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ON THE NUMBER OF τ -TILTING MODULES OVER THE
AUSLANDER ALGEBRAS OF RADICAL SQUARE ZERO

NAKAYAMA ALGEBRAS

BY

HANPENG GAO (Hefei), ZONGZHEN XIE (Nanjing) and
ZHAOYONG HUANG (Nanjing)

Abstract. Let Λn be a radical square zero Nakayama algebra with n simple modules
and Γn the Auslander algebra of Λn. We calculate the number |τ -tiltΓn| of τ -tilting
modules and the number |sτ -tiltΓn| of support τ -tilting modules over Γn. In particular,
we prove the recurrence relations

|τ -tiltΓn| = 3|τ -tiltΓn−1|+ |τ -tiltΓn−2|,
|sτ -tiltΓn| = 6|sτ -tiltΓn−1|+ 3|sτ -tiltΓn−2|,

from which the exact values of |τ -tiltΓn| and |sτ -tiltΓn| are derived.

1. Introduction. The starting point of tilting theory was the introduc-
tion of tilting modules over a hereditary algebra by Happel and Ringel [10].
Ever since, the study of tilting modules has been an important branch in the
representation theory of finite-dimensional algebras.

In 2014, Adachi, Iyama and Reiten [1] introduced τ -tilting theory re-
placing the rigidity condition Ext1Λ(M,M) = 0 for a tilting module by the
weaker condition HomΛ(M, τM) = 0 for a τ -tilting module, where Λ is a
finite-dimensional algebra and τ is the Auslander–Reiten translation. The
support τ -tilting modules are in bijection with some important objects in
representation theory including functorially finite torsion classes introduced
in [5], 2-term silting complexes introduced in [13], cluster-tilting objects in
the cluster category and left finite semibricks introduced in [3]. Therefore,
it is important to calculate the number of support τ -tilting modules over a
given algebra.

For hereditary algebras, the (support) τ -tilting modules are exactly the
(support) tilting modules. For algebras of Dynkin type, the numbers of these
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modules were first calculated via cluster algebras [7], and later via represen-
tation theory [14]. In particular, over a hereditary algebra of type An, the
number of tilting modules is Cn and the number of support tilting modules
is Cn+1, where Ci is the ith Catalan number 1

i+1

(
2i
i

)
.

Recall from [4, V.3.2] that a finite-dimensional algebra is Nakayama if
its quiver is one of the following:

An : 1 // 2 // 3 // · · · // n, Ãn : 1 // 2 // 3 // · · · // n.zz

Adachi [2] gave a recurrence relation for the number of τ -tilting modules over
Nakayama algebras of type An. Asai [3] also gave a recurrence relation for
the number of support τ -tilting modules over Nakayama algebras KAn/radr

and KÃn/radr. More recently, Gao and Schiffler [9] extended the recurrence
relation of Adachi to τ -tilting modules over KÃn/radr.

It was showed in [6] that the number of tilting modules over the Auslan-
der algebra of K[x]/(xn) is n!. Kajita [12] calculated the number of tilting
modules over the Auslander algebra of a hereditary algebra of Dynkin type.
Iyama and Zhang [11] classified the support τ -tilting modules over the Aus-
lander algebra of K[x]/(xn), and they also showed that there is a bijection
between the set of support τ -tilting modules over the Auslander algebra of
K[x]/(xn) and the symmetric group of degree n. More recently, Zhang [16]
calculated the number of tilting modules over the Auslander algebra Γn of a
radical square zero Nakayama algebra Λn. In particular, Zhang proved that
the number of tilting modules over Γn is 2n−1 if Λn is of type An; and it
is 2n if Λn is of type Ãn.

In this paper, we calculate the number |τ -tiltΓn| of τ -tilting modules
and the number |sτ -tiltΓn| of support τ -tilting modules over the Auslander
algebra Γn of a radical square zero Nakayama algebra Λn. Our result is as
follows.

Theorem 1.1 (Theorems 3.1, 3.5, 4.2 and 4.3). Let Γn be the Auslander
algebra of a radical square zero Nakayama algebra Λn.

(1) If Λn is of type An, then

|τ -tiltΓn| =
(3 +

√
13)n − (3−

√
13)n√

13 · 2n
,

|sτ -tiltΓn| =
(3 + 2

√
3)n − (3− 2

√
3)n

2
√
3

.

(2) If Λn is of type Ãn, then

|τ -tiltΓn| =
(3 +

√
13)n + (3−

√
13)n

2n
,

|sτ -tiltΓn| = (3 + 2
√
3)n + (3− 2

√
3)n.
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The paper is organized as follows. In Section 2, we fix some notations
and recall several results about τ -tilting modules and Auslander algebras of
radical square zero Nakayama algebras. In Section 3, we show that if Λn is
of type An, then there are recurrence relations

|τ -tiltΓn| = 3|τ -tiltΓn−1|+ |τ -tiltΓn−2|,
|sτ -tiltΓn| = 6|sτ -tiltΓn−1|+ 3|sτ -tiltΓn−2|.

In Section 4, we prove the same recurrence relations for Λn of type Ãn. From
these recurrence relations the exact values of |τ -tiltΓn| and |sτ -tiltΓn| are
derived. Finally, we list the values of |τ -tiltΓn| and |sτ -tiltΓn| for 1 ≤ n ≤ 8
in a table in Section 5.

2. Preliminaries. Throughout this paper, all algebras are basic, con-
nected, finite-dimensional K-algebras over an algebraically closed field K.
For an algebra Λ, we denote by modΛ the category of finitely generated
right Λ-modules and by τ the Auslander–Reiten translation of Λ. We use
Pi, Ii and Si to denote the indecomposable projective, injective and sim-
ple modules of an algebra corresponding to the vertex i respectively. For any
i, j ∈ {1, . . . , n}, we write [i, j] = {i, i+1, . . . , j} if i ≤ j; otherwise, [i, j] = ∅.
Let ei be the primitive idempotent element of an algebra corresponding to
the vertex i. We write e[i,j] := ei + ei+1 + · · ·+ ej .

For a module M ∈ modΛ, we write |M | for the number of pairwise
non-isomorphic indecomposable summands of M , and use l(M) and pdΛM
to denote the Loewy length and projective dimension of M respectively. For
a finite setX, we let |X| denote the cardinality ofX. For two setsX1 andX2,
X1 qX2 stands for their disjoint union.

Definition 2.1 ([1, Definition 0.1]). Let Λ be an algebra and M ∈
modΛ. Then M is called

• τ -rigid if HomΛ(M, τM) = 0;
• τ -tilting if it is τ -rigid and |M | = |Λ|;
• support τ -tilting if it is a τ -tilting Λ/ΛeΛ-module for some idempotent e

of Λ;
• proper support τ -tilting if it is support τ -tilting but not τ -tilting.

Recall thatM ∈ modΛ is called sincere if every simple Λ-module appears
as a composition factor inM . It is well-known that the τ -tilting modules are
exactly the sincere support τ -tilting modules [1, Proposition 2.2(a)].

We denote by τ -tiltΛ (respectively, sτ -tiltΛ, psτ -tiltΛ) the set of iso-
morphism classes of basic τ -tilting (respectively, support τ -tilting, proper
support τ -tilting) Λ-modules.
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Set

psτ -tiltnp Λ := {M ∈ psτ -tiltΛ |M has no projective direct summands}.

Theorem 2.2 ([2, Theorem 2.6]). Let Λ be a Nakayama algebra. Then
there is a bijection between τ -tiltΛ and psτ -tiltnp Λ.

The following result is useful.

Proposition 2.3 ([2, Proposition 2.32]). Let Λ be a Nakayama algebra
of type An. Then each τ -tilting Λ-module has P1 as a direct summand.

As a consequence, we get

Lemma 2.4. Let Λ be a Nakayama algebra of type An. Then each support
τ -tilting Λ-module which has S1, . . . , Sl(P1) as composition factors has P1 as
a direct summand.

Proof. Let M be a support τ -tilting Λ-module which has S1, . . . , Sl(P1)

as composition factors. If M is τ -tilting, then it has P1 as a direct sum-
mand by Proposition 2.3. Now, assume that M has S1, . . . , Sl(P1), . . . , Sj as
composition factors but not Sj+1. Let N be the maximal direct summand
of M which only has S1, . . . , Sl(P1), . . . , Sj as composition factors. Then N
is a τ -tilting Λ/〈e[j+1,n]〉-module. By Proposition 2.3, N has P1 as a direct
summand.

Theorem 2.5 ([2, Theorem 2.33 and Corollary 2.34]). Let Λ be a Naka-
yama algebra of type An. Then there are mutually inverse bijections

τ -tiltΛ↔
l(P1)∐
i=1

τ -tilt(Λ/〈ei〉)

given by τ -tiltΛ 3M 7→M/P1 and N 7→ N ⊕ P1 ∈ τ -tiltΛ. In particular,

|τ -tiltΛ| =
l(P1)∑
i=1

Ci−1 · |τ -tilt(Λ/〈e[1,i]〉)|.

Remark 2.6. Let Λ be a Nakayama algebra of type An. Then every
τ -tilting Λ-module can be decomposed M as M = P1 ⊕ N1 ⊕ N2 where
N1 is a maximal direct summand of M without S1 as composition factors.
Moreover, N1 ⊕N2 is a τ -tilting Λ/〈ej+1〉-module where j := l(N2) (see [2,
proof of Theorem 2.33]).

An algebra Λ is of finite representation type if there are only finitely many
indecomposable Λ-modules X1, . . . , Xm up to isomorphism. In this case, the
endomorphism algebra EndΛ(

⊕m
i=1Xi) is called the Auslander algebra of Λ.

By a straightforward calculation, we get the quiver of the Auslander al-
gebra of radical square zero Nakayama algebras:
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Proposition 2.7.

(1) The Auslander algebra Γn of Λn := KAn/rad
2 is given by the quiver

1
a1−→ 2

a2−→ 3
a3−→ · · · → 2n− 2

a2n−2−−−−→ 2n− 1

with the relations a2k−1a2k = 0 for 1 ≤ k ≤ n− 1.
(2) The Auslander algebra Γ ′n of Λn := KÃn/rad

2 is given by the quiver

1 a1
// 2 a2

// 3 a3
// · · · // 2n− 1 a2n−1

// 2n

a2n

ss

with the relations a2k−1a2k = 0 for 1 ≤ k ≤ n.

3. The case for Γn. In this section, we will give formulas for |τ -tiltΓn|
and |sτ -tiltΓn|.

Let ∆n be the algebra given by the quiver

0
a0−→ 1

a1−→ 2
a2−→ 3

a3−→ · · · → 2n− 2
a2n−2−−−−→ 2n− 1

with the relations a2k−1a2k = 0 for 1 ≤ k ≤ n− 1.
The following result gives a formula for |τ -tiltΓn|.
Theorem 3.1. We have

|τ -tiltΓn| = 3|τ -tiltΓn−1|+ |τ -tiltΓn−2|
with |τ -tiltΓ1| = 1 and |τ -tiltΓ2| = 3. Hence

|τ -tiltΓn| =
(3 +

√
13)n − (3−

√
13)n√

13 · 2n
.

Proof. Applying Theorem 2.5 to Γn and ∆n, we have

|τ -tiltΓn| = C0 · |τ -tilt(Γn/〈e1〉)|+ C1 · |τ -tilt(Γn/〈e1 + e2〉)|(1)
= |τ -tilt∆n−1|+ |τ -tiltΓn−1|

and

|τ -tilt∆n| = C0 · |τ -tilt(∆n/〈e0〉)|+ C1 · |τ -tilt(∆n/〈e0 + e1〉)|(2)
+ C2 · |τ -tilt(∆n/〈e0 + e1 + e2〉)|

= |τ -tiltΓn|+ |τ -tilt∆n−1|+ 2|τ -tiltΓn−1|.
The formula (1) implies

|τ -tilt∆n−1| = |τ -tiltΓn| − |τ -tiltΓn−1|.
Applying it to (2), we have

(3) |τ -tiltΓn| = 3|τ -tiltΓn−1|+ |τ -tiltΓn−2|
This is a linear homogeneous recurrence relation of degree 2 and its charac-
teristic equation is x2 − 3x− 1 = 0. The proof is finished.
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Let Λ be an algebra. Recall that a module M ∈ modΛ is called tilting if

• pdΛM ≤ 1;
• Ext1Λ(M,M) = 0;
• |M | = |Λ|.

Thus amoduleM ∈ modΛ is tilting if and only if it is τ -tilting and pdΛM ≤ 1,
by the Auslander–Reiten formula.

The set of all tilting Λ-modules is denoted by tiltΛ. The following result
is part of [16, Theorem 2.8]. Here we give another proof.

Proposition 3.2. |tiltΓn| = 2n−1.

Proof. Note that P1 is the unique Γn-module which has S1 as a compo-
sition factor and its projective dimension is at most 1. By Remark 2.6 and
the above argument, P1 ⊕ N1 is a tilting Γn-module if and only if N1 is a
tilting Γn/〈e1〉-module, since pdΓn

N1 = pdΓn/〈e1〉N1. Thus

|tiltΓn| = |tilt(Γn/〈e1〉)| = |tilt∆n−1|.
Note that P0 and S0 are the only two ∆n-modules which have S0 as a
composition factor and their projective dimension is at most 1. Similarly, we
get

|tilt∆n| = |tilt(∆n/〈e0〉)|+ |tilt(∆/〈e0 + e1〉)| = |tiltΓn|+ |tilt∆n−1|.
Thus |tiltΓn| = 2|tiltΓn−1| with |tiltΓ1| = 1, and so |tiltΓn| = 2n−1.

As generalizations of simple modules and semisimple modules, bricks and
semibricks were introduced and studied in [8, 15]. Let Λ be an algebra. A
Λ-module M is called a brick if HomΛ(M,M) is a K-division algebra, and a
semibrick is a set consisting of isoclasses of pairwise Hom-orthogonal bricks.
Recall from [3] that a semibrick S is called left finite if the smallest torsion
class T (S) containing S is functorially finite. There exists a bijection between
sτ -tiltΛ and the set of left finite semibricks of Λ [3, Theorem 2.3]. Note that
every torsion class is functorially finite for a representation-finite algebra. So,
for a Nakayama algebra Λ, there exists a bijection between sτ -tiltΛ and the
set sbrickΛ of semibricks of Λ, and hence |sτ -tiltΛ| = |sbrickΛ|. Asai gave
a method to calculate the number of semibricks over KAn/radr. In fact, we
have the following more general result.

Proposition 3.3. Let Λ be a Nakayama algebra of type An. Then

(1) |sτ -tiltΛ| = 2|sτ -tilt(Λ/〈en〉)|+
l(In)∑
i=2

Ci−1|sτ -tilt(Λ/〈e[n−i+1,n]〉)|,

(2) |sτ -tiltΛ| = 2|sτ -tilt(Λ/〈e1〉)|+
l(P1)∑
i=2

Ci−1|sτ -tilt(Λ/〈e[1,i]〉)|.
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Proof. (1) For a given brick X of Λ with topX = Si and socX = Sj , we
will denote Si,j := X.

We define W0 as the subset of sbrickΛ consisting of the semibricks with-
out Sn as a composition factor. It is clear that |W0| = |sbrick(Λ/〈en〉)|.

LetWi (i = 1, . . . , l(In)) be the subset of sbrickΛ consisting of the semib-
ricks which contain the brick Sn−i+1,n.

First, there is a bijection

W1 7→ sbrick(Λ/〈en〉)
defined by S 7→ S \ {Sn,n}. So |W0| = |sbrick(Λ/〈en〉)|.

Secondly, for i = 2, 3, . . . , l(In), there exists a bijection

W1 7→ sbrick(Λ/〈e[n−i+1,n]〉)× sbrick(Λ/〈1− e[n−i+2,n−1]〉)
defined by

S 7→ ({S ∈ S | SuppS ∩ [n− i+ 1, n] = ∅},
{S ∈ S | SuppS ⊂ [n− i+ 2, n− 1]}),

where SuppS stands for the support of S. Note that sbrickΛ =
⋃l(In)
i=0 Wi.

Thus we obtain

|sτ -tiltΛ| = |sbrickΛ| =
l(In)∑
i=0

|Wi|

= 2|sbrick(Λ/〈en〉)|

+

l(In)∑
i=2

|sbrick(Λ/〈e[n−i+1,n]〉)| · |sbrick(Λ/〈1− e[n−i+2,n−1]〉)|

= 2|sbrick(Λ/〈en〉)|+
l(In)∑
i=2

|sbrick(Λ/〈e[n−i+1,n]〉)| · |sbrick(KAi−2)|

= 2|sτ -tilt(Λ/〈en〉)|+
l(In)∑
i=2

|sτ -tilt(Λ/〈e[n−i+1,n]〉)| · |sτ -tilt(KAi−2)|

= 2|sτ -tilt(Λ/〈en〉)|+
l(In)∑
i=2

Ci−1 · |sτ -tilt(Λ/〈e[n−i+1,n]〉)|.

(2) Note that there is a bijection between sτ -tiltΛ and sτ -tiltΛop [1,
Theorem 2.14]). Now the assertion follows from (1).

We give the following example to illustrate Proposition 3.3.

Example 3.4. Let Λ be the algebra given by the quiver

1
α−→ 2

β−→ 3→ 4
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with the relation αβ = 0. By Proposition 3.3(1), we have

|sτ -tiltΛ| = 2|sτ -tilt(Λ/〈e4〉)|+ |sτ -tilt(Λ/〈e3 + e4〉)|
+ 2|sτ -tilt(Λ/〈e2 + e3 + e4〉)|

= 2× 12 + 5 + 2× 2 = 33.

On the other hand, by Proposition 3.2(2),

|sτ -tiltΛ| = 2|sτ -tilt(Λ/〈e1〉)|+ |sτ -tilt(Λ/〈e1 + e2〉)| = 2× 14 + 5 = 33.

The following result gives a formula for |sτ -tiltΓn|.

Theorem 3.5. We have

|sτ -tiltΓn| = 6|sτ -tiltΓn−1|+ 3|sτ -tiltΓn−2|

with |sτ -tiltΓ1| = 2 and |sτ -tiltΓ2| = 12. Hence

|sτ -tiltΓn| =
(3 + 2

√
3)n − (3− 2

√
3)n

2
√
3

.

Proof. Applying Proposition 3.3(2) to Γn and ∆n respectively, we have

|sτ -tiltΓn| = 2|sτ -tilt(Γn/〈e1〉)|+ C1 · |sτ -tilt(Γn/〈e1 + e2〉)|(4)
= 2|sτ -tilt∆n−1|+ |sτ -tiltΓn−1|

and

|sτ -tilt∆n| = 2|sτ -tilt(∆n/〈e0〉)|+ C1 · |sτ -tilt(∆n/〈e0 + e1〉)|
+ C2 · |sτ -tilt(∆n/〈e0 + e1 + e2〉)|

= 2|sτ -tiltΓn|+ |sτ -tilt∆n−1|+ 2|sτ -tiltΓn−1|.

This implies

(5) |sτ -tiltΓn| = 6|sτ -tiltΓn−1|+ 3|sτ -tiltΓn−2|.

This is a linear homogeneous recurrence relation of degree 2 and its charac-
teristic equation is x2 − 6x− 3 = 0. The proof is finished.

Let Γn be the algebra given by the quiver

1
a1−→ 2

a2−→ 3
a3−→ · · · → 2n− 2

a2n−2−−−−→ 2n− 1
a2n−1−−−−→ 2n

with the relations a2k−1a2k = 0 for 1 ≤ k ≤ n−1, and let ∆n be the algebra
given by the quiver

0
a0−→ 1

a1−→ 2
a2−→ 3

a3−→ · · · → 2n− 2
a2n−2−−−−→ 2n− 1

a2n−1−−−−→ 2n

with the relations a2k−1a2k = 0 for 1 ≤ k ≤ n − 1. By using the same
argument as in Theorem 3.5, we can obtain

|sτ -tilt∆n| = 6|sτ -tilt∆n−1|+ 3|sτ -tilt∆n−2|.
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4. The case for Γ ′n. In this section, we will give formulas for |τ -tiltΓ ′n|
and |sτ -tiltΓ ′n|.

Let Xn be the set of all support τ -tilting Γn-modules which do not have
P1, . . . , P2n−3 as direct summands, and let Yn be the set of all support
τ -tilting ∆n-modules which do not have P0, P1, . . . , P2n−3 as direct sum-
mands. Let X ′n be the set of all support τ -tilting Γn-modules which do not
have P1, . . . , P2n−2 as direct summands, and let Y ′n be the set of all support
τ -tilting ∆n-modules which do not have P0, P1, . . . , P2n−2 as direct sum-
mands.

We need the following lemma.

Lemma 4.1.

(1) |Xn| = 3|Xn−1|+ |Xn−2| and |Yn| = 3|Yn−1|+ |Yn−2|.
(2) |X ′n| = 3|X ′n−1|+ |X ′n−2| and |Y ′n| = 3|Y ′n−1|+ |Y ′n−2|.

Proof. (1) By Lemma 2.4, all support τ -tilting Γn-modules which have
S1, S2 as composition factors must have P1 as a direct summand. Hence
Xn consists of two parts: the first part comes from all support τ -tilting
Γn-modules which do not have P1, . . . , P2n−3 as direct summands and do
not have S1 as a composition factor (their number is exactly |Yn−1|); the
second part comes from all support τ -tilting Γn-modules which do not have
P1, . . . , P2n−3 as direct summands and have S1 as a composition factor but
not S2 (their number is exactly |Xn−1|). Hence, |Xn| = |Yn−1| + |Xn−1|.
Similarly, we have |Yn| = |Xn| + |Yn−1| + 2|Xn−1|. These two equalities
imply |Xn| = 3|Xn−1|+ |Xn−2| and |Yn| = 3|Yn−1|+ |Yn−2|.

(2) The proof is similar.

The following result gives a formula for |τ -tiltΓ ′n|.
Theorem 4.2. We have

|τ -tiltΓ ′n| = 3|τ -tiltΓ ′n−1|+ |τ -tiltΓ ′n−2|
with |τ -tiltΓ ′1| = 3 and |τ -tiltΓ ′2| = 11. Hence

|τ -tiltΓ ′n| =
(3 +

√
13)n + (3−

√
13)n

2n
.

Proof. We claim that every proper support τ -tilting Γ ′n-moduleM which
has S1, S2 as composition factors must have a projective Γ ′n-module as a
direct summand. Indeed, if M does not have S2n as a composition factor,
then it has P1 as a direct summand by Lemma 2.4. Now, assume thatM has
Si, Si+1, . . . , S2n, S1, S2 as composition factors, but not Si−1. Then M has
Pi as a direct summand by Lemma 2.4.

Now, psτ -tiltnp Γ ′n consists of the following two parts:

(i) U1: the subset of modules which do not have S2 as a composition factor.
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(ii) U2: the subset of modules which have S2 as a composition factor, but
not S1.

Since Λ := Γ ′n/〈e2〉 is the quiver

3
a3−→ · · · → 2n− 2

a2n−2−−−−→ 2n− 1
a2n−1−−−−→ 2n

a2n−−→ 1

with the relations a2k−1a2k = 0 for 2 ≤ k ≤ n, U1 is exactly the set of
support τ -tilting Λ-modules which do not have P3, P4, . . . , P2n−1 as direct
summands, and so |U1| = |Xn|. Note that Γ := Γ ′n/〈e1〉 is the quiver

2
a2−→ 3

a3−→ · · · → 2n− 2
a2n−2−−−−→ 2n− 1

a2n−1−−−−→ 2n

with the relations a2k−1a2k = 0 for 2 ≤ k ≤ n − 1. Thus, the number of
support τ -tilting Γ -modules which do not have P2, P4, . . . , P2n−2 as direct
summands is exactly |Y ′n−1|. Moreover, the number of support τ -tilting Γ -
modules which do not have P2, P4, . . . , P2n−2 as direct summands and do
not have S2 as a composition factor is exactly |X ′n−1|. Therefore, |U2| =
|Y ′n−1| − |X ′n−1|. By Theorem 2.2, we obtain

|τ -tiltΓ ′n| = |psτ -tiltnp Γ ′n| = |U1|+ |U2| = |Xn|+ |Y ′n−1| − |X ′n−1|.
Now, the recurrence relation for |τ -tiltΓ ′n| follows from Lemma 4.1.

The following result gives a formula for |sτ -tiltΓ ′n|.
Theorem 4.3. We have

|sτ -tiltΓ ′n| = 6|sτ -tiltΓ ′n−1|+ 3|sτ -tiltΓ ′n−2|
with |sτ -tiltΓ ′1| = 6 and |sτ -tiltΓ ′2| = 42. Hence

|sτ -tiltΓ ′n| = (3 + 2
√
3)n + (3− 2

√
3)n.

Proof. The set sbrickΓ ′n of semibricks of Γ ′n consists of five parts:

(i) V0: the semibricks without S1 as a composition factor.
(ii) V1: the semibricks which contain S1 but not the brick I2.
(iii) V2: the semibricks which contain I1.
(iv) V3: the semibricks which contain P1.
(v) V4: the semibricks which contain I2.

Obviously, |V0| = |sbrick(Γ ′n/〈e1〉)| = |sbrick∆n−1|.
There is a bijection V1 7→ sbrick(Γ ′n/〈e1〉) defined by S 7→ S \ {S1}, so

|V1| = |sbrick(Γ ′n/〈e1〉)| = |sbrick∆n−1|.
Similarly, there are bijections

V2 7→ sbrick(Γ ′n/〈e1 + e2n〉) and V3 7→ sbrick(Γ ′n/〈e1 + e2〉),
so

|V2| = |sbrick(Γ ′n/〈e1 + e2n〉)| = |sbrick∆n−1|,
|V3| = |sbrick(Γ ′n/〈e1 + e2〉)| = |sbrick∆op

n−1|.
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Finally, we can define a bijection

V4 7→ sbrick(Γ ′n/〈e1 + e2 + e2n〉)× sbrick(Γ ′n/〈1− e1〉)
by V4 3 S 7→ (S \ {S1, I2}, S1 ∩ S). Thus
|V4| = |sbrick(Γ ′n/〈e1 + e2 + e2n〉)| · |sbrick(Γ ′n/〈1− e1〉)| = 2|sbrickΓn−1|.
Therefore

|sτ -tiltΓ ′n| = |sbrickΓ ′n| =
4∑
i=0

|Vi|

= 2|sbrick∆n−1|+ |sbrick∆n−1|+ |sbrick∆op
n−1|+ 2|sbrickΓn−1|

= 2|sτ -tilt∆n−1|+ |sτ -tilt∆n−1|+ |sτ -tilt∆op
n−1|+ 2|sτ -tiltΓn−1|

= 2|sτ -tilt∆n−1|+ 2|sτ -tilt∆n−1|+ 2|sτ -tiltΓn−1|.
Note that |sτ -tilt∆n−1| is a linear combination of |sτ -tiltΓn| and |sτ -tiltΓn−1|
by (4), so |sτ -tilt∆n| has the same recurrence relation as |sτ -tiltΓn|. In par-
ticular, |sτ -tilt∆n|, |sτ -tilt∆n|, |sτ -tiltΓn| have the same recurrence rela-
tions, and so |sτ -tiltΓ ′n| also has the same recurrence relation.

5. Examples. In this section, we list the numbers of (support) τ -tilting
modules over Γn and Γ ′n in the following table. The sequence |τ -tiltΓn| is
listed in the On-line Encyclopedia of Integer Sequences (OEIS) as the se-
quence A006190 and |τ -tiltΓ ′n| as A006497.

n 1 2 3 4 5 6 7 8
|τ -tiltΓn| 1 3 10 33 109 360 1189 3927
|sτ -tiltΓn| 2 12 78 504 3258 21060 136134 879984
|τ -tiltΓ ′n| 3 11 36 119 393 1298 4287 114159
|sτ -tiltΓ ′n| 6 42 270 17464 11286 72954 471582 3048354
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