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ABSTRACT

A commutative ring R is said to satisfy property (P) if every finitely
generated proper ideal of R admits a non-zero annihilator. In this
paper we give some necessary and sufficient conditions that a ring
satisfies property (P). In particular, we characterize coherent rings,
noetherian rings and P-coherent rings with property (P).
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1. INTRODUCTION

It is well known that the notion of annihilators plays an important
role in the study of rings and modules. Following Morita (1966), a ring
R is called a left S-ring if each proper right ideal of R admits a non-zero
annihilator. The definition of right S-rings may be given dually. An S-
ring means a left and right S-ring. Kato (1968) showed that a ring R is
a left S-ring if and only if the envelope of R as a right R-module is an
injective cogenerator in the category of right R-modules. Glaz (1989)
introduced the notion of rings with property (P), that is; a commutative
ring R is said to satisfy property (P) if every finitely generated proper
ideal of R admits a non-zero annihilator. She then studied the homologi-
cal properties of local rings with property (P) and proved that a commu-
tative local ring R satisfies property (P) if and only if M=N is free for any
finitely generated free moduleM and its finitely generated free submodule
N (see Glaz, 1989, Theorem 3.3.16).

In this paper we first generalize Glaz’s result above and show that a
commutative ring R satisfies property (P) if and only if M=N is projective
for any finitely generated projective module M and its finitely generated
projective submodule N if and only if M� 6¼ 0 for any non-zero finitely
presented R-module M if and only if fp.dimR¼ 0 (Theorem 1). As appli-
cations to the result obtained, we then characterize coherent rings,
noetherian rings and P-coherent rings with property (P) respectively.

Throughout this paper, R is a commutative ring with unit and all
modules are unitary.

2. MAIN RESULTS

Definition 1 (Glaz, 1989). R is said to satisfy property (P) if every finitely
generated proper ideal of R admits a non-zero annihilator.

Remark. 1. Clearly, an S-ring satisfies property (P).

2. Assume that R is a local ring with maximal ideal m. Then R satis-
fies property (P) if m belongs to either of the following:

(1) Associated primes of R (see Glaz, 1989, Corollary 3.3.3).
(2) Associated primes of a flat R-module (see Glaz, 1989, Lemma

3.3.6).

Let M be an R-module. We denote HomR(M, R) and the projective
dimension of M by M� and pdR(M) respectively. M is called finitely
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presented if there is a finitely generated projective R-module P and a
finitely generated submodule N of P such that P=NffiM. Set fp.dimR¼
supfpdR(A) jA admits a resolution 0!Pn!� � �!P1!P0!A! 0
with each Pi finitely generated projective for any 0� i� ng (Glaz, 1989).

The main result in this paper is the following

Theorem 1. Let R be any ring. The following statements are equivalent.

(1) R satisfies property (P).
(2) M� 6¼ 0 for any non-zero finitely presented R-module M.
(3) If N�M are finitely generated projective modules, then M=N is

projective.
(4) fp.dimR¼ 0.

Proof. (1)) (2) LetM be a non-zero finitely presented R-module. Then
there is an exact sequence of R-modules:

0 ! K !a Rn !b M ! 0

with K finitely generated. It is easy to see that we may assume that R is
not a direct summand of K.

Let p :Rn!R be the natural projection. Then pa(K ) 6¼R. Other-
wise, R will be a direct summand of K, which is a contradiction. Note
that K is finitely generated. So pa(K ) is a finitely generated proper ideal
of R. By (1) there is a non-zero element r in R such that rpa(K )¼ 0.
Now define p0 :Rn!R via p0(x)¼ rp(x) for any x2Rn. Then p0 is a
non-zero homomorphism of R-modules and K is isomorphic to a sub-
module of Ker p0. By Theorem 3.6 (Anderson and Fuller, 1992) there
is a non-zero homomorphism g :M!R such that gb¼ p0. So we have
M� 6¼ 0.

(2)) (3) Let

0 ! N !f M ! M=N ! 0 ð2:1Þ

be an exact sequence of R-modules with N and M finitely generated pro-

jective. Then we get an exact sequence M� !f
�
N� ! Ext1R(M=N, R)! 0

with M� and N� finitely generated projective. It follows that
Ext1R(M=N, R) is finitely presented.
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Consider the following commutative diagram with exact rows:

0 ! N �!f M ! M=N ! 0
#sN #sM

0 ! ½Ext1RðM=N;RÞ�� �! N�� �!f
��

M��

where sN and sM are isomorphisms. So [Ext1R(M=N, R)]� ¼Ker f �� ffi
Ker f¼ 0. By (2) we then have that Ext1R(M=N, R)¼ 0 and the exact
sequence (2.1) splits, which implies that M=N is projective.

(3)) (4) Assume that M is an R-module and there is an exact
sequence

0 ! Pn �!dn Pn�1 �!dn�1 � � � ! P1 �!d0 P0 ! M ! 0

with each Pi finitely generated projective for any 0� i� n. Then we have
exact sequences

0 ! Pn ! Pn�1 ! Im dn�1 ! 0;

0 ! Im dn�1 ! Pn�2 ! Im dn�2 ! 0;

� � � � � � � � � � � �
0 ! Im d2 ! P1 ! Im d1 ! 0;

0 ! Im d1 ! P0 ! M ! 0:

By (3) it is easy to see that Im dn�1, Im dn�2, . . . , Im d1 and M are projec-
tive. So we conclude that fp.dimR¼ 0.

(4)) (1) Assume that I is a finitely generated ideal and fa1, . . . , ang
is a set of generators of I. Then I is contained in some maximal ideal m
of R. Let f :R!R(n) be a homomorphism via f(r)¼ (a1r, . . . , anr) for any
r2R. Clearly Ker f¼ 0 :R I. We claim that Ker f¼ 0 :R I 6¼ 0. Otherwise,

if Ker f¼ 0 then we have an exact sequence 0!R�!f RðnÞ!RðnÞ=R ! 0.
By (4), R(n)=R is projective. So we get an exact sequence

0 ! R=m
O

R

R �!1�f
R=m

O

R

RðnÞ ! R=m
O

R

RðnÞ=R ! 0

and hence we get a monomorphism f 0 :R=mR!R(n)=mR(n) via
f 0(rþmR)¼ f(r)þmR(n) for any r2R. But I	m, so ai2m for any
1� i� n. Thus f(r)2mR(n) and R=mR¼ 0, which is a contradiction. Con-
sequently we conclude that R satisfies property (P). &

Definition 2 (Cheng and Zhao, 1991). R is called an FP-ring if every
finitely generated projective module is free.
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Remark. Z[x] (where Z is the integer ring), Bezout domains, indecom-
posable semi-local rings and local rings are FP-rings (see Cheng and
Zhao, 1991).

The following results generalize Theorem 3.3.16 (Glaz, 1989) and
Corollary 3.3.18 (Glaz, 1989), respectively.

Corollary 1. Let R be an FP-ring. Then R satisfies property (P) if and
only if M=N is free provided N�M are finitely generated free modules.

Recall that R is called a semi-local ring if R has finitely many max-
imal ideals.

Corollary 2. Let R be a semi-local ring. Then R satisfies property (P)
if and only if M=N is flat provided N�M are finitely generated flat
modules.

Proof. Suppose M is a finitely generated flat module and
0!K!F!M! 0 is an exact sequence with F finitely generated free.
For any maximal ideal m of R, we know that Rm is a local ring and
Mm is a finitely generated flat Rm-module. So Mm is a projective Rm-
module by Theorem 1.2.2 (Glaz, 1989). So the exact sequence
0!Km!Fm!Mm! 0 of Rm-modules splits and hence Km is a direct
summand of the finitely generated free Rm-module Fm, which implies that
Km is finitely generated projective as an Rm-module. Then, by Lemma
4.7 (Ishikawa, 1964), K is finitely generated as an R-module and M is
finitely presented. Thus M is projective. Now our conclusion follows
from Theorem 1. &

Recall that R is called a coherent ring if each finitely generated
ideal of R is finitely presented (Glaz, 1989); also recall that
f.fp.dimR¼ supfpdR(A) jA is a finitely presented R-module with finite
projective dimensiong (Ding, 1991). We have the following

Theorem 2. Let R be a coherent ring. The following statements are
equivalent.

(1) R satisfies property (P).
(2) M� 6¼ 0 for any non-zero finitely presented R-module M.
(3) M=N is projective if N�M are finitely generated projective

modules.
(4) f.fp.dimR¼ 0.
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Proof. (1), (2), (3) By Theorem 1.

(1), (4) We know that a finitely presented R-module M with finite
projective dimension admits a resolution:

0 ! Pn ! Pn�1 ! � � � ! P1 ! P0 ! M ! 0

with each Pi finitely generated projective for any 0� i� n because R is a
coherent ring (Glaz, 1989). So f.fp.dimR¼ fp.dimR. Then by Theorem 1
we are done. &

Let A be an R-module and sA :A!A�� via sA(x)( f )¼ f(x) for any
x2A and f2A� be the canonical evaluation homomorphism. A is called
torsionless if sA is a monomorphism.

Corollary 3. Let R be a coherent ring with property (P). Then any finitely
generated projective submodule of a finitely presented torsionless R-module
is a direct summand.

Proof. Assume that M is a finitely presented torsionless R-module and
P is a finitely generated projective submodule of M. Then we have an

exact sequence 0 ! P�!f M and the following commutative diagram
with exact rows:

0 ! P �!f M
#sP #sM

0 ! ðCoker f �Þ� �! P�� �!f
��

M��

where sP is an isomorphism and sM is a monomorphism. So
f �� ¼ sM fs�1

P is a monomorphism and (Coker f �)� ¼ 0. On the other hand,
because R is a coherent ring and M is a finitely presented R-module,
M� is also a finitely presented R-module by Lemma 2 (Huang and
Cheng 1996). It follows that Coker f � is a finitely presented R-module
and hence Coker f � ¼ 0 by Theorem 2. Then we get an exact sequence

M� �!f
�

P� ! 0 with P� projective. It follows that M� ffiP� 
Q
for some R-module Q and M�� ffiP�� 
Q� ffiP
Q�. Since M is
torsionless, M�M�� and M¼M\M�� ¼M\ (P
Q�)ffiP
 (M\Q�).
We are done. &

The following result characterizes noetherian rings with property (P),
which develops Theorem 1 (Morita, 1966) and Proposition 2 (Kato,
1968).
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Theorem 3. Let R be a noetherian ring. Then the following statements are
equivalent.

(1) R satisfies property (P).
(2) M� 6¼ 0 for any non-zero finitely generated R-module M.
(3) T � 6¼ 0 for any non-zero simple R-module T.
(4) Every maximal ideal of R admits a non-zero annihilator.
(5) The injective envelope of R is an injective cogenerator in the cate-

gory of R-modules.

Proof. (1), (2) By Theorem 2.

(2)) (3) It is trivial.

(3)) (4) Assume that m is a maximal ideal of R and there is an
exact sequence 0!m!R!R=m! 0. Then 0 :Rm¼ (R=m)� by Proposi-
tion 23.12 (Faith, 1976). Since R=m is a simple R-module, (R=m)� 6¼ 0 by
(3). So 0 :Rm 6¼ 0.

(4)) (1) Assume that I is a proper ideal of R. Then I is contained in
some maximal ideal m of R. So 0 :Rm� 0 :R I. By (4), 0 :Rm 6¼ 0 and
0 :R I 6¼ 0.

(1), (5) By Proposition 2 (Kato, 1968). &

We use
Q
R to denote any direct product of the ring R.

Defintion 3 (Camillo, 1990). R is called a P-coherent ring if every finitely
generated submodule of

Q
R is finitely presented.

Remark. We know that noetherian rings ) P-coherent rings ) coher-
ent rings. But, in general, the converses do not hold (see Camillo, 1990;
Wang, 1993).

We define f.FGT-PdimR¼ supfpdR(M) jM is finitely generated
torsionless R-module with finite projective dimensiong. Recall that R is
called FP-selfinjective if Ext1R(X, R)¼ 0 for any finitely presented R-
module X. We have the following

Theorem 4. Let R be a P-coherent ring. Consider the following condi-
tions.

(1) R satisfies property (P).
(2) For any finitely generated ideal I, I � is projective implies that I is

projective.
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(3) For any finitely generated torsionless R-module M, M� is projec-
tive implies that M is projective.

(4) f.FGT-PdimR¼ 0.

We have that (1)) (2), (3) and (1)) (4). If R is FP-selfinjective,
then the conditions above are equivalent.

Proof. (1)) (2) Assume that I is a finitely generated ideal of R with I �

projective. Then I is finitely presented since a P-coherent ring is coherent.
By Theorem 1 (Camillo, 1990) I � is finitely generated. So I �� is finitely
generated projective.

On the other hand, we have an exact sequence F1 !f F0 ! I ! 0
with F0 and F1 finitely generated free, which induces an exact sequence

0 ! I� ! F�
0 !f

�
F �
1 ! N ! 0 where N¼Coker f �. Since I � is projective,

N is also projective by Theorem 2. Moreover, by Lemma 2.1 (Huang and
Tang, 2001) we have an exact sequence:

0 ! Ext1RðN;RÞ ! I �!sI I�� ! Ext2RðN;RÞ ! 0:

Since N is projective, Ext1R(N, R)¼ 0¼Ext2R(N, R) and Iffi I �� is projec-
tive.

(2)) (3) Let M be a finitely generated torsionless R-module.
The First Case. Assume that M� is finitely generated free with

rankM� ¼ n. We proceed by induction on n. When n¼ 1, then M is iso-
morphic to an ideal of R. Our conclusion follows from (2). Now suppose
n > 1. Then M� ffiR
F with F a finitely generated free module and
rankF < n. Note that 0 :R (0 :MR)¼ (M=(0 :MR))� by Proposition 23.12
(Faith, 1976). On the other hand, M�=RffiF is finitely generated tor-
sionless, so R is a close submodule of M� and R¼ 0 :R (0 :MR). Hence
0 :MR is also a close submodule of M and M=(0 :MR) is finitely
generated torsionless, which implies that sM=(0 :M R) :M=(0 :MR)!
(M=(0 :MR))�� ¼ (0 :R (0 :MR))�� ¼R�� ffiR is a monomorphism. Thus
M=(0 :MR) is isomorphic to some finitely generated ideal of R and there-
fore M=(0 :MR) is finitely generated projective by (2). Then we have
that Mffi (0 :MR)
M=(0 :MR) and M� ffi (0 :MR)� 
 (M=(0 :MR))� ffi
(0 :MR)� 
 (0 :R (0 :MR))ffi (0 :MR)� 
R and so (0 :MR)� ffiF. Clearly
0 :MR is torsionless since it is a submodule of a finitely generated torsion-
less module M. Moreover, since R is P-coherent and M=(0 :MR) is
finitely generated torsionless, M=(0 :MR) is finitely presented by Theorem
1 (Wang, 1991). It follows that 0 :MR is finitely generated. By induction
assumption, 0 :MR is projective. Thus M is also projective.
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The Second Case. Assume that M� is finitely generated projective.
Then there is a finitely generated projective module N such that M� 
N
is finitely generated free. On the other hand, (M
N�)� ffiM� 
N�� ffi
M� 
N. By the argument in the first case, M
N� is projective and M
is also projective.

(1)) (4) Since any finitely generated torsionless module is finitely
presented over P-coherent rings (see Wang, 1991, Theorem 1). It is easy
to see that f.FGT-PdimR¼ 0 by Theorem 2.

Now assume that R is FP-selfinjective.

(3)) (1) Let M be a finitely presented R-module and assume there
is an exact sequence:

0 ! Pn �!dn Pn�1 ! � � � ! P1 �!d1 P0 ! M ! 0

with each Pi finitely generated projective for any 0� i� n. Then we have
exact sequences:

0 ! Pn ! Pn�1 ! Im dn�1 ! 0;

0 ! Im dn�1 ! Pn�2 ! Im dn�2 ! 0;

� � � � � � � � � � � �
0 ! Im d2 ! P1 ! Im d1 ! 0;

0 ! Im d1 ! P0 ! M ! 0:

By Lemma 2.6 (Huang, 1999), Pnffi [P�
n�1=(Im dn�1)

�]� and
P�

n�1=(Im dn�1)
� is finitely generated torsionless. By (3) P�

n�1=(Im dn�1)
�

is projective. It follows that (Im dn�1)
� is also projective. However,

Im dn�1 is finitely generated torsionless, Im dn�1 is projective by (3). Simi-
larly, we know that Im dn�2, . . . , Im d1 are finitely generated projective.
Moreover, we have an exact sequence:

0 ! M� ! P�
0 ! ðIm d1Þ� ! Ext1RðM;RÞ ! 0:

Since R is FP-selfinjective, Ext1R(M, R)¼ 0 and 0!M� !P�
0!

(Im d1)
� ! 0 is exact. But P�

0 and (Im d1)
� are projective, so M� is projec-

tive and hence M is also projective by (3). It follows that f.fp.dimR¼ 0.
Then R satisfies property (P) by Theorem 2.

(4)) (1) Let M be a finitely presented R-module with pdR(M)<1.
Then there is an exact sequence:

0 ! K ! RðnÞ ! M ! 0

with K finitely generated torsionless and pdR(K ) < 1. By (4) K is
projective and pdR(M)� 1. If pdR(M)¼ 1, then Ext1R(M, R) 6¼ 0 by

Rings with Property (P) 6157



Corollary 2.5 (Ding, 1991), which is a contradiction because R is FP-
selfinjective. So M is projective and f.fp.dimR¼ 0 and hence R satisfies
property (P) by Theorem 2. &
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