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COMMUNICATIONS IN ALGEBRA, 27(12), 5791-5812 (1999) 

ON A GENERALIZATION OF THE 
AUSLAKDER-BRIDGER TRANSPOSE * 

Huang Zhaoyong 

Department of Mathematics, 

Nanjing University, 

Nanjing 210093, 

People's Republic of China 

ABSTRACT Let A be an artin algebra and ~ w +  a faithfully balanced self- 
orthogonal bimodule. We generalize the notion of the Auslander-Bridger 
transpose to that of the transpose with respect to ,iw,+ and obtain some 
properties about dual modules with respect to .+w~.  Further, we character- 
ize cotilting bimodules and give criteria for computing generalized Goren- 
stein dimension. 

1. INTRODUCTION 

Let A be an artin algebra and mod A (resp. mod L P )  the category 
of finitely generated left (resp. right)A-modules. For any T E  mod A 
(resp. mod kP) ,  we use 1. idn(T)  (resp. r .  idn(T)) to  denote the left 
(resp. right) injective dimension of T. 

Definition 1. 1. For an algebra A,  a bimodule nwn is called a cot i l t iq  
bimodule if it satisfies the following conditions: 

(C1) The  natural maps A+EndA(.Aw)OP and A--+Endn(wA) are iso- 
morphisms. 

1991 Mathematics Subjed Clasrifuation. 16E10, 16G30, 16G50. 
Keywords. faithfdy balanced selforthogonal bimodules, wreflexive moudules, injective dimension. 
cotilting bimodules, generalized Gorenstein dimension. 
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HU ANG 

If is a cotilting bimodule, then nw and wn are cotilting modules 
in the sense of Auslander and Reiten [6]. This can be seen easily by 
dualizing a result of Miyashita [ l 7 ,  Proposition 1. 61. It follows from 
Auslander and Reiten [7 ,Lemma 1. 7 1  that the injective dimensions of 
~ L I  and of ton coincide. 

Definition 1. 2. For an algebra A,  a bimodule nw,, is called a faithfully 
l~alanced selforthogonal bimodule if it satisfies the above conditions (C,) 
and ( C z ) .  

Kenzm-k. A faithfully balanced selforthogonal bimodule is called a gener- 
alized tilting birnodule by Wakamatsu 1181. 

It is clear that is a faithfully balanced selfort hogonal bimodule. 
In fact, we will replace the functor Hornn ( -  ,,tA.,) by the functor 
I4ornll ( -  ,,w,,) where nw.4 is a given faithfully balanced selforthogonal 
binlodule, and we will extend some known results to this more general 
setting. 

In this paper, we mainly study the fundamental properties of faith- 
fully balanced selforthogonal bimodules and characterize cotilting bi- 
modules. The given characterizations will lead to a better understanding 
of cotilting bimodules. There is another reason why we study faithfully 
balanced selforthogonal bimodules. We know that the generalized 
Naka\-ama conjecture posed by Auslander and Reiten [5] still remains 
open, which is equivalent to the following version: if a module A1 is in 
mod A satisfying the property Extt  ( M O A ,  h4@A) = 0 for any i2 1,  
then h;l is projective. So giving some characterizations of faithfully bal- 
anced selforthogonal bimodules may be useful for comprehending this 
conjecture. 

Faithfully balanced selforthogonal bimodules and cotilting bimod- 
ules had been studied extensively (see [6 - 7 1 ,  [ l 7  - 191). Let be 
a cotilting bimodule. Miyashita in [17] studied the properties of dual 
modules with respect to nun.  In [18], Wakamatsu showed that 1. id., 
( 0 )  = r. id., ( w ) .  In [ ? I ,  Auslander and Reiten characterized Cohen- 
Macaulay algebras and Gorenstein algebras in terms of the existence of 
certain cotilting bimodules and they proved that the tensor product of 
two Gorenstein algebras over a field is also a Gorenstein algebra. Also 
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AUSLANDER-BRIDGER TRANSPOSE 5793 

in [7], Auslander and Reiten generalized the notion of Gorenstein di- 
mension (see Auslander and Bridger [3]) to that of generalized Goren- 
stein dimension with respect to  a given faithfully balanced selforthogo- 
nal bimodule. Auslander and Reiten in [6] gave some properies of alge- 
bras of injective dimension at most one and established a one-to-one cor- 
respondence between isomorphism classes of basic cotilting modules and 
covariantly finite coresolving subcategories of the category of modules 
with finite injective dimension. In addition, Wang and Xu [I 91 charac- 
terized so called * -modules and co- * -modules which were first intro- 
duced and studied by Menini and Orsatti [ I61 and Colpi [ll- 121. 

The discussion in this paper is based on the above known results. 
In Section 2 we introduce the transpose Tr,A of a modulr A with re- 
spect to a faithfully balanced selforthogonal bimodule p,. This con- 
struction generalizes the Auslander-Bridger transpose T r A ,  in the sense 
that T rA  is the transpose of A with respect to the faithfully balanced 
selforthogonal bimodule ,,A,. It is well known that,  denoting by A "  = 

Honl,(A, A) and by a, the evaluation map A+A * , we have an exact 
(J1 

sequence 0+ExtI ( T r A ,  A)+A +A' " -+Exti (TrA,  A)+o. We prove 
a corresponding result where the functor Hom, ( -  , A )  is replaced by 
Horn,( - , w )  and T r A  by TrwA (Theorems 2. 3 and 2.4) .  This plays a 
central role in the rest of the paper. In Section 3 we then apply these 
two exact sequences in order to characterize cotilting bimodules. As  a 
consequence, we can give a partial answer to the strong Nakayama con- 
jecture. In Section 4 ,  we prove that the tensor product of cotilting bi- 
modules over finite dimensional k-algebras, where k is a field, is also a 
cotilting bimodule. In Section 5 ,  we give criteria for computing general- 
ized Gorenstein dimension. In particular, some results by Auslander 
and Bridger are generalized. 

2. TWO EXACT SEQUENCES AND SOME LEMMAS 

From now on ,  we assume that AWL is a faithfully balanced self- 
orthogonal bimodule. In this section, we will obtain two important ex- 
act sequences (see Theorem 2. 3 and Theorem 2. 4) which are crucial 
for the rest of this paper. Also we will give some fundamental proper- 
ties of faithfully balanced selforthogonal bimodules which will be used 
later. For a module A in mod A (resp. mod k P ) ,  we put Aw=HomA 
( A ,  .I wn). For a homomorphism f between A-modules (resp. kP-mod- 
ules) , we put ?=HornA (f, Awn). 
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5794 HU ANG 

Definition 2. 1. Suppose A €  mod A (resp. mod A P )  and suppose P L  
f' -+Po -+A AO is a minimal projective resolution of A. Then we have an 

f 
exact sequence O +A" --+Pi +P;" +CokerJ" - to .  We call Cokerf"' the 
transpose (with respect to Aw.3) of A ,  and denote it by Tr,A. 

Ii nun= LA.,, then the transpose defined above is just the Auslan- 
der-Bridger transpose (c. f .  [ 3 ]  and [8]). 

Definition 2 .  2 .  Let A E  mod A (resp. mod A"" , and let o , ~  :A +A"" 
via af\(.x) ( J )  = f ( x )  for any x2-E A and f € A" be the canonical evalua- 
tion homomorphisn~. If a~ is a monomorphism, then A is called a w- 

torsionless module. If is an isomorphism, then -4 is called a w-reflex- 
ive module. 

For any ?' E mod A (resp. mod A"", we use addA?' (resp. 
add'l'.A) to denote the full subcategory of mod A (resp. mod A"" con- 
sisting of all modules isomorphic to the direct summands of finite direct 
sums of copies of T. It is easy to see that any projective module in mod 
A (resp, mod n"" and any module in addnw (resp. addw,) are e r e -  
flexive. 

Theorem 2. 3.  For any A E mod A (resp. mod A"" w e  have the fol- 
lowing emc t  sepence : 

G 1 

0 +Exti(Tr,A, w)+A -+AU"+Ext;(Tr,A, w)+O. 

Proof.  Suppose A € mod A and suppose 

is a minimal projective resolution of A. From the exact sequence 
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AUSLANDER-BRIDGER TRANSPOSE 5795 

i; 
we have a long exact sequence O --+(Tr,A)" -+PIWW-+CW -+Exti (TrW 
A ,  w)+O +Exti ( C ,  w)-+Exti(Tr,A, w)+O and the following exact 
commutative diagram : 

where ap, is an isomorphisnl and g is an induced homomorphism. By 
the snake lemma we have KeroAZCokerg and CokeraArExtb ( C ,  w) 2 
Ext.?,(Tr,A, w). 

Consider the following diagram : 

or 0 

P v 
Po *PY 

B y  Diagram (2. 3. 2)  opO i l=r ;  g, SO (ape il) r l = ( r ;  g) r 1  

and hence ap, f =x; g rl. Since op, f = fvu. opl and fL""=$ * 

i;, it follows that r; i; opi = r; g rl. Since r; is a monomor- 
phism, i a r l = g  * Hence Im(iy oP1)C Img and there is an in- 
duced commutative diagram : 

0 
It follows from the snake lemma that h is an isomorphism. So KeroAY 
CokergSExti(Tr,A, w) and we obtain the required exact sequence. 
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5796 HUANG 

Remark. Theorem 2. 3 is a generalization of a result by Auslander [2. 
Proposition 6 .  31 (also c. f .  Auslander, Reiten and Smal# [8, Chapter 
IV,  Proposition 3. 21 . 

From the proof of Theorem 2. 3 we have the following exact corn- 
mutative diagram : 

PI ' * P o  A -+O 

]ope 1 
O - - - + ( T r w A ) ' " ~ P ?  ' C o k e r  f""-0 

It is easy to see that ASCokerJ?"". Noting that Py and 27; are w-reflex- 
ive and there is an exact sequence (2. 3. 11, it is not difficult to see that 
the proof of the following theorem is analogous to that of Theoreni 2. 
3. So we omit it. 

Theorem 2. 4. For any A €  mod A (resp. mod A"$). we have the fol- 
lowing eruct sequence : 

Corollary 2. 5. The following statements are equivalent. 
(1) Any A in mod A (resp. mod EP) with Extfi(A,w)=O=Exti 

( A ,  W) is w-re flerzve. 
(2 1 An31 w-reflexive module B in mod AuP (resp. mod A) satisfies 

Proof. (1)- (2)  Suppose B E mod PP (resp. mod A )  is *reflexive. 
By Theorem 2. 3 and Theorem 2. 4 ,  there are the following two exact 
sequences : 

~ T , ~ B  

0 -+Exti(B,w)+Tr,B ----+(Tr,B)w+E~t~(B, w)+O 
Since B is w-refIexive, from the first exact sequence we know that 

Tr,B satisfies Ext i  (Tr,B, w )  = 0 = Ext i  (Tr,B, w). So Tr,B is *re- 
flexive by hypothesis (1). It follows from the second exact sequence 
that E x t i ( B , ~ )  =O=Ext;(B,w). 

(2)* (1) is shown by the same argument. 



D
ow

nl
oa

de
d 

B
y:

 [N
an

jin
g 

U
ni

ve
rs

ity
] A

t: 
14

:5
8 

28
 J

un
e 

20
07

 

AUSLANDER-BRIDGER TRANSPOSE 5797 

Lemma 2. 6. Let A be a ring (not necessary an artin algebra 1. If 

O +A -+H LB is an exact sequence in mod A (resp. mod n"') with H 
w7-eflezive and B w-tmsionless, and if C = Cokerf", then A 2 C". 
Moreover, if f is an epirnol-phism , then C is wtorsionless. 

f 
Proof. From the exact sequence O-+A -+H -+R we have the exact se- 

P 
quence B" -+W -+C +O and the following exact commutative dia- 
gram : 

We know that aH is an isomorphism and a~ is a monomorphism, it is 
easy to see that the induced homomorphism g is an isomorphism and A 
Y =C". 

If f is an epimorphism, then CG.4". Since A" is wtorsionless by 
Faith [13, Proposition 23. 51, C is also wtorsionless. 

Observe that a special instance of the above lemma was already dis- 
cussed by Jones and Teply in [15, Lemma 31. They considered the 
case A ~ n = h A n  and H is finitely generated free, claiming that in this sit- 
uation C is always torsionless. However, their statement is not correct. 
In fact,  if f is not surjective, C need not be torsionless, as shown by 
the following example. 

Example. 2. 7. Let A be an algebra which is given by the quiver: 
1+2-3. We use P, and id, to denote the indecomposable projective 

module corresponding to the vertex i and the identity homomorphism of 
P,(z=l, 2 ,  31, respectively. Take H=A= (P,@P,@P,),  B=P,@ 
P,@P, and f = id, @@idp3, where l :  P,+P, is the canonical embed- 

ding. It is not difficult to check that C=Cokerf" is not torsionless. 

Lemma 2. 8. For any cu-torszonless module A 272 mod A (resp. mod 
kP), the?-e 2s a w-tomonless module C zn mod A""resp. mod A)  and n 

projectme module P 7n mod A (resp. mod EP)  such that there are the 
followz~zg exact sequences : 
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HUANG 

Proof'. By using Lemma 2. 6 ,  we find that this lemma in fact has been 
proven in the proof of Theorem 2. 3. 

Definition 2. 9. An exact sequence A, -)....+Al +Ao in mod A (re- 
sp. mod A"" is said to be dual exact (with respect to w) if & +A; -+ 

...+ A; is exact in mod P v r e s p .  mod A). 

Lemma 2. 10. For A E  mod A (resp.  mod A"" and u posztzve Integer 
r r ,  the jollowl~ng statements are equzvalent. 

(1)  Extl+(A,w)=O for any  l l z < n .  
( 2 )  An31 exact sequence 0 +K +P,-l+...+Po +A +O wzth all 

f', projectwe zs dual exact (wzth respect to w). 
(3) Any exact Aequence P,,-l-+P,+.*.+Po +A -+O wzth all P, 

proje'tn~e zs dual exact (zeizth re~pect  to w). 

Proof'. (1 )* ( 2 )  The  case for n = 1 is clear. Suppose n 2 2  and suppose 
d,-, d- d, o -+K +P,-~- . . .~P~ +Po +A +O is an exact sequence with all 

P, projective. Then Ext i  (Imd, , w ) 2 E x t > i 1  ( A ,  w) = 0 for any l<i< 
n- 1 ,  and hence it is easy to see that O +A" +P6 +P; +...+PR1+ 
K" +O is exact. 

(2)*(3) It is trivial. 
(3)- (1) Suppose n= 1 and suppose the exact sequence 

with all P ,  projective is dual exact. Consider the following exact com- 
mutative diagram : 
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AUSLANDER-BRIDGER TRANSPOSE 5799 

n" ci; 
Since 0 +KW -+Pf; -+PI; is also exact and x" is a monomorphism , Imiw 
Z I m ( n w  iw) = Imd;U= Kerd; = ImnwZK".  So i" an epimorphism and 
hence Ext i  ( A ,  w) = 0. By using induction on n , we can get our conclu- 
sion. T j  

Lemma 2. 11. Fw a positive integer n ,  the following statetnents are e- 
quivalent. 

(1 )  I. idn(w)<n (resp. r. idA(w)<n). 
( 2 Extl  ( B  , w) = 0 for any B *torsionless in mod A (resp. mod 

LP>. 

Proof. Consider an exact sequence 0 -+B +P + A  -+ O with every 
term in mod A (resp. mod AoP) and P projective and B w-torsionless. 
Since Ex t l (B ,  w) S E x t ~ + l  ( A ,  w )  , it is easy to get the desired equiva- 
lence. 

Lemma 2. 12. Fw any A E mod A (resp. mod A"" , the following 
statements are equivalent. 

(1)  A" is *reflexive. 
( 2 ) A" is w-reftexiue. 

Proof. ( I ) *  ( 2 )  By Faith [13, Proposition 23. 51 ,  (aA-)" ax-= 
14-. SO if 6- is an isomorphism then is also an isomorphism, which 
means that if A" is *reflexive then A"" is also *reflexive. 

(2)*(1) It is clear that Ker(oA)"Z(CokeraA)". By Faith [13, 
Proposition 23. 51  (aA)" * a x =  ~ A U .  SO (CokeraA)"SKer ( aA)WZCok-  
era.4-. By using the same trick as above, we have (CokeraA-)"ZCok- 
eraA-. But ( C o k e r ~ , ~ * ) "  2 (CokeraA I", so CokeraA- Z (Cokera, 1". 
Now if A'w is *reflexive , then (C0ker0.4) "~CokerdA- = 0 , and thus 
(CokeroA)'"=O. Then by the above argument we know that CokeraA- 
= 0. So A'" is w-reflexive. 

Lemma 2. 13. T h e  folluwing statements are equivalent. 
( 1 ) A" is w-reflexive for any A in mod A. 
(2)  Bw is *reflexive for any B in mod PP, 

Proo f. ( 1  )* (2)  Suppose BE mod PP. By (I), Bwu is w-reflexive. So 
by Lemma 2. 12 Bw is w-reflexive. 

(2)- ( 1  is similar to the above argument. 
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3. COTILTING BIMODULES 

HUANG 

In this section we will characterize cotilting bimodules in terms of 
their injective dimension. We are going to show all statements only for 
1. idn ( w )  , symmetric statements hold for r. id,, (w). 

Proposition 3. 1. The following statements are equivcdent. 
(1) 1. idA(w)=O. 
(2) Every module in mod A"P is w-reflexive. 

Proof. It is immediate from Theorem 2. 3. 

Corollary 3. 2. (see Jans [I411 The follm~ing statements a?-e eqziiva- 
lent. 

(1) A is left sel f-injective. 
(2) Every module in mod A O P  is reflexi'ue (with respect to A).  

The following theorem contains a result by Auslander and Reiten 
[6, Proposition 2. 21. 

Theorem 3. 3.  The follmuing statements are equivalent. 
(1) 1. idA(w)<l. 
(2) Every wtorsionless module in mod AoP is wreftexive. 
(3) Every module B in mod RP with Ext i  ( B ,  W )  = 0 is wreflex- 

iue. 

Proof. ( l I H ( 2 )  By Lemma 2. 8 ,  we know that condition ( 2 )  is satis- 
fied if and only if Ext.\(A,w) = O  for all wtorsionless modules A in mod 
A. By Lemma 2 .11 ,  we get the equivalence of (1)  and (2). 

(2)*(3) Suppose BE mod flP with Exth(B, w )  = 0, and suppose 
O +K +P -+B -+O is an exact sequence in mod with P projective 
and K wtorsionless. Then 0 +BW --F + K + O  is exact. Since K" is 
wtorsionIess in mod A,  it follows from Lemma 2. 11 and the equiva- 
lence of (2)  and (1)  that Exth(KW , w )  = 0. Thus we obtain the follow- 
ing exact commutative diagram : 
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AUSLANDER-BRIDGER TRANSPOSE 5801 

where ~p is an isomorphism. By ( 2 1 ,  K is w-reflexive and so aK is an i- 
somorphism and hence GB is also an isomorphism. Therefore B is wre-  
flexive. 

(3)* ( 1  Suppose A is w-torsionless in mod A. By Theorem 2. 3 
and Theorem 2. 4 we have the following two exact sequences: 

~ T , * A  

0 + Extfi ( A ,  W) -t Tr,A - (Tr,A)OW -t Ext i  ( A ,  w) -t 0 
Since A is w-torsionless, it follows from the first exact sequence 

that Ex t i  (Tr,A, w) = 0. Then by (3 )  , Tr,A is w-reflexive. So from 
the second exact sequence we know that Ex t i (A ,  w )  = 0. Hence 1. id,, 
( w ) l l  by Lemma 2 .11 .  

In the following result we will give some properties of the functor 
Horn,(- ,w) in the case 1. i dA(w) l l .  

Proposition 3. 4. T h e  follm~ing statements are equivalent. 

(1)  1. id.h(w)<l. 
(2) Short exact sequences in mod A where euerjl term is wtonionless 

w e  carried to short eruct sequences by the functor Horn,, ( - , n(0.4). 

(3) ( - lux" presewes the eprtnot-phisms in mod Rp. 

Proof. (I)* (2) From Lemma 2. 11 we know that every wtorsionless 
module C in mod A satisfies Ext:(C, o) = 0. Hence any short exact se- 
quence in mod A with wtorsionless end-term has the desired property. 

C 

(2)* (3)  Suppose B LC +O is an epimorphism in mod AP. Then 
f 

O +C'" -+BW is exact in mod A with C'" and B" wtorsionless. Since Cok- 
er f" is a submodule of (Ker j')" and (Kerf )" is w-torsionless, CokerJI" is 

f- 
also wtorsionless. It follows from (2)  that B""--+Cw"+O is exact. 

( 3 )  * ( 1 ) Suppose hI is wtorsionless in mod k % n d  suppose P -+ 

M -+O is an epimorphism with P projective. By (3)  we have the fol- 
lowing exact commutative diagram : 
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5802 HUANG 

Since op is an isomorphism, oicl is an epimorphism. But M is wtorsion- 
less, so ill is wreflexive. It follows from Theorem 3. 3 that 1. id., (w) _< 
1 . 0  

Proposition 3.  5 .  S~rppose 1. idn(w)_<2. I f  N is zn mod flP with Ext.; 
(N,w)=O=Ext?i(N,w),  then N is w-rejlesive. 

Proof .  Suppose M E  mod A is w-reflexive and suppose P I  +PC +hl" 
+O is a minimal projective resolution of A l w  in mod A"?. Then we have 
an exact sequence 0 + M ~ h l W - + ~  +Pi; +TrwAl'" -0. Since 1. id., 
(w)<2. Ext:4(hl ,w)ZExt:~2(Tr,h. lw,w) = 0 for any i>l. Then from 
Corollarj- 2. 5 we know that our conclusion holds. 

Theorem 3.  6 .  Suppose r. i d . ~ ( w ) l 2 .  T h e  following statements are e- 
quivalent. 

(1) 1. idA(wII2.  
( 2 )  I f  N in mod A''' satisf is  Ext.i(N,w) =O=Ext i (N ,w)  ,then 

N is w-re flrrive. 
(3)  A modztle A; in mod A"" is w-7-e j k x i u e  if and only i f  Ext i  (A', 

w > = o = E x t ; ( ~ , ~ ) .  

Proof.  ( 1 ) 3 ( 2 )  By Proposition 3. 5. 
f 

( 2 ) * ( 1) Suppose M E mod A and suppose PI +Po +M +O is a 
minimal projective resolution of hf in mod A. Then we have an exact 
sequence 0 -+Mu -+Pg +P;U +TrJ l  -+O. Since r. idn (w) I 2 ,  Ext i  
( M  ,w)?E~t::~(Tr,M,w) = O  for any i>l. By (21 ,  Mw is w-reflex- 
ive. Then by Lemma 2. 13 ,  (Tr,M)" is w-reflexive. It follows from 
(2  ) and Corollary 2. 5 that Extfr ( (Tr , ,M )", w) = 0. Since Kerf Z 
( T r J l ) "  by Lemma 2. 6 ,  Ext i  ( M ,  w) T Ext.: (Kerf ,  w )  2 Ext,: 
((Tr,M)",w)=O and 1. i dn (w)12 .  

(3)*(2) It is trivial. 
(2)* ( 3 )  It suffices to  prove that any w-reflexive module N in 

mod AUP satisfies Ext j , (N,w)=O=Ext ; (N,w) .  Since r. i d , ( w ) 1 2 ,  
any A l  in mod A with Extf,(M,w) =O=Ext i (M,  w) is w-reflexive by 
the symmetric statement of Proposition 3. 5. Then our conclusion fol- 
lows from Corollary 2. 5 . 0  

Theorem 3. 7. Suppose n 2 2  is a positive integer and 1. idn (w) l n .  I f  
ill is wtorsionless in mod with Exth ( M ,  w) = 0 for any 1 < i <  n, 
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AUSLANDER-BRIDGER TRANSPOSE 5803 

then M is wreftexive. Moreover, if 1. idn(w) =r .  i d n ( w ) l n ,  then any 
G in mod AoP(resp. mod A) with Extk ( G ,  w) = 0 fw any l j i l n ,  is w 

reflexive. 

Proof. Suppose 1. idn (w)_<n and M is wtorsionless in mod A"$ with 
Extji(M, w) = O  for any l i i l n .  By Lemma 2. 8 there is a module N 
wtorsionless in mod A such that the following sequences are exact. 

(3. 7. 1 )  0 -+Nu +P -+M +O 

(3. 7. 2 )  0 -+M ZM"+EX~A ( N ,  w)+0 

(3. 7. 3) o + N % P " + E ~ ~ ; ( M , ~ ) + O  

where P is projective in mod Ep. 
Since E x t i ( M  ,w) = O ,  from the exact sequence (3. 7. 3) we know 

that N is w-reflexive. Since Extk ( M ,  w) = O for any I l i l n ,  by the 
exact sequence (3. 7. 1 )  we have Extk(Nw,w) =O for any l _ < i l n -  1. 

Consider the following exact sequence: 
O-+K-+P,-z-f.~.+P1+Po-+ NW-+O 

where all P, are projective in mod A"$. By Lemma 2. 10 ,  O+NTNW 
+Pi +c +...+Pn"-2+K" + O  is exact. Since K" is w-torsionless, 
E x t x K w ,  w) = 0 by Lemma 2. 11. So  Ex t f i (N ,  w ) Z E x t i  ( K " ,  w) = 0 
and hence A4 is wreflexive by the exactness of the sequence (3. 7. 2). 

Now if 1. idn(w) =r .  i d h ( ~ ) l n  and suppose GE mod II"9vith Extt  
(G,  W) = O for any I<i<n. We have an exact sequence O +H +P -+ 

G + O  with P projective and If wtorsionless in mod PL. Since r. idn 
( w ) l n ,  it is easy to  see that Ext :+(H,  w) = O for any I l i _ < n .  From 
the above argument we know that H is w-reflexive. 

Consider the following exact commutative diagram : 

Since ax and or are isomorphisms, ac is a monomorphism and G is a w- 

torsionless module. From the above argument we know that G is a w- 

reflexive module. 

We know that 1. idn(w) =r.  idn (w) when ~ w ,  is a cotilting bimod- 
ule, so from Theorem 3. 3 and Theorem 3. 7 we have the following 
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5 804 HUANG 

conclusion, which has been proven with different methods by Miyashita 
in [17. Theorem 6. 11. 

Theorem 3. 8. Suppose ,+.A is a cotilting bimodule. I f  a module M in 
mod fiP (resp. mod A) satisfies Extk ( l l l ,  w) = O fol- any i > l  , then M 
is w- re flesive. 

Coroll ary 3. 9 .  Suppose nw.4 is a cotilting bimodule. I f  a module A4 in 
mod n"Vresp .  mod A) satis JBs Extk ( M  , w) = 0 for- any 2 0 ,  then M 
= 0.  

Proof. By Theorem 3.  8. 

Following Colby and Fuller [ lo] ,  we say that the strong Nakaya- 
ma conjecure is true for A if the condition of Ext'n(M,A) = O  for any 
i>O implies hl=O. By results of Auslander and Reiten [5], we know 
that the verification of this conjecture would imply the generalized 
Nakayama conjecture and hence also Nakayama's conjecture. It follows 
from a result of Colby and Fuller [ l o ,  Theorem 21  that the strong 
Nakayama conjecture is true for Gorenstein algebras. The  following 
corollary yields a new proof of this fact. 

Theorem 3.  10. I f  an algebra A has a cotilting bi~nodule nun with ~w 
f la t ,  then the st?-ong Nakujlamu conjecture holds we7- A. 

Proof. Let n u n  be a cotilting bimodule with ~w flat and let M be in mod 
A with Exth (M, A) = 0 for any 2 2 0 .  By Auslander and Bridger [3, 
Theorem 2. 81 ,  for any 7'20, we have an exact sequence : 

Ext i  ( h l ,  A) @,,w -, Exth ( M ,  w) -+ Tor: (Tr,S1'(ILl) , w) 
Since ,w is flat ,  the third term of the above exact sequence is always ze- 
ro. Consequently Exth (M,w) =O for any 2 0 ,  which implies M=O by 
Corollary 3. 9. This finishes the proof. 

4. TENSOR PRODUCT OF COTILTING BIMODULES 

The notions of Cohen-Macaulay rings and Gorenstein rings, as 
well as Cohen-Macaulay modules, whose importance is well established 
in commutative Noetherian ring theory, were extended to artin algebras 
by Auslander and Reiten in [ 6 ] ,  and were developed further by them 
in [7]. The following definition is recalled from Auslander and Reiten 
[7]. An algebra A is called a Cohen-Macaulay algebra if there is a pair 



D
ow

nl
oa

de
d 

B
y:

 [N
an

jin
g 

U
ni

ve
rs

ity
] A

t: 
14

:5
8 

28
 J

un
e 

20
07

 

AUSLANDER-BRIDGER TRANSPOSE 5805 

of adjoint functors ( G ,  F )  between mod A and mod A,inducing inverse 
equivalences : 

where 3" (A) and 9" ( A )  are the full subcategories of mod A consist- 
ing of the modules of finite injective dimension and the modules of finite 
projective dimension, respectively. For a subcategory 9' of mod A (re- 

A 

sp. mod A"P), we use X to  denote the category consisting of the C in 
mod A (resp. mod RP) such that there is an exact sequence 0 +X, -+ 

... -+XI -+XO +C+O with all X, in Z. Also from Auslander and Re- 
iten [ ? ]  we recall the following facts and definition. 

Facts and Definition 4. 1. I f  A is a Cohen-Macazrlay algebra and ( G ,  
F) is an associated pail- o f  adjoint functors, then F is left  exact and giv- 
en 631 F=Homn ( A W , ~ ,  - 1, G is right exact and given by G=AwA@-. 
T h e  bimodule n q 4  is called a dualizing module. So A is a Cohen- 
Macaulay algebra if and only if A has a dualizing module. A is called 
a Gorenstein algebra i f  nAn is a dualizing module, which is equivalent to 
1. idn(A)=r. idA(A)<a.  

Moreover, fw an algebra A ,  a bimodule n u n  i s  a dualizing module 
i f  and only i f  it is a cotilting bimodule and satisfies the condition : - 

(C,) For a le f t  A-module A T ,  i f  1. id.,(T)<os then nTEadd.4~ .  - 
For n right A-module T'n , i f  r. idn ( T '  <a then T'n E addun. 

Let A and I' be finite dimensional algebras over a field k. Auslan- 
der and Reiten [ 7 ]  posed an open question: Is the tensor product 
A@Ja Cohen-Macaulay algebra provided that A and r are both Co- 
hen-Macaulay? They gave an affirmative answer to this question in the 
case of A and r being Gorenstein algebras (see Auslander and Reiten 
[ 7 ,  Proposition 2. 2)). According to 4. 1, the above open question is 
related to  the following question: If A and r have dualizing modules 

nUn and rVr respectively, is it true that A @ k  P has a dualizing module 
no,r (U V ) A ~ , ~ ?  In this section, we will discuss this question. We 
use D( - to  denote Hornh( - , k). 
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5806 HUANG 

The following lemma is well-known (see Cartan and Eilenberg[S, 
Chapter XI , Proposition 1.2. 3 and Theorem 3.11). 

Lemma 4. 2. Let A ,  ill E mod A and B , N E mod r. Then we have 
the folloze/ing isomorph isms. 

Lemma 4. 3. Let M E mod A and N E mod r. Then 1. idno,r ( M  
@hN)=l. id,,(M)+ 1. idr(N).  

Proof'. By Lemma 4. 2 (1)  and Cartan and Eilenberg [9. Chapter XI , 
Theorem 3. 21 we have 

I. idno,r (M@hN) 
=r. pdn3,r(D(hl@bN) 
=r. pdnB,r(D(M)@hD(N)) 
=r. pdn(D(M))+ r. pd r (D(N) )  
=1. idA(M)+l. idr(N).  

Lemma 4. 4. I f  AM and r N  satis fi\l the condition Ext i  (M, M) = 0 = 
E x t F ( N , N )  fur- any n > l ,  then Ext."lB,r(MOd N , M O d  N)=O j5.v- 
any n > l .  

Proof.  For any n r l ,  by Lemma 4.2(2)  we have 
Exti3,r (lll@fi N M@b N )  

Z@~+~=,EX~ ' , (M,  - MI& Ext$(N, N )  
= O  (since 1 - 2 1  or ~ 2 1 ) .  

Remark 4. 5. For the case of right modules, we have symmetric conclu- 
sions of above lemmas. 

The following corollary is a result by Auslander and Reiten [7 ,  
Proposition 2. 21. 

Corollary 4 . 6 .  ( 1 )  1 . i d n o , r ( A @ k r ) = 1 . i d n ( A ) + l . i d r ( r )  and 
r. idAg,r(A =r.  idn(A) +r. i d r ( r ) .  
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AUSLANDER-BRIDGER TRANSPOSE 5807 

(2 A @b r is Gorenstein i f  and only i f  A and r are Gorenstein. 
( 3 ) A @I I' is self -injective i f  and only i f  A and r are self -in jec- 

tive. 

Proof.  B y  Lemma 4. 3 and Remark 4. 5. 

Theorem 4. 7.  Let *A and r Nr be cotilting bimodules. Then 
no,r(M @kN)no,i- is also a cotiliting bimodule. 

Proof. B y  Lemma 4 . 2 ,  Lemma 4 . 3 ,  Lemma 4 . 4  and Remark 4. 5. 
0 

Proposition 4. 8. Let A n  and rNr be cotilting bimodules. - - 
( 1 If AA E ad&M and rB E addrN , then ( A  @b B )  E 

addno,r (M@t N). - - 
( 2 If CA E addMA and Dr E addNr t  then ( C  8 6  D )n@,r E 

- - 
Proof. ( 1 ) Since AA E addnM and rB E addrh: , there are exact se- 
quences 0 +M, -t-..+Mo -+A - to  with all hf, in addnM, and 0 -+Nn 
-+...--+NO +B -+O with all N, in add.&. Then we have the following 
exact commutative diagram : 

It is clear that Ao,r(M,@i B )  E addA@,r(M@kN) for any l l i l m .  By 
Theorem 4. 7 ,Ac,r (M@JV)A@,r is also a cotilting bimodule. It follows 

from Auslander and Reiten [6, Theorem 5. 5 )  that addnB,r(M@bN) 
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5808 HUANG 

( is  coresolving and hence) is closed under cokernels of monomor- 
phisms. It is easy to see from the last row of the above diagram that - 
n@,r(A@t B )  E addd@,r(M @ A  N ) .  

(2) The dual of (1).  n 
Remark. Let A and T' be Cohen-Macaulay algebras with drdizing mod- 
ules dJ.4 and rl'r, respectively. Then from Theorem 4. 7 and Proposi- 
tion 4. 8 we know that the bimodule n@,r(U 0 6  I/) nQ,r is a cotilting bi- 
module and satisfies partially the condition (C4): those left A 81 P- 
modules with finite injective dimension which have the form A m6 B 

(where A€ mod A and B € mod r) are in addAo,r (U OsV) and those 
right A@t F-modules with finite injective dimension which have the 
form A'OtB' (where A' E mod flP and R'E mod P) are in 

5 .  GENERALIZED GORENSTEIN DIMENSION 

Definition 5 .  1. (see Auslander and Reiten [7, P. 2381) A module M 
in mod A is said to have generalized Gorenstein dimension zero (with 
respect to w) , denoted by G-dim, ( M )  = 0, if the following conditions 
hold : 

(1) M is w-reflexive. 
(2) E x t ~ ( M , ~ ) = O = E x t ~ ~ ( 1 1 1 " , ~ )  for any i 2 1. 

Definition 5 .  2. For any n 2 1, M in mod A is said to have generalized 
Gorenstein dimension at most 71 (with respect to w) ,  denoted by G- 
dim,(M> 2 n ,  if there is an exact sequence O -t M,-t . . . -+ MI+ 
Mo-+ M -+ 0 in mod A with G-dim,(M,) = 0 for any 0 I i I n. 

Corollary 5 .  3. For- an31 M in mod A ,  G-dim,(M) I 1. pd.h(M). 

Proof. It follows directly from Definition 5. 2. 

If = *An, then G-dim, is just the Gorenstein dimension intro- 
duced by Auslander and Bridger [3]. In the following, we will give cri- 
teria for computing generalized Gorenstein dimension which extend cor- 
responding results by Auslander and Bridger on (ordinary) Gorenstein 
dimension. We use CM,(A) (resp. CM,(A"P)) to denote the full sub- 
category of mod A (resp. mod kP) consisting of the modules M with 
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AUSLANDER-BRIDGER TRANSPOSE 5809 

Exth(M,u)=O for any i 2 1. 

Definition 5 .  4. Let n be a positive integer. A E mod A (resp. mod 
kP) is called an n-th w-syzygy module if there is an exact sequence 
O -+A -+wo -+w,+...+wn-lwith all w, in addnu (resp. addw,). We use 
n:(A) (resp. CK(kP)) to denote the full subcategory of mod A (resp. 
mod LP) consisting of n-th cctsyzygy modules. 

Lemma 5 .  5 .  Suppose A ~ A  is a cotilting bimodule. Then the following- 
statements hold. 

(1) CM,(A) = CK(A) and CM,(fiP) = CX(LI''~) for any n 2  
1. i d n ( ~ )  = r. idA(w). 

(2 )  If A E CM,(A), then Tr,A E CM,(PP) .  If A E CM, 
( f iP )  , then Tr,A E CM,(A). 

Proof. (1) Suppose n 2 1. id.,(w) and C E SZl(A). Then we have an 
dl dm-, 

exact sequence 0 + C -+ Uo-+ U1+ . . . + U,-l with all U ,  in addAw. 
It is clear that Exth(C,w) Z ExtTn(Cokerd,-, ,w) = 0 for any i 2 1. 
So CE CM,(A>. 

Conversely, suppose C E  CM, (A)  and suppose . . . -+ P,+ . . . -+ 

P, -+ Po+ C"+ 0 is a projective resolution of C" in mod kP. By 
Miyashita [17, Theorem 6. 11 ,  C U E  CM,(fi"l. By Theorem 3. 8 ,  C 
S Cw. So we have an exact sequence 0 + C -t P;-t P:-+ . . . -+ P," 
-+ . . . with all PP in addnw. Similarly, we prove the second conclusion. 

( 2 )  is proven as in Auslander and Reiten [ 7 ,  Proposition 3. 1 
(dl]. 0 

The following lemma extends Auslander and Bridger [3, Proposi- 
tion 3. 81. 

Lemma 5 .  6. For any M E mod A,  the following statements are equiva- 
lent. 

(1) G-dim,(M) = 0. 
(2) Ext>(M,w) = 0 = Extb(Tr,M,u) for any i 2 1. 

Proof. From Definition 2. 1 we have an exact sequence O -+ Mu+ U o  
-+ U1+ TrwM + 0 with Uo and U1 in addun. Then our claim is trivial 
by Lemma 5.5. 
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5810 HUANG 

Lemma 5 .  7 .  For any A and B in mod A,  G-dim,(A) = O and G-dim,, 
( B )  = O i f  and only i f  G-dim,(A$~) = 0. 

Proof. It is easy by Definition 5. 1. 

The  following lemma extends Auslander and Bridger [3, Lemma 
3.101. 

Lemma 5 .  8. Suppose O -+ A -+ B -+ C -+ 0 is an exact sequence in 
mod A zeiith G-dim,,(C) = 0. Then G-dim,(A) = 0 if and only if G- 
dim,,(B) = O. 

Pmo j .  Since G-dimw(C) = 0 ,  Exth(C,w) = 0 for any i 2 1. It fol- 
lows from the exact sequence O -+ A + B -+ C -t O that for any i 2 
1 ,  we have an isomorphism : 
(5. 8. 1) Ext; (A,  w) 2 Exth ( B  , w) . 

As in Auslander and Bridger [3, Lemma 3. 91, we can show that 

there is a long exact sequence 0 + Cw+ B1"+ A"-+ TrwC -+ TrwB -+ 

Tr,A + 0. Since ExtX(C,w) = 0 ,  we have in fact deduced the exact- 

ness of the sequences O + C1"+ B +  A " 4  0 and 0 + Tr,C -+ Tr,B + 

Tr,A -t 0. So we have a long exact sequence: 
(5. 8. 2) 

0 -+ (Tr,A)'"+ (Tr,B)"+ (Tr,C)(U-+ Extfi(Tr,A, w) + Extfi (Tr,B, 
W) -+ Extfi(Tr,C, w )  + . . . + Ext;(Tr,A, w) + Ext'n(Tr,B,w) + 

Ext'n(Tr,C,w) -+ . . . 
Further,  we show as in Auslander and Bridger [3, Lemma 3. 9) 

that 0 -+ (TrwAIw-+ (Tr,B)"-+ (Tr,C)"+ 0 is exact. Since G-dim, 
(C )  = 0 ,  Ext'n(Tr,C,w) = 0 for any i 2 1 by Lemma 5. 6. Then it 
follows from the long exact sequence (5. 8. 2) that for any i 2 1 we 
have the following isomorphisms : 
(5. 8. 3) Exti (Tr,A, w) Z Ext; (Tr,B , w). 

By Lemma 5. 6 ,  we know from the isomorphisms (5 .  8. 1 )  and 
(5.8.3)  that G-dim,(A) = O  if and only if G-dim,(B) =O. 

The following theorem is analogous to a result by Auslander and 
Bridger 13,  Theorem 3.131. 

Theorem 5. 9. For any n 2 1 and A l  in mod A ,  the followitzg state- 
me?its are equivalent. 
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(1) G-dim,(M) < n. 
(2) G-dim,(P ( M I )  = 0,  where SZ" ( M I  is the n-th syzygy o f  

M .  

Proof. ( 2 )  * (1) It is trivial by Definition 5. 2. 
( 1  ) * (2) It is clear that G-dim,(P) = 0 for any projective mod- 

ule P in mod A. Then by Lemma 5. 7 and Lemma 5. 8 ,  the subcatego- 
ry of mod A consisting of the modules M with G-dim,(M) = 0 satis- 
fies the assumptions of Auslander and Bridger [3, Lemma 3. 121. It 
follows from Definition 5. 2 and Auslander and Bridger [3 ,  Lemma 
3. 121 that (1) implies (2). 
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