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EXTENSION CLOSURE OF RELATIVE
k-TORSIONFREE MODULES

Zhaoyong Huang
Department of Mathematics, Nanjing University, Nanjing, China

In this article, we study the extension closure of the category of modules consisting of
relative k-torsionfree modules. Some previous results related to the extension closure
of k-torsionfree modules are extended and strengthened.
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1. INTRODUCTION AND MAIN RESULTS

Let � be a ring. We use mod� (resp. mod�op) to denote the category of
finitely generated left �-modules (resp. right �-modules). We always assume that
� and � are Artinian algebras and ��� is a faithfully balanced self-orthogonal
bimodule, that is, ��� satisfies the following conditions: (1) �� is in mod� and
�� is in mod�op; (2) the natural maps � → End����

op and � → End���� are
isomorphisms; (3) Exti����� ��� = 0 and Exti� ���� ��� = 0 for any i ≥ 1. We use
add�� (resp. add�� ) to denote the subcategory of mod� (resp. mod�op) consisting
of all modules isomorphic to direct summands of finite direct sums of copies of ��
(resp. �� ).

Suppose that A ∈ mod� (resp. mod �op). Then, we call Hom���A� ���� (resp.
Hom� �A�� ����) the dual module of A with respect to �, and denote these modules
by A�. For a homomorphism f between the �-modules (resp. �op-modules), we
put f� = Hom�f� ����. Let �A � A → A�� via �A�x��f� = f�x�, for any x ∈ A and
f ∈ A�, be the canonical evaluation homomorphism. Then, we call A �-torsionless
(resp. �-reflexive) if �A is a monomorphism (resp. an isomorphism).

Now let P1

f−→ P0 → A → 0 be a minimal projective resolution of A. Then we

have an exact sequence 0 → A� → P�
0

f�−→ P�
1 → Coker f� → 0. We call Cokerf�

the transpose (with respect to ��� ) of A, and denote it by Tr�A. For a positive
integer k, a module A in mod� (resp. mod�op) is called �-k-torsionfree if
Exti� �Tr�A��� (resp. Ext

i
��Tr�A���� = 0 for any 1 ≤ i ≤ k. A is called �-k-syzygy if

there is an exact sequence 0 → A → X0 → X1 → · · · fk−1−→ Xk−1 with all Xi in add��
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(resp. add�� ). At this moment, Cokerfk−1 is called a �-k-cosyzygy module. We
remark that a module is �-torsionless (resp. �-reflexive) if and only if it is �-1-
torsionfree (resp. �-2-torsionfree) (see Huang, 2001).

Put ��� = ���. Then, in this case, the notions of �-k-torsionfree modules
and �-k-syzygy modules are just the k-torsionfree modules and k-syzygy modules,
respectively (see Auslander and Bridger, 1969 for the definitions of k-torsionfree
modules and k-syzygy modules). We use � k

���
op� (resp. 	k

���
op�) to denote the

full subcategory of mod�op consisting of �-k-torsionfree modules (resp. �-k-syzygy
modules). By Huang (2001, Theorem 1), we have � k

���
op� ⊆ 	k

���
op�.

Recall that a full subcategory � of mod� (resp. mod�op) is said to be
extension closed if the middle term B of any short sequence 0 → A → B → C →
0 is in � provided that the end terms A and C are in � . The extension closure
of the subcategory consisting of k-syzygy modules and the subcategory consisting
of k-torsionfree modules have been studied in terms of flat dimensions and grade of
modules by Auslander and Reiten (1996) and by the author Huang (1999). In Huang
(2003) we have further studied the extension closure of 	k

���
op�. Motivated by the

above results, we will deal with the extension closure of � k
���

op�.
Let A ∈ mod�. If there exists an exact sequence · · · → �n → · · · → �1 →

�0 → A → 0 in mod� with each �i ∈ add �� for any i ≥ 0, then we define �-
resol.dim��A� = inf
n � there exists an exact sequence 0 → �n → · · · → �1 → �0 →
A → 0 in mod� with each �i ∈ add�� for any 0 ≤ i ≤ n�. We set �-resol.dim��A�

infinity if there does not exist such an integer (see Auslander and Buchweitz, 1989).
Suppose that

0 → �� → E0 → E1 · · · → Ei → · · ·

is a minimal injective resolution of �� and k is a positive integer. One of the main
results in this article is the following theorem.

Theorem 1.1. If �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k, then � k
���

op� is extension closed.

Let A ∈ mod� (resp. mod�op) and i a non-negative integer. Then, the grade
of A with respect to �, written as grade�A, is said to be greater than or equal to
i if Extj��A��� = 0 (resp. Extj� �A��� = 0), for any 0 ≤ j < i. We also say that the
strong grade of A with respect to �, written as s.grade�A, is greater than or equal
to i if grade�B ≥ i for all submodules B of A. The following result characterizes the
assumption of Theorem 1.1 in terms of strong grade of modules.

Theorem 1.2. Let m be an integer with m ≥ −k. Then �-resol.dim�

(⊕k−1
i=0 Ei

) ≤
k+m if and only if s.grade�Ext

k+m+1
� �N��� ≥ k for any N ∈ mod �op.

In Section 2, some lemmas we will give that will be useful in the rest of this
article. The proofs of Theorems 1.1–1.2 will be given and some corollaries will be
listed in Section 3. In particular, as a corollary of Theorem 1.2, we get that �� has
dominant dimension greater than or equal to k if and only if s.grade�Ext

1
��N��� ≥

k for any N ∈ mod�op (Corollary 3.10).
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2. SOME LEMMAS

In this section we give some lemmas which will be useful in proving the main
results.

For a �-module (resp. �op-module) X, we use l.id��X� (resp. r.id� �X�) and
l.fd��X� (resp. r.fd� �X�) to denote the left (resp. right) injective dimension and flat
dimension of X, respectively. We first make the following observation.

Lemma 2.1. Let E be �-injective (resp. �op-injective) and n a non-negative
integer. Then l.fd� �Hom������ E�� (resp. r.fd��Hom� ����� E��� ≤ n if and only
if Hom��Ext

n+1
� �A���� E� (resp. Hom� �Ext

n+1
� �A���� E�� = 0 for any A ∈ mod �op

(resp. mod�).

Proof. The proof is trivial by Cartan and Eilenberg (1999, Chapter VI,
Proposition 5.3). �

Lemma 2.2. (1) r.id� ��� = sup
l.fd� �Hom������ E����E is injective�.

(2) Let E be injective in mod� (resp. mod�op). Then l.fd� �Hom������ E��
(resp. r.fd��Hom� ����� E��� ≤ n if and only if �-resol.dim��E� (resp. �-
resol.dim� �E�� ≤ n.

Proof. (1) By Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3.), we have

Tor�i �A�Hom������ E�� � Hom��Ext
i
� �A���� E� (†)

for any A ∈ mod �op and �E injective and i ≥ 1.
If l.fd� �Hom������ E�� ≤ n�<�� for any injective module �E, then (†)

induces Hom��Ext
n+1
� �A���� E� � Tor�n+1�A�Hom������ E�� = 0. Now taking �E

as an injective cogenerator in mod�, we see that Extn+1
� �A��� = 0 and r.id� ��� ≤ n.

Conversely, if r.id� ��� ≤ n�<��, then Extn+1
� �A��� = 0 for any A ∈ mod �op

and Tor�n+1�A�Hom������ E�� = 0 for any injective module �E by the isomorphism
(†). This implies that l.fd� �Hom������ E�� ≤ n.

(2) See Huang (2005, Lemma 2.7). �

Remark. Lemma 2.2(1) is a generalization of Enochs and Jenda (2000,
Proposition 9.1.6).

Lemma 2.3 (Huang, 2005, Proposition 3.4). The following statements are
equivalent:

(1) �-resol.dim��E0� ≤ 1;
(2) �X is an essential monomorphism for any �-torsionless module X in mod�;
(3) f�� is a monomorphism for any monomorphism f � X → Y in mod� with Y �-

torsionless;
(4) grade� Ext

1
��X��� ≥ 1 for any X in mod�.
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Lemma 2.4 (Huang, 2006, Theorem 17.5.4). The following statements are
equivalent:

(1) s.grade�Ext
i+1
� �N��� ≥ i for any N ∈ mod �op and 1 ≤ i ≤ k;

(2) grade�Ext
i
��M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k.

3. PROOFS OF THE MAIN RESULTS

In this section, we prove the main results (Theorems 1.1–1.2) of this article. As
applications of our main results, we list some corollaries, some of which are known
results.

We now prove Theorem 1.1 in several steps.

Lemma 3.1. �-resol.dim��E0� ≤ 1 if and only if � 1
���

op� is extension closed.

Proof. Note that � 1
���

op� = 
X ∈ mod �op �X is �-torsionless�. Then the conclu-
sion follows from Lemma 2.3 and Huang (2003, Proposition 4.2.). �

Lemma 3.2. If �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k (where k ≥ 2) and 0 → A
f−→ B →

C → 0 is an exact sequence in mod�op with C �-k-torsionfree, then:

(1) grade� Coker f
� ≥ k;

(2) B is �-reflexive provided that A is �-reflexive.

Proof. (1) Note that C is a �-k-torsionfree module, that is, Exti��Tr�C��� = 0
for any 1 ≤ i ≤ k. Then C is �-reflexive and Exti��C

���� = 0 for any 1 ≤ i ≤ k− 2.
Let

Pk−1 → · · · → P1 → P0 → C� → 0

be a minimal projective resolution of C� in mod�. Then we have an induced exact
sequence

0 → C → P�
0 → P�

1 → · · · → P�
k−1 → H → 0�

where H = Coker�P�
k−2 → P�

k−1�. Since �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k, l.fd�

(
Hom�(

����
⊕k−1

i=0 Ei

)) ≤ k by Lemma 2.2. We can see, from Cartan and Eilenberg
(1999, Chapter VI, Proposition 5.3), that Hom�

(
Ext1� �C����

⊕k−1
i=0 Ei

) �
Tor�1

(
C�Hom�

(
����

⊕k−1
i=0 Ei

)) � Tor�k+1

(
H�Hom�

(
����

⊕k−1
i=0 Ei

)) = 0. Now, we
have Hom�

(
Coker f��

⊕k−1
i=0 Ei

) = 0 since Cokerf� is a submodule of Ext1� �C���,
from which we get our conclusion.

(2) By (1), we have grade�Coker f
� ≥ 2. Now, by applying Hom��−� ��

to the exact sequence 0 → C� → B�
f�−→ A� → Coker f� → 0, we get the exact

sequence 0 → A��
f��−→ B�� → C�� and the following commutative diagram with

exact rows:

0 −−−−→ A
f−−−−→ B −−−−→ C −−−−→ 0


��A


��B


��C

0 −−−−→ A��
f��−−−−→ B�� −−−−→ C���
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Since �A and �C are isomorphisms, �B is also an isomorphism by the snake lemma,
that is, B is �-reflexive. �

Corollary 3.3.

(1) Let 0 → A
f−→ B → C → 0 be an exact sequence in mod�op. If

grade�Coker f
� ≥ 2, then B is in � 2

���
op� provided that both A and C are in � 2

���
op�.

(2) If �-resol.dim�

(
E0

⊕
E1

) ≤ 2, then � 2
���

op� is extension closed.

Proof. (1) By Huang (2001, Lemma 4), � 2
���

op� = 
X ∈ mod �op �X is �-
reflexive�. Then our conclusion follows from the proof of Lemma 3.2(2).

(2) It is easy by (1) and Lemma 3.2(1). �

Lemma 3.4. If �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k (where k ≥ 3), then � k
���

op� is extension
closed.

Proof. Let 0 → A
f−→ B

g−→ C → 0 be an exact sequence in mod�op with A
and C �-k-torsionfree. Then A and C are �-reflexive and Exti��A

���� = 0 =
Exti��C

���� for any 1 ≤ i ≤ k− 2. By Lemma 3.2(2), B is �-reflexive.
Since 0 → Coker g� → A� → Coker f� → 0 is exact, and since

grade�Coker f
� ≥ k by Lemma 3.2(1), we have Exti��Coker g

���� = 0 for any

1 ≤ i ≤ k− 2. Also, from the exact sequence 0 → C�
g�−→ B� → Coker g� → 0, we

can easily see that Exti��B
���� � Exti��Coker g

���� = 0, for any 1 ≤ i ≤ k− 2.
Noting that B is �-reflexive, we hence have Exti��Tr�B��� = 0, for any 1 ≤ i ≤ k
and so B is �-k-torsionfree. �

Now Theorem 1.1 follows from Lemma 3.1, Corollary 3.3(2), and Lemma 3.4.

Corollary 3.5. If �-resol.dim��Ei� ≤ i+ 1 for any 0 ≤ i ≤ k− 1, then � i
���

op� is
extension closed for any 1 ≤ i ≤ k.

Remark. Theorem 1.1 generalizes Huang (1999, Theorem 2.3). By Lemma 2.2,
if r.id� ��� ≤ k, then �-resol.dim��

⊕k−1
i=0 Ei� ≤ k. So Theorem 1.1 is also a genera-

lization of Huang (2003, Proposition 4.1).

By Huang (1999, Theorem 3.3), the converse of Corollary 3.5 holds when
��� = ���. Assume that k ≤ 2 and � i

���
op� is extension closed for any 1 ≤ i ≤

k. Then grade�Ext
i
��M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k by Huang (2003,

Theorem 4.1). So s.grade�Ext
i+1
� �N��� ≥ i for any N ∈ mod �op and 1 ≤ i ≤ k by

Lemma 2.4. It follows from Corollary 3.8(2) (see below) that �-resol.dim��Ei� ≤ i+
1 for any 0 ≤ i ≤ k− 1. This means that the converse of Corollary 3.5 holds when
k ≤ 2. However, we don’t know whether this converse holds in general.

We use 	−k
� ��op� to denote the full subcategory of mod�op consisting of �-

k-cosyzygy modules. In the following result, we give some equivalent conditions
of � i

���
op� being extension closed for any 1 ≤ i ≤ k, which extends Huang (2003,

Theorem 3.3).
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Theorem 3.6. The following statements are equivalent:

(1) s.grade�Ext
i+1
� �N��� ≥ i for any N ∈ 	−i

� ��op� and 1 ≤ i ≤ k;
(2) 	i

���
op� is extension closed for any 1 ≤ i ≤ k;

(3) 	i
���

op� is extension closed and 	i
���

op� = � i
���

op� for any 1 ≤ i ≤ k;
(4) � i

���
op� is extension closed for any 1 ≤ i ≤ k.

Proof. �1� ⇔ �2� ⇔ �3� By Huang (2003, Theorem 3.3).

�3� ⇒ �4� It is trivial.

�4� ⇒ �1� We proceed by using induction on k. The case k ≤ 2 follows from
the above argument.

Now suppose k ≥ 3. By induction assumption, s.grade�Ext
i+1
� �N��� ≥ i for

any N ∈ 	−i
� ��op� and 1 ≤ i ≤ k− 1. It follows from Huang (2003, Theorem 3.1)

that 	i
���

op� = � i
���

op� for any 1 ≤ i ≤ k. Then by (4), 	i
���

op� is extension closed
for any 1 ≤ i ≤ k, that is, the condition (2) holds. We have known �2� ⇔ �1�, so our
conclusion follows. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. This proof is similar to that of Huang (1999, Theorem 2.8).
For the sake of completeness, we give here the proof. “if-part”:

We proceed by using induction on i. Suppose that s.grade�Ext
k+m+1
� �N��� ≥

k, for any N ∈ mod �op. We first prove that �-resol.dim��E0� ≤ k+m. By
assumption, we have Hom��Ext

k+m+1
� �N������ = 0. We now claim that

Hom��Ext
k+m+1
� �N���� E0� = 0. Assume to the contrary that there exists 0 �= f �

Extk+m+1
� �N��� → E0 and Imf ∩ � �= 0 (since � is essential in E0). Hence, there

exists a submodule X�=f−1�Im f ∩ ��) of Extk+m+1
� �N��� such that Hom��X��� �= 0,

which contradicts s.grade�Ext
k+m+1
� �N��� ≥ k. Then, by Lemmas 2.1 and 2.2, we

have l.fd� �Hom������ E0�� ≤ k+m and �-resol.dim��E0� ≤ k+m.
Now suppose that i ≥ 1. Consider the exact sequence

0 → Ki−1 → Ei−1 → Ki → 0�

where Ki−1 = Ker�Ei−1 → Ei� and Ki = Im�Ei−1 → Ei�. Then for any X ⊂
Extk+m+1

� �N���, we have an exact sequence

Hom��X�Ei−1� → Hom��X�Ki� → Ext1��X�Ki−1� → 0�

Since s.grade�Ext
k+m+1
� �N���≥ k and 1≤ i≤ k− 1, Ext1��X�Ki−1� � Exti��X��� = 0.

By induction assumption and Lemma 2.1, we have Hom��Ext
k+m+1
� �N���� Ei−1� =

0. Since Ei−1 is injective, Hom��X�Ei−1� = 0. Hence, it follows that Hom��X�Ki� =
0. Observe that Ei is the injective envelope of Ki, by using a similar argument
to the case i = 0, we can show that Hom��Ext

k+m+1
� �N���� Ei� = 0. Hence, we

have l.fd� �Hom������ Ei�� ≤ k+m and �-resol.dim��Ei� ≤ k+m. “only if-part”:
Suppose that �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k+m. Then, by Lemmas 2.2 and 2.1, we
have l.fd�

(
Hom�

(
�
���

⊕k−1
i=0 Ei

))≤ k+m and Hom�

(
Extk+m+1

� �N����
⊕k−1

i=0 Ei

)= 0
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for any N ∈ mod �op. Let X be any submodule of Extk+m+1
� �N���. Then

Hom�

(
X�

⊕k−1
i=0 Ei

) = 0. Put K0 = � and Ki = Im�Ei−1 → Ei� for any 1 ≤ i ≤
k− 1. Then Hom��X�Ki� = 0 for any 0 ≤ i ≤ k− 1. By dimension shifting,
Exti+1

� �X�K0� � Ext1��X�Ki� and Ext1��X�Ki� � Hom��X�Ki+1� for any 0 ≤ i ≤ k−
2. Hence we conclude that Hom��X��� = 0 = Exti��X��� for any 1 ≤ i ≤ k− 1.
This completes the proof. �

By putting m = −1, then by Theorem 1.2, we have the following Corollary.

Corollary 3.7.

(1) �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k− 1 if and only if s.grade�Ext
k
� �N��� ≥ k for any

N ∈mod �op.
(2) �-resol.dim��Ei� ≤ i for any 0 ≤ i ≤ k− 1 if and only if s.grade�Ext

i
� �N��� ≥ i

for any N ∈ mod �op and 1 ≤ i ≤ k.

Putting m = 0, then by Theorem 1.2, we have the following result, in which
the first assertion gives a characterization of the assumption in Theorem 1.1 and the
second one is just Auslander and Reiten (1996, Proposition 2.2) when ��� = ���.
Compare the strong grade condition of modules in the second assertion with that
in Theorem 3.6(1).

Corollary 3.8.

(1) �-resol.dim�

(⊕k−1
i=0 Ei

) ≤ k if and only if s.grade�Ext
k+1
� �N��� ≥ k for any

N ∈mod �op.
(2) �-resol.dim��Ei� ≤ i+ 1 for any 0 ≤ i ≤ k− 1 if and only if

s.grade�Ext
i+1
� �N��� ≥ i for any N ∈ mod �op and 1 ≤ i ≤ k. In this case,

� i
���

op� = 	i
���

op� for any 1 ≤ i ≤ k.

Proof. Our assertion follows from Theorem 1.2 and Huang (2003, Theorem 3.3).
�

Putting m = −k, then by Theorem 1.2, we have the following corollary.

Corollary 3.9. Each Ei is in add�� for any 0 ≤ i ≤ k− 1 if and only if
s.grade�Ext

1
� �N��� ≥ k for any N ∈ mod �op.

Recall that a module M in mod� is said to have dominant dimension greater
than or equal to k, written dom.dim��M� ≥ k, if each of the first k terms in
a minimal injective resolution of M is �-projective (see Tachikawa, 1973). By
Corollary 3.9, we get a characterization of �� having dominant dimension greater
than or equal to k as follows.

Corollary 3.10. dom.dim���� ≥ k if and only if s.grade�Ext
1
��N��� ≥ k for any

N ∈ mod�op.
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