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COMMUNICATIONS IN ALGEBRA, 27(12), 5791-5812 (1999)

ON A GENERALIZATION OF THE
AUSLANDER-BRIDGER TRANSPOSE’

Huang Zhaoyong

Department of Mathematics,
Nanjing University,

Nanjing 210093,

People’s Republic of China

ABSTRACT Let A be an artin algebra and ,w, a faithfully balanced self-
orthogonal bimodule. We generalize the notion of the Auslander-Bridger
transpose to that of the transpose with respect to sws and obtain some
properties about dual modules with respect to sws. Further, we character-
ize cotilting bimodules and give criteria for computing generalized Goren-
stein dimension.

1. INTRODUCTION

Let A be an artin algebra and mod A (resp. mod A*) the category
of finitely generated left (resp. right) A-modules. For any 7€ mod A
(resp. mod A*), we use L. ids(T") (resp. r.ids(7)) to denote the left
(resp. right) injective dimension of 7.

Definition 1. 1. For an algebra A, a bimodule sw, is called a cotilting
bimodule if it satisfies the following conditions:
(C,) The natural maps A—>End (40)?”* and A—>FEnds(w,) are iso-

morphisms.

¥ 1991 Mathematics Subject Classification. 16E10, 16G30, 16G50.
Keywords. faithfully balanced selforthogonal bimodules, w-reflexive moudules, injective dimension,
cotilting bimodules, generalized Gorenstein dimension.
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5792 HUANG

(Cy) Exth (4o, 40) =0, Exth(ws,wy) =0 for any :=>1.
(Cy) L idy(w)<loo, r.ids(w)<loo,

If 4w is a cotilting bimodule, then s and w, are cotilting modules
in the sense of Auslander and Reiten [6]. This can be seen easily by
dualizing a result of Miyashita [ 17, Proposition 1. 6. It follows from
Auslander and Reiten [7,Lemma 1. 7] that the injective dimensions of
aw and of w4 coincide.

Definition 1. 2. For an algebra A, a bimodule s, is called a faithfully
balanced selforthogonal bimodule if it satisfies the above conditions (C;)

and (C3).

Remark. A faithfully balanced selforthogonal bimodule is called a gener-
alized tilting bimodule by Wakamatsu [[18].

It is clear that sA4is a faithfully balanced selforthogonal bimodule.
In fact, we will replace the functor Homa (—,,A4) by the functor
Homy ( — ,aws) where 4w, is a given faithfully balanced selforthogonal
bimodule, and we will extend some known results to this more general
setting.

In this paper, we mainly study the fundamental properties of faith-
fully balanced selforthogonal bimodules and characterize cotilting bi-
modules. The given characterizations will lead to a better understanding
of cotilting bimodules. There is another reason why we study faithfully
balanced selforthogonal bimodules. We know that the generalized
Nakayama conjecture posed by Auslander and Reiten [5] still remains
open, which is equivalent to the following version: if a module M is in
mod A satisfying the property Exty (M@A,MDA) =0 for any i>1,
then M is projective. So giving some characterizations of faithfully bal-
anced selforthogonal bimodules may be useful for comprehending this
conjecture.

Faithfully balanced selforthogonal bimodules and cotilting bimod-
ules had been studied extensively (see [6—7], [17—19]). Let 4w, be
a cotilting bimodule. Miyashita in [17] studied the properties of dual
modules with respect to sws. In [18], Wakamatsu showed that 1. id,
(w)=r.ida(w). In 7], Auslander and Reiten characterized Cohen-
Macaulay algebras and Gorenstein algebras in terms of the existence of
certain cotilting bimodules and they proved that the tensor product of
two Gorenstein algebras over a field is also a Gorenstein algebra. Also
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in [7], Auslander and Reiten generalized the notion of Gorenstein di-
mension (see Auslander and Bridger [3]) to that of generalized Goren-
stein dimension with respect to a given faithfully balanced selforthogo-
nal bimodule. Auslander and Reiten in [6] gave some properies of alge-
bras of injective dimension at most one and established a one-to-one cor-
respondence between isomorphism classes of basic cotilting modules and
covariantly finite coresolving subcategories of the category of modules
with finite injective dimension. In addition, Wang and Xu [19] charac-
terized so called * -modules and co- * -modules which were first intro-
duced and studied by Menini and Orsatti [16 ] and Colpi [11—12].
The discussion in this paper is based on the above known results.
In Section 2 we introduce the transpose Tr,A4 of a module A with re-
spect to a faithfully balanced selforthogonal bimodule ,w,. This con-
struction generalizes the Auslander-Bridger transpose TrA, in the sense
that TrA is the transpose of A with respect to the faithfully balanced
selforthogonal bimodule ,A,. It is well known that, denoting by 4™ =
Hom,(A,A) and by o, the evaluation map A—~>A" ", we have an exact

sequence 0—>Ext}(TrA,A)—A Sa *—>Exti(TrA,A)—0. We prove
a corresponding result where the functor Hom, (—, A) is replaced by
Hom,(—,w) and TrA by Tr,A (Theorems 2. 3 and 2. 4). This plays a
central role in the rest of the paper. In Section 3 we then apply these
two exact sequences in order to characterize cotilting bimodules. As a
consequence, we can give a partial answer to the strong Nakayama con-
jecture. In Section 4, we prove that the tensor product of cotilting bi-
modules over finite dimensional £—algebras, where £ is a field, is also a
cotilting bimodule. In Section 5, we give criteria for computing general-
ized Gorenstein dimension. In particular, some results by Auslander
and Bridger are generalized.

2. TWO EXACT SEQUENCES AND SOME LEMMAS

From now on, we assume that sw, is a faithfully balanced self-
orthogonal bimodule. In this section, we will obtain two important ex-
act sequences (see Theorem 2. 3 and Theorem 2. 4) which are crucial
for the rest of this paper. Also we will give some fundamental proper-
ties of faithfully balanced selforthogonal bimodules which will be used
later. For a module A in mod A (resp. mod A”), we put A“=Hom,
(A, sws). For a homomorphism f between A-modules (resp. A*-mod-
ules) , we put f*=Homa(f, swa).
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Definition 2. 1.  Suppose A€ mod A (resp. mod A”) and suppose P,
—j;Po —A —0 is a minimal projective resolution of A. Then we have an
f“’ g w
exact sequence 0 —A¢—>Py =Py —Coker f* —0. We call Coker /" the
transpose (with respect to sws) of A, and denote it by Tr.A.

If sawa= A4, then the transpose defined above is just the Auslan-
der-Bridger transpose (c.f.[3] and [8]).

Definition 2. 2. Let A€mod A (resp. mod A**), and let 04: A =A™
via o4 (x) (f)=f(z) for any € A and fE€ A be the canonical evalua-
tion homomorphism. If ¢4 is a monomorphism, then A is called a -
torsionless module. If ¢,is an isomorphism, then A is called a w-reflex-
ive module.

For any 7€ mod A (resp. mod A”?), we use add,T (resp.
addT'4) to denote the full subcategory of mod A (resp. mod A”?) con-
sisting of all modules isomorphic to the direct summands of finite direct
sums of copies of 7'. It is easy to see that any projective module in mod
A (resp. mod A”) and any module in addsw (resp. addw,) are w-re-
flexive.

Theorem 2. 3. For any A €mod A (resp. mod A”) we have the fol-

lowing exact sequence:

0 —>Exti(Tr,4,0)—>A - A“—>Ext;(Tr.A, ©)—>0.
Proof. Suppose A€ mod A and suppose

p—L p, A
K

is a minimal projective resolution of A. From the exact sequence

(2.3.1) 0 A I ps Tr.A 0

W
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we have a long exact sequence 0 = (Tr.A)* — P *—>(C* —>Ext} (Tr,
A,w0)—>0 —Exth (C,w)—>Exti(Tr,A,w)—>0 and the following exact
commutative diagram:

(2.3.2)
0 K—"sp, A 0
F oo
0 Co T pre A Exty (C o) 0

where op, is an isomorphism and g is an induced homomorphism. By
the snake lemma we have Kero,=2Cokerg and Cokers,=Ext}(C,w)>x
Exti(Tr.A, o).

Consider the following diagram

rw

p— s pe L c“
§ |
K £ c
7 P?
P, Ity P

By Diagram (2.3.2) op =1 =75 = g, s0 (gpy =11) ~m=(7} = g) =m
and hence op, = f=7% = g = x,. Since ap, = f=f" =0p and f“=n}
75+ it follows that =y @ 7y = 6p =n% = g = m. Since =% is a monomor-
phism, 7 ®» gp;=g * m. Hence Im (i = 0,,)< Img and there is an in-
duced commutative diagram:

PO pe e Exth(Tr.A,w) 0
781

0 K g > Cokerg ——0
0

It follows from the snake lemma that 4 is an isomorphism. So Kercs=
Cokerg=Ext;(Tr,A,w) and we obtain the required exact sequence. |
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Remark. Theorem 2. 3 is a generalization of a result by Auslander [2,
Proposition 6. 3] (also c. f. Auslander, Reiten and Smal¢ [8, Chapter
1V, Proposition 3. 2]) .

From the proof of Theorem 2. 3 we have the following exact com-
mutative diagram:

p—t p, A 0
yFl’l 'UPO l
o Y
0 (Tr,A)" — P P Coker f“——0

It is easy to see that A=Cokerf*. Noting that Py and P are w-reflex-
ive and there is an exact sequence (2. 3. 1), it is not difficult to see that
the proof of the following theorem is analogous to that of Theorem 2.
3. So we omit it.

Theorem 2. 4. For any A€ mod A (resp. mod A?), we have the fol-
lowing exact sequence:

OTr_4
0 —>Exti(4A,0)—>Tr,A —>(Tr,A)“—Exti(A,w)—0.

Corollary 2.5. The following statements are equivalent.

(1) Any A in mod A (resp. mod A”) with Exth(A,w) =0=Ext}
(A,w) is wreflexive.

(2) Any w-reflextve module B in mod A” (resp. mod A) satisfies

Exti(B,w) =0=Exti(B,w).

Proof. (1)=(2) Suppose B € mod A”? (resp. mod A) is w-reflexive.
By Theorem 2. 3 and Theorem 2. 4, there are the following two exact
sequences

0 —Exth(Tr.B,w)—>B —B“~>Ext}(Tr,Bw)—>0

OTr B
0 =Exti(B,w)—>Tr,B —>(Tr.B)*“—Ext}(B,w)—0
Since B is w-reflexive, from the first exact sequence we know that
Tr.B satisfies Ext) (Tr.B,w) =0=Exti(Tr.B,w). So Tr.B is w-re-
flexive by hypothesis (1). It {ollows {rom the second exact sequence
that Ext}(B,w)=0=Ext{(B,w).
(2)=(1) is shown by the same argument. []
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Lemma 2. 6. Let A be a ring (not necessary an artin algebra). 1f

f
0—>A —H —B is an exact sequence in mod A (resp. mod A”?) with H
w-reflexive and B w-torsionless, and if C = Cokerf”, then A=C".
Moreover, if [ is an epimorphism, then C is w-torsionless.

S
Proof. From the exact sequence 0—>A —J —>B we have the exact se-

w

S . . .
quence B* —>H" —(C >0 and the following exact commutative dia-
gram:

0 A a—r .p
A
¥ wio
0 c Lot g

We know that oy is an isomorphism and oz is a monomorphism, it is
easy to see that the induced homomorphism g is an isomorphism and A4
=C-.

If fis an epimorphism, then CEA“. Since A”is w-torsionless by
Faith [13, Proposition 23. 5], C is also w-torsionless. []

Observe that a special instance of the above lemma was already dis-
cussed by Jones and Teply in (15, Lemma 3]. They considered the
case swp= A4 and H is finitely generated {ree, claiming that in this sit-
uation C is always torsionless. However, their statement is not correct.
In fact, if f is not surjective, C need not be torsionless, as shown by
the following example.

Example. 2. 7. Let A be an algebra which is given by the quiver:
1->2—>3. We use P, and idp to denote the indecomposable projective
module corresponding to the vertex 7 and the identity homomorphism of
P.(i=1, 2, 3), respectively. Take H=A=(P,BP,PP,), B=P,@®
P\@P; and f=id, @cDidp , where ¢: P, P, is the canonical embed-
ding. It is not difficult to check that C=Cokerf" is not torsionless.

Lemma 2. 8. For any w-torsionless module A in mod A (resp. mod
AT), there is a w-torsionless module C in mod A" (resp. mod A) and a
projective module P in mod A (resp. mod A”?) such that there are the
Jollowing exact sequences:
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O—»C‘”——»P—»A»O
0—>A“—>P" —>C—>0

0—> A3 A% > Exti(C,0) = 0
0—C 5 C* > Exti(A,w) — 0

Proof. By using Lemma 2. 6, we find that this lemma in fact has been
proven in the proof of Theorem 2. 3. []

Definition 2. 9.  An exact sequence A, —>++—>A, >4, in mod A (re-
sp. mod A”) is said to be dual exact (with respect to w) if A7 —A7 —
ce—>AY s exact in mod A” (resp. mod A).

Lemma 2.10. For A&mod A (resp. mod A?) and a positive integer
n, the following statements are equivalent.

(1) Exti(A, ) =0 for any 1<i<n.

(2) Any exact sequence 0 K —=P,_—>++—>Py —>A —0 with all
P, projective is dual exact (with respect to w).

(3) Any exact sequence P,.,—>P,—>++—>P,—>A >0 with all P,
projective is dual exact Cwith respect to w).

Proof. (1)=(2) The case for n=1 is clear. Suppose n=>2 and suppose

d,- d; . .
0—>K —»P,,,l——l>-°'—>P1 —P, —A —0 is an exact sequence with all

P; projective. Then Exti(Imd;, @) =Exti (A,w) =0 for any 1</ <<
n—1, and hence it is easy to see that 0 —A” —P; =Py ——>P;_—
K?—0 is exact.

(2)=(3) It is trivial.

(3)=>(1) Suppose n=1 and suppose the exact sequence

p—4sp,

A
with all P; projective is dual exact. Consider the following exact com-
mutative diagram:

d:

P, > A >0

0 A” pi—t—>K* >Exti(A,w)

.

0 A Pi———P¢

0

3
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. W T, 4t . . .
Since 0 =K* —P7 —Pj is also exact and =* is a monomorphism, Ims*
=Im(x” =) =Imdy =Kerd; =Imn“=K*. So {* an epimorphism and
hence Exti(A,w)=0. By using induction on n, we can get our conclu-

sion. []

Lemma 2. 11.  For a positive integer n, the following statements are e-
quivalent.

(1) Lidale)<n Gresp. r.idslw)<n).

(2) Exti(B,w) =0 for any B w-torsionless in mod A (resp. mod
AT,

Proof. Consider an exact sequence 0 —B —>P — A —0 with every
term in mod A (resp. mod A”) and P projective and B w-torsionless.
Since Ext3(B,w) =Exti" (A, w), it is easy to get the desired equiva-

lence. [

Lemma 2.12. For any A€ mod A (resp. mod A?), the following
statements are equivalent.

(1) A”is w-reflexive.

(2) A* is w-reflexive.

Proof. (1)=(2) By Faith {13, Proposition 23. 5], (o4)* « oa~=
14~. Soif o4 is an isomorphism then o4~ is also an isomorphism, which
means that if A°is w-reflexive then A is also w-reflexive.

(2)=(1) It is clear that Ker(c,)*=(Cokerc,)*. By Faith [13,
Proposition 23. 5](64)® * o4=14. So (Cokeros)*=Ker(o4)“=Cok-
ercs-. By using the same trick as above, we have (Cokero,-)“==Cok-
eras~. But (Cokeros )2z (Cokercs)™, so Cokers,-2= (Cokeros)™.
Now if A is w-reflexive, then (Cokeros)=Cokerss~=0, and thus
(Cokergs)“==0. Then by the above argument we know that Cokeros-
=0. So A”is w-reflexive. []

Lemma 2.13. The following statements are equivalent.
(1) A®is w-reflexive for any A in mod A.
(2) B*is w-reflexive for any B in mod A,

Proof. (1)=>(2) Suppose BE mod A”. By (1), B*is w-reflexive. So
by Lemma 2. 12 B”is w-reflexive.
(2)=(1) is similar to the above argument. []
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3. COTILTING BIMODULES

In this section we will characterize cotilting bimodules in terms of
their injective dimension. We are going to show all statements only for
l. ida{w) , symmetric statements hold for r.id4(w).

Proposition 3. 1. The Sfollowing statements are equivalent.
(D L ids () =0.

(2) Every module in mod A” is w-re flexive.
Proof. It is immediate from Theorem 2. 3. [[]

Corollary 3.2. (see Jans [14]) The following statements are equiva-
lent.

(1) A is left sel f-injective.

(2) Every module in mod A is reflexive (with respect to A).

The following theorem contains a result by Auslander and Reiten
[6, Proposition 2. 2].

Theorem 3. 3. The following statements are equivalent.
(D) Lida(e)X1.
(2) Every w-torsionless module in mod A” is w-reflexive.
(3) Every module B in mod A” with Exth(B,w) =0 is w-reflex-

ve.

Proof. (1)&(2) By Lemma 2. 8, we know that condition (2) is satis-
fied if and only if Ext}(A4,w)=0 for all w-torsionless modules A in mod
A. By Lemma 2. 11, we get the equivalence of (1) and (2).

(2)=(3) Suppose BE mod A with Exti(B,w)=0, and suppose
0 —-K —P->B -0 is an exact sequence in mod A with P projective
and K w-torsionless. Then 0 —B* —>P* —~K“—>0 is exact. Since K" is
w-torsionless in mod A, it follows from Lemma 2. 11 and the equiva-
lence of (2) and (1) that Exti(K*,«)=0. Thus we obtain the follow-
ing exact commutative diagram:

0
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where op is an isomorphism. By (2), K is w-reflexive and so ok is an i-
somorphism and hence o5 is also an isomorphism. Therefore B is w-re-
flexive.

(3)=>(1) Suppose A is w-torsionless in mod A. By Theorem 2. 3
and Theorem 2. 4 we have the following two exact sequences:

0> Ext}(Tr.A, ) — A3 A* —> Exti(Tr.A,@) — 0

O1Tr,4
0— Exti(A4,0) > Tr,A—— (Tr,A)* — Exti(A,0) > 0
Since A is w-torsionless, it follows from the first exact sequence
that Extj(Tr,A,w)=0. Then by (3), Tr,A is w-reflexive. So from
the second exact sequence we know that Exti(A,«)=0. Hence l. id4
(w)<1 by Lemma 2. 11.[]

In the following result we will give some properties of the functor

Hom,(— ,w) in the case L ida(w)<1.

Proposition 3. 4. The following statements are equivalent.

(D Lidaew)<1.

(2) Short exact sequences in mod A where every term is w-torsionless
are carried to short exact sequences by the functor Homy(— 5 4w4).

(3) (—)* preserves the epimorphisms in mod A”.

Proof. (1)=(2) From Lemma 2. 11 we know that every w-torsionless
module C in mod A satisfies Ext}(C,w)=10. Hence any short exact se-
quence in mod A with wtorsionles% end-term has the desired property.

(2)=>(3) Suppose B —*C —0 is an epimorphism in mod A””. Then

0—C” -J—;B is exact in mod A with C* and B® w-torsionless. Since Cok-
er f“is a submodule of (Kerf)“and (Kerf)“is w-torsionless, Coker f“is

also w-torsionless. It follows from (2) that B”’“LC *—( is exact.
(3)=(1) Suppose M is w-torsionless in mod A” and suppose P —
M —0 is an epimorphism with P projective. By (3) we have the fol-
lowing exact commutative diagram

P————pM-—0
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Since op is an isomorphism, ¢y is an epimorphism. But M is @-torsion-
less, so M is w-reflexive. It follows from Theorem 3. 3 that L ids(w) <<

1.0

Proposition 3.5. Suppose | ids(@)<2. If N is in mod A” with Exth
(N,w)=0=Exti(N,w), then N is w-reflextve.

Proof. Suppose M € mod A is w-reflexive and suppose Py —>P, —M*
—( is a minimal projective resolution of A“in mod A””. Then we have
an exact sequence 0 —>M =M™ P¢ =Py —Tr,M* —>0. Since L. id4
()2, Exthi(M,0)=Ext7T (Tr,M*,w) =0 for any i==1. Then from
Corollary 2. 5 we know that our conclusion holds. {{]]

Theorem 3. 6.  Suppose r.ida(w) 2. The following statements are e-
quivalent.

(D Lida(e)<2.

(2) If N in mod A satisfies Exti(N,w) =0=Exti(N,w) ,then
N is w-reflexive.

(3) A module N in mod A is w-reflexive if and only if Ext,(N,
w)=0=Ext (N ,w).

Proof. (1)=(2) By Proposition 3. 5.

(2)=(1) Suppose M € mod A and suppose P, —f>Po —M —>0isa
minimal projective resolution of M in mod A. Then we have an exact
sequence 0 —>M* —>P; —>P{ —>Tr, M —0. Since r.ids (@) <2, Ext)
(M) =Exti?(Tr.M,w) =0 for any ;==1. By (2), M"is w-reflex-
ive. Then by Lemma 2. 13, (Tr,M)“is w-reflexive. It follows from
(2) and Corollary 2. 5 that Exth ({(Tr,M )", w) = 0. Since Kerf ==
(Tr.M)* by Lemma 2. 6, Exti (M, w) = Exti (Kerf, ) = Ext}
(Tr.M)*, @) =0 and 1. id,(w)<2.

(3)=(2) It is trivial.

(2)=(3) It suffices to prove that any w-reflexive module N in
mod A satisfies Exth (N,w) =0=Ext} (N,w). Since r. id, () <2,
any M in mod A with Ext}(M,0)=0=Ext;(M,w) is w-reflexive by
the symmetric statement of Proposition 3. 5. Then our conclusion fol-
lows from Corollary 2. 5.

Theorem 3. 7. Suppose n==2 is a positive integer and 1. ids(w)<n. If
M is w-torsionless in mod A” with Exth(M,w) =0 for any 1<i<n,
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then M is w-reflexive. Moreover, if 1. ida(w)=r. id\(w)<n, then any
G in mod A” (resp. mod A) with Exty(G,w)=0 for any 1<i<n, is o
reflexive.

Proof. Suppose 1. ids (@) <n and M is w-torsionless in mod A” with
Exta(M,w)=0 for any 1=y<\n. By Lemma 2. 8 there is a module N
w-torsionless in mod A such that the following sequences are exact.

(3.7.1) 0 —>N®—>P >} —0
(3.7.2) 0 —>M B M“>Exth(N,w)—0
(3.7.3) 0 >N B N“—>Exty(M,w)~>0

where P is projective in mod A,

Since Exti(M ,w) =0, from the exact sequence (3. 7. 3) we know "
that N is w-reflexive. Since Exth (M, w)=0 for any 1=<i<n, by the
exact sequence (3.7.1) we have Exti(N*,0) =0 for any 1</<\n—1.

Consider the following exact sequence:

0—>K—>P,_,—>+—>P —>P,—>N'—>0
where all P; are projective in mod A”, By Lemma 2. 10, 0 >=NZ=N**
— Py =P o> P ,—>K“ —0 is exact. Since K“ is w-torsionless,
Ext3(K",w)=0 by Lemma 2. 11. So Exti (N ,w)=ZExti(K”,0)=0
and hence M is w-reflexive by the exactness of the sequence (3.7.2).

Now if L. ids (@) =r. ids(w)<n and suppose GE mod A with Ext}
(G,w)=0 for any 1<<i<{n. We have an exact sequence 0 >F —P —
G —0 with P projective and / w-torsionless in mod A”. Since r. ids
(w)<n, it is easy to see that Exty(H,w)=0 for any 1<\i<\n. From
the above argument we know that H is w-reflexive.

Consider the following exact commutative diagram:

0 — I P G 0
ldﬁ lo' P VFGG

Since oy and or are isomorphisms, ¢¢ is a monomorphism and G is a w-
torsionless module. From the above argument we know that G is a w-
reflexive module. []

We know that 1. ids(w) =r. id4s(«w) when sw, is a cotilting bimod-
ule, so from Theorem 3. 3 and Theorem 3. 7 we have the following
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conclusion, which has been proven with different methods by Miyashita
in [17. Theorem 6. 1.

Theorem 3.8. Suppose wa is a cotilting bimodule. If a module M in
mod A% (resp. mod A) satisfies Exty(M,w) =0 for any i1, then M

is w-reflexive.

Corollary 3. 9. Suppose wa s a cotilting bimodule. 1f a module M in
mod A (resp. mod A) satisfies Exty(M,w)=0 for any 1220, then M
=0.

Proof. By Theorem 3.8. [

Following Colby and Fuller [10], we say that the strong Nakaya-
ma conjecure is true for A if the condition of Exty(M,A) =10 for any
i>0 implies M =0. By results of Auslander and Reiten [5], we know
that the verification of this conjecture would imply the generalized
Nakayama conjecture and hence also Nakayama’s conjecture. It follows
from a result of Colby and Fuller [10, Theorem 2] that the strong
Nakayama conjecture is true for Gorenstein algebras. The following
corollary yields a new proof of this fact.

Theorem 3. 10. If an algebra A has a cotilting bimodule sws with sw
flat, then the strong Nakayama conjecture holds over A.

Proof. Let s0sbe a cotilting bimodule with s flat and let M be in mod

A with Ext4a (M, A) =0 for any />>0. By Auslander and Bridger [3,

Theorem 2. 8], for any :>>0, we have an exact sequence
Extiy(M,A) Kaw— Exti(M,w) — Tor (Tr, Q0 (M), w)

Since aw is flat, the third term of the above exact sequence is always ze-

ro. Consequently Exti (M ,w)=0 for any i=>0, which implies M =0 by

Corollary 3. 9. This finishes the proof. []

4. TENSOR PRODUCT OF COTILTING BIMODULES

The notions of Cohen-Macaulay rings and Gorenstein rings, as
well as Cohen-Macaulay modules, whose importance is well established
in commutative Noetherian ring theory, were extended to artin algebras
by Auslander and Reiten in [6], and were developed further by them
in [7]. The following definition is recalled from Auslander and Reiten
[7]. An algebra A is called a Cohen-Macaulay algebra if there is a pair
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of adjoint functors (G, F) between mod A and mod A,inducing inverse
equivalences;

F
F(A) Z=(A)
<&

where 2% (A) and &% (A) are the {ull subcategories of mod A consist-
ing of the modules of finite injective dimension and the modules of finite
projective dimension, respectively. For a subcategory % of mod A (re-

sp. mod A°*),we use & to denote the category consisting of the C in
mod A (resp. mod A”) such that there is an exact sequence 0 =X, —
voo> X, =X, —C —0 with all X;in &". Also from Auslander and Re-
iten [ 7] we recall the following facts and definition.

Facts and Definition 4. 1. 1/ Ads a Cohen-Macaulay algebra and (G,
F) is an associated pair of ad joint functors, then F is left exact and giv-
en by F=Homy (ws, —),G is right exact and given by G= & —.
The bimodule awa is called a dualizing module. So A is a Cohen-
Macaulay algebra if and only if A has a dualizing module. A is called
a Gorenstein algebra if s+Ax is a dualizing module, which is equivalent to
Lidy(A) =r. ids(A)<loo.

Moreover, for an algebra A, a bimodule swsis a dualizing module
if and only if it is a cotilting bimodule and satisfies the condition:

(CO For aleft A-module T, ¢f 1. 1da(T)<o> then /T € add,w.
For a right A-module T' 4, if 1.1d4s(T" )<Cco then T' 4& addw,.

Let A and I” be finite dimensional algebras over a field k. Auslan-
der and Reiten [ 7] posed an open question: Is the tensor product
A I'a Cohen-Macaulay algebra provided that A and I' are both Co-
hen-Macaulay? They gave an affirmative answer to this question in the
case of A and I' being Gorenstein algebras (see Auslander and Reiten
[ 7, Proposition 2. 2]). According to 4. 1, the above open question is
related to the following question: If A and I'" have dualizing modules
A4 and rVr respectively, is it true that A & I" has a dualizing module
20,0 (U @i V)ag,r? In this section, we will discuss this question. We

use D(—) to denote Hom,(—, k).
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The following lemma is well-known (see Cartan and Eilenberg[ 9,
Chapter X, Proposition 1. 2. 3 and Theorem 3.1)).

Lemma 4. 2. Let Ay M€ mod A and B, NEmod I'. Then we have

the following isomor phisms.

1 HOmA@g‘(A ®5 B, M ®£ N)%HOIDA(A;M)GQ& Homr (B,
N).

(2) For any n=1, Extigr(A X B, M R N) =D, 4,-Exta(A,
M)X): Extr(B,N).

Lemma 4. 3. Let ME mod A and N € mod I Then L idsg,r (M
@eN) =1 ids (M) +1. idr (N).

Proof. By Lemma 4. 2(1) and Cartan and Eilenberg [9. Chapter X,
Theorem 3. 2] we have
L. ida@,r (MEN)
=r. pdA@J’(D(A{@kN))
=r. pdag,r (D(MIEX:D(N))
=r. pds (D(M))+r. pdr (D(N))
=1 id, (M) +1. id-(N). [

Lemma 4. 4. If sM and rN satisfy the condition Exta(M ,M)=0=
Extt(N,N) for any n==1, then ExtX@‘p(M®k N,ME N)=0 for

any n=21.

Proof. For any n=>1, by Lemma 4. 2(2) we have
Extio,r (M&: N, MX): N)

=P+ Exth (M, M@ Exth(N,N)

=0 (since r=>1 or s=>1). ]

Remark 4. 5. For the case of right modules, we have symmetric conclu-
sions of above lemmas.

The following corollary is a result by Auslander and Reiten [ 7,
Proposition 2. 2.

Corollary 4.6. (1) L idag,r(A @i I') =1 ids(A) +1. idr (I") and
r. idag,r (A @i M =r. idaCA) 1. idr ().
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(2) AR I is Gorenstein if and only if A and T are Gorenstein.
(3) A T is sel f-injective if and only if A and T are self-in Jec-

tive.
Proof. By Lemma 4. 3 and Remark 4. 5. []]

Theorem 4. 7. Let ;M4 and r Nr be cotilting bimodules. Then
ao,r M QN agris also a cotiliting bimodule.

Proof. By Lemma 4. 2, Lemma 4. 3, Lemma 4. 4 and Remark 4. 5.
0
Proposition 4. 8. Let sM 4 and rNr be cotilting bimodules.

(1) If +A € addaM and B € addrN, then a9r(AQ: B) €
addse,r (M&: N).

(2) If Cs € addMy and Dr € addNr, then (C@i D)o,y €
add(M& Nag,r.

Proof. (1) Since 4A € addsM and rB € addrN, there are exact se-
quences 0 —>M,, —>+++—>M,—>A —0 with all M;in addsM, and 0 —N,
~—>+eo=> Ny —B >0 with all N;in adds;N. Then we have the following
exact commutative diagram

0 0 0

O_—’%m ®an—)”.'———)j\%0 @an_‘)% @l:Nn__>O

v
O—>A§m ®kNo““"_" M, @kNo"“"A ®1¢No—>0
0—M,, ®kB“‘—’""—’]\fg @}gB'—““*zf ®kB“—’O

0 0 0

It is clear that 40,r (M. B) € addag r (ME:N) for any 1<i<lm. By
Theorem 4. 7,40,r (M:N) ag,r is also a cotilting bimodule. It follows

from Auslander and Reiten [6, Theorem 5. 5] that addag,r(M&:N)
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(is coresolving and hence) is closed under cokernels of monomor-
phisms. It is easy to see from the last row of the above diagram that

—

10,7 (AR B) € addag,r (M Q0 N).
(2) The dual of (1). []

Remark. Let Aand I' be Cohen-Macaulay algebras with dualizing mod-
ules JUU4 and V1, respectively. Then from Theorem 4.7 and Proposi-
tion 4. 8 we know that the bimodule g r(U (s Vg ris a cotilting bi-
module and satisfies partially the condition (C,): those left A & I'-
modules with finite injective dimension which have the form A &) B

(where A€ mod A and BE mod I') are in addag,r (U (0:V) and those
right A, I'modules with finite injective dimension which have the
form A'X.B (where 4’ € mod A” and B'€ mod I'”) are in

add (U®kV>A®‘!‘.
5. GENERALIZED GORENSTEIN DIMENSION

Definition 5. 1. (see Auslander and Reiten [ 7, P. 2387]) A module M
in mod A is said to have generalized Gorenstein dimension zero (with
respect to w), denoted by G-dim.,(M)=0, if the following conditions
hold

(1) M is w-reflexive.

(2) Extyi(M ,w)=0=Exti(M“,w) for any i > 1.

Definition 5. 2. For anyn = 1, M in mod 4 is said to have generalized
Gorenstein dimension at most n (with respect to @), denoted by G-
dim,(M) < n, if there is an exact sequence 0 - M,—> ... — M,—

My—> M — 0 in mod A with G-dim,(M,) = 0 for any 0 < { < n.
Corollary 5. 3. For any M in mod A, G-dim, (M) < L. pds (M.
Proof. It follows directly from Definition 5. 2. []

If jws= 4A4, then G-dim, is just the Gorenstein dimension intro-
duced by Auslander and Bridger [3]. In the following, we will give cri-
teria for computing generalized Gorenstein dimension which extend cor-
responding results by Auslander and Bridger on (ordinary) Gorenstein
dimension. We use CM.(A) (resp. CM.(A*)) to denote the full sub-
category of mod A (resp. mod A°?) consisting of the modules M with
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Exty(M,0)=0 for any : > 1.

Definition 5. 4. Let n be a positive integer. A€ mod A (resp. mod
A?) is called an n-th w-syzygy module if there is an exact sequence
0 —>A —=w, —>w—>+—>w,_;with all w;in addsw (resp. addws). We use
Q2(A) (resp. .(A?)) to denote the full subcategory of mod A (resp.
mod A*) consisting of n-th w-syzygy modules.

Lemma 5. 5. Suppose w4 is a cotilting bimodule. Then the following
statements hold.

(1) CML(A) = QL (A) and CML(A") = QL(A?) for any n=>
L ids(w) = r.ids(w).

(2> If A € CM.(A), then Tr,A € CM, (A?). If A € CM,
(A7), then Tr.A € CM,(A).

Proof. (1) Suppose n 2> 1.ids(w) and C € Q.(A). Then we have an

d d
exact sequence 0 — C — Uo—; U— ... BN U,._, with all U; in addw.
It is clear that Exth (C,w) == Ext¥"(Cokerd,-1,») = 0 for any : >> 1.
So C&CM.(A).

Conversely, suppose CE CM, (A) and suppose . ... — P,—>,.. —
P,—~ Py— C“— 0 is a projective resolution of C* in mod A*. By
Miyashita [17, Theorem 6. 1], C*€ CM.,(A?). By Theorem 3.8, C
=~ C**. So we have an exact sequence 0 - C — P;—> Py~ ... — P¢
— ... with all P?in addaw. Similarly, we prove the second conclusion.

(2) is proven as in Auslander and Reiten [ 7, Proposition 3. 1

@1 O

The following lemma extends Auslander and Bridger [ 3, Proposi-
tion 3. 8.

Lemma 5. 6. For any M €mod A, the following statements are equiva-
lent.

(1) G-dim. (M) = 0.

(2) Exty(M ,w) = 0 = Exty(Tr.M,w) for any: > 1.

Proof. From Definition 2. 1 we have an exact sequence 0 — M*“— U,
— U, Tr.M — 0 with U, and U, in addw,s. Then our claim is trivial
by Lemma 5. 5. []
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Lemma 5. 7. For any A and B in mod A, G-dim,(A) = 0 and G-dim.
(B) = 0if and only if G-dim,(ABB) = 0.

Proof. It is easy by Definition 5.1. []

The following lemma extends Auslander and Bridger [3, Lemma
3.10].

Lemma 5. 8. Suppose 0 = A —> B —> C — 0 is an exact sequence in
mod A with G-dim.(C) = 0. Then G-dim.(A) = 0 if and only if G-
dim,(B) = 0.

Proof. Since G-dim.(C) = 0, Exti(C,w) = 0 for any 7 => 1. It fol-
lows from the exact sequence 0 > A —> B — C —> 0 that for any 7 =
1, we have an isomorphism:
(5.8. 1) Exty(A,w) == Exti(B,w®).

As in Auslander and Bridger [3, Lemma 3. 9], we can show that

there is a long exact sequence 0 —~ C*— B> A"~ Tr.C = Tr.B —>
TroA — 0. Since Exti(C,w) = 0, we have in fact deduced the exact-

ness of the sequences 0 - C*— B"—> A“— 0 and 0 - Tr.C > Tr.B >
Tr.A — 0. So we have a long exact sequence
(5.8.2)

0 - (Tr,A)— (Tr.B)*—> (Tr.C)“— Exti(Tr.A,w) - Exti(Tr.B,
w) > Exti(Tr.Cyw) = ... = Exti(Tr.A,w) = Exty(Tr.B,w) —>
Exti(Tr.Crw) — ...

Further, we show as in Auslander and Bridger [ 3, Lemma 3. 9]
that 0 = (Tr,A)*— (Tr.B)*—> (Tr.C)*— 0 is exact. Since G-dim,
(C) = 0, Exth(Tr.C,w) = Ofor any{ = 1 by LLemma 5. 6. Then it
follows from the long exact sequence (5. 8. 2) that for any i = 1 we
have the following isomorphisms;

(5.8.3) Exti(Tr,A,w) = Ext,(Tr.B,w).
By Lemma 5. 6, we know from the isomorphisms (5. 8, 1) and
(5. 8. 3) that G-dim,(A)=0 if and only if G~dim.(B)=0. []

The following theorem is analogous to a result by Auslander and
Bridger [3, Theorem 3.13].

Theorem 5. 9. For any n = 1 and M in mod A, the following state-
ments are equivalent.
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(1) G-dim. (M) < n.
(2) G-dim, (Y (M)) = 0, where SV (M) is the n-th syzygy of
M.

Proof. (2) = (1) It is trivial by Definition 5. 2.

(1) = (2) It is clear that G-dim,(P) = 0 for any projective mod-
ule P in mod A. Then by Lemma 5. 7 and Lemma 5. 8, the subcatego-
ry of mod A consisting of the modules M with G-dim.,(M) = 0 satis-
fies the assumptions of Auslander and Bridger [ 3, Lemma 3. 127. It
follows from Definition 5. 2 and Auslander and Bridger [ 3, Lemma
3.127 that (1) implies (2). [
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