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ABSTRACT

In this paper, the results on codimension and regularity over
noetherian local rings and coherent local rings are extended to
coherent semilocal rings and some useful examples of coher-
ent semilocal rings are constructed.
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INTRODUCTION

Throughout this paper it is assumed that all rings are commutative
coherent rings with identity and all modules are unitary. Our aim in this
paper is to extend the results on codimension and regularity which were
studied in [7] and [8] for noetherian local rings and coherent local rings to
coherent semilocal rings.
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Let R be a ring and M an R-module. Recall that M is called finitely
presented if there is a finitely generated R-module P and a finitely generated
submodule N of P such that P=N ’ M. R is called a coherent ring if every
finitely generated ideal of R is finitely presented. R is called a regular ring if
every finitely generated ideal of R has finite projective dimension ([5]). In
case R is a noetherian ring, the notion of regularity given here coincides with
that in [7].

In x 2, we study the codimension of modules, and show that if R is a
regular coherent semilocal ring and every maximal ideal of R is finitely
generated, then m-codimRðRÞ ¼ CodimRm

ðRmÞ ¼ w:gl:dimRm for every
maximal ideal m of R, and CodimRðRÞ ¼ w:gl:dimR.

x 3 deals with the regularity of coherent semilocal rings. In [7]
Theorem 60 and Theorem 69, Kaplansky proved that a noetherian local ring
R is regular if and only if the unique maximal ideal of R is generated by a
regular R-sequence. In [8], we proved that a coherent local ring R whose
maximal ideal m is finitely generated is regular if and only if m is generated
by a regular R-sequence (see [8] Theorem 2.6). The main result of this sec-
tion is that if R is an indecomposable coherent semilocal ring whose every
maximal ideal is finitely generated, then R is regular if and only if every
maximal ideal of R is generated by a regular R-sequence if and only if
every maximal ideal m which satisfies w:gl:dimR ¼ w:gl:dimRm is generated
by a regular R-sequence if and only if there exists a maximal ideal m of
R such that w:gl:dimR ¼ w:gl:dimRm and m is generated by a regular
R-sequence.

In x 4 we provide an example of a non-noetherian indecomposable
coherent semilocal ring R with exactly t maximal ideals and with weak
global dimension equal to s, for any natural numbers t and s.

In this paper, we use J; MaxðRÞ; gl:dimR; w:gl:dimR; pdRðMÞ;
fdRðMÞ; idRðMÞ; CodimRðMÞ; FP-idRðMÞ; RM; f:g:RM; f:r:RM for the
Jacobson radical, the maximal spectrum, global dimension, weak global
dimension of R, projective dimension, flat dimension, injective dimension,
codimension, FP-injective dimension of R-module M, the category of R-
modules, the category of finitely generated R-modules and the category of
finitely presented R-modules, respectively.

1 PRELIMINARIES

Definition 1. Let R be a ring and I an ideal of R, M 2 R M. A finite sequence
a1; . . . ; an 2 I is called a regular M -sequence if ai is not a zero divisor for the
module M=ða1; . . . ; ai�1ÞM , i ¼ 1; . . . ; n, and M 6¼ ða1; . . . ; anÞM . We define
I -codimRðMÞ ¼ supft j a1; . . . ; at is a regular M -sequence in Ig and
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CodimRðMÞ ¼ supfI -codimRðMÞ j I is an ideal of Rg which are called the
codimension of M in I and codimension of M respectively. Since every ideal of
R must be contained in a maximal ideal of R, we have CodimRðMÞ ¼ supfm-
codimRðMÞ j m 2 MaxðRÞg. Particularly CodimRðRÞ ¼ supfm-codimRðRÞ jm 2
MaxðRÞg.

Definition 2. Let R be a ring, M 2 R M. The FP-injective dimension of M ,
denoted by FP-idRðMÞ, is equal to the least integer n � 0 for which
Extnþ1

R ðP;MÞ ¼ 0 for every finitely presented R-module P. If no such n exists
set FP-idRðMÞ ¼ 1.

In this section, we shall give some lemmas which will be used later.

Lemma 1.1 ([5] Corollary 2.5.5). Let R be a coherent ring, M 2 f :r:RM.
Then pdRðMÞ ¼ fdRðMÞ.

Lemma 1.2 ([6] Theorem 5). If R is a coherent semilocal ring, then

w:gl:dimR ¼ fdRðR=JÞ ¼ idRðR=JÞ ¼ FP-idRðR=JÞ:

Lemma 1.3. Let R be a ring, m 2 MaxðRÞ, M 2 R M . If a1; . . . ; an 2 m is a
regular M -sequence, then the sequence a1; . . . ; an, considered as elements in
Rm, is a regular Mm-sequence.

Proof. See the proof of Proposition 1.2 in [1]. u

Lemma 1.4. Let R be a coherent local ring, M 2 f :r:RM. Then
CodimRðMÞ � w:gl:dim R:

Proof. Let m be the maximal ideal of R and let a1; . . . ; as 2 m be any reg-
ular M -sequence in m. By [8] Lemma 2.3 we have pdRðM=ða1; . . . ; asÞMÞ ¼
pdRðMÞ þ s. Since M is finitely presented, so is M=ða1; . . . ; asÞM . Therefore
s � pdRðM=ða1; . . . ; asÞMÞ ¼ fdRðM= ða1; . . . ; asÞMÞ � w:gl:dim R. Thus we
have CodimRðMÞ � w:gl:dim R. u

Corollary 1.5. Let R be a coherent ring, M 2 f :r:RM. Then CodimRðMÞ �
w:gl:dim R:

Proof. By Lemma 1.3 and Lemma 1.4, we haveCodimRðMÞ ¼ supfm-codimR

ðMÞ jm 2 MaxðRÞg� supfCodimRm
ðMmÞ jm 2 MaxðRÞg � supfw:gl:dim Rm jm

2 MaxðRÞg ¼ w:gl:dim R. u

Lemma 1.6. Let R be a semilocal domain but not a field.

CODIMENSION AND REGULARITY 4813



(1) If m1 2 MaxðRÞ and m1 is finitely generated, then there exists an
irreducible element a of R in m1;

(2) If m1 2 MaxðRÞ and a 2 m1 is an irreducible element of R, then
R=ðaÞ is a local ring with unique maximal ideal �m1 ¼ m1=aR:

(3) If m 2 MaxðRÞ is finitely generated and a 2 m is an irreducible ele-
ment of R, then a, considered as an element in Rm, can extended to a
minimal set of generators of the unique maximal ideal mRm of Rm.

Proof. (1) We Assume that MaxðRÞ ¼ fm1;m2; . . . ;mtg and mi 6¼ mj, 8i 6¼ j.
We only need to prove that there exists a 2 m1 such that a =2mimj,
81 � i; j � t:

Since m1; m2; . . . ;mt are all different maximal ideals of R,
m1mi ¼ m1 \ mi 7-- m1, 82 � i � t.

Consider the natural homomorphism f : R ! Rm1
, jðrÞ ¼ r

1. Since R
is a domain, j is injective. If m21 ¼ m1, then ðm1Rm1

Þ2 ¼ m21Rm1
¼ m1Rm1

.
Since m1 is finitely generated, so is m1Rm1

. It follows from Nakayama’s
Lemma that m1Rm1

¼ 0, so m1 ¼ 0 and R is a field, which is a contradiction.
Therefore m21 7-- m1 and every m1mið1 � i � tÞ is a proper submodule of m1
as an R-module and

St
i¼1m1mi 7-- m1. Thus there exists a 2 m1 such that

a 62 m1mi, 81 � i � t. If a 2 mimj, i; j 6¼ 1, then a ¼ aiaj, ai 2 mi, aj 2 mj and
ai; aj 62 m1. So a ¼ aiaj 62 m1, which is a contradiction. Therefore a 62 mimj,
81 � i; j � t.

(2) It is easy to see that MaxðR=aRÞ ¼ fm=aR j m 2 MaxðRÞ; a 2 mg.
Since a is an irreducible element of R, a 62 m1mi ¼ m1

T
mi, i ¼ 2; . . . ; t.

So a 62 mi, i ¼ 2; . . . ; t, and hence MaxðR=aRÞ ¼ fm1=aRg and R=aR is a
local ring.

(3) Since a is an irreducible element of R, a is also an irreducible
element of Rm and a 62 ðmRmÞ

2
. From [3] x 8.3 Exercise 1 we know that a can

be extended to a minimal set of generators of mRm. u

Lemma 1.7 ([3] P. 299, Theorem 2). If R is a semilocal ring, then R has an
indecomposable decomposition R ¼ R1 � � � � � Rn such that every
Rið1 � i � nÞ is an indecomposable semilocal ring.

Let R be a ring and R ¼ R1 � � � � � Rn an indecomposable decom-
position of R. Then every maximal ideal of R has the form

m ¼ R1 � � � � � Ri�1 � mi � Riþ1 � � � � � Rn ð1Þ

where mi 2 MaxðRiÞ, and we have a natural ring isomorphism Rm ’ Rimi
.
u

Lemma 1.8. Let R be a coherent local ring with maximal ideal m. If m is
finitely generated, then R is regular if and only if w:gl:dim R < 1 if and only if
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m is generated by a regular R-sequence. In addition, if m is generated by a
regular R-sequence with q elements, then CodimRðRÞ ¼ w:gl:dim R ¼ q.

Proof. See [8] Theorem 2.1, Theorem 2.6 and Corollary 2.7. u

Lemma 1.9. Let R be a regular coherent local ring withmaximal ideal m. If m is
finitely generated and a; a2; . . . ; an is a minimal set of generators of m, then

w:gl:dimR=aR ¼ w:gl:dimR � 1 < 1:

In this case R=aR is also a regular coherent local ring.

Proof. By Lemma 1.8, we have w.gl.dim R<1:
Set �R ¼ R=aR, �m ¼ m=aR, A ¼ aR, B ¼ amþ a2Rþ � � � þ aqR. It is

easy to verify that

m ¼ A þ B; A \ B ¼ am:

So

m=am ¼ ðA þ BÞ=am ’ ðA=amÞ � ðB=amÞ

and hence

�m ¼ m=aR ’ ðm=amÞ=ðaR=amÞ ¼ ðm=amÞ=ðA=amÞ ’ B=am;

that is, �m is isomorphic to a direct summand of m=am as an R-module, and
so as an �R-module. Therefore pd �Rð �mÞ � pd �Rðm=amÞ:

It follows from [11] Corollary 5 that R is a GCD domain, then a is not
a zero divisor on m and R, and thus by [5] Theorem 3.1.2 we have that
pd �Rð �mÞ � pd �Rðm=amÞ ¼ pdR=aRðm=amÞ ¼ pdRðmÞ < 1 and pd �Rð �R= �mÞ �
pd �Rð �mÞ þ 1 < 1. By Lemma 1.2

w:gl:dimR=aR ¼ w:gl:dim �R ¼ fd �Rð �R= �mÞ < 1:

Therefore by [5] Corollary 3.1.4 we have w:gl:dimR=aR ¼ w:gl:dimR � 1:
u

2 CODIMENSION

Theorem 2.1. Let R be a regular indecomposable coherent semilocal ring. If
every maximal ideal of R is finitely generated, then

(1) m-codimRðRÞ ¼ CodimRm
ðRmÞ ¼ w:gl:dim Rm; 8m 2 MaxðRÞ:

(2) CodimRðRÞ ¼ w:gl:dim R:

Proof. (1) Suppose m is a maximal ideal of R. Since R is a coherent ring and
m is finitely generated, it follows from [5] Theorem 2.4.2 that Rm is a

CODIMENSION AND REGULARITY 4815



coherent local ring with maximal ideal mRm and mRm is finitely generated,
and w:gl:dim Rm � w:gl:dim R < 1. By Lemma 1.8, Rm is regular and mRm is
generated by a t elements regular Rm-sequence and CodimRm

ðRmÞ ¼
w:gl:dim Rm ¼ t < 1.

We will prove m-codimRðRÞ ¼ t by induction on t.
If t ¼ 0, then Rm is a field and mRm ¼ 0. Since R is a regular inde-

composable coherent semilocal ring, it follows from [11] Corollary 5 that R
is a GCD domain and thus m ¼ 0 and m-codimRðRÞ ¼ 0.

Now suppose t > 0. If m ¼ 0, then R is a field and t ¼ w:gl:dim
Rm ¼ 0, which is a contradiction. So m 6¼ 0. By Lemma 1.6, there exists an
irreducible element a of R in m such that R=aR is a local ring with maximal
ideal m=aR and a, considered as an element in Rm, can be extended to a
minimal set of generators of mRm. By Lemma 1.9 we have w:gl:dim
Rm=aRm ¼ w:gl:dimRm � 1 ¼ t � 1:

We denote R=aR by �R, then �R is also coherent. Since �R is a local ring
with maximal ideal �m ¼ m=aR, �R �m ’ �R, and since it is easy to verify that
�R �m ’ Rm=aRm;

w:gl:dim �R ¼ w:gl:dim �R �m ¼ w:gl:dimRm=aRm

¼ w:gl:dimRm � 1 ¼ t� 1 < 1:

By induction hypothesis, we have �m-codim �Rð �RÞ ¼ t � 1. In addition,
m-codimRðRÞ ¼ �m-codim �Rð �RÞ þ 1, so m-codimRðRÞ ¼ t.

The statement (2) is an immediate consequence of (1). u

Corollary 2.2. Let R be a regular coherent semilocal ring. If every maximal
ideal of R is finitely generated, then

(1) m-codimRðRÞ ¼ CodimRm
ðRmÞ ¼ w:gl:dim Rm; 8m 2 MaxðRÞ:

(2) CodimRðRÞ ¼ w:gl:dim R:

Proof. By Lemma 1.7, R has an indecomposable decomposition:
R ¼ R1 � R2 � � � � � Rn, where every Ri ð1 � i � nÞ is a regular indecompo-
sable coherent semilocal ring. Now, 8m 2 MaxðRÞ we assume

m ¼ m1 � R2 � � � � � Rn; m1 2 MaxðR1Þ:

It is easy to verify thatm-codimRðRÞ ¼ m1-codimR1
ðR1Þ. Then by Theorem 2.1

we have

m-codimRðRÞ ¼ m1-codimR1
ðR1Þ ¼ w:gl:dimR1m2

¼ w:gl:dimRm:

The statement (2) is an immediate consequence of (1). u
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3 REGULARITY OF COHERENT SEMILOCAL RINGS

Theorem 3.1. Let R be a coherent semilocal ring. If every maximal ideal of R

is finitely generated, then the following statements are equivalent:

(1) R is regular;
(2) w:gl:dim R < 1;
(3) Rm is regular, 8m 2 MaxðRÞ;
(4) pdRðR=mÞ < 1; 8m 2 MaxðRÞ;
(5) pdRðR=JÞ < 1;
(6) idRðR=mÞ < 1, 8m 2 MaxðRÞ;
(7) idRðR=JÞ < 1;
(8) FP-idRðR=mÞ < 1, 8m 2 MaxðRÞ;
(9) FP-idRðR=JÞ < 1.

Proof. Assume that m1; . . . ;mt are all maximal ideals of R. Then R=J ’
�t

i¼1R=mi and w:gl:dim R ¼ supfw:gl:dim Rmi
j1 � i � tg¼ supf fdRðR=miÞj1�

i � tg:

By Lemma 1.2 we have w:gl:dimR ¼ fdRðR=JÞ ¼ idRðR=JÞ ¼ FP-
idRðR=JÞ. Since every mi ð1 � i � tÞ is finitely generated, J ¼

Tt
i¼1mi ¼Qt

i¼1mi is also finitely generated. Thus by Lemma 1.1 fdRðR=miÞ ¼
pdRðR=miÞ, for any 1 � i � t and therefore fdRðR=JÞ ¼ pdRðR=JÞ: Now we
only need to prove ð2Þ ) ð1Þ. The other implications are trivial by above
argument. By [5] Corollary 1.3.9 we have w:gl:dimR ¼ fpdRðR=IÞ j I is a
finitely generated ideal of Rj � jpdRðIÞ þ 1 j I is a finitely generated ideal of
Rg. Since w:gl:dimR < 1, pdRðIÞ < 1 for every finitely generated ideal I of
R. Thus R is regular. u

Theorem 3.2. Let R be an indecomposable coherent semilocal ring. If every
maximal ideal of R is finitely generated, then the following statements are
equivalent:

(1) R is regular;
(2) Every maximal ideal m of R is generated by a regular R-sequence

with q elements, where q ¼ w:gl:dim Rm;
(3) Every maximal ideal m of R satisfying w:gl:dim Rm ¼ w:gl:dim R is

generated by a regular R-sequence.
(4) There is a maximal ideal m of R such that w:gl:dim R ¼ w:gl:dim Rm

and m is generated by a regular R-sequence.

Proof. The implications of ð2Þ ) ð3Þ ) ð4Þ are trivial.
ð4Þ ) ð1Þ Let m 2 MaxðRÞ with w:gl:dimR ¼ w:gl:dimRm and let m be

generated by a regular R-sequence a1; . . . ; at. Then by Lemma 1.3, a1; . . . ; at,
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considered as elements in mRm, is a regular Rm-sequence in mRm and
mRm ¼ ða1; . . . ; atÞRm, and thus by Lemma 1.8 we have that w:gl:dimRm ¼
CodimRm

ðRmÞ ¼ t. So w:gl:dimR ¼ w:gl:dimRm < 1 and hence R is regular
by Theorem 3.1.

ð1Þ ) ð2Þ Suppose m is any maximal ideal of R and w:gl:dimRm ¼ q.
If q ¼ 0, the conclusion is trivial. Now suppose q > 0. It follows from

[11] Corollary 5 that R is a GCD domain. By Lemma 1.6, there exists an
irreducible element a1 of R in m such that R=a1R (denoted by �R) is a local
ring with unique maximal ideal �m ¼ m=a1R. Similar to the proof of
Theorem 2.1, we can prove w:gl:dim �R ¼ w:gl:dimRm � 1 ¼ q � 1 < 1. So �R
is a regular coherent local ring whose unique maximal ideal �m is also finitely
generated. It follows from Lemma 1.8 that �m is generated by a regular �R-
sequence: �a2; . . . ; �aq. Thus m ¼ ða1; a2; . . . ; aqÞ and a1; a2; . . . ; aq is a regular
R-sequence. u

Corollary 3.3. Let R be a coherent semilocal ring and let R ¼ R1 � R2

� � � � � Rt be an indecomposable decomposition of R. If every maximal ideal of
R is finitely generated and w:gl:dim R > 0, then the following statements
are equivalent:

(1) R is regular;
(2) For every maximal ideal m ¼ R1 � � � � � Ri�1� mi � Riþ1

� � � � � Rt, mi 2 MaxðRiÞ, of R, if mi 6¼ 0, then m is generated by a
q elements regular R-sequence, where q ¼ w:gl:dim Rm ¼ w:gl:dim

Rimi
.

(3) Every maximal ideal m of R which satisfies w:gl:dim R ¼ w:gl:dim

Rm is generated by a regular R-sequence.
(4) There is a maximal ideal m of R such that w:gl:dim Rm ¼ w:gl:dim R

and m is generated by a regular R-sequence.

Proof. ð2Þ ) ð3Þ ) ð4Þ Clear.
ð4Þ ) ð1Þ It is similar to the proof of ð4Þ ) ð1Þ in the proof of

Theorem 3.2.
ð1Þ ) ð2Þ For convenience sake, we assume that m ¼ m1 � R2

�� � � � Rt,m1 2 MaxðR1Þ,m1 6¼ 0. Sincew:gl:dimR > 0, such anmmust exist.
Since w:gl:dimR ¼ supfw:gl:dimRij1 � i � tg, w:gl:dimR1 � w:gl:dimR <
1, and thus R1 is a regular indecomposable coherent semilocal ring. Therefore
by Theorem 3.2 the maximal idealm1 of R is generated by a q elements regular
R1-sequence a

0
1; . . . ; a

0
q. Set ai ¼ a0i þ e2 þ � � � þ et, 1 � i � q, where

eið2 � i � tÞ is the identity of Ri. It is easy to show that a1; . . . ; aq is a regular
R-sequence andm ¼ ða1; . . . ; aqÞ. Som is generated by a q elementsR-sequence
and q ¼ w:gl:dimR1m1

¼ w:gl:dimRm. u
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Remark. When R satisfies the conditions of Corollary 3.3 and R is regular,
we can not obtain that every maximal ideal of R is generated by a regular R-
sequence. For example, let ðR1;m1Þ be a noetherian local ring and
0 < gl:dim R1 < 1. Set R ¼ R1 � F, F is a field. It is easy to see that R

satisfies the conditions of Corollary 3.3 and 0 < w:gl:dim R < 1. But the
maximal ideal m ¼ R1 � 0 6¼ 0 can not be generated by a regular R-sequence.
The Jacobson radical of R is J ¼ m1 � 0 6¼ 0 and J also can not be generated
by a regular R-sequence.

4 SOME EXAMPLES

In this section, we construct some interesting examples of non-
noetherian regular indecomposable coherent semilocal rings.

Proposition 4.1. Let t; n be any two natural numbers. Then there exists a
non-noetherian indecomposable coherent semilocal ring R such that: (1) R has
exactly t maximal ideals; (2) w:gl:dim R ¼ n þ 1, gl:dim R ¼ n þ 2; (3) Every
maximal ideal of R is not finitely generated.

Proof. Let K be a field with characteristic zero. Set A ¼
S

n�1 K½½x1
n��. It

follows from [8] Example 2 that A is a non-noetherian coherent local ring
with unique maximal ideal m ¼ f f ðxÞ 2 A j f ð0Þ ¼ 0g which is not finitely
generated and w:gl:dim A ¼ 1, gl:dim A ¼ 2.

Let L ¼ A½t1; t2; . . . ; tn� be the polynomial ring over A on the inde-
terminates t1; t2; . . . ; tn. Set

mi ¼ mþ ðt1 þ i � 1ÞLþ t2Lþ � � � þ tnL; 1 � i � t:

It is easy to verify that m1; . . . ;mt are different maximal ideals of L. Set
S ¼ L�

St
i¼1mi ¼ fs 2 L j s =2

St
i¼1mig. It is clear that S is a multiplicatively

closed subset of L and 1 2 S, we denote by LS the localization ring of L at
S. We shall prove that LS satisfies all conditions of Proposition 4.1.

First, by [11] Corollary 5, A is a domain. So L and LS are domains and
hence LS is indecomposable.

Since A is a coherent ring of global dimension two, it follows from [5]
Theorem 7.3.14 that L is a coherent ring and thus from [5] Theorem 2.4.2 we
know that LS is also a coherent ring.

It is easy to verify that m1LS; . . . ;mtLS are all different maximal ideals
of LS and every miLSð1 � i � tÞ is not finitely generated.

By [5] Hilbert Syzygies Theorem 1.3.17, w:gl:dimL ¼ w:gl:dim A þ n ¼
n þ 1 and gl:dimL ¼ gl:dimA þ n ¼ n þ 2.

It follows from [5] Theorem 1.3.13 that w:gl:dimLS � w:gl:dimL ¼
n þ 1 and gl:dimLS � gl:dimL ¼ n þ 2. Let 0 6¼ a 2 m, we may easily show
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that a; t1; t2; . . . ; tn is a regular L-sequence in m1. By Lemma 1.3, a; t1; . . . ; tn,
considered as elements in Lm1

, is a regular Rm1
-sequence and thus by The-

orem 2.1 we have w:gl:dimLm1
¼ CodimLm1

� n þ 1. Set S1 ¼ L� m1, then
S � S1. It follows from [2] x 7.2 Proposition 7.4 that Lm1

¼ LS1
’ ðLSÞS1=S.

Thus by [5] Theorem 1.3.13 we have

w:gl:dimLS �w:gl:dimLm1
� nþ1 and gl:dimLS � gl:dimLm1

� nþ1:

Therefore w:gl:dimLS ¼ n þ 1 and n þ 1 � gl:dimLm1
� gl:dimLS � n þ 2:

If gl:dimLm1
¼ n þ 1, then gl:dimLm1

¼ w:gl:dimLm1
¼ n þ 1 < 1

and so by [5] Theorem 6.2.15 the maximal ideal m1Lm1
is finitely generated,

which is a contradiction. Hence gl:dimLm1
¼ n þ 2. In addition,

gl:dimLm1
� gl:dimLS � n þ 2. Thus gl:dimLS ¼ n þ 2. u

Proposition 4.2. Let t; n be any two natural numbers. Then there exists a
non-noetherian indecomposable coherent semilocal ring R such that:

(1) R has exactly t maximal ideals;
(2) w:gl:dim R ¼ gl:dim R ¼ n þ 2;
(3) Every maximal ideal of R is finitely generated.

Proof. Let ðA;mÞ be an umbrella ring (see [9] for the definition) with
characteristic zero (For example, let L ¼ Z½x�, m ¼ ð2; xÞ 2 MaxðLÞ,
T ¼ Lm, K the quotient field of T . It follows from [9] that A ¼
K½½tÞÞ ¼ f f ðtÞ 2 K½½t�� j f ð0Þ 2 Tg is an umbrella ring and it is easy to see that
the characteristic of A is zero).

By [8] Example 3, we know that A is a coherent local domain and
w:gl:dimA ¼ gl:dimA ¼ 2 and m can be generated by a two elements regular
A-sequence fa1; a2g and there is a non-finitely generated prime ideal of A. So
A is a non-noetherian super regular coherent local ring.

Set

L ¼ A½t1; t2; . . . ; tn�;
mi ¼ ða1; a2; t1 þ i� 1; t2; . . . ; tnÞ; 1 � i � t:

Since CharA ¼ 0, it is easy to prove that m1; . . . ;mt are different maximal
ideals of L. Set

S ¼ L�
[t
i¼1

mi ¼ s 2 Ljs =2
[t
i¼1

mi

( )
:

We can prove that LS satisfies the conditions of Proposition 4.2. The proof
here is similar to that of Proposition 4.1, we omit it. u
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