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COMMUNICATIONS IN ALGEBRA. 24(10). 3259-3264 (1996) 

O N  HOMOLOGICAL DIMENSIONS O F  S I M P L E  

MODULES O V E R  NON-COMMUTATIVE R I N G S  

ABSTRACT. It is known that for a simple module S over a commutative ring R, 
fdR(S) = idR(S). Let R, T be commutative rings and R -r T s ring homomo:phism, 
if T is a Noetherian ring and self-injective, then f d ~ ( T )  = i d ~ ( T ) .  In this paper we 
use the equalities of mixed functors to generdire these results over non-comamutative 
rings. 

1. Notations a n d  Preliminaries. 

In this paper all rings are associative rings with identity and all modules are 

unital. Let R be a ring and A a left (right) R-module. We use l.fdR(A) (r.fdR(A)) 

and l.idR(A) (r.idR(A)) to denote the left (right) flat dimension and the left (right) 

injective dimension of A, respectively. Recall that a left (right) R-module M is 

finitely presented if there is an exact sequence of left (right) R-modules 0 + K -, 

F -+ M + 0 with K, F finitely generated and F free. The left (right) FP-injective 

dimension of A, denoted by 1.FP - idR(A) (r.FP - idR(A)) is equal to  the least 

integer n 2 0 for which Ext;+'(M, A) = 0 for every finitely presented left (right) 

R-module M. If no such n exists set LFP- id~(A)  ( r .FP- id~(A))  = oo. If n = 0, 

A is called a left (right) FP-injective module. 

In the papers [9], [lo], Xu, Yao prove respectively that for a simple module S 

over a commutative ring R, S is R-flat if and only if S is R-injective, fdR(S) = 

idR(S). In the papers [5], [8], Jothilingam and Mangayarcarassy, Wang generalize 

Copyright Q 1996 by Marcel Dckkcr. Inc. 
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3260 HUANG AND CHENG 

the above results and prove respectively the following: let R, T be commutative 

rings and R + T a ring homomorphism. If T is a Noetherian ring and self-injective, 

then T is R-flat if and only if T is R-injective, f d ~ ( T )  = idR(T). Recall that a 

ring is called a left (right) coherent ring if every finitely generated left (right) 

ideal is finitely presented. A left and right coherent ring is called a coherent 

ring. In the paper [3], Ding and Chen prove that for a simple module S over a 

commutative coherent ring R, f d ~ ( S )  = i d ~ ( S )  = FP - idR(S). In this paper 

we give some equalities of homological dimensions of simple modules over non- 

commutative rings, generalizing some results in [3]-(51, (81-(10). 

2. Main Results. 

We will prove the following three theorems. 

Theorem I. Let R be a ring, and I an ideal of R such that R / I  is a semisimple 

artinian ring. Then t . f d ~ ( ~ / ~ )  = . l i d R ( ~ / ~ )  and I .~~R(R/I)  = r.idR(R/I). 

A ring R is called left (right) self FP-injective if it is left (right) FP-injective as 

an R-module. A left and right self FP-injective ring is called a self FP-injective 

ring. 

Theorem 11. Let R -+ T be a ring homomorphism m'th R a left coherent ring 

and T a coherent self FP-injective ring. Then r.fdR(T) = LFP - idR(T). 

Theorem III. Let R + T be a ring h?momorphism, E an injective cogenerator 

in the category of left T-modules. Then r . fd~(T)  = l i d ~ ( E ) .  

3. Proofs of Main Results. 

The proof of Theorem I is analogous to that of [9, Theorem 1.11. For the sake 

of completeness, we give here the proof. 

Proof of Theorem I. Suppose r.fdR(R/I) = n (< oo). Let (R/I)+ = Homz(R/I, 

Q/z), where Q is the additive group of real numbers, and Z is the additive group 

of integers. If R / I  is regarded as a left (right) R-module, then (R/I)+ is a right 

(left) R-module. Suppose M is a left R-module. By [2, Chapter VI, Proposition 

5.11, we have 

where R / I  is a left R-module. Since (R/I )+I  = 0, (R/I)+ is a semisimple right R- 

module, and (R/I)+ Z eiETSi, where every Si is a simple right R-module and T is 
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HOMOLOGICAL DIMENSIONS OF SIMPLE MODULES 326 1 

a set. Every S;  is a direct summand o f  R / I  for the semisimplicity o f  R / I .  Because 

TO<+~(R/I, M )  = 0,  Tor:+,(S;, M )  = 0 for every S;, and Tor:+' ( ( R / I ) + ,  M )  = 

0. By (I), E x t k + l ( M , ( ~ / I ) + + )  = 0. Since Q/Z is an injective cogenerator in  the 

category o f  2-modules, the canonical valuation homomorphism R / I  -, (R/I)++ 

is monomorphic. I t  follows from I (R / I )++ = 0 that (R / I )++ is also a semisimple 

module, and R / I  is a direct summand o f  (R / I )++.  Hence E X ~ ~ + ' ( M , R / I )  = 0 

and therefore l . idR(R/I)  < n. This proves I . ~ ~ R ( R / I )  < r . f d R ( ~ / ~ ) .  

Now we prove r . f dR(R / I )  5 l . idR(R/I) .  Suppose I.idR(R/I) = n (< m). For 

any left R-module M ,  we have 

where R / I  is a right R-module. Since ( R / I ) +  is semisimple, ( R / I ) +  Y @;ET,Si, 

where every S; is a simple left R-module and T' is a set. Since l . idR(R/ I )  = n, 

E X ~ ~ ' ( M ,  R / I )  = 0 and Ext;l+'(M, S ; )  = 0 for every S;. So Ext;l+'(M,IIiET,Si) 

E r I iET,Ext ; ;+ ' (~ ,s i )  = 0. Note that IIiET*S; is also a semisimple module, so 

( R / I ) +  S $iET,S; is a direct summand o f  IIiET,S;. Thus Ext;;tl(M, ( R / I ) + )  = 

0 and hence [TO~:+~(R/I ,  M ) ] +  = 0 by (2), TO~:+~(R / I ,  M )  = 0. Therefore 

r . f d ~ ( R / I )  5 n. It follows that r . f dR(R / I )  5 l.idR(R/I). This completes the 

proof o f  the first equality. 

The  second equality is obtained by a similar proof. 

Corollary 1. Let R be a semilocal ring with Jacobson radical J ,  i.e., R / J  is 

semisimple. Then t . f d R ( R / J )  = l . i d ~ ( ~ / J )  and I . ~ ~ R ( R / J )  = r . i d R ( ~ / ~ ) .  

Corollary 2. (Llirano) Let R be a ring, anc! I an ideal o f  R such that R / I  i s  a 

simple artinian ring. Then R / I  is left (right) R-flat if and only if R / I  i s  right 

(left) R-injective. 

Corollary 3. (Yao) Let R be a commutative ring, S a simple R-module. Then 

f dR(S )  = idR(S) .  Particularly, S is R-flat i f  and only i f  S is R-injective. 

To  prove Theorem 11, we need some lemmas. 

L e m m a  1. Let R be a left coherent, left self FP-injective ring and A a finitely 

presented right R-module. I f  A* = 0,  where A* = HomR(A, R ) ,  then A = 0. 

Proof. First, we show that there is no non-projective finitely presented left R- 

module with finite projective dimension. Let M be a finitely presented left R- 
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3262 HUANG AND CHENG 

module with I.pdR(M) = n (< 00). We prove n = 0. Otherwise, if n # 0, then 

there is a left R-module N ,  such that Ext;l(M, N) # 0. By the exactness of the 

sequence of left R-modules 0 -+ K -+ F -+ N + 0, where F is free, we know that 

Ext;l(M, F )  -+ Ext;l(M, N )  -+ Ext;++'(M, K) = 0 is exact. So Ext",M, F )  # 0 

and hence 1.W - i d ~ ( F )  2 n. It follows that l.FP - idR(R) 2 n by [7, Theorem 

3.21. This contradiction shows that n = 0. 

Secondly, suppose A is a finitely presented right R-module with A* = 0. If 

A # 0, then there is an exact sequence of right R-modules Fl f Fo -, A + 0 with 
f' Fo, Fl finitely generated free. Since A* = 0, 0 -, F; 4 F; -+ Coker f* + 0 is an 

exact sequence of left R-modules. So l.pd~(Coker f * )  5 1. Moreover, we have the 

following commutative diagram with exact rows, 

1.. 1% 1. 
Fi* - F," - Extk (Coker f *, R) - 0 

where UF,, OF, are the canonical valuation homomorphisms, cp is an induced 

homomorphism. It is known that UF,, q1 are isomorphisms. So cp is also 

an isomorphism, Extk(Coker f *, R) E A, and Extk(Coker f *, R) # 0. Thus 

l .pd~(coker f*)  > 1 and therefore l.pd~(Coker f* )  = 1. In addition, Coker f *  

is a finitely presented left R-module. It is a contradiction since there is no non- 

projective finitely presented left R-module with finite projective dimension. So 

A = 0 .  

Lemma 2. Let R be a left coherent ring and T a right coherent ring with the con- 

dition (RA, R B ~ ) .  If RA and BT are finitely presented, then for n > 0, Ext;l(A, B) 

is a finitely presented right T-module. 

Proof. It is clear that for n 2 0, Ext;l( A, B)  is a right T-module. Suppose N is a 

finitely presented left R-module, there are integers ~ , t  2 1, such that R* + Rt 4 

N -+ 0 is exact. Then 0 + H o ~ R ( N , B )  -+ Bt -, B' is an exact sequence of 

right T-modules. Since T is a right coherent ring and Im(Bt 4 B') is a finitely 

generated right T-submodule of the finitely presented module B', Im(Bt + B') is 

finitely presented. By [I, Proposition 1.61 HomR(N, B)  is a finitely generated right 

T-submodule of the finitely presented module Bt and hence HomR(N, B) is also a 
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HOMOLOGICAL DIMENSIONS OF SIMPLE MODULES 3263 

finitely presented right T-module. Since RA is finitely presented, 0 -+ K -+ F -+ 

A -, 0 is exact, where K is a finitely presented left R-module and F is a finitely 

generated free left R-module. It follows that HomR(K,B) -, Extk(A, B) -t 0 

is exact and for n > 1, ~xt? '(A, B) 2 Ext l (K,  B). Then we can obtain our 

conclusion by induction on n. 0 

The proof of the following lemma is similar to that of [6, Lemma 3.60 and 

Theorem 9.511, we omit it (Note: The proof is based on Lemma 2). 

Lemma 3. Let R be a left coherent ring and T a right coherent ring. In the con- 

dition (RA, RBT, CT), for n > 0, T o e ( H o m T ( ~ ,  C), A) % HomT(Ext?((A, B), C), 

where RA and BT are finitely presented, CT is FP-injective. 

Now we prove Theorem 11. 

Proof of Theorem II. By Lemma 3, for any finitely presented left R-module A, 

we have that Torf(HomT(T, T), A) Hom~(Ext;i(d,  T), T). So Torf(T, A) Z 

HomT(Extk(A, T), T). We know that Extz(A, T)  is a finitely presented right T- 

module by Lemma 2. Then T O ~ ~ ( T , A )  = O if and only if Ext;((A,T) = O by 

Lemma 1. It is easy to see that r . fd~(T)  = 1.FP - i d ~ ( T ) .  O 

Corollary 4. (Ding and Chen) Let R be a commutative coherent ring, S a simple 

R-module. Then fdR(S) = i d ~ ( S )  = FP - idR(S). 

Proof. Since S is a simple R-module, there is a maximal ideal m of R such that 

S 2 R/m. So S is a simple ring. We get our conclusion by Corollary 3 and 

Theorem 11. 0 

Finally, let's prove Theorem 111. 

Proof of Theorem III. For any left R-module A, we have that Extl(A, HomT(T, E)) 2 

H o m T ( ~ o r f ( ~ , ~ ) ,  E) by [2, Chapter VI, Proposition 5.11. Then Extz(A, E )  

H o m T ( ~ o r f ( ~ , A ) ,  E). Since E is an injective cogenerator in the category of 

left T-modules, Extl(A, E) = 0 if and only if Torf(T,A) = 0. It follows that 

l.idR(E) = r.fdR(T). 

Corollary 5. (Wang) Let R -+ T be a ring homomorphism with R a commutative 

ring, T a commutative noetherian ring and self-injective. Then fdR(T) = idR(T). 

Particularly, T is R-flat if and only if T is R-injective. 
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