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TWO FILTRATION RESULTS FOR MODULES WITH
APPLICATIONS TO THE AUSLANDER CONDITION

BY

XI TANG (Guilin) and ZHAOYONG HUANG (Nanjing)

Abstract. Under some strong cograde conditions, we obtain two different filtrations
of modules in terms of the properties of cotransposes of modules with respect to a semid-
ualizing bimodule. Then we apply these filtrations to investigate the relationship between
artin algebras satisfying the Auslander condition and Gorenstein algebras, which is related
to a conjecture of Auslander and Reiten.

1. Introduction. Let R be a left and right noetherian ring and M
a finitely generated left R-module. In [4], Auslander devised the so-called
Auslander sequence

0→ Ext1Rop(TrM,R)→M → HomRop(HomR(M,R), R)

→ Ext2Rop(TrM,R)→ 0,

where TrM denotes the transpose of M . This sequence has proved very use-
ful for the homological study of noetherian rings. Huang [19, Theorem 2.3]
established a semidualizing version of this sequence. Under the Auslander
condition, Hoshino and Nishida [18, Theorem 2.2] generalized the Auslan-
der sequence by using a certain filtration of modules. Iyama and Jasso [23,
Proposition 2.7] extended this sequence to a dualizing R-variety. Recently,
in [28], for arbitrary associative rings R and S, we introduced the cotrans-
pose cTrωM of M with respect to a semidualizing bimodule RωS , and used
it to provide the dual Auslander sequence

0→ TorS2 (ω, cTrωM)→ ω ⊗S HomR(ω,M)→M → TorS1 (ω, cTrωM)→ 0.

In analogy with the philosophy of Hoshino and Nishida, one of our aims in
this paper is to look for a special filtration of modules to generalize the dual
Auslander sequence.
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On the other hand, the grade condition for modules is linked with some
interesting homological properties; see for example, [5, 6, 11, 21, 22]. In par-
ticular, Auslander and Bridger [5, Theorem 2.37] showed that if R satisfies
some grade condition, then for any finitely generated left R-module M there
exists a spherical filtration

Mn ⊆Mn−1 ⊆ · · · ⊆M1 ⊆M0 = M ⊕ P

withP a finitely generated projective leftR-module. Furthermore, Huang [20]
gave a different filtration result for modules over right quasi k-Gorenstein
rings. Along this direction, another aim of this paper is to see how the
cograde condition induces some filtrations of modules.

The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.

Let R and S be rings and RωS a semidualizing bimodule. In Section 3, we
in particular describe a certain filtration of submodules of a left noetherian
R-module M with finite Ext-cograde with respect to ω in case ω satisfies
the ∞-cograde condition (Theorem 3.12). It is a dual version of [18, Theo-
rem 2.2]. In Section 4, we prove that if ω satisfies the n-cograde condition
with n ≥ 1, then for any left R-module M , there exists an injective left
R-module I and a chain of monomorphisms

Mn �Mn−1 � · · ·�M1 �M0 = M ⊕ I

with some interesting homological properties (Theorem 4.5).

Recall that an artin algebra R is said to satisfy the Auslander condition if
the projective dimension of the ith term in a minimal injective resolution of

RR is at most i−1 for any i ≥ 1. Auslander and Reiten [6] conjectured that
an artin algebra R satisfying the Auslander condition is Gorenstein (that
is, the left and right self-injective dimensions of R are finite). In Section 5,
we apply the two filtrations of modules obtained in Sections 3 and 4 to give
some necessary (and sufficient) conditions for an artin algebra satisfying the
Auslander condition to be Gorenstein (Theorems 5.2 and 5.4). Finally, we
introduce the notion of dual Evans–Griffith presentation of modules. We
prove that if ω satisfies the n-cograde condition with n ≥ 1, then for any
0 ≤ i ≤ n − 1, each i-Bass-cosyzygy module admits a dual Evans–Griffith
presentation (Proposition 5.6).

2. Preliminaries. Throughout, R and S are fixed associative rings with
unit. We use ModR (resp. modR) to denote the class of left R-modules
(resp. finitely generated left R-modules). Let M ∈ ModR. We use pdRM
and idRM to denote the projective and injective dimensions of M respec-
tively, and AddRM for the subclass of ModR consisting of all direct sum-
mands of direct sums of copies of M .
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Definition 2.1 ([2, 17]). An (R-S)-bimodule RωS is called semidualizing
if the following conditions are satisfied:

(1) Rω admits a degreewise finite R-projective resolution.
(2) ωS admits a degreewise finite S-projective resolution.

(3) The homothety map RRR
Rγ−−→ HomSop(ω, ω) is an isomorphism.

(4) The homothety map SSS
γS−→ HomR(ω, ω) is an isomorphism.

(5) Ext≥1R (ω, ω) = 0.

(6) Ext≥1Sop(ω, ω) = 0.

From now on, RωS denotes a semidualizing bimodule. We write (−)∗ :=
Hom(ω,−). Following [17], set

Pω(R) := {ω ⊗S P | P is projective in ModS},
Iω(S) := {I∗ | I is injective in ModR}.

The modules in Pω(R) and Iω(S) are called ω-projective and ω-injective
respectively. We use I(R) to denote the subclass of ModR consisting of in-
jective modules, and P(S) for the subclass of ModS consisting of projective
modules. Let M ∈ ModR and N ∈ ModS. Then we have two canonical
valuation homomorphisms:

θM : ω ⊗S M∗ →M defined by θM (x⊗ f) = f(x)

for any x ∈ ω and f ∈M∗; and

µN : N → (ω ⊗S N)∗ defined by µN (y)(x) = x⊗ y
for any y ∈ N and x ∈ ω.

Definition 2.2 ([17]). The Bass class Bω(R) with respect to ω consists
of all left R-modules M satisfying the following conditions:

(1) Ext≥1R (ω,M) = 0.

(2) TorS≥1(ω,M∗) = 0.
(3) θM is an isomorphism in ModR.

The Auslander class Aω(S) with respect to ω consists of all left S-modules
N satisfying the following conditions:

(1) TorSi≥1(ω,N) = 0.

(2) Ext≥1R (ω, ω ⊗S N) = 0.
(3) µN is an isomorphism in ModS.

Note that Iω(S)∪P(S) ⊆ Aω(S) and Pω(R)∪I(R) ⊆ Bω(R) [17, Lemma
4.1 and Corollary 6.1]. Let M ∈ ModR. We use

(2.1) 0→M → I0(M)
f0−→ I1(M)

f1−→ · · · f
i−1

−−−→ Ii(M)
f i−→ · · ·

to denote a minimal injective resolution of M . For any n ≥ 1, coΩn(M) :=
Im fn−1 is called the nth cosyzygy of M , and in particular coΩ0(M) = M .
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Definition 2.3 ([28]). Let M ∈ ModR and n ≥ 1.

(1) cTrωM := Coker(f0∗) is called the cotranspose of M with respect to

RωS , where f0 is as in (2.1).
(2) M is called n-ω-cotorsionfree if TorS1≤i≤n(ω, cTrωM) = 0. In particular,

every module in ModR is 0-ω-cotorsionfree.

We use cT nω(R) to denote the subcategory of ModS consisting of n-ω-
cotorsionfree modules.

Dually, let N ∈ ModS. We use

(2.2) · · · f1−→ F1(N)
f0−→ F0(N)

f−1−−→ N → 0

to denote a minimal flat resolution of N in ModS, where each Fi(N) �
Coker fi is the flat cover of Coker fi. The existence of such a resolution is
guaranteed by the fact that any module has a flat cover (see [9]). Note that
(ω ⊗S −, HomR(ω,−)) is an adjoint pair. So, it is reasonable to introduce
the adjoint counterparts of the notions in Definition 2.3:

Definition 2.4 ([30]). Let N ∈ ModS and n ≥ 1.

(1) acTrωN := Ker(1ω ⊗ f0) is called the adjoint cotranspose of N with
respect to RωS , where f0 is as in (2.2).

(2) N is called adjoint n-ω-cotorsionfree if Ext1≤i≤nR (ω, acTrωN) = 0; and
N is adjoint∞-ω-cotorsionfree if it is adjoint n-ω-cotorsionfree for all n.
In particular, every module in ModS is adjoint 0-ω-cotorsionfree.

We use acT (S) to denote the subcategory of ModS consisting of adjoint
∞-ω-cotorsionfree modules.

Definition 2.5 ([29, Definition 6.2]). Let M ∈ ModR, N ∈ ModS and
n ≥ 0.

(1) The Ext-cograde of M with respect to ω is defined as E-cogradeωM :=
inf{i ≥ 0 | ExtiR(ω,M) 6= 0}; and the strong Ext-cograde of M with
respect to ω, denoted by s.E-cogradeωM , is said to be at least n if
E-cogradeωX ≥ n for any quotient module X of M .

(2) The Tor-cograde of N with respect to ω is defined as T-cogradeωN :=
inf{i ≥ 0 | TorSi (ω,N) 6= 0}; and the strong Tor-cograde of N with
respect to ω, denoted by s.T-cogradeωN , is said to be at least n if
T-cogradeω Y ≥ n for any submodule Y of N .

Let M ∈ ModR. An exact sequence (finite or infinite)

· · · → X1 → X0 →M → 0

in ModR is called an X -resolution of M if all Xi are in X . The X -projective
dimension X -pdRM of M is defined as inf{n | there exists an X -resolution
0 → Xn → · · · → X1 → X0 → M → 0 of M in ModR}. We always
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take X -pdR 0 = −1. Dually, the notions of X -coresolution and X -injective
dimension X -idRM are defined.

3. A filtration of modules with finite Ext-cograde. Let M ∈
ModR and let i, j be integers such that i, j ≥ 1 or i = j = 0. Set

M j
i := TorSi (ω, cTrω coΩj(M)),

M−10 := M,

M−11 := 0,

M0
i := TorSi (ω, cTrωM).

The following result is a generalization of the dual Auslander formula demon-
strated in Section 1.

Proposition 3.1. Let i, j be integers such that i, j ≥ 1 or i = j = 0 and
let M ∈ ModR with TorSi−1(ω,ExtjR(ω,M)) = 0. Then there exists an exact
sequence

M j−1
i+1 →M j

i+2 → TorSi (ω,ExtjR(ω,M))→M j−1
i →M j

i+1 → 0.

Proof. The case of i = j = 0 has been proved in [28, Proposition 3.2].

Now suppose i, j ≥ 1. Applying the functor (−)∗ to the minimal injective
resolution (2.1), we get a complex

0→M∗ → I0(M)∗ → I1(M)∗ → · · ·
fj−1

∗−−−−→ Ij(M)∗
fj∗−−→ Ij+1(M)∗ → · · · .

Consider the following commutative diagram with exact columns and rows:

0 // Ker(f j∗) // Ij(M)∗
fj∗ //

πj

��

Ij+1(M)∗
πj+1
// Coker(f j∗) // 0

Coker(f j−1∗)

��
0

with πj and πj+1 natural epimorphisms. As

Kerπj = Im(f j−1∗) ⊆ Ker(f j∗),

there exists αj : Coker(f j−1∗) → Ij+1(M)∗ such that f j∗ = αj · πj by [1,
Theorem 3.6(1)]. So we get the following commutative diagram with exact
columns and rows:
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0

��

0

��
Ker g

h //

��

Kerπj

��
0 // Ker(f j∗) //

g

��

Ij(M)∗
fj∗ //

πj

��

Ij+1(M)∗
πj+1
// Coker(f j∗) //

f
��

0

0 // Kerαj // Coker(f j−1∗)
αj //

��

Ij+1(M)∗
// Cokerαj // 0

0

with f, g, h induced homomorphisms. By diagram chase, it is easy to see
that f is an isomorphism and

Cokerαj ∼= Coker(f j∗) = cTrω coΩj(M).

Then g is an epimorphism and h is an isomorphism by the snake lemma. So

Kerαj ∼= Ker(f j∗)/Ker g ∼= Ker(f j∗)/Kerπj

∼= Ker(f j∗)/Im(f j−1∗)
∼= ExtjR(ω,M),

and hence we get the exact sequence

0→ ExtjR(ω,M)→ cTrω coΩj−1(M)
αj−→ Ij+1(M)∗ → cTrω coΩj(M)→ 0,

which induces exact sequences

0→ ExtjR(ω,M)→ cTrω coΩj−1(M)→ Imαj → 0(3.1)

and

0→ Imαj → Ij+1(M)∗ → cTrω coΩj(M)→ 0.(3.2)

Note that TorS≥1(ω, I
j+1(M)∗) = 0 by [17, Lemma 4.1]. So, applying the

functor ω ⊗S − to (3.2) yields

TorSi (ω, Imαj) ∼= TorSi+1(ω, cTrω coΩj(M)) = M j
i+1

for any i ≥ 1. Now applying the functor ω ⊗S − to (3.1) yields the exact
sequence

(3.3) M j−1
i+1 →TorSi+1(ω, Imαj) (∼=M j

i+2)→TorSi (ω,ExtjR(ω,M))→M j−1
i

→ TorSi (ω, Imαj) (∼= M j
i+1)→ TorSi−1(ω,ExtjR(ω,M)).

As TorSi−1(ω,ExtjR(ω,M)) = 0 by assumption, the assertion follows.

The following proposition will be useful.
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Proposition 3.2. Let M ∈ ModR with E-cogradeωM = n ≥ 1. Then
Iω(S)-pdS cTrω coΩj−1(M) ≤ j for any 1 ≤ j ≤ n and M ∼= Mn−1

n .

Proof. Since E-cogradeωM=n by assumption, we get the exact sequence

(3.4(j)) 0→ I0(M)∗ → I1(M)∗ → · · · → Ij(M)∗ → cTrω coΩj−1(M)→ 0

for any 1 ≤ j ≤ n. It implies that

Iω(S)- pdS cTrω coΩj−1(M) ≤ j.

Note that TorS≥1(ω, I
i(M)∗) = 0 for any i ≥ 0 by [17, Lemma 4.1]. So,

applying the functor ω ⊗S − to (3.4(n)) gives the following commutative
diagram with exact rows:

0 //Mn−1
n

f

��

// ω ⊗S I0(M)∗ //

θI0(M)

��

ω ⊗S I1(M)∗

θI1(M)

��
0 //M // I0(M) // I1(M)

Since θI0(M) and θI1(M) are isomorphisms, so is f and M ∼= Mn−1
n .

The following result establishes a relation between the strong Ext-cograde
and the strong Tor-cograde of modules.

Lemma 3.3 ([29, Theorem 6.9]). For any n ≥ 1, the following statements
are equivalent:

(1) s.E-cogradeω TorSi (ω,N) ≥ i for any N ∈ ModS and 1 ≤ i ≤ n.
(2) s.T-cogradeω ExtiR(ω,M) ≥ i for any M ∈ ModR and 1 ≤ i ≤ n.

Relying on this lemma, we introduce the following

Definition 3.4. For n ≥ 1, we say that ω satisfies the n-cograde con-
dition if one of the equivalent conditions in Lemma 3.3 is satisfied; and ω
satisfies the ∞-cograde condition if it satisfies the n-cograde condition for
any n ≥ 1.

Let R be an artin algebra and D the usual duality between modR and
modRop. Then D(R) is a typical semidualizing (R,R)-bimodule. Recall
from [15] that R is said to satisfy the Auslander condition if pdR I

i(R) ≤ i
for any i ≥ 0; equivalently, idRop HomR(Pi(R), D(R)) ≤ i for any i ≥ 0,
where Pi(R) is the (i+1)st term in the minimal projective resolution of RR.
Note that an artin algebra R satisfies the Auslander condition if and only if
DR satisfies the ∞-cograde condition by [31, Proposition 7.7].
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Let Q be the quiver
3

β

��
1 5

γ��

α
^^

4

ε��

δ

^^

2

and R = KQ/〈βα− δγ, εγ〉 with K a field. Take

ω :=

0

1 0

0

0

⊕

0

1 0

1

1

⊕

0

1 0

1

0

⊕

1

1 1

1

0

⊕

0

0 1

1

0

.

By [3, Example VI.2.8(a)], Rω is a non-injective tilting module with pdR ω
= 1. Thus ω is a semidualizing (R,EndR(ω))-bimodule. It is straightforward
to verify that the projective cover P0(ω) of ω is P (1) ⊕ P (4)2 ⊕ P (5)2.
So P0(ω) ∈ Pω(R), and hence ω satisfies the 1-cograde condition by [31,

Proposition 7.7]. Since pdR ω = 1, we have Ext≥2R (ω,M) = 0 for any M in
ModR. Thus ω satisfies the ∞-cograde condition.

From Propositions 3.1 and 3.2, we get the following two corollaries.

Corollary 3.5. Assume ω satisfies the (n+ 1)-cograde condition with
n ≥ 0. If M ∈ ModR with E-cogradeωM = n, then T-cogradeω ExtnR(ω,M)
= n.

Proof. If n = 0, then M∗ 6= 0. It follows from [29, Lemma 6.1(1)] that
ω ⊗S M∗ 6= 0 and T-cogradeωM∗ = 0.

Now suppose n ≥ 1. Then by Proposition 3.1, we have an exact sequence

TorSn(ω,ExtnR(ω,M))→Mn−1
n →Mn

n+1 → 0.

By Lemma 3.3, T-cogradeω ExtnR(ω,M) ≥ n. If T-cogradeω ExtnR(ω,M)>n,
then the above exact sequence implies Mn−1

n
∼= Mn

n+1. So by Proposition 3.2,

M ∼= Mn
n+1 = TorSn+1(ω, cTrω coΩn(M)).

Then Lemma 3.3 yields E-cogradeωM ≥ n+ 1, contrary to assumption.

Corollary 3.6. Let M ∈ ModR with E-cogradeωM = n ≥ 1. Then
TorSi (ω,ExtnR(ω,M)) ∼= Mn

i+2 for any i ≥ n+ 1.

Proof. By the proof of Proposition 3.1, we have an exact sequence

Mn−1
i+1 →Mn

i+2 → TorSi (ω,ExtnR(ω,M))→Mn−1
i .

Because i ≥ n + 1, Proposition 3.2 yields Mn−1
i+1 = Mn−1

i = 0 and the
assertion follows.
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Applying Corollary 3.5, we get the following lemma which shows how
the Ext-cograde and the Tor-cograde of modules behave in short exact se-
quences. Because the argument is standard, we omit it.

Lemma 3.7. Assume that ω satisfies the (n + 1)-cograde condition with
n ≥ 0.

(1) Let 0 → M1 → M2 → M3 → 0 be an exact sequence in ModR with
ni = E-cogradeωMi for i = 1, 2, 3 and max{n1, n2, n3} ≤ n. Then
n2 = min{n1, n3}.

(2) Let 0 → N1 → N2 → N3 → 0 be an exact sequence in ModS with
ni = T-cogradeωNi for i = 1, 2, 3 and max{n1, n2, n3} ≤ n. Then n2 =
min{n1, n3}.

We say that a module M ∈ ModR is pure of Ext-cograde k if E-cogradeω
M = E-cogradeωM/M ′ = k for any proper R-submodule M ′ of M ; du-
ally, a module N ∈ ModS is pure of Tor-cograde l if T-cogradeωN =
T-cogradeωN

′ = l for any non-zero S-submodule N ′ of N .

Example 3.8. LetR be a finite-dimensional algebra over an algebraically
closed field given by the quiver

1
α1−→ 2

α2−→ 3.

Then ω := I(1)⊕ I(2)⊕ I(3) is a semidualizing (R-R)-bimodule. Set M :=
S(2). It is easy to see that M∗ = 0. By [3, IV.2 Theorem 2.13] and [8, VII.1
Example], we have Ext1R(I(1),M)∼=DHomR(M,M) 6= 0 and E-cogradeωM
= 1. Because M is simple, it follows that M is pure of Ext-cograde 1 and
D(M) is pure of Tor-cograde 1.

On the other hand, because N := I(3) is a direct summand of ω, it
follows that E-cogradeωN = 0. Thus E-cogradeωM ⊕ N = 0 and M ⊕ N
is not pure of Ext-cograde 0. Because TorRi (D(M), ω) ∼= D(ExtiR(ω,M))
and TorRi (D(M ⊕N), ω) ∼= D(ExtiR(ω,M ⊕N)) for any i ≥ 0, we find that
T-cogradeωD(M ⊕N) = 0 and M ⊕N is not pure of Tor-cograde 0.

Proposition 3.9. Assume that ω satisfies the ∞-cograde condition.

(1) If M ∈ ModR with E-cogradeωM = k and TorSi (ω,ExtiR(ω,M)) = 0
for any i ≥ k + 1, then M is pure of Ext-cograde k.

(2) If N ∈ ModS with T-cogradeωN = l and ExtiR(ω,TorSi (ω,N)) = 0 for
any i ≥ l + 1, then N is pure of Tor-cograde l.

Proof. (1) Let M ′ be a proper R-submodule of M and E-cogradeωM/M ′

= t. Then T-cogradeω ExttR(ω,M/M ′) = t by Corollary 3.5.

We claim t≤k. If t>k, then by assumption, T-cogradeω ExttR(ω,M)≥ t
and TorSt (ω,ExttR(ω,M)) = 0. So we have T-cogradeω ExttR(ω,M) ≥ t+ 1.
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Consider the exact sequence

ExttR(ω,M)
f−→ ExttR(ω,M/M ′)

g−→ Extt+1
R (ω,M ′).

By Lemma 3.7(2), we have

T-cogradeω Im f ≥ T-cogradeω ExttR(ω,M) ≥ t+ 1,

T-cogradeω Im g ≥ T-cogradeω Extt+1
R (ω,M ′) ≥ t+ 1.

Thus T-cogradeω ExttR(ω,M/M ′) ≥ t+1, a contradiction. The claim follows.
Then by Lemma 3.7(1), E-cogradeωM = E-cogradeωM/M ′.

(2) is dual to (1).

As a consequence, we get

Corollary 3.10.Assume that ω satisfies the∞-cograde condition. Then:

(1) ExtkR(ω,M) is pure of Tor-cograde k for any M ∈ ModR satisfying
E-cogradeωM = k.

(2) TorSl (ω,N) is pure of Ext-cograde l for any N ∈ ModS satisfying
T-cogradeωN = l.

Proof. (1) Let M ∈ ModR with E-cogradeωM = k. It follows from
Corollary 3.5 that T-cogradeω ExtkR(ω,M) = k.

We claim that ExtiR(ω,TorSi (ω,ExtkR(ω,M))) = 0 for any i ≥ k + 1.
If k = 0, then E-cogradeω TorSi (ω,M∗) = E-cogradeω TorSi+2(ω, cTrωM) ≥
i + 2 for any i ≥ 1. If k ≥ 1, then E-cogradeω TorSi (ω,ExtkR(ω,M)) =
E-cogradeωM

k
i+2 ≥ i + 2 for any i ≥ k + 1 by Corollary 3.6. The claim

follows. Thus ExtkR(ω,M) is pure of Tor-cograde k by Proposition 3.9(2).
(2) is dual to (1).

Recall that a sequence · · · →M1 →M2 →M3 → · · · in ModR is called
HomR(ω,−)-exact if it is exact after applying the functor HomR(ω,−).

Lemma 3.11. If M ∈ Bω(R), then cTrωM ∈ Aω(S).

Proof. Let M ∈ Bω(R). Then by [28, Proposition 3.7 and Theorem 3.9],
there exists a HomR(ω,−)-exact exact sequence

(3.5) · · · →W1 →W0 → I0(M)→ I1(M)→ · · ·
in ModR with all Wi in AddR ω such that M ∼= Im(W0 → I0(M)). Applying
the functor (−)∗ to (3.5) yields an exact sequence

(3.6) · · · →W1∗ →W0∗ → I0(M)∗ → I1(M)∗ → · · · .
Applying ωS ⊗ − to (3.6), it is easy to verify that it remains exact. This
implies that TorS≥1(ω, cTrωM) = 0 and cTrωM ∈ acT (S) by [30, Corollary
3.9]. Then [30, Theorem 3.11(1)] yields cTrωM ∈ Aω(S).

Now we can present the main theorem in this section, which is useful in
providing information about noetherian modules with finite Ext-cograde.
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Theorem 3.12. Assume that ω satisfies the ∞-cograde condition. If M
is a noetherian left R-module with E-cogradeωM = k <∞, then there exists
a filtration

(3.7) 0 = M0 ⊆M1 ⊆M2 ⊆ · · ·
of R-submodules of M such that:

(1) M1 = · · · = Mk = 0 and we have an exact sequence

0→ TorSk+2(ω, cTrω coΩk(M))→ TorSk (ω,ExtkR(ω,M))

→M/Mk →M/Mk+1 → 0.

(2) If TorSi (ω,ExtiR(ω,M)) 6= 0, then E-cogradeωM/Mi = i, Mi 6= Mi+1

and Mi+1/Mi is pure of Ext-cograde i.
(3) If TorSi (ω,ExtiR(ω,M)) = 0, then Mi = Mi+1.
(4) If Bω(R)-idRM = d <∞, then

M = Md+1 and M/Md
∼= TorSd (ω,ExtdR(ω,M)).

(5) If Bω(R)-idRM = d < ∞, then fil(M) ≤ d − k + 1, and equality holds
whenever T-cogradeω ExtiR(ω,M) = i for any k ≤ i ≤ d, where fil(M)
is the number of strict inclusions in (3.7).

Proof. By Proposition 3.1, there exists a chain of epimorphisms

M−10 (= M)→M0
1 → · · · →M i−1

i → · · · .
Then we get a filtration 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · of R-submodules of M
with M/Mi = M i−1

i .
(1) The case k = 0 is trivial. If k ≥ 1, then Proposition 3.2 yields

M ∼= Mk−1
k . Since there exists an exact sequence

0→Mk →M →Mk−1
k (∼= M)→ 0

and M is noetherian, we deduce from [25, Proposition 1.14] that Mk = 0,
and hence M1 = · · · = Mk = 0. Since Iω(S)-pdR cTrω coΩk−1(M) ≤ k by
Proposition 3.2 again, we have Mk−1

k+1 = 0 by dimension shifting. Now we
get the desired exact sequence from Proposition 3.1.

(2) If TorSi (ω,ExtiR(ω,M)) 6= 0, then T-cogradeω ExtiR(ω,M) = i by
assumption. It follows from Corollary 3.10(2) that TorSi (ω,ExtiR(ω,M)) is
pure of Ext-cograde i. By Proposition 3.1 we have an exact sequence

(3.8) M i
i+2

f−→ TorSi (ω,ExtiR(ω,M))→M i−1
i →M i

i+1 → 0.

If Mi = Mi+1, then M i−1
i = M i

i+1 and f is an epimorphism. Consqeuently,
E-cogradeωM

i
i+2 ≤ i by Lemma 3.7(1), a contradiction. Thus Mi 6= Mi+1.

Since Mi+1/Mi
∼= Coker f is a quotient module of TorSi (ω,ExtiR(ω,M)), we

see that Mi+1/Mi is pure of Ext-cograde i. Notice that E-cogradeωM
i
i+1 ≥

i+ 1 by assumption, so E-cogradeωM/Mi = i by Lemma 3.7(1).
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(3) follows directly from the exact sequence (3.8).
(4) If Bω(R)-idRM = d, then coΩd(M) ∈ Bω(R) by [29, Theorem 4.2].

Lemma 3.11 yields cTrω coΩd(M) ∈ Aω(S) and Md
d+1 = Md

d+2 = 0. Thus

M = Md+1 and M/Md
∼= TorSd (ω,ExtdR(ω,M)) by the exact sequence (3.8).

(5) is a consequence of the former assertions.

4. Another filtration of modules

Definition 4.1. Let n ≥ 1. A module M in ModR is called n-Bass-
cosyzygy if there exists an exact sequence

B−(n−1) → · · · → B−1 → B0 →M → 0

in ModR with all Bi in Bω(R).

We use coΩn
B(R) to denote the subclass of ModR consisting of n-Bass-

cosyzygy modules.

Lemma 4.2. Let n ≥ 1. If T-cogradeω ExtiR(ω,M) ≥ i − 1 for any
M ∈ ModR and 1 ≤ i ≤ n, then coΩi

B(R) = cT iω(R) for any 1 ≤ i ≤ n.

Proof. Because Pω(R) ⊆ Bω(R) by [17, Corollary 6.1], we have cT iω(R)
⊆ coΩi

B(R) by [28, Proposition 3.7].
Assume that T-cogradeω ExtiR(ω,M) ≥ i − 1 for any M ∈ ModR and

1 ≤ i ≤ n. We now prove by induction on n that coΩi
B(R) ⊆ cT iω(R) for

any 1 ≤ i ≤ n. Let M ∈ coΩ1
B(R). Then there exists an exact sequence

B0 f0−→ M → 0 in ModR with B0 ∈ Bω(R), and we get the following
commutative diagram with the bottom row exact:

ω ⊗S B0
∗

1ω⊗f0∗ //

θB0

��

ω ⊗S M∗
θM
��

B0 f0 //M // 0

Since θB0 is an isomorphism, we see that θM is an epimorphism and M is
in cT 1

ω(R). The case n = 1 is proved.
Now let M ∈ coΩn

B(R) with n ≥ 2. Then there exists an exact sequence

(4.1) B−(n−1)
fn−1

−−−→ · · · → B−1
f1−→ B0 f0−→M → 0

in ModR with all Bi in Bω(R). By the induction hypothesis, we know that
Im f1 ∈ cT n−1ω (R). Applying the functor (−)∗ to (4.1) gives an exact se-
quence

(4.2) 0→ (Im f1)∗ → B0
∗
f0∗−−→M∗ → ExtnR(ω,Ker fn−1)→ 0.

Set N := Im f0∗ and let f0∗ := α · π be the natural epic-monic decomposi-
tions of f0∗ with π : B0

∗ � N and α : N ↪→M∗. Then we have the following
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commutative diagram with exact rows:

(4.3)

0 // TorS1 (ω,N) // ω ⊗S (Im f1)∗ //

θIm f1

��

ω ⊗S B0
∗
1ω⊗π //

θB0

��

ω ⊗S N

g

��

// 0

0 // Im f1 // B0 f0 //M // 0

So θM · (1ω⊗α) · (1ω⊗π) = θM · (1ω⊗f0∗) = f0 · θB0 = g · (1ω⊗π). Because
1ω ⊗ π is epic, we have the relation θM · (1ω ⊗ α) = g and the following
commutative diagram with the top row exact:

(4.4)

ω ⊗S N
g

��

1ω⊗α // ω ⊗S M∗ //

θM
��

ω ⊗S ExtnR(ω,Ker fn−1) // 0

M M

Since θIm f1 is an epimorphism by the above argument, the snake lemma
shows that g is a monomorphism. As ω ⊗S ExtnR(ω,Ker fn−1) = 0 by as-
sumption, we find that θM is an isomorphism and M ∈ cT 2

ω(R) by the
diagram (4.4). This means that the assertion holds for n = 2. If n ≥ 3, then
Im f1 ∈ cT n−1ω (R) implies θIm f1 is an isomorphism. So TorS1 (ω,N) = 0 by

the diagram (4.3). In addition, we have TorS1≤i≤n−3(ω, (Im f1)∗) = 0 by [28,

Corollary 3.4(3)]. Since T-cogradeω ExtnR(ω,Ker fn−1) ≥ n − 1 by assump-
tion, applying dimension shifting to (4.2) we obtain TorS1≤i≤n−2(ω,M∗) = 0.
Therefore M ∈ cT nω(R) by [28, Corollary 3.4(3)] again.

The following result shows how the strong Tor-cograde conditions on
modules affect the extension closure of cT nω(R). It is a dual version of [7,
Theorem 1.1].

Lemma 4.3. Let n ≥ 1 and

(4.5) 0→ A→ B → C → 0

be an exact sequence in ModR with A,C ∈ cT nω(R). If

s.T-cogradeω Ext1R(ω,A) ≥ n,

then B ∈ cT nω(R).

Proof. Applying (−)∗ to (4.5) gives the exact sequence

0→ A∗ → B∗ → C∗ → Ext1R(ω,A).

Set L = Coker(B∗ → C∗) and K := Im(B∗ → C∗).

Let n = 1. Since s.T-cogradeω Ext1R(ω,A) ≥ 1 and L ⊆ Ext1R(ω,A), we
have ω ⊗S L = 0. This yields an epimorphism ω ⊗S B∗ → ω ⊗S C∗ and the
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following commutative diagram with the bottom row exact:

ω ⊗S A∗
θA
��

// ω ⊗S B∗
θB
��

// ω ⊗S C∗
θC
��

// 0

0 // A // B // C // 0

Because A,C ∈ cT 1
ω(R) by assumption, θA and θC are epimorphisms. Then

by diagram chase, θB is also an epimorphism and B ∈ cT 1
ω(R).

Let n = 2. Since s.T-cogradeω Ext1R(ω,A) ≥ 2 and L ⊆ Ext1R(ω,A), we
obtain an isomorphism ω ⊗S K → ω ⊗S C∗. It yields the exact sequence

ω ⊗S A∗ → ω ⊗S B∗ → ω ⊗S C∗ → 0

and the commutative diagram with exact rows

ω ⊗S A∗
θA
��

// ω ⊗S B∗
θB
��

// ω ⊗S C∗
θC
��

// 0

0 // A // B // C // 0

Because A,C ∈ cT 2
ω(R) by assumption, θA and θC are isomorphisms. So θB

is also an isomorphism and B ∈ cT 2
ω(R).

Let n ≥ 3. Since s.T-cogradeω Ext1R(ω,A) ≥ n ≥ 3, we have B ∈ cT 2
ω(R)

by the above argument. Consider an exact sequence

0→ K → C∗ → L→ 0.

Since L ⊆ Ext1R(ω,A), we have TorS0≤i≤n−1(ω,L) = 0. Then it follows that

TorSi (ω,K) ∼= TorSi (ω,C∗) for any 0 ≤ i ≤ n − 2. Because A,C ∈ cT nω(R)
by assumption, we have TorS1≤i≤n−2(ω,A∗) = 0 = TorS1≤i≤n−2(ω,C∗) = 0 by
[28, Corollary 3.4]. Now applying the functor ω ⊗S − to the exact sequence

0→ A∗ → B∗ → K → 0

yields TorS1≤i≤n−2(ω,B∗) = 0. Thus B ∈ cT nω(R) by [28, Corollary 3.4]
again.

The following proposition is crucial in proving the main result of this
section.

Proposition 4.4. Assume that ω satisfies the n-cograde condition with
n ≥ 1 and M ∈ coΩi

B(R) with 0 ≤ i ≤ n − 1. Then there exists a
HomR(ω,−)-exact exact sequence

0→ A→M ⊕ I → B → 0

in ModR satisfying the following conditions:

(1) A ∈ coΩi+1
B (R), I ∈ I(R) and B ∼= coΩi(TorSi+1(ω, cTrωM)).

(2) Iω(S)-pdS B∗ ≤ i− 1.
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Proof. Let i = 0. Set A := Im θM , I := 0 and B := TorS1 (ω, cTrωM).
Then by [28, Proposition 3.2], we have an exact sequence

(4.6) 0→ A→M → B → 0.

Since θω⊗SM∗ is an epimorphism by [29, Lemma 6.1], we have ω ⊗S M∗ ∈
cT 1

ω(R). Note that A is a quotient module of ω ⊗S M∗. So A ∈ cT 1
ω(R)

by [28, Lemma 3.6], and hence A ∈ coΩ1
B(R) by Lemma 4.2. On the other

hand, since E-cogradeω B ≥ 1 by assumption, we have B∗ = 0. So (4.6) is
the desired exact sequence.

Let i = 1. Consider the exact sequence of R-modules

0→ TorS2 (ω, cTrωM)→ I → B → 0

with I = I0(TorS2 (ω, cTrωM)) ∈ I(R) and B = coΩ1(TorS2 (ω, cTrωM)).
Then by [28, Proposition 3.2], we have the following push-out diagram with
the middle column splitting:

0

��

0

��
0 // TorS2 (ω, cTrωM) //

��

I
f //

��

B // 0

0 // ω ⊗S M∗ //

��

M ⊕ I g //

��

B // 0

M

��

M

��
0 0

Because E-cogradeω(TorS2 (ω, cTrωM)) ≥ 2 by assumption, we see that f∗ is
an isomorphism. So B∗ (∼= I∗) ∈ Iω(S) and g∗ is an epimorphism. Now let

Q1 → Q0 →M∗ → 0

be an exact sequence in ModS with Q0, Q1 ∈ P(S). Then

ω ⊗S Q1 → ω ⊗S Q0 → ω ⊗S M∗ → 0

is exact in ModR and ω ⊗S M∗ ∈ coΩ2
B(R). Thus the middle row in the

above diagram is the desired exact sequence.

Now suppose i ≥ 2. By Lemma 4.2, we have M ∈ coΩi
B(R) = cT iω(R).

Then by [28, Proposition 3.7], there exists a HomR(ω,−)-exact exact se-
quence

0→ N →Wi−1
f−→Wi−2 → · · · →W0 →M → 0

in ModR with all Wj in AddR ω and N = Ker f . As TorSi+1(ω, cTrωM) ∼=
TorS1 (ω,Coker f∗) and TorSi+2(ω, cTrωM) ∼= TorS2 (ω,Coker f∗), by [31, Prop-
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osition 5.1] we have the exact sequence

0→ TorSi+2(ω, cTrωM)→ ω ⊗S N∗
θN−−→ N → TorSi+1(ω, cTrωM)→ 0.

Set X := Im θN and L := TorSi+1(ω, cTrωM). Consider the following com-
mutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // X //

��

N //

��

L //

��

0

0 // I0(X) //

��

I0(X)⊕ I0(L) //

��

I0(L) //

��

0

...

��

...

��

...

��
0 // Ii−1(X) //

��

Ii−1(X)⊕ Ii−1(L) //

��

Ii−1(L) //

��

0

0 // D
α //

��

H
β //

��

B //

��

0

0 0 0

Since X is a quotient module of ω ⊗S N∗, we have X ∈ coΩ1
B(R) and

D ∈ coΩi+1
B (R). Because E-cogradeω L ≥ i + 1 by assumption, we get the

exact sequence

0→ I0(L)∗ → I1(L)∗ → · · · → Ii−1(L)∗ → B∗ → 0.

Thus Iω(S)-pdS B∗ ≤ i − 1 and β∗ is an epimorphism. Next we have a
commutative diagram with exact rows

0 // N //Wi−1 //

gi−1

��

Wi−2 //

gi−2

��

· · · //W0
//

g0
��

M //

g−1

��

0

0 // N // E0 // E1 // · · · // Ei−1 // H // 0

where Ej = Ij(X)⊕ Ij(L) for any 0 ≤ j ≤ i− 1. The injectivity of Ej guar-
antees the existence of all gj . Now we view the sequence (gi−1, gi−2, . . . , g−1)
as a quasi-isomorphism between the complexes

0→Wi−1 →Wi−2 → · · · →W0 →M → 0

and

0→ E0 → E1 → · · · → Ei−1 → H → 0.
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We then obtain an exact sequence

0→Wi−1 →Wi−2 ⊕ E0 →Wi−3 ⊕ E1 → · · · →W0 ⊕ Ei−2

→M ⊕ Ei−1 → H → 0.

Set

K := Im(W0 ⊕ Ei−2 →M ⊕ Ei−1).

It is not hard to see that Ext≥1R (ω,K) = 0 and K ∈ coΩj
B(R) for j ≥ 1.

Consider the pull-back diagram

0

��

0

��
0 // K // A //

��

D //

α
��

0

0 // K //M ⊕ Ei−1 γ //

��

H //

β
��

0

B

��

B

��
0 0

Since K,D ∈ cT i+1
ω (R), we have A ∈ cT i+1

ω (R) by Lemma 4.3. Thus A ∈
coΩi+1

B (R) by Lemma 4.2. It follows from Ext≥1R (ω,K) = 0 that γ∗ is an
epimorphism. Notice that β∗ is also an epimorphism, so

0→ A∗ → (M ⊕ Ei−1)∗ → B∗ → 0

is exact. The proof is finished.

We are now in a position to give the main result in this section.

Theorem 4.5.Assume that ω satisfies the n-cograde condition with n≥1.
Then for any M ∈ ModR, there exists an injective left R-module I and a
chain of monomorphisms

Mn �Mn−1 � · · ·�M1 →M0 = M ⊕ I
in ModR such that for any 0 ≤ i ≤ n− 1, we have:

(1) Bi = Coker(Mi+1 →Mi) ∼= coΩi(TorSi+1(ω, cTrωM)).
(2) Mi ∈ coΩi

B(R).
(3) Iω(S)-pdS Bi∗ ≤ i− 1.
(4) The exact sequence 0→Mi+1 →Mi → Bi → 0 is HomR(ω,−)-exact.

Proof. From the proof of Proposition 4.4, we get a HomR(ω,−)-exact
exact sequence

0→ Ai+1 → Ai ⊕ Ii → Bi → 0
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in ModR such that A0 = M , Ai ∈ coΩi
B(R), Ii ∈ I(R), and

Bi ∼= coΩi(TorSi+1(ω, cTrωM)) with Iω(S)-pdSBi∗ ≤ i−1 for 0 ≤ i ≤ n−1.

Set I :=
⊕n−1

i=0 Ii, M0 := M ⊕ I, Mn := An and Mi := Ai⊕
⊕n−1

j=i Ij for any
1 ≤ i ≤ n− 1. Now the assertion follows easily.

As a consequence of Theorem 4.5, we have

Corollary 4.6. Assume that ω satisfies the n-cograde condition with
n ≥ 2. Then for any N ∈ ModS, there exists an injective left R-module I
and a chain of monomorphisms

Nn � Nn−1 � · · ·� N2 � (ω ⊗S N)∗ ⊕ I∗
in ModR such that:

(1) Iω(S)-pdS Yi ≤ i, where Yi = ((ω ⊗S N)∗ ⊕ I∗)/Ni+2 for any 0 ≤ i ≤
n− 2.

(2) 0 → ω ⊗S Ni+2 → ω ⊗S ((ω ⊗S N)∗ ⊕ I∗) → ω ⊗S Yi → 0 in ModR is
exact for any 0 ≤ i ≤ n− 2.

(3) For 1 ≤ i ≤ n − 2, the natural epimorphism (ω ⊗S N)∗ ⊕ I∗ � Yi in
ModS induces an isomorphism

TorSj (ω, (ω ⊗S N)∗)
∼=−→ TorSj (ω, Yi) for any 1 ≤ j ≤ n− 2.

Proof. Let M = ω ⊗S N . By Theorem 4.5, there exists a HomR(ω,−)-
exact exact sequence

0→M1 →M0 (∼= M ⊕ I)→ B0 → 0

in ModR such that B0
∼= TorS1 (ω, cTrωM), M1 ∈ coΩ1

B(R) and B0∗
(= 0) ∈ Iω(S). By Theorem 4.5 again, we further have HomR(ω,−)-exact
exact sequences

0→M2 →M1 → B1 → 0, 0→M3 →M2 → B2 → 0

in ModR such that M2 ∈ coΩ2
B(R), M3 ∈ coΩ3

B(R), B1∗ ∈ Iω(S) and
Iω(S)-pdSB2∗ ≤ 1. Now consider the push-out diagram

0

��

0

��
M3∗

α
��

M3∗

β
��

0 //M2∗
δ //

��

M1∗ //

γ
��

B1∗ // 0

0 // B2∗ //

��

Y1 //

��

B1∗ // 0

0 0
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By [17, Theorem 6.4], we have Ext≥1R (V,B2∗) = 0 for any V ∈ Iω(S). So
Iω(S)-pdSY1 ≤ 1 by [12, Lemma 8.2.1]. Moreover, there exists a commuta-
tive diagram with exact rows

ω ⊗S M3∗
1ω⊗α //

θM3

��

ω ⊗S M2∗ //

θM2

��

ω ⊗S B2∗ //

θB2

��

0

0 //M3
//M2

// B2
// 0

Because M3 ∈ coΩ3
B(R) = cT 3

ω(R) by Lemma 4.2, we infer that θM3 is an
isomorphism and 1ω⊗α is a monomorphism. Similarly 1ω⊗δ is a monomor-
phism, and hence so is 1ω ⊗ β. Since TorS1 (ω,M3∗) = 0 by [28, Corollary
3.4], the sequence

0→ ω ⊗S M3∗ → ω ⊗S M1∗ (∼= ω ⊗S ((ω ⊗S N)∗ ⊕ I∗))→ ω ⊗S Y1 → 0

is exact and γ induces an isomorphism TorS1 (ω, (ω ⊗S N)∗)
∼=−→ TorS1 (ω, Y1).

Now put Y0 := B1∗ and Ni := Mi∗ for i = 2, 3. Continuing this process, we
may construct a submodule chain of (ω ⊗S N)∗ ⊕ I∗ satisfying the desired
properties.

5. Applications. In this section, we apply the two filtrations of modules
obtained in Sections 3 and 4 to study mainly the relationship between artin
algebras satisfying the Auslander condition and Gorenstein algebras.

Following [12, Definition 10.1.1], a module M in ModR is called Goren-
stein injective if there exists an exact sequence

I : · · · → I1 → I0 → I0 → I1 → · · ·
in ModR with all Ii, I

i ∈ I(R) such that HomR(E, I) is exact for any E in
I(R) and M ∼= Im(I0 → I0). We use GI to denote the class of Gorenstein
injective modules, and GidRM for the GI-injective dimension (that is, the
Gorenstein injective dimension) of M .

Note that a module M in modR belongs to BD(R)(R) if and only if M
is in GI by [28, Theorem 3.9 and Corollary 5.2]. So, putting ω := D(R) in
Theorem 3.12, we get

Corollary 5.1. Let R be an artin algebra satisfying the Auslander con-
dition. If M ∈ modR with E-cogradeD(R)M = k < ∞, then there exists a
filtration 0 = M0 ⊆M1 ⊆M2 ⊆ · · · of R-submodules of M such that:

(1) M1 = · · · = Mk = 0 and there exists an exact sequence

0→ TorRk+2(D(R), cTrD(R) coΩk(M))→ TorRk (D(R),ExtkR(D(R),M))

→M/Mk →M/Mk+1 → 0.

(2) If TorRi (D(R),ExtiR(D(R),M)) 6= 0, then E-cogradeD(R)M/Mi = i,
Mi 6= Mi+1 and Mi+1/Mi is pure of Ext-cograde i.
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(3) If TorRi (D(R),ExtiR(D(R),M)) = 0, then Mi = Mi+1.
(4) If GidRM = d <∞, then

M = Md+1 and M/Md
∼= TorRd (D(R),ExtdR(D(R),M)).

(5) If GidRM = d < ∞, then fil(M) ≤ d − k + 1, and equality holds
whenever T-cogradeD(R) ExtiR(D(R),M) = i for any k ≤ i ≤ d.

Auslander and Reiten [6] conjectured that any artin algebra R satisfying
the Auslander condition is Gorenstein.

Theorem 5.2. Let R be an artin algebra satisfying the Auslander con-
dition. If R is Gorenstein with idRR = idRop R = n, then fil(coΩ2(R/J)) ≤
n − 1, and equality holds if TorRi (D(R),ExtiR(D(R), coΩ2(R/J))) 6= 0 for
any 0 ≤ i ≤ n− 2 or coΩ2(R/J) is Gorenstein injective.

Proof. Since idRR = n, it follows from [12, Theorem 12.3.1] and [27,
Theorem 2.1] that GidRR/J = n.

If n ≥ 2, we deduce from [12, Theorem 12.3.1] that coΩn(R/J) is Goren-
stein injective. Thus GidR coΩ2(R/J) ≤ n− 2. Because GidRR/J = n, we
have GidR coΩ2(R/J) = n− 2. So coΩ2(R/J) 6= 0 and D(coΩ2(R/J)) 6= 0.
Because D(coΩ2(R/J)) is 2-syzygy, it follows from [7, Theorems 1.7 and
4.7] that HomR(HomRop(D(coΩ2(R/J)), R), R) ∼= D(coΩ2(R/J)) 6= 0. Take
ω := D(R). Then

HomR(D(R), coΩ2(R/J)) ∼= HomRop(D(coΩ2(R/J)), DD(R))

∼= HomRop(D(coΩ2(R/J)), R) 6= 0

and E-cogradeD(R) coΩ2(R/J) = 0. Now the first assertion follows from
Corollary 5.1.

If n < 2, then coΩ1(R/J) is Gorenstein injective. So coΩ2(R/J) is also
Gorenstein injective by [12, Theorem 10.1.4].

Secondly, we turn to an application of the filtration of modules obtained
in Section 4. Inspired by [24, Definition 2.15], we give its dual version.

Definition 5.3.

(1) Two homomorphisms f : A → B and f ′ : A′ → B′ in ModR are said
to be isomorphic up to a direct sum of injective modules if there exist
injective modules I, E, U , I ′, E′ and U ′ such that

A⊕ I ⊕ E g−→ B ⊕ E ⊕ U

and

A′ ⊕ I ′ ⊕ E′ h−→ B′ ⊕ E′ ⊕ U ′
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are isomorphic, where g and h are given by the following matrices:

g =

f 0 0

0 0 1

0 0 0

 , h =

f
′ 0 0

0 0 1

0 0 0

 .

(2) For an integer k ≥ 0, a module M ∈ ModR is called injectively sta-
tionary of type k if for any i > k, the inclusions λi : Mi → M0 and
λk : Mk → M0 are isomorphic up to a direct sum of injective modules,
where the Mi are as in Theorem 4.5.

We use modR to denote the stable category of modR modulo projec-
tives.

Theorem 5.4. Let R be an artin algebra satisfying the Auslander con-
dition. Then the following statements are equivalent:

(1) R is Gorenstein.
(2) For some k ≥ 0, any 2-D(R)-cotorsionfree left R-module is injectively

stationary of type k.
(3) For some k ≥ 0, any finitely generated 2-D(R)-cotorsionfree left R-

module is injectively stationary of type k.

Proof. (1)⇒(2). LetM ∈ mod R. SinceR is Gorenstein, we have GidRM
<∞ by [12, Theorem 12.3.1]. Then M ∈ BD(R)(R) by [10, Theorem 4.4]. So
cTrD(R)M ∈ AD(R)(R) by Lemma 3.11. This implies

Bi ∼= coΩi(TorSi+1(D(R), cTrD(R)M)) = 0

for any i ≥ 0. Thus all the Mi equal M0 and the assertion follows.

(2)⇒(3) is trivial.

(3)⇒(1). By [16, Theorem 4.1], we only need to show that pdRM ≤ k+2
for any M ∈ modR with pdRM < ∞. Let M ∈ modR with pdRM = l
<∞ and let

0→ Ql → · · · → Q1 → Q0 →M → 0

be a minimal projective resolution ofM in mod R. LetM ′ := Ker(Q1 → Q0)
and ω := D(R). Because M ′ is 2-syzygy, we have

(D(R)⊗RM ′)∗ ∼= (D(HomR(M ′, R)))∗ (by [12, Theorem 3.2.13])
∼= HomRop(HomR(M ′, R), R)
∼= M ′ (by [7, Theorems 1.7 and 4.7]).

So M ′ is adjoint 2-D(R)-cotorsionfree and (D(R)⊗RM ′)∗ ∼= M ′. Note that
I∗ is a projective left R-module for any injective left R-module I by [12,
Theorem 3.2.9]. So, putting N = M ′ in Corollary 4.6, from the proof of that
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corollary we infer that there exists an exact sequence

0→ Ni+2 →M ′ ⊕ P fi−→ Yi → 0

in modR with P ∈ P(R) and pdR Yi ≤ i for any i ≥ 0, and fi also induces
an isomorphism

TorRj (D(R),M ′ ⊕ P )
∼=−→ TorRj (D(R), Yi)

for any j ≥ 1. By [12, Theorem 3.2.13], we have

TorRj (D(R),M ′ ⊕ P ) ∼= D(ExtjR(M ′ ⊕ P,R)),

TorRj (D(R), Yi) ∼= D(ExtjR(Yi, R)).

Then by [5, Lemma 2.42], any homomorphism M ′ → L in modR with
pdR L ≤ i factors through fi. AsD(R)⊗R (D(R)⊗RM ′)∗ ∼= D(R)⊗RM ′, we
see that D(R)⊗RM ′ ∈ mod R is 2-D(R)-cotorsionfree. By the construction
of Ni and [24, Lemma 2.16], we have Yk ∼= Yi for any i > k by the assumption
of (3). We immediately get a homomorphism g : Yl−2 →M ′ of leftR-modules
such that 1M ′ = g · fl−2. Hence there exists a projective left R-module Q

such that M ′ is isomorphic to a direct summand of Yl−2⊕Q. As Yk ∼= Yl−2 in
modR, by [14, Proposition 3.1] there exist projective left R-modules P1 and
P2 such that Yl−2 ⊕ P1

∼= Yk ⊕ P2. Thus pdRM
′ ≤ k and pdRM ≤ k + 2.

For a commutative noetherian ring R and an n-syzygy module M in
mod R with n ≥ 0, an Evans–Griffith presentation of M is defined to be an
exact sequence

0→ S → B →M → 0

in mod R with B an nth syzygy of Extn+1
Rop (TrM,R) and S an (n+2)-syzygy

module [13, 26]. We introduce the dual version of this notion:

Definition 5.5. Let n ≥ 0 and M ∈ coΩn
B(R). A dual Evans–Griffith

presentation of M is an exact sequence

0→M → B → C → 0

in ModR with B an nth cosyzygy of TorSn+1(ω, cTrωM) and C∈coΩn+2
B (R).

As an application of Proposition 4.4, we have

Proposition 5.6. Assume that ω satisfies the n-cograde condition with
n ≥ 1. Then for any 0 ≤ i ≤ n− 1, each module in coΩi

B(R) admits a dual
Evans–Griffith presentation.

Proof. Let M ∈ coΩi
B(R) with 0 ≤ i ≤ n− 1. Then by Proposition 4.4,

there exists an exact sequence

0→ A
α−→M ⊕ I β−→ B → 0
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in ModR with A ∈ coΩi+1
B (R), I ∈ I(R) and B ∼= coΩi(TorSi+1(ω, cTrωM)).

Let γ := β
(
1M
0

)
and λ : M ↪→ E be an embedding in ModR with E injec-

tive. Then we have the following commutative diagram with exact columns
and rows:

0

��

0

��
M(

1M
0

λ

)
��

M(
γ

λ

)
��

0 // A
(α0 )

//M ⊕ I ⊕ E

(
β 0

0 1E

)
//(

0 1I 0

−λ 0 1E

)
��

B ⊕ E //

��

0

0 // A // I ⊕ E //

��

C //

��

0

0 0

where C = Coker
( γ
λ

)
. It follows from the bottom row in the above diagram

that C ∈ coΩi+2
B (R). Thus the rightmost column is a dual Evans–Griffith

presentation of M .
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