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Abstract

Let A/S be a Frobenius extension of artin algebras such that S is commutative and A
is an S-algebra. We prove that if (C, T ) is a tilting pair of right S-modules, then (C ⊗S

A, T ⊗S A) is a tilting pair of right A-modules; conversely, if (C, T ) is a tilting pair of right
A-modules, then (C, T ) is also a tilting pair of right S-modules. We also prove that the
so-called (l, n)-condition and certain classes of algebras are preserved under right-split or
separable Frobenius extensions. Finally, we prove that the validity of some homological
conjectures is preserved under (separable) Frobenius extensions.

1 Introduction

As a generalization of Frobenius algebras, Frobenius extensions were introduced by Kasch [23],

and then studied by Nakayama and Tsuzuku [30], and Morita [28]. As a generalization of

separable algebras, separable extensions were introduced by Hirata and Sugano [16], and they

made a thorough study of these connection with Galois theory for noncommutative rings and

generalizations of Azumaya algebras. Separable extensions are closely related to Frobenius

extensions. A ring extension that is both a separable extension and a Frobenius extension is

called a separable Frobenius extension. In addition, if the base ring is commutative, then a

Frobenius extension is both left-split and right-split [8, III.4.8, Lemma 2].

Many algebraists have studied the invariant properties of artin algebras under (separa-

ble) Frobenius extensions, such as the projectivity, injectivity, Gorensteinness, (Gorenstein)

homological dimension, representation dimension, tilting theory and homological conjecture, see

[13, 18, 32, 33, 42, 43, 44] and references therein. In particular, Zhang [42] proposed a ques-

tion: Are some homological conjectures preserved under excellent extensions? Fu, Xu and Zhao

[13] showed that the Gorenstein symmetric conjecture is preserved under Frobenius extensions,

which generalized a result in [42].

In this paper, we focus on connecting (separable) Frobenius extensions with tilting theory,

homological conjectures and certain algebraic structures. The outline of this article is as follows.

In Section 2, we give some notations and preliminary results.

For a ring R, we use modR to denote the category of finitely generated right R-modules.

Let A and S be artin algebras. In Section 3, let A/S be a Frobenius extension such that S is

commutative and A is an S-algebra. We prove that if (C, T ) is a tilting pair in modS, then
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(C ⊗S A, T ⊗S A) is a tilting pair in modA; conversely, if (C, T ) is a tilting pair in modA, then

(CS , TS) is a tilting pair in modS (Theorem 3.7). In particular, we obtain tilting modules under

Frobenius extensions, which will be used to study the Wakamatsu tilting conjecture and tilted

algebras in the later part.

In Section 4, we prove that the so-called (l, n)-condition is preserved under right-split Frobe-

nius extensions (Theorem 4.5). As applications, we get that the dominant dimension is invariant

under right-split Frobenius extensions (Corollary 4.6). In addition, we show that the quasi-tilted

algebra (respectively, tilted algebra) is preserved under (separable) Frobenius extensions with

the base ring being commutative, see Theorem 4.13 (respectively, Theorem 4.14).

In Section 5, some homological conjectures are studied, such as the (strong) Nakayama

conjecture, the finitistic dimension conjecture, the Auslander–Reiten conjecture, and others. We

prove that the validity of these homological conjectures is preserved under (separable) Frobenius

extensions with the base ring being commutative, see Corollary 5.1 and Theorems 5.2–5.6.

In Section 6, we give some examples to illustrate the obtained results.

2 Preliminaries

Recall that if S is a subring of a ring A such that S and A have the same identity, then A is

called a ring extension of S, denoted by A/S. Let A/S be a ring extension and let S
l
↪→ A be

the inclusion of rings. Then there exists a restriction functor Res : modA → modS which sends

MA 7→ MS , given by m · s := m · l(s). In the opposite direction, there exist two natural functors

as follows:

(1) T = −⊗S AA : modS → modA which is given by MS 7→ M ⊗ SAA.

(2) H = HomS(AAS ,−) : modS → modA which is given by MS 7→ HomS(AAS ,MS).

It is easy to check that both (T,Res) and (Res,H) are adjoint pairs.

Definition 2.1. (see [22, Definition 1.1 and Theorem 1.2]) A ring extension A/S is a Frobenius

extension, provided that one of the following equivalent conditions holds:

(1) The functors T and H are naturally equivalent.

(2) SAA
∼= HomS(AAS , SSS) and AS is finitely generated projective.

(3) AAS
∼= HomSop(SAA, SSS) and SA is finitely generated projective.

(4) There exist an S-S-homomorphism τ : A → S and elements xi, yi ∈ A such that
∑
i
xiτ(yia) =

a and
∑
i
τ(axi)yi = a for any a ∈ A.

Remark 2.2. If A/S is a Frobenius extension, then both (T,Res) and (Res,T) are adjoint pairs.

So T and Res are exact functors, and hence they preserve projectives and injectives.

Definition 2.3. Let A/S be a ring extension.

(1) ([22, Definition 2.12]) A/S is called a separable extension if

µ : A⊗S A → A, a⊗ b 7→ ab,

is a split epimorphism of A-A-bimodules.
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(2) ([39, Page 3]) A/S is called right-split (respectively, left-split) if the inclusion map S ↪→ A

is a split monomorphism of right (respectively, left) S-modules. Moreover, A/S is called

split if it is both left-split and right-split.

Many examples of Frobenius extensions can be found in [9, 12, 18, 21, 22, 32, 34, 35, 40, 41].

If a ring extension A/S is both a Frobenius extension and a separable extension, then it is called

a separable Frobenius extension. If a ring extension A/S is both a Frobenius extension and a

right-split extension, then it is called a right-split Frobenius extension. In particular, when S a

commutative ring, if A/S is an excellent extension of rings, then it is separable [31]; if A/S is a

Frobenius extension of rings, then it is split [8, III.4.8, Lemma 2].

Let A/S be a ring extension and MA an A-module. Then MS is a right S-module. There

exists a natural surjective map π : M ⊗S A → M given by m ⊗ a 7→ ma for any m ∈ M and

a ∈ A. It is easy to check that π is split as a homomorphism of S-modules. However, π is not

split as a homomorphism of A-modules in general, see Example 6.1(1).

The following lemma is a characterization of separable extensions.

Lemma 2.4. ([32, Lemma 2.9]) Let A/S be a ring extension. Then the following statements

are equivalent.

(1) A/S is a separable extension.

(2) For any A-A-bimodule M , M ⊗S A → M is a split epimorphism of A-A-bimodules.

(3) There exists an element e ∈ A⊗S A such that µ(e) = 1A and ae = ea for any a ∈ A.

For any M ∈ modA, we use addM to denote the subcategory of modA consisting of all

direct summands of direct sums of finite copies of M . For two right A-modules M and N , we

use MA | NA to denote that MA is a direct summand of NA.

Lemma 2.5. Assume that S is commutative and A is an S-algebra. Then add(M ⊗S AA) ⊆
addMA for any M ∈ modA. Moreover, if A/S is separable, then addMA = add(M ⊗S AA).

Proof. By [35, Lemma 3], we have AA⊗S AA ∈ addAAA. Then

MS ⊗S AA
∼= (M ⊗A A)⊗S AA

∼= M ⊗A (A⊗S A)A ∈ addMA.

Notice that MA | M ⊗S AA by Lemma 2.4, thus addMA = add(M ⊗S AA).

3 Tilting modules

In this section, assume that all rings are artin algebras, all modules are finitely generated right

modules unless stated otherwise, and assume that A/S is a Frobenius extension of artin algebras.

Let M ∈ modA. We use addM to denote the subcategory of modA consisting of direct

summands of finite direct sums of M , and M is called selforthogonal if Ext≥1
A (M,M) = 0. We

use pdAM (respectively, idAM , fdAM) to denote the projective (respectively, injective, flat)

dimensions of M .

Definition 3.1. ([26]) A module T ∈ modA is called n-tilting if it satisfies the following

conditions:
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(T1) pdAT ≤ n.

(T2) T is selforthogonal.

(T3) There exists an exact sequence

0 // AA
// T0

// T1
// · · · // Tn−1

// Tn
// 0

in modA with all Ti in addT .

Remark that a 1-tilting module is called classical tilting [7, 15]; in this case, (T3) is equivalent

to that |T | = |A|, where |T | denotes the number of pairwise nonisomorphic indecomposable

direct summands of T in modA. Moreover, if T is an n-tilting A-module, then |T | = |A| by [26,

Theorem 1.19].

For constructing tilting modules, Miyashita [27] introduced the notion of tilting pairs.

Definition 3.2. ([27]) A pair (C, T ) of modules in modA is called tilting if it satisfies the

following conditions:

(1) C and T are selforthogonal.

(2) There exist the following exact sequences

0 // C // T0
// T1

// · · · // Tm−1
// Tm

// 0 ,

0 // Cn
// Cn−1

// · · · // C1
// C0

// T // 0

in modA with m,n ≥ 0, all Ti in addT and all Ci in addC.

Let (C, T ) be a tilting pair as in Definition 3.2. Then m = n [27]; in this case, we call (C, T )

an n-tilting pair. We also say that T is C-tilting or C is T -cotilting. If C = A, then C-tilting

modules are exactly tilting modules [27].

Remark 3.3. Let (C, T ) be a tilting pair and (C ′, T ′) be a pair in modA. If addC ′ = addC

and addT ′ = addT , then (C ′, T ′) is also a tilting pair by [38, Lemma 2.1].

As a generalization of tilting modules, we recall the notion of Wakamatsu tilting modules.

Definition 3.4. ([25, 37]) A module T ∈ modA is called Wakamatsu tilting if T is selforthog-

onal, and there exists an exact sequence

0 // AA
// T0

// T1
// · · · // Ti

// · · ·

in modA with all Ti in addT , and after applying the functor HomA(−, T ) the sequence is still

exact.

For convenience, we give the following result.

Lemma 3.5. Let M ∈ modA and N ∈ modS. Then for any i ≥ 0, we have

ExtiS(MS , NS) ∼= ExtiA(MA, N ⊗S AA),

ExtiS(MS , SS) ∼= ExtiA(MA, AA).
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Proof. By the adjoint isomorphism, for any i ≥ 0, we have

ExtiS(MS , NS) ∼= ExtiS(M ⊗A AS , NS)

∼= ExtiA(MA,HomS(AAS , NS))

∼= ExtiA(MA, N ⊗S AA).

The last isomorphism is obvious.

In the rest of this section, we always assume that S is commutative and A is an S-algebra.

Lemma 3.6. It holds that

(1) If M,N ∈ modS such that Ext≥0
S (M,N) = 0, then

Ext≥0
A (M ⊗S A,N ⊗S A) = 0.

In particular, if M is a selforthogonal S-module, then M ⊗S AA is a selforthogonal A-

module.

(2) Let M,N ∈ modA such that Ext≥0
A (M,N) = 0, then

Ext≥0
S (MS , NS) = 0.

In particular, if M is a selforthogonal A-module, then MS is a selforthogonal S-module.

Proof. (1) By the adjoint isomorphism, we have

ExtiA(M ⊗S AA, N ⊗S AA) ∼= ExtiS(MS ,HomA(SAA, N ⊗S AA)

∼= ExtiS(MS , N ⊗S AS)

for any i ≥ 0. Notice that N ⊗S AS ∈ addNS , it follows that ExtiA(M ⊗S AA, N ⊗S AA) = 0

from the assumption that ExtiS(M,N) = 0.

(2) Let

P• := · · · // Pi
// Pi−1

// · · · // P1
// P0

// 0

be the deleted complex of projective resolution of MA. For any i ≥ 0, we have

ExtiS(MS , NS) ∼= ExtiA(MA, N ⊗S AA) (by Lemma 3.5)

∼= H i(HomA(P
•, N ⊗S A))

∼= H i(HomA(P
•, N)⊗S A)

∼= H i(HomA(P
•, N))⊗S A

∼= ExtiA(M,N)⊗S A

= 0. (by assumption)

Theorem 3.7. For any n ≥ 0, it holds that

(1) If (C, T ) is an n-tilting pair in modS, then (C ⊗S AA, T ⊗S AA) is an n-tilting pair in

modA.
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(2) If (C, T ) is an n-tilting pair in modA, then (CS , TS) is an n-tilting pair in modS.

Proof. (1) By Lemma 3.6(1), we have that C⊗S AA and T ⊗S AA are selforthogonal A-modules.

By assumption, there exist two exact sequences

0 // Cn
// Cn−1

// · · · // C1
// C0

// T // 0

and

0 // C // T0
// T1

// · · · // Tn−1
// Tn

// 0

in modS with Ci ∈ addC and Ti ∈ addT for any 0 ≤ i ≤ n. Since SA is projective, we get the

following exact sequences

0 // Cn ⊗S AA
// Cn−1 ⊗S AA

// · · · // C1 ⊗S AA
// C0 ⊗S AA

// T ⊗S AA
// 0

and

0 // C ⊗S AA
// T0 ⊗S AA

// T1 ⊗S AA
// · · · // Tn−1 ⊗S AA

// Tn ⊗S AA
// 0

in modA with Ci ⊗S AA ∈ add(C ⊗S AA) and Ti ⊗S AA ∈ add(T ⊗S AA) for any 0 ≤ i ≤ n.

Thus (C ⊗S AA, T ⊗S AA) is a tilting pair in modA.

(2) By Lemma 3.6(2), we have that CS and TS are selforthogonal S-modules. By assumption,

there exist two exact sequences

0 // Cn
// Cn−1

// · · · // C1
// C0

// T // 0

and

0 // C // T0
// T1

// · · · // Tn−1
// Tn

// 0

in modA with Ci ∈ addC and Ti ∈ addT for any 0 ≤ i ≤ n, which are also exact in modS with

Ci ∈ addCS and Ti ∈ addTS for any 0 ≤ i ≤ n.. Thus (CS , TS) is a tilting pair in modS.

Corollary 3.8. For any n ≥ 0, it holds that

(1) If T is an n-tilting S-module, then T ⊗S AA is an n-tilting A-module.

(2) If T is an n-tilting A-module, then TS is an n-tilting S-module.

Proof. (1) By assumption, we know that (SS , TS) is an n-tilting pair in modS. It follows from

Theorem 3.7(1) that (S⊗SAA
∼= AA, T ⊗SAA) is an n-tilting pair in modA, and hence T ⊗SAA

is an n-tilting A-module.

(2) By assumption, we know that (AA, TA) is an n-tilting pair in modA. It follows from

Theorem 3.7(2) that (AS , TS) is a n-tilting pair in modS. Notice that SS | AS and AS is

projective, so addSS = addAS . Then (SS , TS) is an n-tilting pair in modS by Remark 3.3, and

hence TS is an n-tilting S-module.

If S is not commutative, then the assertion (2) in Corollary 3.8 may be not true in general,

see Example 6.2.

Lemma 3.9. It holds that

(1) If T ∈ modA is n-tilting, then addTA = addT ⊗S AA.
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(2) If T ∈ modS is n-tilting, then addTS = addT ⊗S AS.

Proof. (1) By Lemma 2.5, we have add(T ⊗S AA) ⊆ addTA. It follows from Corollary 3.8 that

TS is an n-tilting S-module and T ⊗S AA is an n-tilting A-module. By [26, Theorem 1.19], we

have |T ⊗S AA| = |A| = |TA|, and thus addTA = add(T ⊗S AA).

(2) It follows from Corollary 3.8 that T ⊗S AA is an n-tilting A-module and T ⊗S AS is an

n-tilting S-module. So |T ⊗S AS | = |S| = |TS | by [26, Theorem 1.19]. Since SA is projective,

we have T ⊗S AS ∈ addTS , and thus addTS = add(T ⊗S AS).

For a ring R, we say that two modules M and N in modR are add-isomorphic if addM =

addN . We use n- tiltR to denote the class of n-tilting modules in modR up to add-isomorphism.

Theorem 3.10. For any n ≥ 0, we have a bijection

n- tiltA
Ψ

// n- tiltS
Φoo

given by Φ(TS) = T ⊗S AA and Ψ(T ′
A) = T ′

S for any TS ∈ n- tiltS and any T ′
A ∈ n- tiltA.

Proof. By Corollary 3.8, it suffices to show ΨΦ = Id and ΦΨ = Id.

For any TS ∈ n- tiltS, we have ΨΦ(TS) = Ψ(T ⊗S AA) = T ⊗S AS . It follows from Lemma

3.9 that add(T ⊗S AS) = addTS , and thus ΨΦ = Id. On the other hand, for any T ′
A ∈ n- tiltA,

we have ΦΨ(T ′
A) = Φ(T ′

S) = T ′⊗SAA. It follows from Lemma 3.9 that add(T ′⊗SAA) = addT ′
A,

and thus ΦΨ = Id.

Fu, Xu and Zhao [13, Proposition 3.4] showed that if TS is a Wakamastu tilting S-module,

then T ⊗S AA is a Wakamastu tilting A-module. Conversely, we have the following result.

Proposition 3.11. If TA is a Wakamastu tilting A-module, then TS is a Wakamastu tilting

S-module.

Proof. By assumption, TA is a selforthogonal A-module and there exists an exact sequence

0 // AA
f0 // T0

f1 // T1
// · · · fi // Ti

// · · ·

with Ti ∈ addT for any i ≥ 0, and after applying the functor HomA(−, T ) the sequence is still

exact. Set Ki := Coker fi. Then Ext1A(Ki, T ) = 0. On the other hand,

0 // AS
// T0

// T1
// · · · // Ti

// · · ·

is also exact in modS. By Lemma 3.6(2), we have that TS is a selforthogonal S-module and

Ext1S((Ki)S , TS) = 0. Since AS is projective, we have Ext1S(AS , TS) = 0. Since SS | AS , we get

from [38, Lemma 2.1] an exact sequence

0 // SS
f ′
0 // T ′

0

f ′
1 // T ′

1
// · · ·

f ′
i // T ′

i
// · · · (3.1)

in modS with T ′
i ∈ addTS and Ext1S((Coker f

′
i)S , TS) = 0 for any i ≥ 0. Then after applying

the functor HomS(−, TS) the sequence (3.1) is still exact. Thus TS is a Wakamastu tilting

S-module.
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4 Certain classes of algebras

Let A be a two-sided noetherian ring. Recall that A is called Iwanaga-Gorenstein (Gorenstein

for short) if idAA = idAop A < ∞.

Definition 4.1. ([4, 19]) Let A be a two-sided noetherian ring.

(1) For any l, n ≥ 1, A is said to satisfy the (l, n)-condition if in the minimal injective coreso-

lution

0 // AA
// I0 // I1 // · · · , (3.1)

of AA, we have fdA Ii < l for any 0 ≤ i < n.

(2) For any k ≥ 1, A is called Auslander k-Gorenstein if A satisfies the (l, l)-condition for any

0 < l ≤ k. If A is Auslander k-Gorenstein for all k, then A is said to satisfy the Auslander

condition.

(3) A is called Auslander-Gorenstein if it satisfies the Auslander condition and is Gorenstein.

(4) A is called Auslander-regular if it satisfies the Auslander condition and the global dimension

gl.dimA of A is finite.

Definition 4.2.

(1) ([17]) Let A be a two-sided Noetherian ring. The flat-dominant dimension fd.dom.dimA

of A is defined as

fd.dom.dimA := sup{n | A satisfies (1, n)-condition},

If no such an integer exists, then set fd.dom.dimA = ∞.

(2) ([2, 36]) Let A be an artin algebra. The dominant dimension dom.dimA of A is defined as

dom.dimA := sup{n | A satisfies (1, n)-condition}.

If no such an integer exists, then set dom.dimA = ∞

If A is an artin algebra, then fd.dom.dimA = dom.dimA.

Definition 4.3. ([20]) For any n ≥ 1, A is called n-Auslander if gl.dimA ≤ n+1 ≤ dom.dimA.

In particular, 1-Auslander algebras are exactly classical Auslander algebras.

The following result seems to be well-known.

Lemma 4.4. Let A/S be a Frobenius extension between noetherian rings. For any M ∈ modA

and N ∈ modS, it holds that

(1) pdS M ≤ pdAM , idS M ≤ idAM , and fdS M ≤ fdAM .

(2) pdAN ⊗S A ≤ pdS N , idAN ⊗S A ≤ idS N , and fdAN ⊗S A ≤ fdS N .

(3) If A/S is separable, then pdS M = pdAM .

(4) If S is commutative, then pdAN ⊗S A = pdS N .
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Theorem 4.5. Let A/S be a Frobenius extension between noetherian rings. If S satisfies the

(l, n)-condition, then so does A. The converse holds true if A/S is right-split.

Proof. Assume that S satisfies the (l, n)-condition. Let

0 // SS
// I0 // I1 // · · ·

be a minimal injective coresolution of SS with fdS Ii < l for any 0 ≤ i < n. Since SA is

projective, we have the following exact sequence

0 // S ⊗S AA
∼= AA

// I0 ⊗S AA
// I1 ⊗S AA

// · · ·

of right A-modules with all Ii ⊗S AA injective. One can take a minimal injective coresolution

0 // AA
// J0 // J1 // · · · ,

of AA, where J i is a direct summand of Ii ⊗S AA for any i ≥ 0. So fdA J i ≤ fdA Ii ⊗S AA ≤
fdS Ii < l for any 0 ≤ i < n by Lemma 4.4, and thus A satisfies the (l, n)-condition.

Conversely, assume that A/S is right-split and A satisfies the (l, n)-condition. Let

0 // AA
// I0 // I1 // · · ·

be a minimal injective coresolution of AA with fd Ii < l for any 0 ≤ i < n, which is also an exact

sequence of right S-modules. Notice that SS | AS , one can take a minimal injective coresolution

0 // SS
// J0 // J1 // · · · ,

of SS , where J i is a direct summand of Ii for any i ≥ 0. So fdS J i ≤ fdS Ii ≤ fdA Ii < l for any

0 ≤ i < n by Lemma 4.4, and thus S satisfies the (l, n)-condition.

The following result is an immediate consequence of Theorem 4.5, which has been obtained

in [39]. Note that there are examples of Frobenius extensions A/S such that dom.dimA >

dom.dimS [39, Remark 2.5(2)].

Corollary 4.6. (cf. [39, page 3]) Let A/S be a Frobenius extension. It holds that

(1) If A and S are noetherian rings, then fd.dom.dimA ≥ fd.dom.dimS. Furthermore, if A/S

is right-split, then fd.dom.dimS = fd.dom.dimA.

(2) If A and S are artin algebras, then dom.dimA ≥ dom.dimS. Furthermore, if A/S is

right-split, then dom.dimS = dom.dimA.

The following result provides a partial answer to [45, Section 5, Question].

Corollary 4.7. Let A/S be a Frobenius extension between noetherian rings. For any k ≥ 1, if

S is Auslander k-Gorenstein, then so is A. The converse holds true if A/S is right-split.

The following lemma is easy.

Lemma 4.8. Let A/S be a Frobenius extension between noetherian rings. It holds that

(1) idAA ≤ idS S and idAopA ≤ idSop S.
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(2) If A/S is right-split (respectively, left-split), then idSS = idAA (respectively, idSop S =

idAopA).

In particular, if S is commutative, then idSS = idAA and idSop S = idAopA; moreover, we

have that A is selfinjective (respectively, Gorenstein) if and only if so is S [13, Corollaries 3.11

and 3.12]. By Theorem 4.5 and Lemma 4.8, we obtain the following result.

Corollary 4.9. Let A/S be a Frobenius extension between noetherian rings. If S is Auslander–

Gorenstein, then so is A. The converse holds true if A/S is split.

The following result is a consequence of Theorem 4.5 and [13, Corollary 4.13].

Corollary 4.10. Let A/S be a Frobenius extension between noetherian rings. Assume that S is

commutative. If A is an Auslander-regular algebra (respectively, n-Auslander algebra), then so

is S. The converse holds true if A/S is separable.

In the rest of this section, A is an artin algebra.

Definition 4.11. ([15]) The algebra A is called tilted if there exists a hereditary algebra H and

a 1-tilting H-module such that A = EndH T .

Let A be a tilted algebra. Following [1, Lemma VIII.3.2], we know that gl.dimA ≤ 2

and pdAX ≤ 1 or idAX ≤ 1 for any finitely generated indecomposable A-module. As a

generalization of tilted algebra, Happel, Reiten and Smalø introduced the notion of quasi-tilted

algebras.

Definition 4.12. ([10, 14]) The algebra A is called quasi-tilted if it satisfies the following con-

ditions:

(1) gl.dimA ≤ 2.

(2) For any finitely generated indecomposable A-module X, either pdAX ≤ 1 or idAX ≤ 1.

Theorem 4.13. Assume that A/S is a Frobenius extension and S is commutative. If A is a

quasi-tilted algebra, then so is S. The converse holds true if A/S is separable.

Proof. (1) Assume that A is a quasi-tilted algebra. Then gl.dimS ≤ gl.dimA ≤ 2 by [13,

Corollary 4.13]. Since S is commutative, we have that A/S is split by [8, III.4.8, Lemma 2], and

thus SSS ∈ add SAS . Let M ∈ modS be indecomposable. Then MS
∼= M ⊗S SS | M ⊗S AS .

Notice that M ⊗SAA ∈ modA, so there exists an indecomposable module N ∈ modA such that

MS | NS . If pdAN ≤ 1, then pdS M ≤ pdS N ≤ pdAN ≤ 1 by Lemma 4.4. If pdAN = 2, then

idAN ≤ 1 by assumption. So idS N ≤ idAN ≤ 1 by Lemma 4.4, and hence idS M ≤ 1. Thus S

is quasi-tilted.

Conversely, assume that A/S is separable and S is a quasi-tilted algebra. By [13, Corollary

4.13], we have gl.dimA = gl.dimS ≤ 2. Let M ∈ modA be indecomposable. Then M is also a

right S-module. Notice that MA | M ⊗S AA by Lemma 2.4, so there exists an indecomposable

module N ∈ modS such that MA | N ⊗S AA. If pdS N ≤ 1, then pdAN ⊗S AA ≤ pdS N ≤ 1 by

Lemma 4.4, and so pdAM ≤ 1. If pdS N = 2, then idS N ≤ 1 by assumption. So idAN⊗SAA ≤
idS N ≤ 1 by Lemma 4.4, and hence idAM ≤ 1. Thus A is quasi-tilted.
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Let T ∈ modA be 1-tilting. It is well known that (T ,F) is a torsion pair, where

T = GenT := {M ∈ modA | there exists an exact sequence T̃ // M // 0 with T̃ ∈ addT}

and

F := {M ∈ modA | HomA(T,M) = 0}.

By [6], we have that A is tilted if and only if there exists a 1-tilting module T ∈ modA such that

HomA(M,T ) = 0 for any M ∈ add(T \ T ). For simplification, we call this equivalent condition

of tilted algebras the TA-condition.

Theorem 4.14. Assume that A/S is a Frobenius extension such that S is commutative and A

is an S-algebra. If A/S is separable, then A is a tilted algebra if and only if so is S.

Proof. If A is tilted, then there exists a 1-tilting A-module T satisfying the TA-condition. By

Corollary 3.8, we have that TS is 1-tilting. Let MS ∈ add(GenTS \ TS). Then

MS ⊗S AA ∈ add(Gen(T ⊗S A) \ T ⊗S A) = add(GenTA \ TA)

by Lemma 2.5. On the other hand, we have

HomS(MS , TS) ∼= HomS(MS ,HomA(SAA, TA)

∼= HomA(M ⊗S AA, TA).

By assumption, we have HomA(M ⊗S AA, TA) = 0, and so HomS(MS , TS) = 0. Thus S is tilted.

Conversely, if S is tilted, then there exists a 1-tilting S-module T satisfying the TA-condition.

By Corollary 3.8, we have that T ⊗S AA is a 1-tilting A-module.

We claim that if MA ∈ add(Gen(T ⊗S A) \ T ⊗S A), then MS ∈ add(GenTS \ TS). In fact,

suppose MS = T ′
S ⊕ M ′

S with 0 ̸= T ′
S ∈ addTS and addM ′

S ∩ addTS = {0}. Note that MA |
M⊗SAA = (T ′

S⊗SAA)⊕(M ′
S⊗SAA). By assumption, we have (addT ′

S⊗SAA)∩addMA = {0},
so MA | M ′

S ⊗S AA, and hence MS | M ′
S ⊗S AS ∈ addM ′

S . It follows that T ′
S = 0, which is a

contradiction. Thus MS ∈ add(GenTS \ TS). The claim is proved. Since HomS(MS , TS) = 0 by

assumption, we have

HomA(MA, T ⊗S AA) ∼= HomS(HomA(SAA,MA), TS) ∼= HomS(MS , TS) = 0.

Thus A is tilted.

5 Homological conjectures

The following homological conjectures are very important in the representation theory of artin

algebras, cf. [4, 5, 24].

Let A be an artin algebra.

• Finitistic Dimension Conjecture (FDC)

fin.dimA := sup{pdAM | M ∈ modA with pdAM < ∞} < ∞.

• Nakayama Conjecture (NC) If dom.dimA = ∞, then A is selfinjective.

11



• Strong Nakayama Conjecture (SNC) For any module M ∈ modA, if Ext≥0
A (M,A) =

0, then M = 0.

• Auslander–Reiten Conjecture (ARC) For any moduleM ∈ modA, if Ext≥0
A (M,M) =

0 = Ext≥0
A (M,A), then M is projective.

Auslander and Reiten [4] raised the following conjecture, but they did not name it. For

the sake of avoiding confusion and convenience, we name it as Auslander–Gorenstein Con-

jecture according to the meaning of this conjecture.

• Auslander–Gorenstein Conjecture (AGC) If A satisfies the Auslander condition,

then A is Gorenstein.

Recall that a module M ∈ modA is said to have Gorenstein dimension zero [3] (or

Gorenstein projective [11]) if the following conditions are satisfied: (1) M is reflexive;

(2) Ext≥1
A (M,A) = 0 = Ext≥1

Aop(HomA(M,A), A).

• Gorenstein Projective Conjecture (GPC) If M is a Gorenstein projective A-module

such that ExtiA(M,M) = 0 for any i ≥ 1, then M is projective.

• Wakamatsu Tilting Conjecture (WTC) If T is a Wakamatsu tilting A-module with

pdA T < ∞, then T is tilting.

• Gorenstein Symmetric Conjecture (GSC) idAA < ∞ if and only if idAopA < ∞;

equivalently, idAA = idAopA.

In this section, assume that A/S is a Frobenius extension of artin algebras. We will study

the invariance of some homological conjectures under Frobenius extensions. The following result

shows that NC is preserved under right-split Frobenius extension, where the sufficiency has been

obtained in [39, Page 3].

Corollary 5.1. If A/S is right-split, then A satisfies NC if and only if so does S.

Proof. Assume that A satisfies NC and dom.dimS = ∞. Then dom.dimA = ∞ by Corollary

4.6, and so A is selfinjective by assumption. By Lemma 4.8, we have that S is selfinjective. Thus

S satisfies NC.

Conversely, assume that S satisfies NC and dom.dimA = ∞. Then dom.dimS = ∞ by

Corollary 4.6, and so S is selfinjective by assumption. By Lemma 4.8, we have that A is

selfinjective. Thus A satisfies NC.

Theorem 5.2. If either A/S is split or S is commutative, then A satisfies GSC if and only if

so does S.

Proof. By Lemma 4.8, we have that A satisfies GSC if and only if idAA = idAop A, if and only

if id SS = idSop S, and if and only if S satisfies GSC.

Theorem 5.3. Assume that A/S is right-split. If S satisfies AGC, then so does A. The converse

holds true if A/S is split.
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Proof. Assume that S satisfies AGC. If A satisfies the Auslander condition, then S is also

satisfies the Auslander condition by Theorem 4.5, and so S is Gorenstein by assumption. By

Lemma 4.8, we have that A is Gorenstein. Thus A satisfies AGC.

Now assume that A/S is split and A satisfies AGC. If S satisfies the Auslander condition,

then A is also satisfies the Auslander condition by Theorem 4.5, and so A is Gorenstein by

assumption. By Lemma 4.8, we have that S is Gorenstein. Thus S satisfies AGC.

Theorem 5.4. It holds that

(1) Assume that A/S is separable. If S satisfies FDC, then so does A.

(2) Assume that S is commutative.. If A satisfies FDC, then so does S.

Proof. (1) Assume that S satisfies FDC and fin.dimS = n < ∞. Let M ∈ modA with pdAM <

∞. Then pdS M ≤ pdAM < ∞ by Lemma 4.4, and hence pdS M ≤ n. By Lemma 4.4, we have

pdAM = pdS M ≤ n. Thus fin.dimA ≤ n and A satisfies FDC.

(2) Assume that A satisfies FDC and fin.dimA = n < ∞. Let M ∈ modS with pdS M < ∞.

Then pdAM⊗SAA ≤ pdS M < ∞ by Lemma 4.4, and hence pdAM⊗SAA ≤ n. It follows from

Lemma 4.4 that pdS M = pdAM ⊗S AA ≤ n. Thus fin.dimS ≤ n and S satisfies FDC.

Theorem 5.5. It holds that

(1) Assume that A/S is separable. If S satisfies SNC, then so does A.

(2) Assume that S is commutative. If A satisfies SNC, then so does S.

Proof. (1) Assume that S satisfies SNC. Let M ∈ modA with Ext≥0
A (M,A) = 0. Then by

Lemma 3.5, we have

ExtiS(MS , SS) ∼= ExtiA(MA, AA) = 0 (5.1)

for any i ≥ 0. It follows that MS = 0 and M ⊗S AA = 0. Since MA | M ⊗S AA by Lemma 2.4,

we have that MA = 0 and A satisfies SNC.

(2) Assume that A satisfies SNC. Let M ∈ modS with Ext≥0
S (M,S) = 0. Then

ExtiA(M ⊗S AA, AA) ∼=ExtiS(MS ,HomA(SAA, AA) (5.2)

∼=ExtiS(MS , AS)

for any i ≥ 0. Note that AS ∈ addSS , so ExtiA(M⊗SAA, AA) = 0. It follows that M⊗SAA = 0,

and so M ⊗S AS = 0 as a right S-module. Notice that MS | M ⊗S AS , thus MS = 0 and S

satisfies SNC.

Theorem 5.6. Assume that S is commutative and A is an S-algebra. If A satisfies ARC

(respectively, GPC, WTC), then so does S. The converse holds true if A/S is separable.

Proof. (ARC) Assume that A satisfies ARC. Let M ∈ modS with Ext≥1
S (M,M) = 0 =

Ext≥1
S (M,S). Then ExtiA(M ⊗S AA,M ⊗S AA) = 0 by Lemma 3.6(1), and hence ExtiA(M ⊗S

AA, AA) = 0 by (5.2). It follows that M ⊗S AA is projective. So M ⊗S AS is a projective right

S-module, and hence MS is a projective right S-module by the fact that MS | M ⊗S AS . Thus

S satisfies ARC.
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Conversely,, assume that A/S is separable and S satisfies ARC. Let M be a A-module such

that Ext≥1
A (M,M) = 0 = Ext≥1

A (M,A). Then ExtiS(MS ,MS) = 0 by Lemma 3.6(2), and hence

ExtiS(MS , SS) = 0 by (5.1). It follows that MS is projective. So M ⊗S AA is a projective right

A-module. Note that MA | M ⊗S AA by Lemma 2.4, then MA is projective, and therefore A

satisfies ARC.

(GPC) Assume that A satisfies GPC. Let M ∈ modS be Gorenstein projective with

Ext≥1
S (M,M) = 0. Then we get that M ⊗S AA is Gorenstein projective with Ext≥1

A (M ⊗S

AA,M ⊗S AA) = 0 by [32, Lemma 2.3] and Lemma 3.6(1). It follows that M ⊗S AA is pro-

jective, and so M ⊗S AS is a projective S-module. Notice that MS | M ⊗S AS , thus MS is

projective and S satisfies GPC.

Conversely, assume that A/S is separable S satisfies GPC. Let M ∈ modA be Gorenstein

projective with Ext≥1
A (M,M) = 0. Then MS is Gorenstein projective with ExtiS(MS ,MS ) = 0

by [43, Theorem 3.2] (or [32, Lemma 2.2]) and Lemma 3.6(2). It follows that MS is projective,

and hence M ⊗S AA is a projective right A-module. Notice that MA | M ⊗S AA by Lemma 2.4,

thus MA is projective and A satisfies GPC.

(WTC) Assume that A satisfies WTC. Let T ∈ modS be Wakamatsu tilting with pdS T <

∞. Then T ⊗S AA ∈ modA is Wakamatsu tilting and pdA T ⊗S AA = pdS T < ∞ by [13,

Proposition 3.4] and Lemma 4.4. Thus T ⊗S AA is a tilting right A-module. It follows from

Corollary 3.8 that T ⊗S AS is a tilting right S-module. Notice that TS | T ⊗S AS ∈ addTS , so

addTS = add(T ⊗S AS). Thus TS is a tilting right S-module and S satisfies WTC.

Conversely, assume that A/S is separable and S satisfies WTC. Let T ∈ modA be Waka-

matsu tilting with pdA T < ∞. Then TS is Wakamatsu tilting and pdS T = pdA T < ∞ by

Proposition 3.11 and Lemma 4.4. Thus TS is tilting. It follows from Corollary 3.8 that T ⊗S AA

is a tilting right A-module. Notice that addTA = add(T ⊗S AA) by Lemma 2.5, thus TA is

tilting and A satisfies WTC.

6 Example

Now we give some examples to explain the obtained results. In this section, we assume that k

is an algebraically closed field.

Example 6.1. Let S be a finite dimensional k-algebra given by the following quiver:

1
β // 2 .

Set A := S[x]/(x2). Then A is a finite dimensional k-algebra given by the following quiver:

1
β //

α
��

2

γ

��

with relations α2 = 0 = γ2 and αβ = βγ. By [32, Lemma 3.1], we know that A/S is a Frobenius

extension. The Auslander–Reiten quivers of S and A are as follows, respectively.

1
2

��>
>>

>>

2

??�����
1
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and

1

��<
<<

<<
<

1
2

��>
>>

>>
> 2

��=
==

==
==

12
2

��<
<<

<<
<

//

@@������
1
12
2

// 1
12

��>
>>

>>
>

@@������
12
2

@@������
//

��<
<<

<<
<

1
12
2

// · · ·

2

��?
??

??
?

@@������
12
12

@@������

  A
AA

AA
A

1

@@�������

2
2

>>}}}}}}
1
1

??������

(1) Take an A-module M = 12
12 . Then M⊗SA =

1
12
2
⊕ 2

2 ⊕ 1
1 . It is trivial that M is not a direct

summand of M ⊗S A as A-modules. Thus the natural surjective map π : M ⊗S A → M

given by m⊗ a 7→ ma for any m ∈ M and a ∈ A is not a split epimorphism of A-modules.

(2) Take a minimal injective coresolution

0 // SS
// 1
2 ⊕ 1

2
// 1 // 0

of SS. We have that S satisfies the (2, 2)-condition, so A also satisfies the (2, 2)-condition

by Theorem 4.5. In fact, AA has a minimal injective coresolution

0 // AA
// 1
12
2
⊕ 1

12
2

// 1
1

// 0 .

On the other hand, S also satisfies the (1, 1)-condition, so A also satisfies the (1, 1)-

condition by Theorem 4.5. Clearly, dom.dimS = 1 = dom.dimA since A/S is right-split.

It also follows from [39, Remark 2.5].

Example 6.2. Let A = M4(k) be a finite dimensional k-algebra, and let S be the subalgebra

generated by

e1 := E11 + E44, e2 := E22 + E33, E21, E31, E41, E42, E43,

where all Eij are primitive orthogonal idempotents for any 0 ≤ i, j ≤ 4. By [29, Example 7.1],

we have that A/S is a Frobenius extension. Obviously, S is not commutative. Notice that AA

is a tilting A-module and AS = (e1S)
⊕4, so |AS | = 1 < 2 = |S|, and thus AS is not a tilting

S-module. This shows that the condition “S is commutative” in Corollary 3.8(2) is necessary.
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