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ON THE GRADE OF MODULES OVER NOETHERIAN RINGS
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Department of Mathematics, Nanjing University, Nanjing, China

Let � be a left and right noetherian ring and mod� the category of finitely generated
left �-modules. In this article, we show the following results. �1� For a positive integer
k, the condition that the subcategory of mod� consisting of i-torsionfree modules
coincides with the subcategory of mod� consisting of i-syzygy modules for any 1 ≤ i ≤
k is left-right symmetric. �2� If � is an �-Gorenstein ring and N is in mod�op with
gradeN = k < �, then N is pure of grade k if and only if N can be embedded into a
finite direct sum of copies of the �k+ 1�st term in a minimal injective resolution of �
as a right �-module. �3� Assume that both the left and right self-injective dimensions
of � are k. If grade Extk��M��� ≥ k for any M ∈ mod� and grade Exti��N��� ≥ i

for any N ∈ mod�op and 1 ≤ i ≤ k− 1, then the socle of the last term in a minimal
injective resolution of � as a right �-module is nonzero.

Key Words: Flat dimension; k-Gorenstein rings; k-Syzygy modules; k-Torsionfree modules; Pure
modules; Socle; (Strong) Grade of modules.
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1. INTRODUCTION

Throughout this article, � is a left and right noetherian ring, and mod�
denotes the category of finitely generated left �-modules. It is well known that the
properties of grade of modules are useful to characterize rings as well as to study
the dual properties of modules (see, for example, Auslander and Bridger, 1969;
Auslander and Reiten, 1996; Björk, 1989; Fossum et al., 1975; Huang, 1999, 2003;
Huang and Qin, Preprint). In this article, we study the homological properties of
modules over noetherian rings, especially over k-Gorenstein rings and related rings,
under some grade conditions of modules.

Let M be in mod� (resp. mod�op). For a non-negative integer t, we say that
the grade of M is equal to t, denoted by gradeM = t, if Exti��M��� = 0 for any
0 ≤ i < t and Extt��M��� �= 0. We say the strong grade of M is equal to t, denoted
by s.gradeM = t, if gradeA = t for each nonzero submodule A of M . Moreover,
if Exti��M��� = 0 for any i ≥ 0, then we write gradeM = � (see Auslander and
Bridger, 1969).
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For a positive integer k, Auslander and Bridger (1969) introduced the notion
of k-torsionfree modules. Such a class of modules is natural and interesting in
homological algebra. It was showed in Auslander and Bridger (1969, Theorem 2.17)
that a k-torsionfree module is k-syzygy; but the converse is not true in general.
It was showed in Auslander and Bridger (1969, Proposition 2.26) that an i-syzygy
module is i-torsionfree for any 1 ≤ i ≤ k if and only if gradeExti+1

� �M��� ≥ i for
any M ∈ mod� and 1 ≤ i ≤ k− 1. We show in Section 2 that this result is left-
right symmetric. Under these equivalent conditions we show that l�fin�dim� ≤ k if
and only if � satisfies the condition that N = 0 for every N ∈ mod�op satisfying
gradeN ≥ k+ 1. As a corollary, we get that if the left flat dimension of the ith
term in a minimal injective resolution of � as a left �-module is at most i for all i,
then the left self-injective dimension of � and its small left finitistic dimension are
identical, and the difference between the right self-injective dimension of � and its
small right finitistic dimension is at most one.

Noncommutative Gorenstein rings are already defined. These are rings for
which the (left/right) self-injective dimension of the ring is finite. In addition, recall
that � is called k-Gorenstein if the right flat dimension of the ith term in a minimal
injective resolution of � as a right �-module is at most i− 1 for any 1 ≤ i ≤ k; and
� is called an �-Gorenstein ring if it is k-Gorenstein for all k (see Fossum et al.,
1975; Fuller and Iwanaga, 1993). Auslander gave some useful equivalent conditions
of k-Gorenstein rings in term of the right flat dimension and grade of modules as
follows, which shows that the notion of k-Gorenstein rings is left-right symmetric.

Auslander’s Theorem (Fossum et al., 1975, Theorem 3.7). The following state-
ments are equivalent for �:

(1) � is a k-Gorenstein ring;
(2) The left flat dimension of the ith term in a minimal injective resolution of � as a left

�-module is at most i− 1 for any 1 ≤ i ≤ k;
(3) s.gradeExti��M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k;
(4) s.gradeExti��N��� ≥ i for any N ∈ mod�op and 1 ≤ i ≤ k.

In Section 3 we study the purity of modules over k-Gorenstein rings. Let k be
a non-negative integer and � a �k+ 1�-Gorenstein ring. For a module M ∈ mod�op

with gradeN = k < �, we show that N is pure of grade k if and only if N can
be embedded into a finite direct sum of copies of the �k+ 1�st term in a minimal
injective resolution of � as a right �-module.

Assume that both the left and right self-injective dimensions of � are k. If
gradeExtk��M��� ≥ k for any M ∈ mod� and gradeExti��N��� ≥ i for any N ∈
mod�op and 1 ≤ i ≤ k− 1, we show in Section 4 that the socle of the last term in a
minimal injective resolution of � as a right �-module is nonzero. As an immediate
result, we have that if � is k-Gorenstein with both the left and right self-injective
dimensions k, then the socle of the last term in a minimal injective resolution of �
as a right �-module is also nonzero.

In the following, we assume that

0 → � → I0 → I1 → · · · → Ii → · · ·
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is a minimal injective resolution of � as a right �-module, and that

0 → � → I ′0 → I ′1 → · · · → I ′i → · · ·

is a minimal injective resolution of � as a left �-module. For a left �-module
M , l.fd�M , l.pd�M , and l.id�M denote the left flat dimension, the left projective
dimension, and the left injective dimension of M , respectively, and for a right
�-module N , r.fd�N , r.pd�N , and r.id�N denote the right flat dimension, the right
projective dimension, and the right injective dimension of N , respectively.

2. k-TORSIONFREE MODULES AND k-SYZYGY MODULES

Let M be in mod� (resp. mod�op), and let �M � M → M∗∗ via �M�x��f� =
f�x� for any x ∈ M and f ∈ M∗ be the canonical evaluation homomorphism, where
� �∗ = Hom��−� ��. M is called a torsionless module if �M is a monomorphism; and
M is called a reflexive module if �M is an isomorphism. For a positive integer k, we
call M a k-syzygy module if there is an exact sequence

0 → M → Q0 → Q1 → · · · → Qk−1

with all Qi finitely generated projective. On the other hand, assume that

P1

f−→ P0 → M → 0

is a resolution of M with P0 and P1 finitely generated projective. Then we get an
exact sequence

0 → M∗ → P∗
0

f∗−→ P∗
1 → X → 0�

where X = Coker f ∗. M is called a k-torsionfree module if Exti��X��� = 0 for any
1 ≤ i ≤ k (see Auslander and Bridger, 1969). Because X is unique up to projective
summands, the notion of k-torsionfree modules is well defined. By Hoshino (1993,
Lemma 1.5), we have the exact sequence

0 → Ext1��X��� → M
�M−→ M∗∗ → Ext2��X��� → 0�

So M is 1-torsionfree if and only if it is torsionless if and only if it is 1-syzygy;
and that M is 2-torsionfree if and only if it is reflexive. We use � k�mod�� (resp.
�k�mod��) to denote the full subcategory of mod� consisting of k-torsionfree
modules (resp. k-syzygy modules). It is known from Auslander and Bridger (1969,
Theorem 2.17), that � k�mod�� ⊆ �k�mod��. So, it is natural to ask when they are
identical. Auslander and Bridger (1969) proved the following result.

Proposition 2.1 (Auslander and Bridger, 1969, Proposition 2.26 or Auslander and
Reiten, 1996, Proposition 1.6). For a positive integer k, the following statements are
equivalent:

(1) gradeExti+1
� �M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k− 1;

(2) �i�mod�� = � i�mod�� for any 1 ≤ i ≤ k.
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In this section we show this result is left-right symmetric. To get our result we
need two lemmas.

Lemma 2.2 (Hoshino, 1993, Lemma 1.6). The following statements are equivalent:

(1) 	Ext2��M���
∗ = 0 for any M ∈ mod�;

(2) 	Ext2��N���
∗ = 0 for any N ∈ mod�op;
(3) M∗ is reflexive for any M ∈ mod�;
(4) N ∗ is reflexive for any N ∈ mod�op.

Lemma 2.3 (Hoshino, 1993, Lemma 6.2). Let n be a non-negative integer and
X ∈ mod� (resp. mod�op). If gradeX ≥ n and gradeExtn��X��� ≥ n+ 1, then
Extn��X��� = 0.

Theorem 2.4. For a positive integer k, the following statements are equivalent:

(1) gradeExti+1
� �M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k− 1;

(2) �i�mod�� = � i�mod�� for any 1 ≤ i ≤ k;
(3) gradeExti+1

� �N��� ≥ i for any N ∈ mod�op and 1 ≤ i ≤ k− 1;
(4) �i�mod�op� = � i�mod�op� for any 1 ≤ i ≤ k.

Proof. By Proposition 2.1 and its dual statement, we get the equivalence of (1) and
(2) and that of (3) and (4). In the following, we prove (3) implies (1) by induction
on k. The case k = 1 is trivial. The case k = 2 follows from Lemma 2.2. Now
suppose k ≥ 3.

Let M ∈ mod� and

· · · → Pi → · · · → P1 → P0 → M → 0

a projective resolution of M in mod�. Put Mi = Coker �Pi → Pi−1� (where M1 =
M) and Xi = Coker�P∗

i−1 → P∗
i � for any i ≥ 1. By the induction hypothesis, we have

gradeExti+1
� �M��� ≥ i for any 1 ≤ i ≤ k− 2 and gradeExtk��M��� ≥ k− 2. So it

suffices to prove Extk−2
� �Extk��M������ = 0.

By Proposition 2.1, �i�mod�� = � i�mod�� for any 1 ≤ i ≤ k− 1. Since
Mt ∈ �k−1�mod�� for any t ≥ k, Mt ∈ � k−1�mod�� for any t ≥ k. It follows that
Exti��Xt��� = 0 for any 1 ≤ i ≤ k− 1 and t ≥ k.

On the other hand, by Huang (2003, Lemma 2) we have the exact sequence

0 → Extk��M��� → Xk → P∗
k+1 → Xk+1 → 0�

Put K = Im�Xk → P∗
k+1�. From the exactness of 0 → K → P∗

k+1 → Xk+1 → 0, we
know that Exti��K��� = 0 for any 1 ≤ i ≤ k− 2 and Extk−1

� �K��� 
 Extk��Xk+1� ��.
Moreover, from the exactness of 0 → Extk��M��� → Xk → K → 0 we know that
Extk−1

� �K��� 
 Extk−2
� �Extk��M������. So Extk−2

� �Extk��M������ 
 Extk��Xk+1� ��.
By (3) we then have gradeExtk−2

� �Extk��M������ = gradeExtk��Xk+1� �� ≥ k− 1.
It follows from Lemma 2.3 that Extk−2

� (Extk��M������ = 0. Dually, we have (1)
implies (3). �
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Corollary 2.5. The following statements are equivalent:

(1) gradeExti+1
� �M��� ≥ i for any M ∈ mod� and i ≥ 1;

(2) �i�mod�� = � i�mod�� for any i ≥ 1;
(3) gradeExti+1

� �N��� ≥ i for any N ∈ mod�op and i ≥ 1;
(4) �i�mod�op� = � i�mod�op� for any i ≥ 1.

Remark. (1) We remark that if r.fd�Ii ≤ i+ 1 for any 0 ≤ i ≤ k− 2 (especially,
if � is �k− 1�-Gorenstein), then the condition (1) in Theorem 2.4 is satisfied by
Auslander and Reiten (1996, Proposition 2.2).

(2) Consider the following grade conditions.

�ak� s.gradeExti��M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k.
�bk� gradeExti��M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k.
�ck� s.gradeExti+1

� �M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k.
�dk� gradeExti+1

� �M��� ≥ i for any M ∈ mod� and 1 ≤ i ≤ k.

About the symmetry of these conditions, the following facts are known: Both
�ak� and �dk� are left-right symmetric by Auslander’s Theorem and Theorem 2.4,
respectively. Neither �bk� nor �ck� are left-right symmetric by Huang (1999,
Theorem 3.3 and p. 1460 “Remark”). On the other hand, we clearly have the
implications �ak� ⇒ �bk� ⇒ �dk� and �ak� ⇒ �ck� ⇒ �dk�. However, by the above
argument, none of these implications can be reversed.

Corollary 2.6. Let � be a left and a right artinian ring. If one of the equivalent
conditions in Theorem 2.4 is satisfied for �, then l.id�� ≤ k if and only if r.id�� ≤ k.
In particular, if one of the equivalent conditions in Corollary 2.5 is satisfied for �, then
l.id�� = r.id��.

Proof. By assumption, we have gradeExtk��M��� ≥ k− 1 for any M ∈ mod�. If
r.id�� ≤ k, then l.id�� ≤ 2k− 1 by Huang (2003, Theorem). It follows from Zaks
(1969, Lemma A) that l.id�� = r.id���≤k�. The converse is proved dually. The
latter assertion follows easily from the former one. �

Recall that the small left finitistic dimension of �, written l.fin.dim�, is defined
to be sup �l.pd�M �M is in mod� with l.pd�M < ��. The small right finitistic
dimension of � is defined dually and is denoted by r.fin.dim�. As an application of
Theorem 2.4, we will prove the following theorem.

Theorem 2.7. Let k be a non-negative integer. If one of the equivalent conditions in
Theorem 2.4 is satisfied for �, then the following statements are equivalent:

(1) l.fin.dim� ≤ k;
(2) N = 0 for every N ∈ mod�op satisfying gradeN ≥ k+ 1.

To prove this theorem, we need some lemmas.
Let n be a positive integer and

Pn

dn−→ Pn−1

dn−1−→ · · · d2−→ P2

d1−→ P1 → A → 0

a projective resolution of A in mod� (resp. mod�op). Put X = Coker d∗
n.
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Lemma 2.8 (Hoshino, 1993, Lemma 1.5). Let A and X be as above. If
Exti��A��� = 0 for any 1 ≤ i ≤ n− 1, then we have the following exact sequence:

0 → Extn��X��� → A
�A−→ A∗∗ → Extn+1

� �X��� → 0�

In particular, when n = 1, we obtain the exact sequence

0 → Ext1��X��� → A
�A−→ A∗∗ → Ext2��X��� → 0�

where X = Coker d∗
1 .

Lemma 2.9. l.fin.dim� = 0 if and only if N = 0 for every N ∈ mod�op satisfying
N ∗ = 0.

Proof. By Bass (1960, Corollary 5.6 and Theorem 5.4). �

Lemma 2.10. l.fin.dim� ≤ 1 if and only if N = 0 for every N ∈ mod�op satisfying
N ∗ = 0 = Ext1��N���.

Proof. The necessity. Let N be in mod�op with N ∗ = 0 = Ext1��N��� and

0 → K → P → N → 0

an exact sequence in mod�op with P projective. Then K∗�
P∗� is projective. By
Bass (1960, Proposition 5.3), K is projective. It then follows from Lemma 2.3 that
we have an exact sequence

0 → Ext1��Ext
1
��N������ → N

�N→ N ∗∗�

But N ∗ = 0 = Ext1��N���, so N = 0.
The sufficiency. It suffices to show that if there is an exact sequence

0 → P1 → P0 → M → 0

in mod� with P0 and P1 projective and M torsionless, then M is projective. Put
N = Coker�P∗

0 → P∗
1 �. Then N ∗ = 0 since P0 and P1 are reflexive. By Lemma 2.8 we

have that Ext1��N��� 
 Ker �M = 0. Then N = 0 by assumption. So M∗ and M∗∗

are projective. On the other hand, we have an exact sequence

0 → P∗∗
1 → P∗∗

0 → M∗∗ → 0�

Thus M is reflexive, and therefore it is projective. �

The next lemma finishes the proof of Theorem 2.7 in one direction.

Lemma 2.11. Let k be a non-negative integer. If l.fin.dim� ≤ k, then N = 0 for every
N ∈ mod�op satisfying gradeN ≥ k+ 1.
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Proof. The cases k = 0 and k = 1 have been proved in Lemmas 2.9 and 2.10,
respectively. Now suppose k ≥ 2.

Let N be in mod�op with gradeN ≥ k+ 1 and

· · · → Qk+1 → Qk → · · · → Q1 → Q0 → N → 0

a projective resolution of N in mod�op. Put Y = Coker�Q∗
k → Q∗

k+1�. Then l.pd�Y ≤
k+ 1. By assumption l.fin.dim� ≤ k, hence l.pd�Y ≤ k. On the other hand, by
Lemma 2.8 we have that N 
 Extk+1

� �Y���. It follows that N = 0. �

We now recall some notions from Jans (1963). A monomorphism X∗∗ ∗→ Y ∗

in mod� (resp. mod�op) is called a double dual embedding if it is the dual of
an epimorphism Y

→ X∗ in mod�op (resp. mod�). For a positive integer k, a
torsionless module Tk in mod� (resp. mod�op) is said to be of D-class k if it can
be fitted into a diagram of the form

0 −−→ T ∗∗
k−1 −−→ Pk−1 −−→ Tk −−→ 0

�

�Tk−1

· · · −−→Pk−2 −−→ Tk−1 −−→ 0

· · ·
0 −−→ T ∗∗

2 −−→ · · ·
�


�T2

0 −−→ T ∗∗
1 −−→ P1 −−→ T2 −−→ 0

where each Pi is projective in mod� (resp. mod�op) and the horizontal
monomorphisms are double dual embeddings. Any torsionless module is said to be
of D-class 1.

Lemma 2.12 (Jans, 1963, Theorem 4.2). For a positive integer k, the following
statements are equivalent:

(1) l.fin.dim� ≤ k;
(2) The only modules of D-class k in mod�op with projective duals are the projective

modules.

Lemma 2.13. Assume that � satisfies one of the equivalent conditions in Theorem 2.4
and let k be a non-negative integer. If � in addition satisfies the condition that N = 0
for every N ∈ mod�op satisfying gradeN ≥ k+ 1, then l.fin.dim� ≤ k.

Proof. By Lemmas 2.9 and 2.10, we only need to prove the case k ≥ 2.
Let Tk be a module of D-class k in mod�op with T ∗

k projective (where k ≥
2). From the proof of Jans (1963, Theorem 2.1) we know that there are exact
sequences

0 → T ∗∗
i

∗i→ P∗
i

�∗i→ Ti+1 → 0 �i�∗
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0 → T ∗
i+1

�−1
Pi

�∗i−→ Pi

i→ T ∗
i → 0 (i)

for any 1 ≤ i ≤ k− 1, where all Pi are projective in mod� and all Ti are of D-class
i in mod�op. Then we have an exact sequence

0 → T ∗
k−1 → Pk−2 → · · · → P2 → P1 → T ∗

1 → 0�

It is trivial that T ∗
1 is 2-syzygy. So T ∗

k−1 is k-syzygy and hence it is k-torsionfree by
Theorem 2.4.

The exact sequence �k− 1� induces an exact sequence

0 → T ∗∗
k−1

∗k−1−→P∗
k−1

�∗k−1��
−1
Pk−1

�∗

−→ T ∗∗
k → N → 0� (†)

where N = Coker��∗
k−1��

−1
Pk−1

�∗�. Since T ∗
k is projective and T ∗

k−1 is k-torsionfree,
Exti��N��� = 0 for any 1 ≤ i ≤ k. On the other hand, notice that T ∗

k and Pk−1 are
reflexive, it then follows that N ∗ = 0 and so gradeN ≥ k+ 1. Thus, by assumption,
we have that N = 0, and the exact sequence �†� splits.

By Anderson and Fuller (1992, Proposition 20.14), we have ��−1
Pk−1

�∗ =
��∗

Pk−1
�−1 = �P∗

k−1
. We in addition note that �Tk

�k−1 = �∗∗
k−1�P∗

k−1
. So we have the

following commutative diagram with exact rows

0 −−→ T ∗∗
k−1

∗k−1−−→ P∗
k−1

�k−1−−−−−→ Tk −−→ 0∥
∥
∥
∥

∥
∥
∥
∥




��Tk

0 −−→ T ∗∗
k−1

∗k−1−−→ P∗
k−1

�∗∗k−1��
−1
Pk−1

�∗

−−−−−−→ T ∗∗
k −−→ 0�

Then it is trivial that �Tk
is an isomorphism, and so Tk is projective. It follows from

Lemma 2.12 that l.fin.dim� ≤ k. �

Now Theorem 2.7 follows from Lemmas 2.11 and 2.13.
It was showed in Huang and Qin (Preprint, Theorem 2.12) that for a �k+

1�-Gorenstein ring �, if l.fin.dim� = k, then l.id� � ≤ k. The following corollary
generalizes this result.

Corollary 2.14. Let k be a non-negative integer. If l.fd�I
′
i ≤ i+ 1 for any 0 ≤ i ≤ k,

then we have:

(1) l.id�� = k if and only if l.fin.dim� = k;
(2) k ≤ r.id�� ≤ k+ 1 if r.fin.dim� = k.

In particular, if � is �k+ 1�-Gorenstein, then l.id� � = k if and only if
l.fin.dim� = k, and r.id� � = k if and only if r.fin.dim� = k.

Proof. It is well known that l.id�� ≥ l.fin.dim� and r.id�� ≥ r.fin.dim�.
Assume that l.fd�I

′
i ≤ i+ 1 for any 0 ≤ i ≤ k. Then, by the dual statement

of Auslander and Reiten (1996, Theorem 4.7), we have that gradeExti��M��� ≥
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i and s.gradeExti+1
� �N��� ≥ i for any M ∈ mod�, N ∈ mod�op and 1 ≤ i ≤ k+

1. If l.fin.dim� = k, then Extk+1
� �M��� = 0 by Theorem 2.7, hence l.id�� ≤ k. On

the other hand, if r.fin.dim� = k, then Extk+2
� �M��� = 0 by the dual statement of

Theorem 2.7, hence r.id�� ≤ k+ 1.
In particular, if � is �k+ 1�-Gorenstein, then, by Auslander’s Theorem and

Theorem 2.7, we get our conclusion similarly. �

Corollary 2.15. If l.fd�I
′
i ≤ i+ 1 for any i ≥ 0, then l.id�� = l.fin.dim� and

r.fin.dim� ≤ r.id�� ≤ r.fin.dim�+ 1. In particular, if � is an �-Gorenstein ring,
then l.id�� = l.fin.dim� and r.id�� = r.fin.dim�.

3. FLAT DIMENSION AND GRADE OF MODULES

Recall that � has dominant dimension at least k, written dom�dim� ≥ k, if Ii is
flat for any 0 ≤ i ≤ k− 1. We write dom�dim� = � if Ii is flat for all i. In addition,
we denote Ki = Ker�Ii → Ii+1� for any i ≥ 0.

Proposition 3.1. dom�dim� = � if and only if s.gradeExt1��M��� = � for any
M ∈ mod�.

Proof. The Sufficiency. Assume that s.gradeExt1��M��� = � for any M ∈ mod�.
We will prove that Hom��Ext

1
��M���� Ii� = 0 for any M ∈ mod� and i ≥ 0

by using induction on i. We first claim that Hom��Ext
1
��M���� I0� = 0. Otherwise,

there is a nonzero homomorphism f � Ext1��M��� → I0. Then Im f ∩� �= 0 since
� is essential in I0. So there is a submodule f−1�Im f ∩�� of Ext1��M��� such
that Hom��f

−1�Im f ∩����� �= 0, which contradicts that s.gradeExt1��M��� = �.
Thus we conclude that Hom��Ext

1
��M���� I0� = 0. Now suppose i ≥ 1. Consider

the exact sequence

0 → Hom��Ext
1
��M����Ki−1� → Hom��Ext

1
��M���� Ii−1�

→ Hom��Ext
1
��M����Ki� → Exti��Ext

1
��M������ → 0

for any i ≥ 1. Since s.gradeExt1��M��� = �, Exti��Ext
1
��M������ = 0. On the

other hand, by the induction hypothesis we have Hom��Ext
1
��M���� Ii−1� =

0. So, by the above exact sequence, we have Hom��Ext
1
��M����Ki� = 0. By

using an argument similar to the proof of the case i = 0 we then get that
Hom��Ext

1
��M���� Ii� = 0. The assertion is proved.

By Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3), we have that
Tor�1 �Ii�M� 
 Hom��Ext

1
��M���� Ii� = 0 for any M ∈ mod�, which implies that Ii

is flat for any i ≥ 0.

The Necessity. If dom�dim� = �, then � is an �-Gorenstein ring and
s.gradeExt1��M��� ≥ 1 for any M ∈ mod�. Let X be a submodule of Ext1��M���.
Then gradeX ≥ 1. Consider the exact sequence

0 → Hom��X�Ki� → Hom��X� Ii� → Hom��X�Ki+1� → Exti+1
� �X��� → 0

for any i ≥ 0. Since dom�dim� = �, Ii is flat for any i ≥ 0. By Berrick and
Keating (2000, Theorem 5.2.7), each Ii is a direct limit of free modules in mod�op.
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So Hom��X� Ii� = 0 and hence Hom��X�Ki� = 0. By the exactness of the above
sequence, we have Exti��X��� = 0 for any i ≥ 0 and gradeX = �. �

The generalized Nakayama conjecture has an equivalent version as follows:
grade S < � for any simple module S in mod�op over an artin algebra � (see
Auslander and Reiten, 1975); and the strong Nakayama conjecture says that
gradeN = � implies N = 0 for any N in mod�op (see Colby and Fuller, 1990).
It is clear that the generalized Nakayama conjecture is a special case of the
strong Nakayama conjecture. The following result shows that these conjectures are
equivalent if the right flat dimension of each Ii is finite.

Proposition 3.2. If r.fd�Ii < � for all i, then the following statements are equivalent:

(1) gradeN = � implies N = 0 for any N in mod�op;
(2) grade S < � for any simple module S in mod�op;
(3)

⊕
i≥0 Ii is an injective cogenerator for the category of right �-modules.

Proof. �1� ⇒ �2� It is trivial.

�2� ⇒ �3� Let S be a simple module in mod�op. By (2), grade S < � and
there is a non-negative integer t such that Extt��S��� �= 0.

Consider the exact sequences

0 → Hom��S�Ki� → Hom��S� Ii�

and

Hom��S�Ki� → Exti��S��� → 0�

where Ki = Ker�Ii → Ii+1� for any i ≥ 0. Since Extt��S��� �= 0, Hom��S�Kt� �= 0.
So Hom��S� It� �= 0 and Hom��S�

⊕
i≥0 Ii� �= 0. It then follows from Anderson and

Fuller (1992, Proposition 18.15) that
⊕

i≥0 Ii is an injective cogenerator for the
category of right �-modules.

�3� ⇒ �1� Let N ∈ mod�op with gradeN = � and

· · · → Qi → · · · → Q1 → Q0 → N → 0

a projective resolution of N in mod�op. Put Xi = Coker�Q∗
i−1 → Q∗

i � for any i ≥ 1.
By Lemma 2.8, we have N 
 Exti��Xi��� for any i ≥ 1.

Without loss of generality, we assume that r.fd�Ii = ni�<�� for any i ≥
0. It follows from Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3)
that Hom��N� Ii� 
 Hom��Ext

ni+1
� �Xni+1� ��� Ii� 
 Tor�ni+1�Ii� Xni+1� = 0 for any i ≥

0. So Hom��N�
⊕

i≥0 Ii� = 0. However,
⊕

i≥0 Ii is an injective cogenerator for the
category of right �-modules. We then conclude that N = 0. �

The famous Nakayama conjecture says that an artin algebra � is self-injective
if dom�dim� = �. From Auslander and Reiten (1975) we know that the generalized
Nakayama conjecture implies the Nakayama conjecture. By Propositions 3.1
and 3.2, we give here a simple proof of this implication. Assume that the generalized
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Nakayama conjecture is true. If dom�dim� = �, then s.gradeExt1��M��� = �
for any M ∈ mod� by Proposition 3.1. It follows from Proposition 3.2 that
Ext1��M��� = 0 for any M ∈ mod�, and � is self-injective.

In the rest of this section, we study the properties of pure modules. Let k be a
non-negative integer. A nonzero module M in mod� (resp. mod�op) is said to be
pure of grade k if gradeA = k for each nonzero submodule A of M . The notion of
pure modules here coincides with that given in Björk (1989) when � is Auslander–
Gorenstein.

Lemma 3.3. Let � be a 1-Gorenstein ring. Then a module N in mod�op is pure of
grade 0 if and only if it is torsionless.

Proof. If N is torsionless, then each nonzero submodule A of N is also torsionless
and so A∗ �= 0, that is, gradeA = 0. Conversely, assume that N is pure of grade 0.
By Lemma 2.8, there is a module A ∈ mod� such that Ker �N 
 Ext1��M���. Since
� is 1-Gorenstein, 	Ext1��M���
∗ = 0. So Ext1��M��� = 0 since N is pure of grade 0.
It follows that �N is a monomorphism and N is torsionless. �

Remark. The proof of Lemma 3.3 in fact proves the following more general result.
If 	Ext1��M���
∗ = 0 for any M ∈ mod�, then a module N in mod�op is pure of
grade 0 if and only if it is torsionless. So, by the dual statement of Auslander and
Reiten (1996, Theorem 4.7) we have that if � is a noetherian algebra with l.fd�I

′
0 ≤

1, then a module N in mod�op is pure of grade 0 if and only if it is torsionless.

Lemma 3.4. Let k be a positive integer and m ≥ −1 an integer. Then the following
statements are equivalent:

(1) r.fd�

⊕k−1
i=0 Ii ≤ k+m;

(2) s.gradeExtk+m+1
� �M��� ≥ k for any M ∈ mod�.

Proof. It was proved in Huang (1999, Theorem 2.8) in case m is a non-negative
integer. When m = −1, the proof is similar to that of Huang (1999, Theorem 2.8),
so we omit it. �

The following lemma is a dual statement of Lemma 3.4.

Lemma 3.5. Let k be a positive integer and m ≥ −1 an integer. Then the following
statements are equivalent:

(1) l.fd�

⊕k−1
i=0 I

′
i ≤ k+m;

(2) s.gradeExtk+m+1
� �N��� ≥ k for any N ∈ mod�op.

We are now in a position to give the main result in this section.

Theorem 3.6. Let k be a non-negative integer and N in mod�op with gradeN =
k < �.

(1) If l.fd�

⊕k
i=0 I

′
i ≤ k and N is pure of grade k, then N can be embedded into a finite

direct sum of copies of Ik.
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(2) If r.fd�

⊕k−1
i=0 Ii ≤ k− 1, r.fd�Ik ≤ k, and N can be embedded into a finite direct

sum of copies of Ik, then N is pure of grade k.

Proof. The case k = 0 follows from Lemma 3.3. Now suppose k ≥ 1.

(1) Also put Ki = Ker�Ii → Ii+1� for any i ≥ 0. Since N is pure of grade
k, gradeX = k for any submodule X of N . Then it is not difficult to see that
Hom��N� Ii� = 0 for any 0 ≤ i ≤ k− 1 and so Extk��N��� 
 Hom��N�Kk�.

Let �1� �2� � � � � �n be a set of generators of Hom��N�Kk� in End��Kk�.
Put � = ��1� �2� � � � � �n�

′ � N → K
�n�
k , U = Ker � and V = Im �. We use � � N →

V to denote the natural epimorphism. Since gradeN = k and gradeU ≥ k by
assumption, gradeV ≥ k. By using an argument similar to the above, we then have
Extk��V��� 
 Hom��V�Kk�. In addition, it is not difficult to see that Hom����Kk�
is an epimorphism, so Hom����Kk� � Hom��V�Kk� → Hom��N�Kk� is also an
epimorphism and hence an isomorphism.

On the other hand, we have an exact sequence

0 = Extk−1
� �U��� → Extk��V���

Extk������−→ Extk��N��� → Extk��U��� → Extk+1
� �V����

So Extk������ is an isomorphism and Extk��U��� is isomorphic to a submodule
of Extk+1

� �V���. Since l.fd�

⊕k
i=0 I

′
i ≤ k, gradeExtk��U��� ≥ k+ 1 by Lemma 3.5.

It then follows from Lemma 2.3 that Extk��U��� = 0 and gradeU ≥ k+ 1, which
implies that U = 0 and � is a monomorphism.

(2) Since gradeN = k, by Lemma 2.8, there is an X ∈ mod� such that N 

Extk��X���. On the other hand, notice that r.fd�

⊕k−1
i=0 Ii ≤ k− 1, so s.gradeN =

s.gradeExtk��X��� ≥ k by Lemma 3.4.
Let U be a submodule of N . Then gradeU ≥ k. If gradeU ≥ k+ 1, then,

again by Lemma 2.8, there is a Y ∈ mod� such that U 
 Extk+1
� �Y���. It follows

from Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3) that Hom��U� Ik� 

Hom��Ext

k+1
� �Y���� Ik� 
 Tor�k+1�Ik� Y� = 0 since r.fd�Ik ≤ k. However, U can be

embedded into a finite direct sum of copies of Ik, so U = 0. This completes the
proof. �

Especially, we have the following theorem.

Theorem 3.7. Let k be a non-negative integer and � a �k+ 1�-Gorenstein ring. Then
the following statements are equivalent for a module N ∈ mod�op with gradeN =
k < �:

(1) N is pure of grade k;
(2) N can be embedded into a finite direct sum of copies of Ik.

Corollary 3.8 (Hoshino, 1993, Theorem 6.3). Let I be an indecomposable injective
right �-module with r.fd�I = k < �. If r.fd�

⊕k−1
i=0 Ii ≤ k− 1 and l.fd�

⊕k
i=0 I

′
i ≤ k,

then I appears as a direct summand of Ik.

Proof. We first prove the case k = 0. Let 0 �= X be a finitely generated submodule
of I . Then I is the injective envelope of X. By Lazard (1969, Theorem 1.2), X is
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torsionless. So X can be embedded into a finite direct sum of copies of �, and hence
I can be embedded into a finite direct sum of copies of I0, which yields that I is
isomorphic to a direct summand of I0.

Now suppose k ≥ 1. Put E = ⊕k−1
i=0 Ii. Then r.fd�E ≤ k− 1. Notice that

r.fd�I = k, so E does not cogenerate I and hence there is a submodule X of I
such that Hom��X�E� = 0. We may assume that X is finitely generated. Let Y be
a submodule of X. Clearly, we have Hom��Y� E� = 0. It follows that gradeY ≥ k. If
grade Y ≥ k+ 1, then by Lemma 2.8, there is a module M ∈ mod� such that Y 

Extk+1

� �M���. Thus, by Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3),
we have Hom��Y� I� 
 Hom��Ext

k+1
� �M���� I� 
 Tor�k+1�I�M� = 0 since r.fd�I = k,

which is a contradiction. Therefore, X is pure of grade k. By Theorem 3.6, X, and
hence I , can be embedded into a finite direct sum of copies of Ik. This completes the
proof. �

Recall that � is called an Auslander–Gorenstein ring if it is an �-Gorenstein
ring with finite left and right self-injective dimensions.

Corollary 3.9. Let � be an Auslander–Gorenstein ring and M in mod� with
gradeM = k. Then Extk��M��� can be embedded into a finite direct sum of Ik.

Proof. By Huang and Qin (Preprint, Corollary 3.7), Extk��M��� is pure of grade
k. It follows from Theorem 3.7 that Extk��M��� can be embedded into a finite direct
sum of Ik. �

Proposition 3.10. Let � be an Auslander–Gorenstein ring with l.id�� = r.id�� = k.
Then Extk��M��� is pure of grade k for any M ∈ mod� with Extk��M��� �= 0.

Proof. Let M be in mod� with Extk��M��� �= 0. Since � is an �-Gorenstein ring,
s.gradeExtk��M��� ≥ k. Let Y be a submodule of Extk��M��� in mod�op. Then
grade Y ≥ k. If grade Y ≥ k+ 1, then grade Y = � since r.id�� = k. It follows from
Colby and Fuller (1990, Theorem 2) that Y = 0. This completes the proof. �

By Iwanaga and Sato (1996, Proposition 1), we have that if l.id�� =
r.id�� = k, then r.fd�Ik = k. So a k-Gorenstein ring with l.id�� = r.id�� = k is
just an Auslander–Gorenstein ring with l.id�� = r.id�� = k. By Theorem 3.7 and
Proposition 3.10, we then get the following corollary.

Corollary 3.11 (Iwanaga and Sato, 1996, Corollary 5). Let � be a k-Gorenstein
ring with l.id�� = r.id�� = k and M in mod�. Then Extk��M��� can be embedded
into a finite direct sum of Ik. Moreover, if Extk��M��� �= 0, then Extk��M��� is pure of
grade k.

Recall from Anderson and Fuller (1992) that a nonzero right �-module H is
called uniform if each of its nonzero submodules is essential in H .

Corollary 3.12. Let � be an Auslander–Gorenstein ring with l.id�� = r.id�� = k
and N a uniform module in mod�op. If N is pure of grade k, then N can be embedded
into Ik, but cannot be embedded into

⊕k−1
i=0 Ii (if k ≥ 1).
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Proof. Let N be a uniform module in mod�op. Then E�N� (the envelope of N )
is indecomposable. If N is pure of grade k, then, by Theorem 3.7, N and E�N�
can be embedded into a finite direct sum of Ik. So E�N� is isomorphic to a direct
summand of Ik and hence N can be embedded into Ik. On the other hand, if k ≥ 1,
then, by Iwanaga and Sato (1996, Corollary 7), we have that Ik and

⊕k−1
i=0 Ii have no

isomorphic direct summands in common. It follows from the above argument that
E�N�, and hence N , cannot be embedded into

⊕k−1
i=0 Ii. �

4. THE SOCLE OF THE LAST TERM IN A MINIMAL
INJECTIVE RESOLUTION

For a right �-module X, the unique largest semisimple submodule of X is
called the socle of X, and denoted by Soc�X� (see Anderson and Fuller, 1992). In
this section we show that under some grade conditions of modules the socle of Ik is
nonzero. In fact, we will prove the following theorem.

Theorem 4.1. Assume that l.id�� = r.id�� = k. If gradeExtk��M��� ≥ k for any
M ∈ mod� and gradeExti��N��� ≥ i for any N ∈ mod�op with 1 ≤ i ≤ k− 1, then
Soc�Ik� �= 0.

Proof. The case k ≤ 2 was proved in Hoshino (1993, Theorem 4.5). Now suppose
k ≥ 3.

Since l.id�� = k, there is a module M ∈ mod� such that Extk��M��� �= 0.
Let N be a maximal submodule of Extk��M��� and

0 → N → Extk��M��� → S → 0

an exact sequence in mod�op. Then S is simple.
Since gradeExti��N��� ≥ i for any N ∈ mod�op and 1 ≤ i ≤ k− 1 by

assumption, r.fd�Ii ≤ i+ 1 for any 0 ≤ i ≤ k− 2 by Auslander and Reiten (1996,
Theorem 0.1) and the remark following it. It follows from Cartan and Eilenberg
(1999, Chapter VI, Proposition 5.3) that Hom��Ext

k
��M���� Ii� 
 Tor�k �Ii�M� = 0

for any 0 ≤ i ≤ k− 2. We then have Hom��N� Ii� = 0 = Hom��S� Ii� for any 0 ≤
i ≤ k− 2, and therefore gradeN ≥ k− 1 and grade S ≥ k− 1.

On the other hand, gradeExtk��M��� ≥ k by assumption, so we have
Extk−1

� �S��� 
 Extk−2
� �N��� = 0 and hence grade S ≥ k. If grade S ≥ k+ 1, then

grade S = � since r.id�� = k. It follows from Lemma 2.8 that S is reflexive and
S = 0, which is a contradiction. So we conclude that grade S = k and Extk��S��� �=
0. Thus we have Hom��S� Ik� �= 0, which implies that S is isomorphic to a simple
submodule of Ik and Soc�Ik� �= 0. �

Corollary 4.2. Assume that � is a noetherian algebra with l.id�� = r.id�� = k.
If r.fd�Ii ≤ i+ 1 for any 0 ≤ i ≤ k− 2 and l.fd�I

′
i ≤ i+ 1 for any 0 ≤ i ≤ k− 1, then

Soc�Ik� �= 0.

Proof. Since r.fd�Ii ≤ i+ 1 for any 0 ≤ i ≤ k− 2, by Auslander and Reiten (1996,
Theorem 4.7) we have gradeExti��N��� ≥ i for any N ∈ mod�op and 1 ≤ i ≤ k− 1.
On the other hand, since l.fd�I

′
i ≤ i+ 1 for any 0 ≤ i ≤ k− 1, by the dual statement
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of Auslander and Reiten (1996, Theorem 4.7), we have gradeExti��M��� ≥ i for any
M ∈ mod� and 1 ≤ i ≤ k. We now get our conclusion by Theorem 4.1. �

From Auslander’s Theorem and Theorem 4.1, we obtain the following
corollary.

Corollary 4.3 (Fuller and Iwanaga, 1993, Proposition 1.1). Let � be an Auslander–
Gorenstein ringwith l.id�� = r.id�� = k. ThenSoc�Ik� �= 0.

Example 4.4. There are rings satisfying the assumption in Theorem 4.1 but not
satisfying the assumption in Corollary 4.3. Let K be a field and � the finite
dimensional path algebra over K given by the quiver

modulo the ideal generated by ��. Then l.fd�I
′
0 = l.fd�I

′
1 = r.fd�I0 = r.fd�I1 = 1,

l.fd�I
′
2 = r.fd�I2 = 2, and l.id�� = r.id�� = 2. By Auslander and Reiten (1996,

Theorem 4.7) and its dual statement, for any i ≥ 1, we have gradeExti��M��� ≥
i for any M ∈ mod� and gradeExti��N��� ≥ i for any N ∈ mod�op. So �
satisfies the assumption in Theorem 4.1 (in fact � also satisfies the assumption in
Corollary 4.2). But � is clearly not Auslander–Gorenstein.
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