COLLOQUIUM MATHEMATICUM
 VOL. 170

ON THE NUMBER OF τ-TILTING MODULES OVER THE AUSLANDER ALGEBRAS OF RADICAL SQUARE ZERO NAKAYAMA ALGEBRAS
 BY
 HANPENG GAO (Hefei), ZONGZHEN XIE (Nanjing) and ZHAOYONG HUANG (Nanjing)

Abstract

Let Λ_{n} be a radical square zero Nakayama algebra with n simple modules and Γ_{n} the Auslander algebra of Λ_{n}. We calculate the number $\mid \tau$-tilt $\Gamma_{n} \mid$ of τ-tilting modules and the number $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ of support τ-tilting modules over Γ_{n}. In particular, we prove the recurrence relations $$
\begin{aligned} \mid \tau \text {-tilt } \Gamma_{n} \mid & =3 \mid \tau \text {-tilt } \Gamma_{n-1}|+| \tau \text {-tilt } \Gamma_{n-2} \mid, \\ \mid \mathrm{s} \tau \text {-tilt } \Gamma_{n} \mid & =6 \mid \mathbf{s} \tau \text {-tilt } \Gamma_{n-1}|+3| \mathrm{s} \tau \text {-tilt } \Gamma_{n-2} \mid, \end{aligned}
$$

from which the exact values of $\mid \tau$-tilt $\Gamma_{n} \mid$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ are derived.

1. Introduction. The starting point of tilting theory was the introduction of tilting modules over a hereditary algebra by Happel and Ringel 10 . Ever since, the study of tilting modules has been an important branch in the representation theory of finite-dimensional algebras.

In 2014, Adachi, Iyama and Reiten [1] introduced τ-tilting theory replacing the rigidity condition $\operatorname{Ext}_{\Lambda}^{1}(M, M)=0$ for a tilting module by the weaker condition $\operatorname{Hom}_{\Lambda}(M, \tau M)=0$ for a τ-tilting module, where Λ is a finite-dimensional algebra and τ is the Auslander-Reiten translation. The support τ-tilting modules are in bijection with some important objects in representation theory including functorially finite torsion classes introduced in [5], 2-term silting complexes introduced in [13], cluster-tilting objects in the cluster category and left finite semibricks introduced in [3]. Therefore, it is important to calculate the number of support τ-tilting modules over a given algebra.

For hereditary algebras, the (support) τ-tilting modules are exactly the (support) tilting modules. For algebras of Dynkin type, the numbers of these

[^0]modules were first calculated via cluster algebras 7, and later via representation theory [14]. In particular, over a hereditary algebra of type \mathbb{A}_{n}, the number of tilting modules is C_{n} and the number of support tilting modules is C_{n+1}, where C_{i} is the i th Catalan number $\frac{1}{i+1}\left(\begin{array}{c}\binom{i}{i} \text {. }\end{array}\right.$

Recall from [4, V.3.2] that a finite-dimensional algebra is Nakayama if its quiver is one of the following:

$$
A_{n}: \quad 1 \longrightarrow 2 \longrightarrow 3 \rightarrow \cdots \rightarrow n, \quad \widetilde{A}_{n}: \quad 1 \hookrightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow n .
$$

Adachi [2] gave a recurrence relation for the number of τ-tilting modules over Nakayama algebras of type A_{n}. Asai [3] also gave a recurrence relation for the number of support τ-tilting modules over Nakayama algebras $K A_{n} / \mathrm{rad}^{r}$ and $K \widetilde{A}_{n} / \mathrm{rad}^{r}$. More recently, Gao and Schiffler [9] extended the recurrence relation of Adachi to τ-tilting modules over $K \widetilde{A}_{n} / \mathrm{rad}^{r}$.

It was showed in [6] that the number of tilting modules over the Auslander algebra of $K[x] /\left(x^{n}\right)$ is $n!$. Kajita [12] calculated the number of tilting modules over the Auslander algebra of a hereditary algebra of Dynkin type. Iyama and Zhang [11 classified the support τ-tilting modules over the Auslander algebra of $K[x] /\left(x^{n}\right)$, and they also showed that there is a bijection between the set of support τ-tilting modules over the Auslander algebra of $K[x] /\left(x^{n}\right)$ and the symmetric group of degree n. More recently, Zhang [16] calculated the number of tilting modules over the Auslander algebra Γ_{n} of a radical square zero Nakayama algebra Λ_{n}. In particular, Zhang proved that the number of tilting modules over Γ_{n} is 2^{n-1} if Λ_{n} is of type A_{n}; and it is 2^{n} if Λ_{n} is of type \widetilde{A}_{n}.

In this paper, we calculate the number $\mid \tau$-tilt $\Gamma_{n} \mid$ of τ-tilting modules and the number $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ of support τ-tilting modules over the Auslander algebra Γ_{n} of a radical square zero Nakayama algebra Λ_{n}. Our result is as follows.

Theorem 1.1 (Theorems 3.1, 3.5, 4.2 and 4.3). Let Γ_{n} be the Auslander algebra of a radical square zero Nakayama algebra Λ_{n}.
(1) If Λ_{n} is of type A_{n}, then

$$
\begin{aligned}
\mid \tau \text {-tilt } \Gamma_{n} \mid & =\frac{(3+\sqrt{13})^{n}-(3-\sqrt{13})^{n}}{\sqrt{13} \cdot 2^{n}}, \\
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n} \mid & =\frac{(3+2 \sqrt{3})^{n}-(3-2 \sqrt{3})^{n}}{2 \sqrt{3}} .
\end{aligned}
$$

(2) If Λ_{n} is of type \widetilde{A}_{n}, then

$$
\begin{aligned}
\mid \tau-\text { tilt } \Gamma_{n} \mid & =\frac{(3+\sqrt{13})^{n}+(3-\sqrt{13})^{n}}{2^{n}}, \\
\mid \mathbf{s} \tau \text {-tilt } \Gamma_{n} \mid & =(3+2 \sqrt{3})^{n}+(3-2 \sqrt{3})^{n} .
\end{aligned}
$$

The paper is organized as follows. In Section 2, we fix some notations and recall several results about τ-tilting modules and Auslander algebras of radical square zero Nakayama algebras. In Section 3, we show that if Λ_{n} is of type A_{n}, then there are recurrence relations

$$
\begin{aligned}
\mid \tau \text {-tilt } \Gamma_{n} \mid & =3 \mid \tau \text {-tilt } \Gamma_{n-1}|+| \tau \text {-tilt } \Gamma_{n-2} \mid \\
\mid \mathbf{s} \tau \text {-tilt } \Gamma_{n} \mid & =6 \mid \mathbf{s} \tau \text {-tilt } \Gamma_{n-1}|+3| \mathbf{s} \tau \text {-tilt } \Gamma_{n-2} \mid
\end{aligned}
$$

In Section 4, we prove the same recurrence relations for Λ_{n} of type \widetilde{A}_{n}. From these recurrence relations the exact values of $\mid \tau$-tilt $\Gamma_{n} \mid$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ are derived. Finally, we list the values of $\mid \tau$-tilt $\Gamma_{n} \mid$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ for $1 \leq n \leq 8$ in a table in Section 5
2. Preliminaries. Throughout this paper, all algebras are basic, connected, finite-dimensional K-algebras over an algebraically closed field K. For an algebra Λ, we denote by $\bmod \Lambda$ the category of finitely generated right Λ-modules and by τ the Auslander-Reiten translation of Λ. We use P_{i}, I_{i} and S_{i} to denote the indecomposable projective, injective and simple modules of an algebra corresponding to the vertex i respectively. For any $i, j \in\{1, \ldots, n\}$, we write $[i, j]=\{i, i+1, \ldots, j\}$ if $i \leq j$; otherwise, $[i, j]=\emptyset$. Let e_{i} be the primitive idempotent element of an algebra corresponding to the vertex i. We write $e_{[i, j]}:=e_{i}+e_{i+1}+\cdots+e_{j}$.

For a module $M \in \bmod \Lambda$, we write $|M|$ for the number of pairwise non-isomorphic indecomposable summands of M, and use $l(M)$ and $\operatorname{pd}_{\Lambda} M$ to denote the Loewy length and projective dimension of M respectively. For a finite set X, we let $|X|$ denote the cardinality of X. For two sets X_{1} and X_{2}, $X_{1} \amalg X_{2}$ stands for their disjoint union.

Definition 2.1 ([1] Definition 0.1]). Let Λ be an algebra and $M \in$ $\bmod \Lambda$. Then M is called

- τ-rigid if $\operatorname{Hom}_{\Lambda}(M, \tau M)=0$;
- τ-tilting if it is τ-rigid and $|M|=|\Lambda|$;
- support τ-tilting if it is a τ-tilting $\Lambda / \Lambda e \Lambda$-module for some idempotent e of Λ;
- proper support τ-tilting if it is support τ-tilting but not τ-tilting.

Recall that $M \in \bmod \Lambda$ is called sincere if every simple Λ-module appears as a composition factor in M. It is well-known that the τ-tilting modules are exactly the sincere support τ-tilting modules [1, Proposition 2.2(a)].

We denote by τ-tilt Λ (respectively, $\mathrm{s} \tau$-tilt $\Lambda, \operatorname{ps} \tau$-tilt Λ) the set of isomorphism classes of basic τ-tilting (respectively, support τ-tilting, proper support τ-tilting) Λ-modules.

Set

$\operatorname{ps} \tau$-tilt $\operatorname{tnp} \Lambda:=\{M \in \operatorname{ps} \tau$-tilt $\Lambda \mid M$ has no projective direct summands $\}$.
Theorem 2.2 ([2, Theorem 2.6]). Let Λ be a Nakayama algebra. Then there is a bijection between τ-tilt Λ and $\mathrm{ps} \tau$-tilt ${ }_{\mathrm{np}} \Lambda$.

The following result is useful.
Proposition 2.3 ([2, Proposition 2.32]). Let Λ be a Nakayama algebra of type A_{n}. Then each τ-tilting Λ-module has P_{1} as a direct summand.

As a consequence, we get
Lemma 2.4. Let Λ be a Nakayama algebra of type A_{n}. Then each support τ-tilting Λ-module which has $S_{1}, \ldots, S_{l\left(P_{1}\right)}$ as composition factors has P_{1} as a direct summand.

Proof. Let M be a support τ-tilting Λ-module which has $S_{1}, \ldots, S_{l\left(P_{1}\right)}$ as composition factors. If M is τ-tilting, then it has P_{1} as a direct summand by Proposition 2.3. Now, assume that M has $S_{1}, \ldots, S_{l\left(P_{1}\right)}, \ldots, S_{j}$ as composition factors but not S_{j+1}. Let N be the maximal direct summand of M which only has $S_{1}, \ldots, S_{l\left(P_{1}\right)}, \ldots, S_{j}$ as composition factors. Then N is a τ-tilting $\Lambda /\left\langle e_{[j+1, n]}\right\rangle$-module. By Proposition $2.3, N$ has P_{1} as a direct summand.

Theorem 2.5 ([2, Theorem 2.33 and Corollary 2.34]). Let Λ be a Nakayama algebra of type A_{n}. Then there are mutually inverse bijections

$$
\tau \text { - } \operatorname{tilt} \Lambda \leftrightarrow \coprod_{i=1}^{l\left(P_{1}\right)} \tau \text { - } \operatorname{tilt}\left(\Lambda /\left\langle e_{i}\right\rangle\right)
$$

given by τ-tilt $\Lambda \ni M \mapsto M / P_{1}$ and $N \mapsto N \oplus P_{1} \in \tau$-tilt Λ. In particular,

$$
\mid \tau \text {-tilt } \Lambda\left|=\sum_{i=1}^{l\left(P_{1}\right)} C_{i-1} \cdot\right| \tau \text {-tilt }\left(\Lambda /\left\langle e_{[1, i]}\right\rangle\right) \mid .
$$

Remark 2.6. Let Λ be a Nakayama algebra of type A_{n}. Then every τ-tilting Λ-module can be decomposed M as $M=P_{1} \oplus N_{1} \oplus N_{2}$ where N_{1} is a maximal direct summand of M without S_{1} as composition factors. Moreover, $N_{1} \oplus N_{2}$ is a τ-tilting $\Lambda /\left\langle e_{j+1}\right\rangle$-module where $j:=l\left(N_{2}\right)$ (see [2, proof of Theorem 2.33]).

An algebra Λ is of finite representation type if there are only finitely many indecomposable Λ-modules X_{1}, \ldots, X_{m} up to isomorphism. In this case, the endomorphism algebra $\operatorname{End}_{\Lambda}\left(\bigoplus_{i=1}^{m} X_{i}\right)$ is called the Auslander algebra of Λ.

By a straightforward calculation, we get the quiver of the Auslander algebra of radical square zero Nakayama algebras:

Proposition 2.7.
(1) The Auslander algebra Γ_{n} of $\Lambda_{n}:=K A_{n} / \mathrm{rad}^{2}$ is given by the quiver

$$
1 \xrightarrow{a_{1}} 2 \xrightarrow{a_{2}} 3 \xrightarrow{a_{3}} \cdots \rightarrow 2 n-2 \xrightarrow{a_{2 n-2}} 2 n-1
$$

with the relations $a_{2 k-1} a_{2 k}=0$ for $1 \leq k \leq n-1$.
(2) The Auslander algebra Γ_{n}^{\prime} of $\Lambda_{n}:=K \widetilde{A}_{n} / \mathrm{rad}^{2}$ is given by the quiver

with the relations $a_{2 k-1} a_{2 k}=0$ for $1 \leq k \leq n$.
3. The case for Γ_{n}. In this section, we will give formulas for $\mid \tau$-tilt $\Gamma_{n} \mid$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$.

Let Δ_{n} be the algebra given by the quiver

$$
0 \xrightarrow{a_{0}} 1 \xrightarrow{a_{1}} 2 \xrightarrow{a_{2}} 3 \xrightarrow{a_{3}} \cdots \rightarrow 2 n-2 \xrightarrow{a_{2 n-2}} 2 n-1
$$

with the relations $a_{2 k-1} a_{2 k}=0$ for $1 \leq k \leq n-1$.
The following result gives a formula for $\mid \tau$-tilt $\Gamma_{n} \mid$.
Theorem 3.1. We have

$$
\mid \tau \text {-tilt } \Gamma_{n}|=3| \tau \text {-tilt } \Gamma_{n-1}|+| \tau \text {-tilt } \Gamma_{n-2} \mid
$$

with $\mid \tau$-tilt $\Gamma_{1} \mid=1$ and $\mid \tau$-tilt $\Gamma_{2} \mid=3$. Hence

$$
\mid \tau \text {-tilt } \Gamma_{n} \left\lvert\,=\frac{(3+\sqrt{13})^{n}-(3-\sqrt{13})^{n}}{\sqrt{13} \cdot 2^{n}} .\right.
$$

Proof. Applying Theorem 2.5 to Γ_{n} and Δ_{n}, we have

$$
\begin{align*}
\left|\tau-\operatorname{tilt} \Gamma_{n}\right| & =C_{0} \cdot\left|\tau-\operatorname{tilt}\left(\Gamma_{n} /\left\langle e_{1}\right\rangle\right)\right|+C_{1} \cdot\left|\tau-\operatorname{tilt}\left(\Gamma_{n} /\left\langle e_{1}+e_{2}\right\rangle\right)\right| \tag{1}\\
& =\left|\tau-\operatorname{tilt} \Delta_{n-1}\right|+\left|\tau-\operatorname{tilt} \Gamma_{n-1}\right|
\end{align*}
$$

and

$$
\begin{align*}
\mid \tau \text {-tilt } \Delta_{n} \mid= & C_{0} \cdot \mid \tau \text { - } \operatorname{tilt}\left(\Delta_{n} /\left\langle e_{0}\right\rangle\right)\left|+C_{1} \cdot\right| \tau \text { - } \operatorname{tilt}\left(\Delta_{n} /\left\langle e_{0}+e_{1}\right\rangle\right) \mid \tag{2}\\
& +C_{2} \cdot \mid \tau \text {-tilt }\left(\Delta_{n} /\left\langle e_{0}+e_{1}+e_{2}\right\rangle\right) \mid \\
= & \mid \tau \text {-tilt } \Gamma_{n}|+| \tau \text {-tilt } \Delta_{n-1}|+2| \tau \text { - } \operatorname{tilt} \Gamma_{n-1} \mid .
\end{align*}
$$

The formula (1) implies

$$
\mid \tau \text {-tilt } \Delta_{n-1}|=| \tau \text {-tilt } \Gamma_{n}|-| \tau \text {-tilt } \Gamma_{n-1} \mid .
$$

Applying it to (2), we have

$$
\begin{equation*}
\mid \tau \text {-tilt } \Gamma_{n}|=3| \tau \text {-tilt } \Gamma_{n-1}|+| \tau \text {-tilt } \Gamma_{n-2} \mid \tag{3}
\end{equation*}
$$

This is a linear homogeneous recurrence relation of degree 2 and its characteristic equation is $x^{2}-3 x-1=0$. The proof is finished.

Let Λ be an algebra. Recall that a module $M \in \bmod \Lambda$ is called tilting if

- $\operatorname{pd}_{\Lambda} M \leq 1$;
- $\operatorname{Ext}_{\Lambda}^{1}(M, M)=0$;
- $|M|=|\Lambda|$.

Thus a module $M \in \bmod \Lambda$ is tilting if and only if it is τ-tilting and $\operatorname{pd}_{\Lambda} M \leq 1$, by the Auslander-Reiten formula.

The set of all tilting Λ-modules is denoted by tilt Λ. The following result is part of [16, Theorem 2.8]. Here we give another proof.

Proposition 3.2. $\left|\operatorname{tilt} \Gamma_{n}\right|=2^{n-1}$.
Proof. Note that P_{1} is the unique Γ_{n}-module which has S_{1} as a composition factor and its projective dimension is at most 1. By Remark 2.6 and the above argument, $P_{1} \oplus N_{1}$ is a tilting Γ_{n}-module if and only if N_{1} is a tilting $\Gamma_{n} /\left\langle e_{1}\right\rangle$-module, since $\operatorname{pd}_{\Gamma_{n}} N_{1}=\operatorname{pd}_{\Gamma_{n} /\left\langle e_{1}\right\rangle} N_{1}$. Thus

$$
\left|\operatorname{tilt} \Gamma_{n}\right|=\left|\operatorname{tilt}\left(\Gamma_{n} /\left\langle e_{1}\right\rangle\right)\right|=\left|\operatorname{tilt} \Delta_{n-1}\right| .
$$

Note that P_{0} and S_{0} are the only two Δ_{n}-modules which have S_{0} as a composition factor and their projective dimension is at most 1 . Similarly, we get

$$
\left|\operatorname{tilt} \Delta_{n}\right|=\left|\operatorname{tilt}\left(\Delta_{n} /\left\langle e_{0}\right\rangle\right)\right|+\left|\operatorname{tilt}\left(\Delta /\left\langle e_{0}+e_{1}\right\rangle\right)\right|=\left|\operatorname{tilt} \Gamma_{n}\right|+\left|\operatorname{tilt} \Delta_{n-1}\right|
$$

Thus $\left|\operatorname{tilt} \Gamma_{n}\right|=2 \mid$ tilt $\Gamma_{n-1} \mid$ with \mid tilt $\Gamma_{1} \mid=1$, and so \mid tilt $\Gamma_{n} \mid=2^{n-1}$.
As generalizations of simple modules and semisimple modules, bricks and semibricks were introduced and studied in 8, 15]. Let Λ be an algebra. A Λ-module M is called a brick if $\operatorname{Hom}_{\Lambda}(M, M)$ is a K-division algebra, and a semibrick is a set consisting of isoclasses of pairwise Hom-orthogonal bricks. Recall from [3] that a semibrick \mathcal{S} is called left finite if the smallest torsion class $T(\mathcal{S})$ containing \mathcal{S} is functorially finite. There exists a bijection between $\mathrm{s} \tau$-tilt Λ and the set of left finite semibricks of Λ [3, Theorem 2.3]. Note that every torsion class is functorially finite for a representation-finite algebra. So, for a Nakayama algebra Λ, there exists a bijection between $\mathrm{s} \tau$-tilt Λ and the set sbrick Λ of semibricks of Λ, and hence $\mid \mathrm{s} \tau$-tilt $\Lambda|=|$ sbrick $\Lambda \mid$. Asai gave a method to calculate the number of semibricks over $K A_{n} / \mathrm{rad}^{r}$. In fact, we have the following more general result.

Proposition 3.3. Let Λ be a Nakayama algebra of type A_{n}. Then
(1) $|\mathrm{s} \tau-\operatorname{tilt} \Lambda|=2\left|\mathbf{s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right|+\sum_{i=2}^{l\left(I_{n}\right)} C_{i-1}\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{[n-i+1, n]}\right\rangle\right)\right|$,
(2) $|\mathbf{s} \tau-\operatorname{tilt} \Lambda|=2\left|\mathbf{s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{1}\right\rangle\right)\right|+\sum_{i=2}^{l\left(P_{1}\right)} C_{i-1}\left|\mathbf{s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{[1, i]}\right\rangle\right)\right|$.

Proof. (1) For a given brick X of Λ with top $X=S_{i}$ and $\operatorname{soc} X=S_{j}$, we will denote $S_{i, j}:=X$.

We define W_{0} as the subset of sbrick Λ consisting of the semibricks without S_{n} as a composition factor. It is clear that $\left|W_{0}\right|=\left|\operatorname{sbrick}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right|$.

Let $W_{i}\left(i=1, \ldots, l\left(I_{n}\right)\right)$ be the subset of sbrick Λ consisting of the semibricks which contain the brick $S_{n-i+1, n}$.

First, there is a bijection

$$
W_{1} \mapsto \operatorname{sbrick}\left(\Lambda /\left\langle e_{n}\right\rangle\right)
$$

defined by $\mathcal{S} \mapsto \mathcal{S} \backslash\left\{S_{n, n}\right\}$. So $\left|W_{0}\right|=\left|\operatorname{sbrick}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right|$.
Secondly, for $i=2,3, \ldots, l\left(I_{n}\right)$, there exists a bijection

$$
W_{1} \mapsto \operatorname{sbrick}\left(\Lambda /\left\langle e_{[n-i+1, n]}\right\rangle\right) \times \operatorname{sbrick}\left(\Lambda /\left\langle 1-e_{[n-i+2, n-1]}\right\rangle\right)
$$

defined by

$$
\begin{aligned}
& \mathcal{S} \mapsto(\{S \in \mathcal{S} \mid \operatorname{Supp} S \cap[n-i+1, n]=\emptyset\}, \\
&\{S \in \mathcal{S} \mid \operatorname{Supp} S \subset[n-i+2, n-1]\}),
\end{aligned}
$$

where Supp S stands for the support of S. Note that sbrick $\Lambda=\bigcup_{i=0}^{l\left(I_{n}\right)} W_{i}$. Thus we obtain

$$
\begin{aligned}
|\mathrm{s} \tau-\mathrm{tilt} \Lambda|= & |\operatorname{sbrick} \Lambda|=\sum_{i=0}^{l\left(I_{n}\right)}\left|W_{i}\right| \\
= & 2\left|\operatorname{sbrick}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right| \\
& +\sum_{i=2}^{l\left(I_{n}\right)}\left|\operatorname{sbrick}\left(\Lambda /\left\langle e_{[n-i+1, n]}\right\rangle\right)\right| \cdot\left|\operatorname{sbrick}\left(\Lambda /\left\langle 1-e_{[n-i+2, n-1]}\right\rangle\right)\right| \\
= & 2\left|\operatorname{sbrick}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right|+\sum_{i=2}^{l\left(I_{n}\right)}\left|\operatorname{sbrick}\left(\Lambda /\left\langle e_{[n-i+1, n]}\right\rangle\right)\right| \cdot\left|\operatorname{sbrick}\left(K A_{i-2}\right)\right| \\
= & 2\left|\operatorname{sit} \tau \operatorname{tilt}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right|+\sum_{i=2}^{l\left(I_{n}\right)}\left|\mathrm{s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{[n-i+1, n]}\right\rangle\right)\right| \cdot\left|\mathrm{s} \tau-\operatorname{tilt}\left(K A_{i-2}\right)\right| \\
= & 2\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{n}\right\rangle\right)\right|+\sum_{i=2}^{l\left(I_{n}\right)} C_{i-1} \cdot\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{[n-i+1, n]}\right\rangle\right)\right| .
\end{aligned}
$$

(2) Note that there is a bijection between $\mathrm{s} \tau$-tilt Λ and $\mathrm{s} \tau$-tilt Λ^{op} [1, Theorem 2.14]). Now the assertion follows from (1).

We give the following example to illustrate Proposition 3.3.
Example 3.4. Let Λ be the algebra given by the quiver

$$
1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \rightarrow 4
$$

with the relation $\alpha \beta=0$. By Proposition 3.3(1), we have

$$
\begin{aligned}
|\mathrm{s} \tau-\operatorname{tilt} \Lambda|= & 2\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{4}\right\rangle\right)\right|+\left|\mathrm{s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{3}+e_{4}\right\rangle\right)\right| \\
& +2\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{2}+e_{3}+e_{4}\right\rangle\right)\right| \\
= & 2 \times 12+5+2 \times 2=33 .
\end{aligned}
$$

On the other hand, by Proposition $3.2(2)$,

$$
|\mathrm{s} \tau-\operatorname{tilt} \Lambda|=2\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{1}\right\rangle\right)\right|+\left|\mathrm{s} \tau-\operatorname{tilt}\left(\Lambda /\left\langle e_{1}+e_{2}\right\rangle\right)\right|=2 \times 14+5=33
$$

The following result gives a formula for $\mid \mathrm{s} \tau$ - $\operatorname{tilt} \Gamma_{n} \mid$.
Theorem 3.5. We have

$$
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n}|=6| \mathrm{s} \tau \text {-tilt } \Gamma_{n-1}|+3| \mathrm{s} \tau \text {-tilt } \Gamma_{n-2} \mid
$$

with $\mid \mathrm{s} \tau$-tilt $\Gamma_{1} \mid=2$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{2} \mid=12$. Hence

$$
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n} \left\lvert\,=\frac{(3+2 \sqrt{3})^{n}-(3-2 \sqrt{3})^{n}}{2 \sqrt{3}}\right.
$$

Proof. Applying Proposition $3.3(2)$ to Γ_{n} and Δ_{n} respectively, we have

$$
\begin{align*}
\mid \mathrm{s} \tau \text { - } \operatorname{tilt} \Gamma_{n} \mid & =2\left|\mathbf{s} \tau-\operatorname{tilt}\left(\Gamma_{n} /\left\langle e_{1}\right\rangle\right)\right|+C_{1} \cdot\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Gamma_{n} /\left\langle e_{1}+e_{2}\right\rangle\right)\right| \tag{4}\\
& =2 \mid \mathbf{s} \tau \text {-tilt } \Delta_{n-1}|+| \mathrm{s} \tau \text { - }-\operatorname{tilt} \Gamma_{n-1} \mid
\end{align*}
$$

and

$$
\begin{aligned}
\mid \mathrm{s} \tau \text { - } \operatorname{tilt} \Delta_{n} \mid= & 2\left|\mathrm{~s} \tau-\operatorname{tilt}\left(\Delta_{n} /\left\langle e_{0}\right\rangle\right)\right|+C_{1} \cdot \mid \mathrm{s} \tau \text { - } \operatorname{tilt}\left(\Delta_{n} /\left\langle e_{0}+e_{1}\right\rangle\right) \mid \\
& +C_{2} \cdot \mid \mathrm{s} \tau \text { - } \operatorname{tilt}\left(\Delta_{n} /\left\langle e_{0}+e_{1}+e_{2}\right\rangle\right) \mid \\
= & 2 \mid \mathrm{s} \tau \text { - } \operatorname{tilt} \Gamma_{n}|+| \mathrm{s} \tau \text {-tilt } \Delta_{n-1}|+2| \mathrm{s} \tau \text {-tilt } \Gamma_{n-1} \mid .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n}|=6| \mathrm{s} \tau \text {-tilt } \Gamma_{n-1}|+3| \mathrm{s} \tau \text {-tilt } \Gamma_{n-2} \mid . \tag{5}
\end{equation*}
$$

This is a linear homogeneous recurrence relation of degree 2 and its characteristic equation is $x^{2}-6 x-3=0$. The proof is finished.

Let $\bar{\Gamma}_{n}$ be the algebra given by the quiver

$$
1 \xrightarrow{a_{1}} 2 \xrightarrow{a_{2}} 3 \xrightarrow{a_{3}} \cdots \rightarrow 2 n-2 \xrightarrow{a_{2 n-2}} 2 n-1 \xrightarrow{a_{2 n-1}} 2 n
$$

with the relations $a_{2 k-1} a_{2 k}=0$ for $1 \leq k \leq n-1$, and let $\bar{\Delta}_{n}$ be the algebra given by the quiver

$$
0 \xrightarrow{a_{0}} 1 \xrightarrow{a_{1}} 2 \xrightarrow{a_{2}} 3 \xrightarrow{a_{3}} \cdots \rightarrow 2 n-2 \xrightarrow{a_{2 n-2}} 2 n-1 \xrightarrow{a_{2 n-1}} 2 n
$$

with the relations $a_{2 k-1} a_{2 k}=0$ for $1 \leq k \leq n-1$. By using the same argument as in Theorem 3.5, we can obtain

$$
\mid \mathrm{s} \tau \text {-tilt } \bar{\Delta}_{n}|=6| \mathbf{s} \tau \text {-tilt } \bar{\Delta}_{n-1}|+3| \mathrm{s} \tau \text {-tilt } \bar{\Delta}_{n-2} \mid
$$

4. The case for Γ_{n}^{\prime}. In this section, we will give formulas for $\mid \tau$-tilt $\Gamma_{n}^{\prime} \mid$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{n}^{\prime} \mid$.

Let X_{n} be the set of all support τ-tilting Γ_{n}-modules which do not have $P_{1}, \ldots, P_{2 n-3}$ as direct summands, and let Y_{n} be the set of all support τ-tilting Δ_{n}-modules which do not have $P_{0}, P_{1}, \ldots, P_{2 n-3}$ as direct summands. Let X_{n}^{\prime} be the set of all support τ-tilting $\bar{\Gamma}_{n}$-modules which do not have $P_{1}, \ldots, P_{2 n-2}$ as direct summands, and let Y_{n}^{\prime} be the set of all support τ-tilting $\bar{\Delta}_{n}$-modules which do not have $P_{0}, P_{1}, \ldots, P_{2 n-2}$ as direct summands.

We need the following lemma.
Lemma 4.1.
(1) $\left|X_{n}\right|=3\left|X_{n-1}\right|+\left|X_{n-2}\right|$ and $\left|Y_{n}\right|=3\left|Y_{n-1}\right|+\left|Y_{n-2}\right|$.
(2) $\left|X_{n}^{\prime}\right|=3\left|X_{n-1}^{\prime}\right|+\left|X_{n-2}^{\prime}\right|$ and $\left|Y_{n}^{\prime}\right|=3\left|Y_{n-1}^{\prime}\right|+\left|Y_{n-2}^{\prime}\right|$.

Proof. (1) By Lemma 2.4, all support τ-tilting Γ_{n}-modules which have S_{1}, S_{2} as composition factors must have P_{1} as a direct summand. Hence X_{n} consists of two parts: the first part comes from all support τ-tilting Γ_{n}-modules which do not have $P_{1}, \ldots, P_{2 n-3}$ as direct summands and do not have S_{1} as a composition factor (their number is exactly $\left|Y_{n-1}\right|$); the second part comes from all support τ-tilting Γ_{n}-modules which do not have $P_{1}, \ldots, P_{2 n-3}$ as direct summands and have S_{1} as a composition factor but not S_{2} (their number is exactly $\left|X_{n-1}\right|$). Hence, $\left|X_{n}\right|=\left|Y_{n-1}\right|+\left|X_{n-1}\right|$. Similarly, we have $\left|Y_{n}\right|=\left|X_{n}\right|+\left|Y_{n-1}\right|+2\left|X_{n-1}\right|$. These two equalities imply $\left|X_{n}\right|=3\left|X_{n-1}\right|+\left|X_{n-2}\right|$ and $\left|Y_{n}\right|=3\left|Y_{n-1}\right|+\left|Y_{n-2}\right|$.
(2) The proof is similar.

The following result gives a formula for $\mid \tau$-tilt $\Gamma_{n}^{\prime} \mid$.
Theorem 4.2. We have

$$
\mid \tau \text {-tilt } \Gamma_{n}^{\prime}|=3| \tau \text {-tilt } \Gamma_{n-1}^{\prime}|+| \tau \text {-tilt } \Gamma_{n-2}^{\prime} \mid
$$

with $\mid \tau$-tilt $\Gamma_{1}^{\prime} \mid=3$ and $\mid \tau$-tilt $\Gamma_{2}^{\prime} \mid=11$. Hence

$$
\mid \tau \text {-tilt } \Gamma_{n}^{\prime} \left\lvert\,=\frac{(3+\sqrt{13})^{n}+(3-\sqrt{13})^{n}}{2^{n}}\right.
$$

Proof. We claim that every proper support τ-tilting Γ_{n}^{\prime}-module M which has S_{1}, S_{2} as composition factors must have a projective Γ_{n}^{\prime}-module as a direct summand. Indeed, if M does not have $S_{2 n}$ as a composition factor, then it has P_{1} as a direct summand by Lemma 2.4. Now, assume that M has $S_{i}, S_{i+1}, \ldots, S_{2 n}, S_{1}, S_{2}$ as composition factors, but not S_{i-1}. Then M has P_{i} as a direct summand by Lemma 2.4.

Now, $\mathrm{ps} \tau$ - tilt $_{\mathrm{np}} \Gamma_{n}^{\prime}$ consists of the following two parts:
(i) U_{1} : the subset of modules which do not have S_{2} as a composition factor.
(ii) U_{2} : the subset of modules which have S_{2} as a composition factor, but not S_{1}.
Since $\bar{\Lambda}:=\Gamma_{n}^{\prime} /\left\langle e_{2}\right\rangle$ is the quiver

$$
3 \xrightarrow{a_{3}} \cdots \rightarrow 2 n-2 \xrightarrow{a_{2 n-2}} 2 n-1 \xrightarrow{a_{2 n-1}} 2 n \xrightarrow{a_{2 n}} 1
$$

with the relations $a_{2 k-1} a_{2 k}=0$ for $2 \leq k \leq n, U_{1}$ is exactly the set of support τ-tilting $\bar{\Lambda}$-modules which do not have $P_{3}, P_{4}, \ldots, P_{2 n-1}$ as direct summands, and so $\left|U_{1}\right|=\left|X_{n}\right|$. Note that $\bar{\Gamma}:=\Gamma_{n}^{\prime} /\left\langle e_{1}\right\rangle$ is the quiver

$$
2 \xrightarrow{a_{2}} 3 \xrightarrow{a_{3}} \cdots \rightarrow 2 n-2 \xrightarrow{a_{2 n-2}} 2 n-1 \xrightarrow{a_{2 n-1}} 2 n
$$

with the relations $a_{2 k-1} a_{2 k}=0$ for $2 \leq k \leq n-1$. Thus, the number of support τ-tilting $\bar{\Gamma}$-modules which do not have $P_{2}, P_{4}, \ldots, P_{2 n-2}$ as direct summands is exactly $\left|Y_{n-1}^{\prime}\right|$. Moreover, the number of support τ-tilting $\bar{\Gamma}$ modules which do not have $P_{2}, P_{4}, \ldots, P_{2 n-2}$ as direct summands and do not have S_{2} as a composition factor is exactly $\left|X_{n-1}^{\prime}\right|$. Therefore, $\left|U_{2}\right|=$ $\left|Y_{n-1}^{\prime}\right|-\left|X_{n-1}^{\prime}\right|$. By Theorem 2.2, we obtain

$$
\mid \tau \text {-tilt } \Gamma_{n}^{\prime}|=| \mathrm{ps} \tau \text {-tilt } \mathrm{thp} \Gamma_{n}^{\prime}\left|=\left|U_{1}\right|+\left|U_{2}\right|=\left|X_{n}\right|+\left|Y_{n-1}^{\prime}\right|-\left|X_{n-1}^{\prime}\right| .\right.
$$

Now, the recurrence relation for $\mid \tau$-tilt $\Gamma_{n}^{\prime} \mid$ follows from Lemma 4.1.
The following result gives a formula for $\mid \mathrm{s} \tau$-tilt $\Gamma_{n}^{\prime} \mid$.

Theorem 4.3. We have

$$
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n}^{\prime}|=6| \mathrm{s} \tau \text {-tilt } \Gamma_{n-1}^{\prime}|+3| \mathrm{s} \tau \text {-tilt } \Gamma_{n-2}^{\prime} \mid
$$

with $\mid \mathrm{s} \tau$-tilt $\Gamma_{1}^{\prime} \mid=6$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{2}^{\prime} \mid=42$. Hence

$$
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n}^{\prime} \mid=(3+2 \sqrt{3})^{n}+(3-2 \sqrt{3})^{n} .
$$

Proof. The set sbrick Γ_{n}^{\prime} of semibricks of Γ_{n}^{\prime} consists of five parts:
(i) V_{0} : the semibricks without S_{1} as a composition factor.
(ii) V_{1} : the semibricks which contain S_{1} but not the brick I_{2}.
(iii) V_{2} : the semibricks which contain I_{1}.
(iv) V_{3} : the semibricks which contain P_{1}.
(v) V_{4} : the semibricks which contain I_{2}.

Obviously, $\left|V_{0}\right|=\left|\operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}\right\rangle\right)\right|=\mid$ sbrick $\bar{\Delta}_{n-1} \mid$.
There is a bijection $V_{1} \mapsto \operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}\right\rangle\right)$ defined by $\mathcal{S} \mapsto \mathcal{S} \backslash\left\{S_{1}\right\}$, so

$$
\left|V_{1}\right|=\left|\operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}\right\rangle\right)\right|=\left|\operatorname{sbrick} \bar{\Delta}_{n-1}\right| .
$$

Similarly, there are bijections

$$
V_{2} \mapsto \operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}+e_{2 n}\right\rangle\right) \quad \text { and } \quad V_{3} \mapsto \operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}+e_{2}\right\rangle\right),
$$

so

$$
\begin{aligned}
& \left|V_{2}\right|=\left|\operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}+e_{2 n}\right\rangle\right)\right|=\left|\operatorname{sbrick} \Delta_{n-1}\right|, \\
& \left|V_{3}\right|=\left|\operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}+e_{2}\right\rangle\right)\right|=\left|\operatorname{sbrick} \Delta_{n-1}^{\mathrm{op}}\right| .
\end{aligned}
$$

Finally, we can define a bijection

$$
V_{4} \mapsto \operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}+e_{2}+e_{2 n}\right\rangle\right) \times \operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle 1-e_{1}\right\rangle\right)
$$

by $V_{4} \ni \mathcal{S} \mapsto\left(\mathcal{S} \backslash\left\{S_{1}, I_{2}\right\}, S_{1} \cap \mathcal{S}\right)$. Thus

$$
\left|V_{4}\right|=\left|\operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle e_{1}+e_{2}+e_{2 n}\right\rangle\right)\right| \cdot\left|\operatorname{sbrick}\left(\Gamma_{n}^{\prime} /\left\langle 1-e_{1}\right\rangle\right)\right|=2\left|\operatorname{sbrick} \Gamma_{n-1}\right| .
$$

Therefore

$$
\begin{aligned}
\mid \mathrm{s} \tau \text {-tilt } \Gamma_{n}^{\prime} \mid & =\left|\operatorname{sbrick} \Gamma_{n}^{\prime}\right|=\sum_{i=0}^{4}\left|V_{i}\right| \\
& =2\left|\operatorname{sbrick} \bar{\Delta}_{n-1}\right|+\left|\operatorname{sbrick} \Delta_{n-1}\right|+\left|\operatorname{sbrick} \Delta_{n-1}^{\mathrm{op}}\right|+2\left|\operatorname{sbrick} \Gamma_{n-1}\right| \\
& =2 \mid \mathrm{s} \tau \text {-tilt } \bar{\Delta}_{n-1}|+| \mathrm{s} \tau \text {-tilt } \Delta_{n-1}|+| \mathrm{s} \tau \text {-tilt } \Delta_{n-1}^{\mathrm{op}}|+2| \mathrm{s} \tau \text {-tilt } \Gamma_{n-1} \mid \\
& =2 \mid \mathrm{s} \tau \text {-tilt } \bar{\Delta}_{n-1}|+2| \mathrm{s} \tau \text {-tilt } \Delta_{n-1}|+2| \mathrm{s} \tau \text {-tilt } \Gamma_{n-1} \mid
\end{aligned}
$$

Note that $\mid \mathrm{s} \tau$-tilt $\Delta_{n-1} \mid$ is a linear combination of $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ and $\mid \mathrm{s} \tau$-tilt $\Gamma_{n-1} \mid$ by (4), so $\mid \mathrm{s} \tau$-tilt $\Delta_{n} \mid$ has the same recurrence relation as $\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$. In particular, $\mid \mathrm{s} \tau$-tilt $\bar{\Delta}_{n}|| ,\mathrm{s} \tau$-tilt $\Delta_{n}|| ,\mathrm{s} \tau$-tilt $\Gamma_{n} \mid$ have the same recurrence relations, and so $\mid \mathrm{s} \tau$-tilt $\Gamma_{n}^{\prime} \mid$ also has the same recurrence relation.
5. Examples. In this section, we list the numbers of (support) τ-tilting modules over Γ_{n} and Γ_{n}^{\prime} in the following table. The sequence $\mid \tau$-tilt $\Gamma_{n} \mid$ is listed in the On-line Encyclopedia of Integer Sequences (OEIS) as the sequence A006190 and $\mid \tau$-tilt $\Gamma_{n}^{\prime} \mid$ as A006497.

n	1	2	3	4	5	6	7	8
$\mid \tau$-tilt $\Gamma_{n} \mid$	1	3	10	33	109	360	1189	3927
$\mid \mathrm{s} \tau$-tilt $\Gamma_{n} \mid$	2	12	78	504	3258	21060	136134	879984
$\mid \tau$-tilt $\Gamma_{n}^{\prime} \mid$	3	11	36	119	393	1298	4287	114159
$\mid \mathrm{s} \tau$-tilt $\Gamma_{n}^{\prime} \mid$	6	42	270	17464	11286	72954	471582	3048354

Acknowledgements. The authors thank the referee for useful and detailed suggestions.

This work was partially supported by NSFC (Nos. 11971225, 12101320, 12171207) and Jiangsu Provincial Double-Innovation Doctor Program (JSSCBS20210353).

REFERENCES

[1] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory, Compos. Math. 50 (2014), 415-452.
[2] T. Adachi, The classification of τ-tilting modules over Nakayama algebras, J. Algebra 452 (2016), 227-262.
[3] S. Asai, Semibricks, Int. Math. Res. Notices 2020, 4993-5054.
[4] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2006.
[5] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454.
[6] T. Brüstle, L. Hille, C. M. Ringel and G. Röhrle. The Δ-filtered modules without self-extensions for the Auslander algebra of $k[T] /\left\langle T^{n}\right\rangle$, Algebras Represent. Theory 2 (1999), 295-312.
[7] S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018.
[8] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
[9] H. Gao and R. Schiffler, On the number of τ-tilting modules over Nakayama algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), art. 058, 13 pp.
[10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
[11] O. Iyama and X. Zhang, Classifying τ-tilting modules over the Auslander algebra of $K[x] /\left(x^{n}\right)$, J. Math Soc. Japan 72 (2020), 731-764.
[12] N. Kajita, The number of tilting modules over hereditary algebras and tilting modules over Auslander algebras, Master Thesis, Grad. School of Math., Nagoya Univ., 2008 (in Japanese).
[13] B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), 239-253.
[14] A. Obaid, S. K. Nauman, W. M. Fakieh and C. M. Ringel, The number of supporttilting modules for a Dynkin algebra, J. Integer Sequences 18 (2015), no. 10, art. 15.10.6, 24 pp.
[15] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), 269-302.
[16] X. Zhang, Classifying tilting modules over the Auslander algebras of radical square zero Nakayama algebras, J. Algebra Appl. 21 (2022), no. 2, art. 2250041.

Hanpeng Gao
School of Mathematical Sciences
Anhui University
230601 Hefei, Anhui Province, P.R. China
E-mail: hpgao07@163.com
Zhaoyong Huang (corresponding author)
Department of Mathematics
Nanjing University
210093 Nanjing, Jiangsu Province, P.R. China
E-mail: huangzy@nju.edu.cn

Zongzhen Xie
Department of Mathematics and Computer Science School of Biomedical Engineering and Informatics
Nanjing Medical University
211166 Nanjing, Jiangsu Province, P.R. China
E-mail: zzhx@njmu.edu.cn

[^0]: 2020 Mathematics Subject Classification: Primary 16G10; Secondary 05E10, 05A19.
 Key words and phrases: τ-tilting modules, support τ-tilting modules, Nakayama algebras, Auslander algebras.
 Received 17 January 2021.
 Published online 7 April 2022.

