake lemma shows that $\mu_{N^{1}}$ is monic, and hence N^{1} is adjoint $1-\omega$-cotorsionfree by Corollary 3.3(1). It follows from (1) that there exists an $\left(\omega \otimes_{S}-\right)$-exact exact sequence

$$
0 \rightarrow N^{1} \rightarrow U^{1}
$$

in $\operatorname{Mod} S$ with $U^{1} \in \mathcal{I}_{\omega}(S)$. Then the spliced sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1}
$$

is as desired.
Conversely, let $0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1}$ be an $\left(\omega \otimes_{S}-\right)$-exact exact sequence in $\operatorname{Mod} S$ with $U^{0}, U^{1} \in \mathcal{I}_{\omega}(S)$. Then $N^{1}:=\operatorname{Im}\left(U^{0} \rightarrow U^{1}\right)$ is adjoint $1-\omega$-cotorsionfree by (1), and so $\mu_{N^{1}}$ is monic by Corollary 3.3(1). Now the diagram (3.1) above implies that μ_{N} is an isomorphism. Thus N is adjoint 2 - ω-cotorsionfree by Corollary 3.3(2).

By induction we get the following result, which is an adjoint counterpart of [TH1, Proposition 3.7].

Proposition 3.8. Let $N \in \operatorname{Mod} S$ and $n \geq 1$. Then N is adjoint n -ω-cotorsionfree if and only if there exists an $\left(\omega \otimes_{S}-\right)$-exact (equivalently $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact $)$ exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow \cdots \rightarrow U^{n-1} \rightarrow U^{n}
$$

in $\operatorname{Mod} S$ with all $U^{i} \in \mathcal{I}_{\omega}(S)$.
Proof. We proceed by induction on n. The case of $n \leq 2$ follows from Lemma 3.7.

Now suppose that $n \geq 3$ and $N \in \operatorname{Mod} S$ is adjoint n - ω-cotorsionfree. Then μ_{N} is an isomorphism and $\operatorname{Ext}_{R}^{1 \leq i \leq n-2}\left(\omega, \omega \otimes_{S} N\right)=0$ by Corollary 3.3(3). In addition, by Lemma 3.7, there exists an exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow N^{1} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $U^{0} \in \mathcal{I}_{\omega}(S)$ such that

$$
0 \rightarrow \omega \otimes_{S} N \rightarrow \omega \otimes_{S} U^{0} \rightarrow \omega \otimes_{S} N^{1} \rightarrow 0
$$

in $\operatorname{Mod} R$ is also exact with $\omega \otimes_{S} U^{0}$ injective. Then

$$
\operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} N^{1}\right) \cong \operatorname{Ext}_{R}^{i+1}\left(\omega, \omega \otimes_{S} N\right)=0
$$

for $1 \leq i \leq n-3$, and we have the following commutative diagram with exact rows:

Because both μ_{N} and $\mu_{U^{0}}$ are isomorphisms, so is $\mu_{N^{1}}$. Thus N^{1} is adjoint $(n-1)-\omega$-cotorsionfree by Corollary 3.3 . Now the assertion follows from the induction hypothesis.

Conversely, assume that there exists an $\left(\omega \otimes_{S}-\right)$-exact exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow \cdots \rightarrow U^{n-1} \rightarrow U^{n}
$$

in $\operatorname{Mod} S$ with $U^{i} \in \mathcal{I}_{\omega}(S)$. Set $N^{1}=\operatorname{Im}\left(U^{0} \rightarrow U^{1}\right)$. Then

$$
0 \rightarrow \omega \otimes_{S} N \rightarrow \omega \otimes_{S} U^{0} \rightarrow \omega \otimes_{S} N^{1} \rightarrow 0
$$

in $\operatorname{Mod} R$ is exact with $\omega \otimes_{S} U^{0}$ injective. Because N^{1} is adjoint $(n-1)$ -ω-cotorsionfree by the induction hypothesis, $\mu_{N^{1}}$ is an isomorphism and $\operatorname{Ext}_{R}^{1 \leq i \leq n-3}\left(\omega, \omega \otimes_{S} N^{1}\right)=0$ by Corollary 3.3.

Consider the following commutative diagram with the top row exact:

Because $\mu_{U^{0}}$ is an isomorphism, so is μ_{N}, and the bottom row in the above diagram is exact. So $\operatorname{Ext}_{R}^{1}\left(\omega, \omega \otimes_{S} N\right)=0$ and $\operatorname{Ext}_{R}^{i+1}\left(\omega, \omega \otimes_{S} N\right) \cong$ $\operatorname{Ext}_{R}^{i}\left(\omega, \omega \otimes_{S} N^{1}\right)=0$ for $1 \leq i \leq n-3$, that is, $\operatorname{Ext}_{R}^{1 \leq i \leq n-2}\left(\omega, \omega \otimes_{S} N\right)=0$. Thus N is adjoint n - ω-cotorsionfree by Corollary $3.3(3)$.

The following result is an immediate consequence of Proposition 3.8.
Corollary 3.9. For $N \in \operatorname{Mod} S, N \in \operatorname{ac} \mathcal{T}(S)$ if and only if there exists an $\left(\omega \otimes_{S}-\right)$-exact (equivalently $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact) exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1} \rightarrow U^{2} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all $U^{i} \in \mathcal{I}_{\omega}(S)$. In this case, $\operatorname{Tor}_{1}^{S}\left(\omega, N^{i}\right)=0$, where $N^{i}=$ $\operatorname{Im}\left(U^{i-1} \rightarrow U^{i}\right)$ for any $i \geq 1$.

As an adjoint counterpart of [TH2, Proposition 3.1], we have

Proposition 3.10.
(1) If $\operatorname{pd}_{S_{\text {Op }}} \omega<\infty$, then $\operatorname{ac} \mathcal{T}(S) \subseteq \omega_{S}{ }^{\top}$.
(2) If $\operatorname{pd}_{R} \omega<\infty$, then $\omega_{S}{ }^{\top} \subseteq \operatorname{ac} \mathcal{T}(S)$.

Proof. (1) Let $N \in \operatorname{ac} \mathcal{T}(S)$. By Corollary 3.9, there exists an exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1} \rightarrow U^{2} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all $U^{i} \in \mathcal{I}_{\omega}(S)$. Set $N^{i}=\operatorname{Im}\left(U^{i-1} \rightarrow U^{i}\right)$ for any $i \geq 1$. Note that $U^{i} \in \omega_{S}^{\top}$ for any $i \geq 0$ by Corollary 3.5(2). So, if $\operatorname{pd}_{\text {Sop }} \omega=n(<\infty)$, then $\operatorname{Tor}_{i}^{S}(\omega, N) \cong \operatorname{Tor}_{i+n}^{S}\left(\omega, N^{n}\right)=0$ for any $i \geq 1$. Thus $N \in \omega_{S}{ }^{\top}$.
(2) Let $\operatorname{pd}_{R} \omega=n(<\infty)$ and $N \in \omega_{S}{ }^{\top}$. Set $\Omega_{0}(N)=N$ and $\Omega_{i}(N)=$ $\operatorname{Im}\left(F_{i}(N) \rightarrow F_{i-1}(N)\right)$ for any $i \geq 1$. Then we get an exact sequence

$$
0 \rightarrow \omega \otimes_{S} \Omega_{i+1}(N) \rightarrow \omega \otimes_{S} F_{i}(N) \rightarrow \omega \otimes_{S} \Omega_{i}(N) \rightarrow 0
$$

in $\operatorname{Mod} R$ for $i \geq 0$. It follows from Lemma 2.3(1) that

$$
\operatorname{Ext}_{R}^{j}\left(\omega, \omega \otimes_{S} \Omega_{i}(N)\right) \cong \operatorname{Ext}_{R}^{j+n}\left(\omega, \omega \otimes_{S} \Omega_{i+n}(N)\right)=0
$$

for any $i \geq 0$ and $j \geq 1$; in particular, $\operatorname{Ext}_{R}^{1}\left(\omega, \omega \otimes_{S} \Omega_{2}(N)\right)=0$. Thus we get the following diagram with exact rows:

Because $\mu_{F_{1}(N)}$ is an isomorphism by Corollary 3.5(2), $\mu_{\Omega_{1}(N)}$ is an epimorphism. But $\Omega_{1}(N)$ is a submodule of $F_{0}(N)$, so $\mu_{\Omega_{1}(N)}$ is a monomorphism and hence an isomorphism. Then $\Omega_{1}(N)$ is adjoint $2-\omega$-cotorsionfree by Corollary 3.3(2). On the other hand, because $\operatorname{Ext}_{R}^{1}\left(\omega, \omega \otimes_{S} \Omega_{1}(N)\right)=0$ by the above argument, we have the following commutative diagram with exact rows:

Since $\mu_{F_{0}(N)}$ is an isomorphism, the snake lemma shows that so is μ_{N} and N is 2 - ω-cotorsionfree. So by Lemma 3.7, there exists an ($\omega \otimes_{S}-$)-exact exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow N^{1} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $U^{0} \in \mathcal{I}_{\omega}(S)$. Then $N^{1} \in \omega_{S}{ }^{\top}$. Now by an argument similar to the above, we get an $\left(\omega \otimes_{S}-\right)$-exact exact sequence

$$
0 \rightarrow N^{1} \rightarrow U^{1} \rightarrow N^{2} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $U^{1} \in \mathcal{I}_{\omega}(S)$ and $N^{2} \in \omega_{S}{ }^{\top}$. Continuing this procedure, we get an $\left(\omega \otimes_{S}-\right)$-exact exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow \cdots \rightarrow U^{n-1} \rightarrow U^{n} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all U^{i} in $\mathcal{I}_{\omega}(S)$. Then Corollary 3.9 shows that $N \in \operatorname{ac} \mathcal{T}(S)$.
Summarizing Proposition 3.4, Corollary 3.9 and Proposition 3.10, we have the following result, in which the first assertion means that EH, Proposition 3.6] still holds true without assuming the given ring is commutative Noetherian.

Theorem 3.11.
(1) $\mathcal{A}_{\omega}(S)=\operatorname{ac} \mathcal{T}(S) \cap \omega_{S}{ }^{\top}=\left\{N \in \operatorname{Mod} S \mid\right.$ there exists an $\left(\omega \otimes_{S}-\right)$-exact (equivalently $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact) exact sequence

$$
\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow U^{0} \rightarrow U^{1} \rightarrow U^{2} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all F_{i} in $\mathcal{F}(S)$, all U^{i} in $\mathcal{I}_{\omega}(S)$ and $\left.N \cong \operatorname{Im}\left(F_{0} \rightarrow U^{0}\right)\right\}$.
(2) If $\operatorname{pd}_{S^{\text {op }}} \omega<\infty$, then $\mathcal{A}_{\omega}(S)=\operatorname{ac} \mathcal{T}(S)$.
(3) If $\operatorname{pd}_{R} \omega<\infty$, then $\mathcal{A}_{\omega}(S)=\omega_{S}{ }^{\top}$.

The following result characterizes when $\operatorname{ac} \mathcal{T}(S)$ and $c \mathcal{T}(R)$ are equivalent under Foxby equivalence.

Theorem 3.12. The following statements are equivalent:
(1) There exists an equivalence of categories

$$
\operatorname{ac} \mathcal{T}(S) \frac{\omega \otimes_{S^{-}}}{\underset{\operatorname{Hom}_{R}(\omega,-)}{<}} \mathrm{c} \mathcal{T}(R) .
$$

(2) $\operatorname{ac} \mathcal{T}(S)=\mathcal{A}_{\omega}(S)$ and $c \mathcal{T}(R)=\mathcal{B}_{\omega}(R)$.

Proof. (2) \Rightarrow (1) follows from [HW, Theorem 5.1].
$(1) \Rightarrow(2)$. By Theorem $3.11(1)$ and [TH1, Theorem 3.9], it suffices to prove that $\operatorname{ac} \mathcal{T}(S) \subseteq \mathcal{A}_{\omega}(S)$ and $\mathfrak{c} \mathcal{T}(R) \subseteq \mathcal{B}_{\omega}(R)$.

Let $N \in \operatorname{ac} \mathcal{T}(S)$. Then $N \cong\left(\omega \otimes_{S} N\right)_{*}$. By Corollary 3.9, there exists an $\left(\omega \otimes_{S}-\right)$-exact exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1} \rightarrow U^{2} \rightarrow \cdots \tag{3.2}
\end{equation*}
$$

in $\operatorname{Mod} S$ with all $U^{i} \in \mathcal{I}_{\omega}(S)$ and $\operatorname{Tor}_{1}^{S}\left(\omega, N^{i}\right)=0$, where $N^{i}=\operatorname{Im}\left(U^{i-1} \rightarrow\right.$ U^{i}) for any $i \geq 1$. Applying the functor $\omega \otimes_{S}-$ to (3.2) yields an exact sequence

$$
\begin{equation*}
0 \rightarrow \omega \otimes_{S} N \rightarrow \omega \otimes_{S} U^{0} \rightarrow \omega \otimes_{S} U^{1} \rightarrow \omega \otimes_{S} U^{2} \rightarrow \cdots \tag{3.3}
\end{equation*}
$$

in $\operatorname{Mod} R$. All $\omega \otimes_{S} U^{i}$ are injective in $\operatorname{Mod} R$ by HW, Lemma 5.1(c)]. Because the functor $\operatorname{Hom}_{R}(\omega,-)$ sends (3.3) to (3.2), it is easy to see that $N^{2} \cong \operatorname{cTr}_{\omega}\left(\omega \otimes_{S} N\right) \oplus U$ for some $U \in \mathcal{I}_{\omega}(S)$. Note that $\omega \otimes_{S} N \in \mathrm{c} \mathcal{T}(R)$ and $U \in \omega_{S}{ }^{\top}$ by assumption and Corollary 3.5(2). So $\operatorname{cTr}_{\omega}\left(\omega \otimes_{S} N\right) \in \omega_{S}{ }^{\top}$
and $N^{2} \in \omega_{S}{ }^{\top}$, and hence $N \in \omega_{S}{ }^{\top}$. Now it follows from Theorem 3.11(1) that $N \in \mathcal{A}_{\omega}(S)$ and $\operatorname{ac} \mathcal{T}(S) \subseteq \mathcal{A}_{\omega}(S)$. Similarly, $c \mathcal{T}(R) \subseteq \mathcal{B}_{\omega}(R)$

The following result shows that any module in $\operatorname{Mod} S$ with finite ac $\mathcal{T}(S)$ projective dimension is isomorphic to a kernel (resp. a cokernel) of a homomorphism from a module with finite $\mathcal{I}_{\omega}(S)$-projective dimension to an adjoint ∞ - ω-cotorsionfree module.

Theorem 3.13. Let $N \in \operatorname{Mod} S$ with $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq n(<\infty)$. Then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow U_{N} \rightarrow V_{N} \rightarrow U^{N} \rightarrow V^{N} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

in $\operatorname{Mod} S$ such that $N \cong \operatorname{Im}\left(V_{N} \rightarrow U^{N}\right)$ and the following conditions are satisfied:
(1) $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} U^{N} \leq n, V^{N} \in \operatorname{ac} \mathcal{T}(S)$ and

$$
0 \rightarrow N \rightarrow U^{N} \rightarrow V^{N} \rightarrow 0
$$

is exact and $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact (equivalently $\left(\omega \otimes_{S}-\right)$-exact).
(2) $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} U_{N} \leq n-1$ and $V_{N} \in \operatorname{ac} \mathcal{T}(S)$.

Proof. By Proposition 3.6 and Corollary 3.9, ac $\mathcal{T}(S)$ is an $\mathcal{I}_{\omega}(S)$ coresolving subcategory of $\operatorname{Mod} S$ admitting an $\mathcal{I}_{\omega}(S)$-coproper cogenerator $\mathcal{I}_{\omega}(S)$ in the sense of [H]. Then by [H, Corollary 4.5], we have a $\operatorname{Hom}_{S}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact (equivalently $\left(\omega \otimes_{S}-\right.$)-exact) exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow U^{N} \rightarrow V^{N} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

in $\operatorname{Mod} S$ such that $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} U^{N} \leq n$ and $V^{N} \in \operatorname{ac} \mathcal{T}(S)$. On the other hand, by [H, Theorem 4.7] we have an exact sequence

$$
\begin{equation*}
0 \rightarrow U_{N} \rightarrow V_{N} \rightarrow N \rightarrow 0 \tag{3.6}
\end{equation*}
$$

in $\operatorname{Mod} S$ such that $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} U_{N} \leq n-1$ and $V_{N} \in \operatorname{ac} \mathcal{T}(S)$. Now splicing (3.5) and (3.6) we get the desired exact sequence (3.4).

The following result, as an adjoint counterpart of Theorem 3.13, shows that any module in $\operatorname{Mod} R$ with finite $\mathrm{c} \mathcal{T}(R)$-injective dimension is isomorphic to a kernel (resp. a cokernel) of a homomorphism from an $\infty-\omega$ cotorsionfree module to a module with finite $\mathcal{P}_{\omega}(R)$-injective dimension.

Theorem 3.14. Let $M \in \operatorname{Mod} R$ with $\mathrm{c} \mathcal{T}(R)-\operatorname{id}_{R} M \leq n(<\infty)$. Then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow Y_{M} \rightarrow X_{M} \rightarrow Y^{M} \rightarrow X^{M} \rightarrow 0 \tag{3.7}
\end{equation*}
$$

in $\operatorname{Mod} R$ such that $M \cong \operatorname{Im}\left(X_{M} \rightarrow Y^{M}\right)$ and the following conditions are satisfied:
(1) $\mathcal{P}_{\omega}(R)-\operatorname{did}_{R} X_{M} \leq n, Y_{M} \in c \mathcal{T}(R)$ and

$$
0 \rightarrow Y_{M} \rightarrow X_{M} \rightarrow M \rightarrow 0
$$

is exact and $\operatorname{Hom}_{R}\left(\mathcal{P}_{\omega}(R),-\right)$-exact.
(2) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} X^{M} \leq n-1$ and $Y^{M} \in \mathrm{c} \mathcal{T}(R)$.

Proof. By TH1, Propositions 3.5 and 3.7], $c \mathcal{T}(R)$ is a $\mathcal{P}_{\omega}(R)$-resolving subcategory of $\operatorname{Mod} R$ admitting a $\mathcal{P}_{\omega}(R)$-proper generator $\mathcal{P}_{\omega}(R)$ in the sense of [H. Then by [H, Corollary 3.5], we have a $\operatorname{Hom}_{R}\left(\mathcal{P}_{\omega}(R),-\right)$-exact exact sequence

$$
\begin{equation*}
0 \rightarrow Y_{M} \rightarrow X_{M} \rightarrow M \rightarrow 0 \tag{3.8}
\end{equation*}
$$

in $\operatorname{Mod} R$ such that $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} X_{M} \leq n$ and $Y_{M} \in \mathfrak{c} \mathcal{T}(R)$. On the other hand, by [H , Theorem 3.7] we have an exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow Y^{M} \rightarrow X^{M} \rightarrow 0 \tag{3.9}
\end{equation*}
$$

in $\operatorname{Mod} R$ such that $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} X^{M} \leq n-1$ and $Y^{M} \in c \mathcal{T}(R)$. Now splicing (3.8) and (3.9) we get the desired exact sequence (3.7).

We end this section with a non-trivial example of adjoint ∞ - ω-cotorsionfree modules. The following example is due to Jorgensen and Şega [JS].

Example 3.15. Let k be a field which is not algebraic over a finite field and let $\alpha \in k$ be an element of infinite multiplicative order. Suppose that $R_{\alpha}=k[V, X, Y, Z] / I_{\alpha}$, where $I_{\alpha}=\left\langle V^{2}, Z^{2}, X Y, V X+\alpha X Z, V Y+Y Z\right.$, $\left.V X+Y^{2}, V Y-X^{2}\right\rangle$. Let m denote the unique maximal ideal of the local artinian ring $R_{\alpha}, \omega=I^{0}\left(R_{\alpha} / m\right)$ and $R_{\alpha}{ }^{2}=R_{\alpha} \oplus R_{\alpha}$. For $i \leq 0$, let $d_{i}: R_{\alpha}{ }^{2} \rightarrow R_{\alpha}{ }^{2}$ denote the map given by the matrix

$$
\left(\begin{array}{cc}
v & \alpha^{-i} x \\
y & z
\end{array}\right)
$$

where v, x, y, z denote the residue classes of the variables modulo I_{α} respectively. Set $M=\operatorname{Coker} d_{-1}$. Then M is an adjoint ∞ - ω-cotorsionfree module, but $M \notin \mathcal{A}_{\omega}\left(R_{\alpha}\right)$.

Proof. It follows from [JS, Lemma 1.4] that there exists an exact sequence

$$
\mathbf{A}: 0 \rightarrow M \rightarrow R_{\alpha}{ }^{2} \xrightarrow{d_{-3}} R_{\alpha}{ }^{2} \xrightarrow{d_{-4}} \cdots .
$$

Since R_{α} is a commutative artinian local ring, ω is a semidualizing module and $\mathcal{I}_{\omega}\left(R_{\alpha}\right)=\operatorname{Add}_{R_{\alpha}} R_{\alpha}$. This implies that $R_{\alpha}{ }^{2} \in \mathcal{I}_{\omega}\left(R_{\alpha}\right)$. By [JS, Lemma 1.5], the sequence $\operatorname{Hom}_{R_{\alpha}}\left(\mathbf{A}, R_{\alpha}\right)$ remains exact and $M \notin \perp_{R_{\alpha}} R_{\alpha}$. By Corollary $3.9, M$ is an adjoint $\infty-\omega$-cotorsionfree module. Note that ω is an injective cogenerator for $\operatorname{Mod} R_{\alpha}$. So by [CE, Proposition VI.5.3], we have

$$
\operatorname{Tor}_{i}^{R_{\alpha}}(\omega, M) \cong \operatorname{Tor}_{i}^{R_{\alpha}}\left(\operatorname{Hom}_{R_{\alpha}}\left(R_{\alpha}, \omega\right), M\right) \cong \operatorname{Hom}_{R_{\alpha}}\left(\operatorname{Ext}_{R_{\alpha}}^{i}\left(M, R_{\alpha}\right), \omega\right)
$$

for any $i \geq 0$. Thus $M \notin \omega_{R_{\alpha}}{ }^{\top}$, and therefore $M \notin \mathcal{A}_{\omega}\left(R_{\alpha}\right)$ by Theorem 3.11(1).

Remark 3.16. By Theorem 3.12, the categories ac $\mathcal{T}(R)$ and $\mathrm{c} \mathcal{T}(R)$ are not equivalent under Foxby equivalence when $R=R_{\alpha}$ is the ring of Example 3.15 and ω is the semidualizing R-module given in Example 3.15.
4. Finiteness of $\mathrm{pd}_{R} \omega$ and $\mathrm{pd}_{S_{\text {op }}} \omega$. As applications of Theorems 3.13 and 3.14 , in this section we will characterize when $\operatorname{pd}_{R} \omega=\operatorname{pd}_{S^{\text {op }}} \omega<\infty$ in terms of the properties of the (adjoint) $\infty-\omega$-cotorsionfree dimensions of modules. We begin with the following result, which was proved by Wakamatsu [W, Proposition 7] when R and S are artin algebras.

Proposition 4.1. If $\operatorname{pd}_{R} \omega<\infty$ and $\operatorname{pd}_{\text {Sop }} \omega<\infty$, then $\operatorname{pd}_{R} \omega=$ $\operatorname{pd}_{S_{\text {ор }}} \omega$.

Proof. Let $\operatorname{pd}_{R} \omega=m<\infty$ and $\operatorname{pd}_{S_{\text {op }}} \omega=n<\infty$. It is easy to see that $\operatorname{pd}_{R} \omega=\operatorname{add} \omega_{S}$-id ${ }_{S \text { op }} S$ and $\operatorname{pd}_{S \text { op }} \omega=\operatorname{add}_{R} \omega-\operatorname{id}_{R} R$. So we have an exact sequence

$$
0 \rightarrow R \rightarrow C^{0} \rightarrow C^{1} \rightarrow \cdots \rightarrow C^{n} \rightarrow 0
$$

in $\operatorname{Mod} R$ with all C^{i} in $\operatorname{add}_{R} \omega$. Set $K^{i}=\operatorname{Ker}\left(C^{i} \rightarrow C^{i+1}\right)$ for any $0 \leq$ $i \leq n-1$. If $m<n$, then $\operatorname{Ext}_{R}^{1}\left(\omega, K^{n-1}\right) \cong \operatorname{Ext}_{R}^{2}\left(\omega, K^{n-2}\right) \cong \ldots \cong$ $\operatorname{Ext}_{R}^{m+1}\left(\omega, K^{n-m-1}\right)=0$. So the exact sequence

$$
0 \rightarrow K^{n-1} \rightarrow C^{n-1} \rightarrow C^{n} \rightarrow 0
$$

splits and K^{n-1} is isomorphic to a direct summand of C^{n-1}. This implies that $K^{n-1} \in \operatorname{add}_{R} \omega$ and $\operatorname{add}_{R} \omega-\operatorname{id}_{R} R \leq n-1$, which is a contradiction. So $m \geq n$. Similarly, $n \geq m$.

The aim of this section is to prove the following result.
Theorem 4.2. The following statements are equivalent for any $n \geq 0$:
(1) $\operatorname{pd}_{R} \omega=\operatorname{pd}_{\text {Sop }} \omega \leq n$.
(2) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} R=\mathcal{P}_{\omega}\left(S^{\text {op }}\right)-\operatorname{id}_{S_{\text {Op }}} S \leq n$.
(3) $\mathcal{B}_{\omega}(R)-\operatorname{id}_{R} R=\mathcal{B}_{\omega}\left(S^{\mathrm{op}}\right)-\mathrm{id}_{S \text { op }} S \leq n$.
(4) $c \mathcal{T}(R)-\operatorname{id}_{R} R=c \mathcal{T}\left(S^{\text {op }}\right)-\operatorname{idd}_{S \text { op }} S \leq n$.
(5) $\mathcal{B}_{\omega}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \operatorname{Mod} R$, and $\mathcal{B}_{\omega}\left(S^{\text {op }}\right)-\operatorname{idd}_{S^{\text {op }}} N \leq n$ for any $N \in \operatorname{Mod} S^{\text {op }}$.
(6) $\mathcal{B}_{\omega}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \bmod R$, and $\mathcal{B}_{\omega}\left(S^{\text {op }}\right)-\operatorname{idd}_{S^{\text {op }}} N \leq n$ for any $N \in \bmod S^{\text {op }}$.
(7) $\mathfrak{c} \mathcal{T}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \operatorname{Mod} R$, and $c \mathcal{T}\left(S^{\text {op }}\right)-\operatorname{idd}_{S^{\text {op }}} N \leq n$ for any $N \in \operatorname{Mod} S^{\text {op }}$.
(8) $c \mathcal{T}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \bmod R$, and $c \mathcal{T}\left(S^{\text {op }}\right)-\operatorname{idd}_{S \text { op }} N \leq n$ for any $N \in \bmod S^{\text {op }}$.
(9) $R^{\omega^{\perp}}-\mathrm{id}_{R} M \leq n$ for any $M \in \operatorname{Mod} R$, and $\omega_{S}{ }^{\perp}-\mathrm{id}_{S_{\text {op }}} N \leq n$ for any $N \in \operatorname{Mod} S^{\mathrm{op}}$.
(10) ${ }_{R} \omega^{\perp}-\operatorname{id}_{R} M \leq n$ for any $M \in \bmod R$, and $\omega_{S}{ }^{\perp}-\mathrm{id} S_{S^{\text {op }}} M \leq n$ for any $M \in \bmod S^{\mathrm{op}}$.

To prove this theorem, we need the following three lemmas.
Lemma 4.3. We have

$$
\begin{aligned}
\operatorname{pd}_{R} \omega & =\mathcal{P}_{\omega}\left(S^{\mathrm{op}}\right)-\operatorname{id}_{S^{\text {op }}} S=\sup \left\{{ }_{R} \omega^{\perp}-\mathrm{id}_{R} M \mid M \in \operatorname{Mod} R\right\} \\
& =\sup \left\{{ }_{R} \omega^{\perp}-\operatorname{id}_{R} M \mid M \in \bmod R\right\} .
\end{aligned}
$$

Proof. Since $\operatorname{pd}_{R} \omega=\operatorname{add} \omega_{S}$ - $\mathrm{id}_{S \text { op }} S$, it is straightforward to verify $\operatorname{pd}_{R} \omega=\mathcal{P}_{\omega}\left(S^{\text {op }}\right)-\operatorname{id}_{S \text { op }} S$ by [TH2, Lemma 4.7]. It remains to prove that $\sup \left\{{ }_{R} \omega^{\perp}-\operatorname{id}_{R} M \mid M \in \operatorname{Mod} R\right\} \leq \operatorname{pd}_{R} \omega \leq \sup \left\{{ }_{R} \omega^{\perp}-\operatorname{id}_{R} M \mid M \in \bmod R\right\}$.

Let $\operatorname{pd}_{R} \omega=n(<\infty)$ and pick $M \in \operatorname{Mod} R$. Define $K^{n}=$ $\operatorname{Im}\left(I^{n-1}(M) \rightarrow I^{n}(M)\right)$. Then $\operatorname{Ext}_{R}^{i}\left(\omega, K^{n}\right) \cong \operatorname{Ext}_{R}^{n+i}(\omega, M)=0$ for any $i \geq 1$. So $K^{n} \in_{R} \omega^{\perp}$ and ${ }_{R} \omega^{\perp}$-id $_{R} M \leq n$.

Now let $\sup \left\{{ }_{R} \omega^{\perp}-\operatorname{id}_{R} M \mid M \in \bmod R\right\}=n(<\infty)$. Then by dimension shifting, it is easy to see that $\operatorname{Ext}_{\bar{R}}^{\geq n+1}(\omega, M)=0$ for any $M \in \bmod R$. Let $X \in \operatorname{Mod} R$. Then $X=\underline{\longrightarrow} M_{i}$ with all M_{i} in $\bmod R$ by [GT, Lemma 2.5]. It follows from [GT, Lemma 6.6] that $\operatorname{Ext}_{\bar{R}}^{\geq n+1}(\omega, X)=0$, which implies $\operatorname{pd}_{R} \omega \leq n$.

Lemma 4.4. If $\operatorname{pd}_{R} \omega=\operatorname{pd}_{\text {Sop }} \omega \leq n(<\infty)$, then $\mathcal{B}_{\omega}(R)-\operatorname{id}_{R} M=$ $c \mathcal{T}(R)-\mathrm{id}_{R} M \leq n$ for any $M \in \operatorname{Mod} R$.

Proof. If $\operatorname{pd}_{R} \omega=\operatorname{pd}_{S_{\text {op }}} \omega \leq n$, then $\mathcal{B}_{\omega}(R)={ }_{R} \omega^{\perp}=c \mathcal{T}(R)$ by TH2, Corollary 3.2]. Now the assertion follows from Lemma 4.3.

Lemma 4.5. $\mathfrak{c} \mathcal{T}(R)-\mathrm{id}_{R} R=\mathcal{B}_{\omega}(R)-\mathrm{id}_{R} R=\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} R$.
Proof. By Lemma 2.3(1) and TH1, Theorem 3.9], we have $\mathcal{P}_{\omega}(R) \subseteq$ $\mathcal{B}_{\omega}(R) \subseteq c \mathcal{T}(R)$. So $\mathcal{c} \mathcal{T}(R)-\operatorname{id}_{R} R \leq \mathcal{B}_{\omega}(R)-\operatorname{-id}_{R} R \leq \mathcal{P}_{\omega}(R)-\operatorname{id}_{R} R$. Now let $\operatorname{cT}(R)-\mathrm{id}_{R} R=n(<\infty)$. It follows from Theorem 3.14 that there exists a module $X \in \operatorname{Mod} R$ with $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} X \leq n$ such that ${ }_{R} R$ is isomorphic to a direct summand of X. Thus $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} R \leq n$ by [TH2, Lemma 4.6], and therefore $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} R \leq c \mathcal{T}(R)-\mathrm{id}_{R} R$.

Proof of Theorem 4.2. By Proposition 4.1, Lemma 4.3 and its symmetric version, we have $(1) \Leftrightarrow(2) \Leftrightarrow(9) \Leftrightarrow(10)$. By Lemma 4.4 and its symmetric version, we deduce $(1) \Rightarrow(5)$ and $(1) \Rightarrow(7)$. By Lemma 4.5 and its symmetric version, we obtain $(2) \Leftrightarrow(3) \Leftrightarrow(4)$. The implications $(7) \Rightarrow(8) \Rightarrow(4)$ and $(5) \Rightarrow(6) \Rightarrow(3)$ are clear.

It should be pointed out that a semidualizing bimodule ${ }_{R} \omega_{S}$ satisfying condition (1) in Theorem 4.2 is actually a tilting bimodule in the sense of [M]. In the following, we will give an adjoint counterpart of Theorem 4.2. We need some lemmas.

Lemma 4.6.
(1) $\operatorname{pd}_{S^{\text {op }}} \omega=\sup \left\{\omega_{S}^{\top}-\operatorname{pd}_{S} N \mid N \in \operatorname{Mod} S\right\}=\sup \left\{\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \mid N \in\right.$ $\bmod S\}$.
(2) If $\operatorname{pd}_{R} \omega=\operatorname{pd}_{S^{\text {op }}} \omega \leq n(<\infty)$, then $\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} N=\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$.

Proof. (1) It suffices to prove $\sup \left\{\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \mid N \in \operatorname{Mod} S\right\} \leq \operatorname{pd}_{S^{\text {op }}} \omega \leq \sup \left\{\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \mid N \in \bmod S\right\}$.
Let $\operatorname{pd}_{S \text { op }} \omega \leq n(<\infty)$ and $N \in \operatorname{Mod} S$. Set $K_{n}=\operatorname{Coker}\left(F_{n+1}(N) \rightarrow F_{n}(N)\right)$. Then $\operatorname{Tor}_{i}^{S}\left(\omega, K_{n}\right) \cong \operatorname{Tor}_{n+i}^{S}(\omega, N)=0$ for any $i \geq 1$. It follows that $K_{n} \in \omega_{S}{ }^{\top}$ and $\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \leq n$. Conversely, note that ω_{S} admits a degreewise finite S-projective resolution. Then by dimension shifting, it is easy to get $\operatorname{pd}_{S^{\text {op }}} \omega=\mathrm{fd}_{S^{\text {op }}} \omega \leq \sup \left\{\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \mid N \in \bmod S\right\}$.
(2) Let $\operatorname{pd}_{R} \omega=\operatorname{pd}_{\omega^{\mathrm{op}}} \omega \leq n$. Then $\mathcal{A}_{\omega}(S)=\omega_{S}{ }^{\top}=\operatorname{ac} \mathcal{T}(S)$ by Theorem 3.11. Now the assertion follows from (1).

LEMMA 4.7. Both $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)-\mathrm{pd}^{\leq n}\left(R^{\mathrm{op}}\right)$ and $\mathcal{I}_{\omega}(S)-\mathrm{pd}^{\leq n}(S)$ are closed under direct summands.

Proof. By Lemma $2.3(2)$, we have $\mathcal{I}_{\omega}(S) \subseteq \mathcal{I}_{\omega}(S)^{\perp}$. It is trivial that $\mathcal{I}_{\omega}(S)$ is an $\mathcal{I}_{\omega}(S)$-resolving subcategory of $\operatorname{Mod} S$ with an $\mathcal{I}_{\omega}(S)$-proper generator $\mathcal{I}_{\omega}(S)$ in the sense of [H]. Note that $\mathcal{I}_{\omega}(S)$ is closed under direct summands by HW, Proposition $5.1(\mathrm{c})]$. So $\mathcal{I}_{\omega}(S)-\mathrm{pd}^{\leq n}(S)$ is closed under direct summands by [H, Corollary 3.9]. Symmetrically, we deduce that $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)-\mathrm{pd}^{\leq n}\left(R^{\mathrm{op}}\right)$ is closed under direct summands.

Lemma 4.8. For any injective module I in $\operatorname{Mod} S$, we have

$$
\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} I=\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} I=\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} I
$$

Proof. By Theorem 3.11(1) and Corollary 3.5, we have $\mathcal{I}_{\omega}(S) \subseteq \mathcal{A}_{\omega}(S) \subseteq$ $\operatorname{ac} \mathcal{T}(S)$. So $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq \mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} N \leq \mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} N$ for any $N \in$ $\operatorname{Mod} S$. Now let $I \in \operatorname{Mod} S$ be injective with $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} I=n(<\infty)$. It follows from Theorem 3.13 that there exists $U \in \operatorname{Mod} S$ with $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} U$ $\leq n$ such that I is isomorphic to a direct summand of U. Thus $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} I$ $\leq n$ by Lemma 4.7, and therefore $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} I \leq \operatorname{ac} \mathcal{T}(S)-\mathrm{pd}_{S} I$.

Let R be an artin k-algebra over a commutative artin ring k. We denote by D the ordinary Matlis duality, that is, $D(-):=\operatorname{Hom}_{k}\left(-, I^{0}(k / J(k))\right)$, where $J(k)$ is the Jacobson radical of k. It is well known that D induces an equivalence between $\bmod R$ and $\bmod R^{\mathrm{op}}$.

Lemma 4.9. Let R and S be artin algebras. Then

$$
\operatorname{pd}_{R} \omega=\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) .
$$

Proof. If $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right)=n(<\infty)$, then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow U_{n} \rightarrow \cdots \rightarrow U_{1} \rightarrow U_{0} \rightarrow D\left(S_{S}\right) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

in $\operatorname{Mod} S$ with all U_{i} in $\mathcal{I}_{\omega}(S)$. Applying the duality $D(-)$ to (4.1) yields the following exact sequence:

$$
\begin{equation*}
0 \rightarrow S_{S} \rightarrow D\left(U_{0}\right) \rightarrow D\left(U_{1}\right) \rightarrow \cdots \rightarrow D\left(U_{n}\right) \rightarrow 0 \tag{4.2}
\end{equation*}
$$

in $\operatorname{Mod} R$ with $D\left(U_{i}\right) \in \mathcal{P}_{\omega}\left(S^{\text {op }}\right)$. Now applying $\operatorname{Hom}_{S^{\text {op }}}(-, \omega)$ to (4.2) we get $\operatorname{pd}_{R} \omega \leq n$. Therefore $\operatorname{pd}_{R} \omega \leq \mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right)$. By a dual argument, $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) \leq \operatorname{pd}_{R} \omega$.

Now we are ready to prove
Theorem 4.10. Let R and S be artin algebras and $n \geq 0$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{R} \omega=\operatorname{pd}_{S_{\text {oр }}} \omega \leq n$.
(2) $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)-\operatorname{pd}_{R^{\text {op }}} D\left({ }_{R} R\right)=\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) \leq n$.
(3) $\mathcal{A}_{\omega}\left(R^{\mathrm{op}}\right)-\operatorname{pd}_{R^{\text {op }}} D\left({ }_{R} R\right)=\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) \leq n$.
(4) $\operatorname{ac} \mathcal{T}\left(R^{\text {op }}\right)-\operatorname{pd}_{R^{\text {op }}} D\left({ }_{R} R\right)=\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) \leq n$.
(5) $\mathcal{A}_{\omega}\left(R^{\mathrm{op}}\right)-\mathrm{pd}_{R^{\mathrm{op}}} M \leq n$ for any $M \in \operatorname{Mod} R^{\mathrm{op}}$, and $\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$.
(6) $\mathcal{A}_{\omega}\left(R^{\mathrm{op}}\right)-\operatorname{pd}_{R^{\text {op }}} M \leq n$ for any $M \in \bmod R^{\text {op }}$, and $\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \bmod S$
(7) ac $\mathcal{T}\left(R^{\mathrm{op}}\right)-\operatorname{pd}_{R^{\text {op }}} M \leq n$ for any $M \in \operatorname{Mod} R^{\mathrm{op}}$, and $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$.
(8) ac $\mathcal{T}\left(R^{\mathrm{op}}\right)-\operatorname{pd}_{R^{\text {op }}} M \leq n$ for any $M \in \bmod R^{\mathrm{op}}$, and $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \bmod S$.
(9) $R \omega^{\top}-\operatorname{pd}_{R^{\text {op }}} M \leq n$ for any $M \in \operatorname{Mod} R^{\text {op }}$, and $\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$.
(10) $R^{\omega^{\top}}-\operatorname{pd}_{R^{\text {op }}} M \leq n$ for any $M \in \bmod R^{\text {op }}$, and $\omega_{S}{ }^{\top}-\operatorname{pd}_{S} N \leq n$ for any $N \in \bmod S$.

Proof. By Proposition 4.1, Lemma 4.6 and its symmetric version, we have $(9) \Leftrightarrow(10) \Leftrightarrow(1) \Rightarrow(5)$ and $(1) \Rightarrow(7)$. By Lemma 4.8 and its symmetric version, we obtain $(2) \Leftrightarrow(3) \Leftrightarrow(4)$. The implications $(7) \Rightarrow(8) \Rightarrow(4)$ and $(5) \Rightarrow$ $(6) \Rightarrow(3)$ are clear. By Proposition 4.1, Lemma 4.9 and its symmetric version, we deduce $(1) \Leftrightarrow(2)$.

As a consequence of Theorems 4.2 and 4.10 , we have the following

Corollary 4.11. Let R and S be artin algebras and $n \geq 0$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{R} \omega=\operatorname{pd}_{S_{\text {op }}} \omega \leq n$.
(2) $\mathrm{c} \mathcal{T}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \operatorname{Mod} R$, and $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$
(3) $\mathrm{c} \mathcal{T}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \bmod R$, and $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \bmod S$
(4) $c \mathcal{T}(R)-\operatorname{id}_{R} R \leq n$ and $\operatorname{ac} \mathcal{T}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) \leq n$.

Proof. (1) $\Rightarrow(2)$ follows from Theorems 4.2 and 4.10 .
$(2) \Rightarrow(3) \Rightarrow(4)$ are trivial.
$(4) \Rightarrow(1)$. Since c $\mathcal{T}(R)-\operatorname{id}_{R} R \leq n$ and ac $\mathcal{T}(S)-\operatorname{pd}_{S} D\left(S_{S}\right) \leq n$ by (4), we have $\operatorname{pd}_{S^{\text {op }}} \omega=\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} R \leq n$ by Lemma 4.5 and the symmetric version of Lemma 4.3, and $\operatorname{pd}_{R} \omega \leq n$ by Lemmas 4.8 and 4.9. Now the assertion follows from Proposition 4.1.

Recall that an artin algebra R is called Gorenstein $\operatorname{if~}^{\operatorname{id}} R=\mathrm{id}_{R}$ op R $<\infty$. It is easy to see that the (R, R)-bimodule $D(R)$ is semidualizing. Taking $R=S$ and $\omega=D(R)$ in Corollary 4.11, we immediately get

Corollary 4.12. Let R be an artin algebra and $n \geq 0$. Then the following statements are equivalent:
(1) R is Gorenstein with $\operatorname{id}_{R} R=\operatorname{id}_{R^{\text {op }}} R \leq n$.
(2) $c \mathcal{T}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \operatorname{Mod} R$, and $\operatorname{ac} \mathcal{T}(R)-\operatorname{pd}_{R} N \leq n$ for any $N \in \operatorname{Mod} S$
(3) $\mathfrak{c \mathcal { T }}(R)-\operatorname{id}_{R} M \leq n$ for any $M \in \bmod R$, and $\operatorname{ac} \mathcal{T}(R)-\operatorname{pd}_{R} N \leq n$ for any $N \in \bmod S$
(4) $c \mathcal{T}(R)-\mathrm{id}_{R} R \leq n$ and $\operatorname{ac} \mathcal{T}(R)-\operatorname{pd}_{R} D\left(R_{R}\right) \leq n$.

Acknowledgements. The authors thank the referee for the useful suggestions.

This research was partially supported by NSFC (grant nos. 11571164, 11501144) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and NSF of Guangxi Province of China (grant no. 2016GXNSFAA380151).

REFERENCES

[ASS] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[AB] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969).
[ARS] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1997.
[BBE] L. Bican, R. El Bashir and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385-390.
[CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Landmarks in Math., Princeton Univ. Press, Princeton, 1999.
[E] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209.
[EH] E. E. Enochs and H. Holm, Cotorsion pairs associated with Auslander categories, Israel J. Math. 174 (2009), 253-268.
[GT] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, 2nd ed., de Gruyter Expositions Math. 41, de Gruyter, Berlin, 2012.
[HW] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), 781-808.
[HH] C. H. Huang and Z. Y. Huang, Torsionfree dimension of modules and self-injective dimension of rings, Osaka J. Math. 49 (2012), 21-35.
[H] Z. Y. Huang, Homological dimensions relative to preresolving subcategories, Kyoto J. Math. 54 (2014), 727-757.
[JS] D. A. Jorgensen and L. M. Şega, Independence of the total reflexivity conditions for modules, Algebr. Represent. Theory 9 (2006), 217-226.
[[M] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113-146.
[TH1] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander transpose, Forum Math. 27 (2015), 3717-3743.
[TH2] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander transpose II, Kyoto J. Math. 57 (2017), 17-53.
[TH3] X. Tang and Z. Y. Huang, Homological invariants related to semidualizing bimodules, preprint, 2016, http://math.nju.edu.cn/~huangzy/.
[W] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), 106-114.

Xi Tang
College of Science
Guilin University of Technology
541004 Guilin, Guangxi, P.R. China
E-mail: tx5259@sina.com.cn

Zhaoyong Huang Department of Mathematics

Nanjing University
210093 Nanjing, Jiangsu, P.R. China
E-mail: huangzy@nju.edu.cn

[^0]: 2010 Mathematics Subject Classification: 18G25, 16E05, 16E10.
 Key words and phrases: semidualizing bimodules, adjoint cotransposes, (adjoint) $\infty-\omega$ cotorsionfree modules, projective dimension.
 Received 26 October 2016; revised 20 December 2016.
 Published online 29 September 2017.

