# ON THE GRADE OF MODULES OVER NOETHERIAN RINGS 

Zhaoyong Huang<br>Department of Mathematics, Nanjing University, Nanjing, China

Let $\Lambda$ be a left and right noetherian ring and $\bmod \Lambda$ the category of finitely generated left $\Lambda$-modules. In this article, we show the following results. (1) For a positive integer $k$, the condition that the subcategory of mod $\Lambda$ consisting of i-torsionfree modules coincides with the subcategory of $\bmod \Lambda$ consisting of $i$-syzygy modules for any $1 \leq i \leq$ $k$ is left-right symmetric. (2) If $\Lambda$ is an $\infty$-Gorenstein ring and $N$ is in $\bmod \Lambda^{o p}$ with grade $N=k<\infty$, then $N$ is pure of grade $k$ if and only if $N$ can be embedded into a finite direct sum of copies of the $(k+1)$ st term in a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module. (3) Assume that both the left and right self-injective dimensions of $\Lambda$ are $k$. If $\operatorname{grade} \operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \geq k$ for any $M \in \bmod \Lambda$ and ${\operatorname{grade~} \operatorname{Ext}_{\Lambda}^{i}(N, \Lambda) \geq i}^{i}$ for any $N \in \bmod \Lambda^{o p}$ and $1 \leq i \leq k-1$, then the socle of the last term in a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module is nonzero.

Key Words: Flat dimension; $k$-Gorenstein rings; $k$-Syzygy modules; $k$-Torsionfree modules; Pure modules; Socle; (Strong) Grade of modules.

2000 Mathematics Subject Classification: 16E10; 16E30.

## 1. INTRODUCTION

Throughout this article, $\Lambda$ is a left and right noetherian ring, and $\bmod \Lambda$ denotes the category of finitely generated left $\Lambda$-modules. It is well known that the properties of grade of modules are useful to characterize rings as well as to study the dual properties of modules (see, for example, Auslander and Bridger, 1969; Auslander and Reiten, 1996; Björk, 1989; Fossum et al., 1975; Huang, 1999, 2003; Huang and Qin, Preprint). In this article, we study the homological properties of modules over noetherian rings, especially over $k$-Gorenstein rings and related rings, under some grade conditions of modules.

Let $M$ be in $\bmod \Lambda\left(\operatorname{resp} . \bmod \Lambda^{o p}\right)$. For a non-negative integer $t$, we say that the grade of $M$ is equal to $t$, denoted by grade $M=t$, if $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0$ for any $0 \leq i<t$ and $\operatorname{Ext}_{\Lambda}^{t}(M, \Lambda) \neq 0$. We say the strong grade of $M$ is equal to $t$, denoted by s.grade $M=t$, if grade $A=t$ for each nonzero submodule $A$ of $M$. Moreover, if $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda)=0$ for any $i \geq 0$, then we write grade $M=\infty$ (see Auslander and Bridger, 1969).

Received April 30, 2007; Revised August 16, 2007. Communicated by J. Kuzmanovich.
Address correspondence to Zhaoyong Huang, Department of Mathematics, Nanjing University, 22 Hankou Rd., Nanjing 210093, China; Fax: +86-25-83597130; E-mail: huangzy@nju.edu.cn

For a positive integer $k$, Auslander and Bridger (1969) introduced the notion of $k$-torsionfree modules. Such a class of modules is natural and interesting in homological algebra. It was showed in Auslander and Bridger (1969, Theorem 2.17) that a $k$-torsionfree module is $k$-syzygy; but the converse is not true in general. It was showed in Auslander and Bridger (1969, Proposition 2.26) that an $i$-syzygy module is $i$-torsionfree for any $1 \leq i \leq k$ if and only if grade $\operatorname{Ext}_{\Lambda}^{i+1}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k-1$. We show in Section 2 that this result is leftright symmetric. Under these equivalent conditions we show that 1.fin. $\operatorname{dim} \Lambda \leq k$ if and only if $\Lambda$ satisfies the condition that $N=0$ for every $N \in \bmod \Lambda^{o p}$ satisfying grade $N \geq k+1$. As a corollary, we get that if the left flat dimension of the $i$ th term in a minimal injective resolution of $\Lambda$ as a left $\Lambda$-module is at most $i$ for all $i$, then the left self-injective dimension of $\Lambda$ and its small left finitistic dimension are identical, and the difference between the right self-injective dimension of $\Lambda$ and its small right finitistic dimension is at most one.

Noncommutative Gorenstein rings are already defined. These are rings for which the (left/right) self-injective dimension of the ring is finite. In addition, recall that $\Lambda$ is called $k$-Gorenstein if the right flat dimension of the $i$ th term in a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module is at most $i-1$ for any $1 \leq i \leq k$; and $\Lambda$ is called an $\infty$-Gorenstein ring if it is $k$-Gorenstein for all $k$ (see Fossum et al., 1975; Fuller and Iwanaga, 1993). Auslander gave some useful equivalent conditions of $k$-Gorenstein rings in term of the right flat dimension and grade of modules as follows, which shows that the notion of $k$-Gorenstein rings is left-right symmetric.

Auslander's Theorem (Fossum et al., 1975, Theorem 3.7). The following statements are equivalent for $\Lambda$ :
(1) $\Lambda$ is a k-Gorenstein ring;
(2) The left flat dimension of the ith term in a minimal injective resolution of $\Lambda$ as a left $\Lambda$-module is at most $i-1$ for any $1 \leq i \leq k$;
(3) s.grade $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k$;
(4) $\operatorname{s.grade} \operatorname{Ext}_{\Lambda}^{i}(N, \Lambda) \geq i$ for any $N \in \bmod \Lambda^{o p}$ and $1 \leq i \leq k$.

In Section 3 we study the purity of modules over $k$-Gorenstein rings. Let $k$ be a non-negative integer and $\Lambda \mathrm{a}(k+1)$-Gorenstein ring. For a module $M \in \bmod \Lambda^{o p}$ with grade $N=k<\infty$, we show that $N$ is pure of grade $k$ if and only if $N$ can be embedded into a finite direct sum of copies of the $(k+1)$ st term in a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module.

Assume that both the left and right self-injective dimensions of $\Lambda$ are $k$. If $\operatorname{grade} \operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \geq k$ for any $M \in \bmod \Lambda$ and ${\operatorname{grade~} \operatorname{Ext}_{\Lambda}^{i}(N, \Lambda) \geq i \text { for any } N \in, ~}_{n}(N)$ $\bmod \Lambda^{o p}$ and $1 \leq i \leq k-1$, we show in Section 4 that the socle of the last term in a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module is nonzero. As an immediate result, we have that if $\Lambda$ is $k$-Gorenstein with both the left and right self-injective dimensions $k$, then the socle of the last term in a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module is also nonzero.

In the following, we assume that

$$
0 \rightarrow \Lambda \rightarrow I_{0} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{i} \rightarrow \cdots
$$

is a minimal injective resolution of $\Lambda$ as a right $\Lambda$-module, and that

$$
0 \rightarrow \Lambda \rightarrow I_{0}^{\prime} \rightarrow I_{1}^{\prime} \rightarrow \cdots \rightarrow I_{i}^{\prime} \rightarrow \cdots
$$

is a minimal injective resolution of $\Lambda$ as a left $\Lambda$-module. For a left $\Lambda$-module $M$, 1.fd ${ }_{\Lambda} M, 1 . \mathrm{pd}_{\Lambda} M$, and $1 . \mathrm{id}_{\Lambda} M$ denote the left flat dimension, the left projective dimension, and the left injective dimension of $M$, respectively, and for a right $\Lambda$-module $N, \operatorname{r.fd}_{\Lambda} N$, r.pd ${ }_{\Lambda} N$, and $\operatorname{rid}_{\Lambda} N$ denote the right flat dimension, the right projective dimension, and the right injective dimension of $N$, respectively.

## 2. $\boldsymbol{k}$-TORSIONFREE MODULES AND $\boldsymbol{k}$-SYZYGY MODULES

Let $M$ be in $\bmod \Lambda\left(\right.$ resp. $\left.\bmod \Lambda^{o p}\right)$, and let $\sigma_{M}: M \rightarrow M^{* *}$ via $\sigma_{M}(x)(f)=$ $f(x)$ for any $x \in M$ and $f \in M^{*}$ be the canonical evaluation homomorphism, where ()$^{*}=\operatorname{Hom}_{\Lambda}(-, \Lambda) . M$ is called a torsionless module if $\sigma_{M}$ is a monomorphism; and $M$ is called a reflexive module if $\sigma_{M}$ is an isomorphism. For a positive integer $k$, we call $M$ a $k$-syzygy module if there is an exact sequence

$$
0 \rightarrow M \rightarrow Q_{0} \rightarrow Q_{1} \rightarrow \cdots \rightarrow Q_{k-1}
$$

with all $Q_{i}$ finitely generated projective. On the other hand, assume that

$$
P_{1} \xrightarrow{f} P_{0} \rightarrow M \rightarrow 0
$$

is a resolution of $M$ with $P_{0}$ and $P_{1}$ finitely generated projective. Then we get an exact sequence

$$
0 \rightarrow M^{*} \rightarrow P_{0}^{*} \xrightarrow{f^{*}} P_{1}^{*} \rightarrow X \rightarrow 0,
$$

where $X=\operatorname{Coker} f^{*} . M$ is called a $k$-torsionfree module if $\operatorname{Ext}_{\Lambda}^{i}(X, \Lambda)=0$ for any $1 \leq i \leq k$ (see Auslander and Bridger, 1969). Because $X$ is unique up to projective summands, the notion of $k$-torsionfree modules is well defined. By Hoshino (1993, Lemma 1.5), we have the exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(X, \Lambda) \rightarrow M \xrightarrow{\sigma_{M}} M^{* *} \rightarrow \operatorname{Ext}_{\Lambda}^{2}(X, \Lambda) \rightarrow 0
$$

So $M$ is 1 -torsionfree if and only if it is torsionless if and only if it is 1 -syzygy; and that $M$ is 2 -torsionfree if and only if it is reflexive. We use $\mathscr{G}^{k}(\bmod \Lambda)$ (resp. $\left.\Omega^{k}(\bmod \Lambda)\right)$ to denote the full subcategory of $\bmod \Lambda$ consisting of $k$-torsionfree modules (resp. $k$-syzygy modules). It is known from Auslander and Bridger (1969, Theorem 2.17), that $\mathscr{T}^{k}(\bmod \Lambda) \subseteq \Omega^{k}(\bmod \Lambda)$. So, it is natural to ask when they are identical. Auslander and Bridger (1969) proved the following result.

Proposition 2.1 (Auslander and Bridger, 1969, Proposition 2.26 or Auslander and Reiten, 1996, Proposition 1.6). For a positive integer $k$, the following statements are equivalent:

(2) $\Omega^{i}(\bmod \Lambda)=\mathscr{T}^{i}(\bmod \Lambda)$ for any $1 \leq i \leq k$.

In this section we show this result is left-right symmetric. To get our result we need two lemmas.

Lemma 2.2 (Hoshino, 1993, Lemma 1.6). The following statements are equivalent:
(1) $\left[\operatorname{Ext}_{\Lambda}^{2}(M, \Lambda)\right]^{*}=0$ for any $M \in \bmod \Lambda$;
(2) $\left[\operatorname{Ext}_{\Lambda}^{2}(N, \Lambda)\right]^{*}=0$ for any $N \in \bmod \Lambda^{o p}$;
(3) $M^{*}$ is reflexive for any $M \in \bmod \Lambda$;
(4) $N^{*}$ is reflexive for any $N \in \bmod \Lambda^{o p}$.

Lemma 2.3 (Hoshino, 1993, Lemma 6.2). Let $n$ be a non-negative integer and $X \in \bmod \Lambda\left(\right.$ resp. $\left.\bmod \Lambda^{o p}\right)$. If $\operatorname{grade} X \geq n$ and $\operatorname{grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{n}(X, \Lambda) \geq n+1$, then $\operatorname{Ext}_{\Lambda}^{n}(X, \Lambda)=0$.

Theorem 2.4. For a positive integer $k$, the following statements are equivalent:

(2) $\Omega^{i}(\bmod \Lambda)=\mathscr{T}^{i}(\bmod \Lambda)$ for any $1 \leq i \leq k$;
(3) $\operatorname{grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{i+1}(N, \Lambda) \geq i$ for any $N \in \bmod \Lambda^{o p}$ and $1 \leq i \leq k-1$;
(4) $\Omega^{i}\left(\bmod \Lambda^{o p}\right)=\mathscr{T}^{i}\left(\bmod \Lambda^{o p}\right)$ for any $1 \leq i \leq k$.

Proof. By Proposition 2.1 and its dual statement, we get the equivalence of (1) and (2) and that of (3) and (4). In the following, we prove (3) implies (1) by induction on $k$. The case $k=1$ is trivial. The case $k=2$ follows from Lemma 2.2. Now suppose $k \geq 3$.

Let $M \in \bmod \Lambda$ and

$$
\cdots \rightarrow P_{i} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

a projective resolution of $M$ in $\bmod \Lambda$. Put $M_{i}=\operatorname{Coker}\left(P_{i} \rightarrow P_{i-1}\right)$ (where $M_{1}=$ $M)$ and $X_{i}=\operatorname{Coker}\left(P_{i-1}^{*} \rightarrow P_{i}^{*}\right)$ for any $i \geq 1$. By the induction hypothesis, we have $\operatorname{grade} \operatorname{Ext}_{\Lambda}^{i+1}(M, \Lambda) \geq i$ for any $1 \leq i \leq k-2$ and $\operatorname{gradeExt}_{\Lambda}^{k}(M, \Lambda) \geq k-2$. So it suffices to prove $\operatorname{Ext}_{\Lambda}^{k-2}\left(\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda), \Lambda\right)=0$.

By Proposition 2.1, $\Omega^{i}(\bmod \Lambda)=\mathscr{T}^{i}(\bmod \Lambda)$ for any $1 \leq i \leq k-1$. Since $M_{t} \in \Omega^{k-1}(\bmod \Lambda)$ for any $t \geq k, M_{t} \in \mathscr{G}^{k-1}(\bmod \Lambda)$ for any $t \geq k$. It follows that $\operatorname{Ext}_{\Lambda}^{i}\left(X_{t}, \Lambda\right)=0$ for any $1 \leq i \leq k-1$ and $t \geq k$.

On the other hand, by Huang (2003, Lemma 2) we have the exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \rightarrow X_{k} \rightarrow P_{k+1}^{*} \rightarrow X_{k+1} \rightarrow 0
$$

Put $K=\operatorname{Im}\left(X_{k} \rightarrow P_{k+1}^{*}\right)$. From the exactness of $0 \rightarrow K \rightarrow P_{k+1}^{*} \rightarrow X_{k+1} \rightarrow 0$, we know that $\operatorname{Ext}_{\Lambda}^{i}(K, \Lambda)=0$ for any $1 \leq i \leq k-2$ and $\operatorname{Ext}_{\Lambda}^{k-1}(K, \Lambda) \cong \operatorname{Ext}_{\Lambda}^{k}\left(X_{k+1}, \Lambda\right)$. Moreover, from the exactness of $0 \rightarrow \operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \rightarrow X_{k} \rightarrow K \rightarrow 0$ we know that $\operatorname{Ext}_{\Lambda}^{k-1}(K, \Lambda) \cong \operatorname{Ext}_{\Lambda}^{k-2}\left(\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda), \Lambda\right) . \operatorname{So~}_{\operatorname{Ext}_{\Lambda}^{k-2}}\left(\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda), \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{k}\left(X_{k+1}, \Lambda\right)$. By (3) we then have $\operatorname{grade}_{\operatorname{Ext}_{\Lambda}^{k-2}}\left(\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda), \Lambda\right)=\operatorname{grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}\left(X_{k+1}, \Lambda\right) \geq k-1$. It follows from Lemma 2.3 that $\operatorname{Ext}_{\Lambda}^{k-2}\left(\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda), \Lambda\right)=0$. Dually, we have (1) implies (3).

Corollary 2.5. The following statements are equivalent:
(1) grade $^{\operatorname{Ext}_{\Lambda}^{i+1}}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $i \geq 1$;
(2) $\Omega^{i}(\bmod \Lambda)=\mathscr{T}^{i}(\bmod \Lambda)$ for any $i \geq 1$;
(3) $\operatorname{grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{i+1}(N, \Lambda) \geq i$ for any $N \in \bmod \Lambda^{o p}$ and $i \geq 1$;
(4) $\Omega^{i}\left(\bmod \Lambda^{o p}\right)=\mathscr{T}^{i}\left(\bmod \Lambda^{o p}\right)$ for any $i \geq 1$.

Remark. (1) We remark that if $\operatorname{r.fd}_{\Lambda} I_{i} \leq i+1$ for any $0 \leq i \leq k-2$ (especially, if $\Lambda$ is $(k-1)$-Gorenstein), then the condition (1) in Theorem 2.4 is satisfied by Auslander and Reiten (1996, Proposition 2.2).
(2) Consider the following grade conditions.
$\left(a_{k}\right)$ s.grade $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k$.
$\left(b_{k}\right)$ grade $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k$.
( $c_{k}$ ) s.grade $\operatorname{Ext}_{\Lambda}^{i+1}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k$.
$\left(d_{k}\right) \operatorname{grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{i+1}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k$.
About the symmetry of these conditions, the following facts are known: Both $\left(a_{k}\right)$ and $\left(d_{k}\right)$ are left-right symmetric by Auslander's Theorem and Theorem 2.4, respectively. Neither $\left(b_{k}\right)$ nor $\left(c_{k}\right)$ are left-right symmetric by Huang (1999, Theorem 3.3 and p. 1460 "Remark"). On the other hand, we clearly have the implications $\left(a_{k}\right) \Rightarrow\left(b_{k}\right) \Rightarrow\left(d_{k}\right)$ and $\left(a_{k}\right) \Rightarrow\left(c_{k}\right) \Rightarrow\left(d_{k}\right)$. However, by the above argument, none of these implications can be reversed.

Corollary 2.6. Let $\Lambda$ be a left and a right artinian ring. If one of the equivalent conditions in Theorem 2.4 is satisfied for $\Lambda$, then $1 . \mathrm{id}_{\Lambda} \Lambda \leq k$ if and only if $\operatorname{r.id}_{\Lambda} \Lambda \leq k$. In particular, if one of the equivalent conditions in Corollary 2.5 is satisfied for $\Lambda$, then 1.id ${ }_{\Lambda} \Lambda=\operatorname{rid}_{\Lambda} \Lambda$.

Proof. By assumption, we have grade $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \geq k-1$ for any $M \in \bmod \Lambda$. If $\operatorname{r.id}_{\Lambda} \Lambda \leq k$, then $1 . \operatorname{id}_{\Lambda} \Lambda \leq 2 k-1$ by Huang (2003, Theorem). It follows from Zaks (1969, Lemma A) that $1 . \mathrm{id}_{\Lambda} \Lambda=\operatorname{rid}_{\Lambda} \Lambda(\leq k)$. The converse is proved dually. The latter assertion follows easily from the former one.

Recall that the small left finitistic dimension of $\Lambda$, written 1.fin. $\operatorname{dim} \Lambda$, is defined to be $\sup \left\{1 \cdot \operatorname{pd}_{\Lambda} M \mid M\right.$ is in $\bmod \Lambda$ with $\left.1 \cdot \operatorname{pd}_{\Lambda} M<\infty\right\}$. The small right finitistic dimension of $\Lambda$ is defined dually and is denoted by r.fin. $\operatorname{dim} \Lambda$. As an application of Theorem 2.4, we will prove the following theorem.

Theorem 2.7. Let $k$ be a non-negative integer. If one of the equivalent conditions in Theorem 2.4 is satisfied for $\Lambda$, then the following statements are equivalent:
(1) $1 . f \mathrm{fin} . \operatorname{dim} \Lambda \leq k$;
(2) $N=0$ for every $N \in \bmod \Lambda^{o p}$ satisfying grade $N \geq k+1$.

To prove this theorem, we need some lemmas.
Let $n$ be a positive integer and

$$
P_{n} \xrightarrow{d_{n}} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} P_{2} \xrightarrow{d_{1}} P_{1} \rightarrow A \rightarrow 0
$$

a projective resolution of $A$ in $\bmod \Lambda\left(\operatorname{resp} . \bmod \Lambda^{o p}\right)$. Put $X=$ Coker $d_{n}^{*}$.

Lemma 2.8 (Hoshino, 1993, Lemma 1.5). Let $A$ and $X$ be as above. If $\operatorname{Ext}_{\Lambda}^{i}(A, \Lambda)=0$ for any $1 \leq i \leq n-1$, then we have the following exact sequence:

$$
0 \rightarrow \operatorname{Ext}_{\Lambda}^{n}(X, \Lambda) \rightarrow A \xrightarrow{\sigma_{A}} A^{* *} \rightarrow \operatorname{Ext}_{\Lambda}^{n+1}(X, \Lambda) \rightarrow 0 .
$$

In particular, when $n=1$, we obtain the exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}(X, \Lambda) \rightarrow A \xrightarrow{\sigma_{A}} A^{* *} \rightarrow \operatorname{Ext}_{\Lambda}^{2}(X, \Lambda) \rightarrow 0
$$

where $X=$ Coker $d_{1}^{*}$.
Lemma 2.9. 1.fin. $\operatorname{dim} \Lambda=0$ if and only if $N=0$ for every $N \in \bmod \Lambda^{\text {op }}$ satisfying $N^{*}=0$.

Proof. By Bass (1960, Corollary 5.6 and Theorem 5.4).
Lemma 2.10. 1.fin. $\operatorname{dim} \Lambda \leq 1$ if and only if $N=0$ for every $N \in \bmod \Lambda^{\text {op }}$ satisfying $N^{*}=0=\operatorname{Ext}_{\Lambda}^{1}(N, \Lambda)$.

Proof. The necessity. Let $N$ be in $\bmod \Lambda^{o p}$ with $N^{*}=0=\operatorname{Ext}_{\Lambda}^{1}(N, \Lambda)$ and

$$
0 \rightarrow K \rightarrow P \rightarrow N \rightarrow 0
$$

an exact sequence in $\bmod \Lambda^{o p}$ with $P$ projective. Then $K^{*}\left(\cong P^{*}\right)$ is projective. By Bass (1960, Proposition 5.3), $K$ is projective. It then follows from Lemma 2.3 that we have an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\Lambda}^{1}\left(\operatorname{Ext}_{\Lambda}^{1}(N, \Lambda), \Lambda\right) \rightarrow N \xrightarrow{\sigma_{N}} N^{* *}
$$

But $N^{*}=0=\operatorname{Ext}_{\Lambda}^{1}(N, \Lambda)$, so $N=0$.
The sufficiency. It suffices to show that if there is an exact sequence

$$
0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

in $\bmod \Lambda$ with $P_{0}$ and $P_{1}$ projective and $M$ torsionless, then $M$ is projective. Put $N=\operatorname{Coker}\left(P_{0}^{*} \rightarrow P_{1}^{*}\right)$. Then $N^{*}=0$ since $P_{0}$ and $P_{1}$ are reflexive. By Lemma 2.8 we have that $\operatorname{Ext}_{\Lambda}^{1}(N, \Lambda) \cong \operatorname{Ker} \sigma_{M}=0$. Then $N=0$ by assumption. So $M^{*}$ and $M^{* *}$ are projective. On the other hand, we have an exact sequence

$$
0 \rightarrow P_{1}^{* *} \rightarrow P_{0}^{* *} \rightarrow M^{* *} \rightarrow 0
$$

Thus $M$ is reflexive, and therefore it is projective.
The next lemma finishes the proof of Theorem 2.7 in one direction.
Lemma 2.11. Let $k$ be a non-negative integer. If $1 . f i n \cdot \operatorname{dim} \Lambda \leq k$, then $N=0$ for every $N \in \bmod \Lambda^{o p}$ satisfying grade $N \geq k+1$.

Proof. The cases $k=0$ and $k=1$ have been proved in Lemmas 2.9 and 2.10, respectively. Now suppose $k \geq 2$.

Let $N$ be in $\bmod \Lambda^{o p}$ with grade $N \geq k+1$ and

$$
\cdots \rightarrow Q_{k+1} \rightarrow Q_{k} \rightarrow \cdots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow N \rightarrow 0
$$

a projective resolution of $N$ in $\bmod \Lambda^{o p}$. Put $Y=\operatorname{Coker}\left(Q_{k}^{*} \rightarrow Q_{k+1}^{*}\right)$. Then 1.pd ${ }_{\Lambda} Y \leq$ $k+1$. By assumption l.fin. $\operatorname{dim} \Lambda \leq k$, hence 1.pd ${ }_{\Lambda} Y \leq k$. On the other hand, by Lemma 2.8 we have that $N \cong \operatorname{Ext}_{\Lambda}^{k+1}(Y, \Lambda)$. It follows that $N=0$.

We now recall some notions from Jans (1963). A monomorphism $X^{* *} \xrightarrow{\rho^{*}} Y^{*}$ in $\bmod \Lambda\left(\right.$ resp. $\left.\bmod \Lambda^{o p}\right)$ is called a double dual embedding if it is the dual of an epimorphism $Y \xrightarrow{\rho} X^{*}$ in $\bmod \Lambda^{o p}($ resp. $\bmod \Lambda$ ). For a positive integer $k$, a torsionless module $T_{k}$ in $\bmod \Lambda\left(\operatorname{resp} . \bmod \Lambda^{o p}\right)$ is said to be of $D$-class $k$ if it can be fitted into a diagram of the form

$$
\begin{aligned}
& 0 \longrightarrow T_{k-1}^{* *} \longrightarrow P_{k-1} \longrightarrow T_{k} \longrightarrow 0 \\
& \cdots \longrightarrow P_{k-2} \longrightarrow{ }_{T_{k-1}}^{{ }^{\sigma_{k-1}}} \longrightarrow 0 \\
& \begin{array}{r}
0 \longrightarrow T_{2}^{* *} \longrightarrow \cdots \\
0 \longrightarrow T_{1}^{* *} \longrightarrow P_{1} \longrightarrow T_{2} \longrightarrow 0
\end{array}
\end{aligned}
$$

where each $P_{i}$ is projective in $\bmod \Lambda\left(\right.$ resp. $\left.\bmod \Lambda^{o p}\right)$ and the horizontal monomorphisms are double dual embeddings. Any torsionless module is said to be of $D$-class 1 .

Lemma 2.12 (Jans, 1963, Theorem 4.2). For a positive integer $k$, the following statements are equivalent:
(1) $1 . \mathrm{fin} \cdot \operatorname{dim} \Lambda \leq k$;
(2) The only modules of $D$-class $k$ in $\bmod \Lambda^{o p}$ with projective duals are the projective modules.

Lemma 2.13. Assume that $\Lambda$ satisfies one of the equivalent conditions in Theorem 2.4 and let $k$ be a non-negative integer. If $\Lambda$ in addition satisfies the condition that $N=0$ for every $N \in \bmod \Lambda^{o p}$ satisfying grade $N \geq k+1$, then 1. fin. $\operatorname{dim} \Lambda \leq k$.

Proof. By Lemmas 2.9 and 2.10, we only need to prove the case $k \geq 2$.
Let $T_{k}$ be a module of $D$-class $k$ in $\bmod \Lambda^{o p}$ with $T_{k}^{*}$ projective (where $k \geq$ 2). From the proof of Jans (1963, Theorem 2.1) we know that there are exact sequences

$$
\begin{equation*}
0 \rightarrow T_{i}^{* *} \xrightarrow{\rho_{i}^{*}} P_{i}^{*} \xrightarrow{\pi_{i}^{*}} T_{i+1} \rightarrow 0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow T_{i+1}^{*} \xrightarrow{\sigma_{P_{i}}^{-1} \pi_{i}^{*}} P_{i} \xrightarrow{\rho_{i}} T_{i}^{*} \rightarrow 0 \tag{i}
\end{equation*}
$$

for any $1 \leq i \leq k-1$, where all $P_{i}$ are projective in $\bmod \Lambda$ and all $T_{i}$ are of $D$-class $i$ in $\bmod \Lambda^{o p}$. Then we have an exact sequence

$$
0 \rightarrow T_{k-1}^{*} \rightarrow P_{k-2} \rightarrow \cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow T_{1}^{*} \rightarrow 0
$$

It is trivial that $T_{1}^{*}$ is 2 -syzygy. So $T_{k-1}^{*}$ is $k$-syzygy and hence it is $k$-torsionfree by Theorem 2.4.

The exact sequence $(k-1)$ induces an exact sequence

$$
0 \rightarrow T_{k-1}^{* *} \xrightarrow{\rho_{k-1}^{*}} P_{k-1}^{*} \xrightarrow{\pi_{k-1}^{*}\left(\sigma_{P_{k-1}}^{1}\right)^{*}} T_{k}^{* *} \rightarrow N \rightarrow 0,
$$

where $N=\operatorname{Coker}\left(\pi_{k-1}^{*}\left(\sigma_{P_{k-1}}^{-1}\right)^{*}\right)$. Since $T_{k}^{*}$ is projective and $T_{k-1}^{*}$ is $k$-torsionfree, $\operatorname{Ext}_{\Lambda}^{i}(N, \Lambda)=0$ for any $1 \leq i \leq k$. On the other hand, notice that $T_{k}^{*}$ and $P_{k-1}$ are reflexive, it then follows that $N^{*}=0$ and so grade $N \geq k+1$. Thus, by assumption, we have that $N=0$, and the exact sequence $(\dagger)$ splits.

By Anderson and Fuller (1992, Proposition 20.14), we have $\left(\sigma_{P_{k-1}}^{-1}\right)^{*}=$ $\left(\sigma_{P_{k-1}}^{*}\right)^{-1}=\sigma_{P_{k-1}^{*}}$. We in addition note that $\sigma_{T_{k}} \pi_{k-1}=\pi_{k-1}^{* *} \sigma_{P_{k-1}^{*}}$. So we have the following commutative diagram with exact rows


Then it is trivial that $\sigma_{T_{k}}$ is an isomorphism, and so $T_{k}$ is projective. It follows from Lemma 2.12 that $1 . f i n . \operatorname{dim} \Lambda \leq k$.

Now Theorem 2.7 follows from Lemmas 2.11 and 2.13.
It was showed in Huang and Qin (Preprint, Theorem 2.12) that for a $(k+$ $1)$-Gorenstein ring $\Lambda$, if $1 . \operatorname{fin} \cdot \operatorname{dim} \Lambda=k$, then $1 . \operatorname{id}_{\Lambda} \Lambda \leq k$. The following corollary generalizes this result.

Corollary 2.14. Let $k$ be a non-negative integer. If $1 . \mathrm{fd}_{\Lambda} I_{i}^{\prime} \leq i+1$ for any $0 \leq i \leq k$, then we have:
(1) $1 . \operatorname{id}_{\Lambda} \Lambda=k$ if and only if $1 . f i n \cdot \operatorname{dim} \Lambda=k$;
(2) $k \leq \operatorname{r.id}_{\Lambda} \Lambda \leq k+1$ if r.fin. $\operatorname{dim} \Lambda=k$.

In particular, if $\Lambda$ is $(k+1)$-Gorenstein, then $1 . \mathrm{id}_{\Lambda} \Lambda=k$ if and only if 1.fin. $\operatorname{dim} \Lambda=k$, and $\operatorname{rid}_{\Lambda} \Lambda=k$ if and only if r.fin. $\operatorname{dim} \Lambda=k$.

Proof. It is well known that $1 . \mathrm{id}_{\Lambda} \Lambda \geq$ 1.fin. $\operatorname{dim} \Lambda$ and r.id ${ }_{\Lambda} \Lambda \geq$ r.fin. $\operatorname{dim} \Lambda$.
Assume that $1 . \mathrm{fd}_{\Lambda} I_{i}^{\prime} \leq i+1$ for any $0 \leq i \leq k$. Then, by the dual statement of Auslander and Reiten (1996, Theorem 4.7), we have that ${\operatorname{grade} \operatorname{Ext}{ }_{\Lambda}{ }^{i}(M, \Lambda) \geq}$
$i$ and s.grade $\operatorname{Ext}_{\Lambda}^{i+1}(N, \Lambda) \geq i$ for any $M \in \bmod \Lambda, N \in \bmod \Lambda^{o p}$ and $1 \leq i \leq k+$ 1. If 1.fin. $\operatorname{dim} \Lambda=k$, then $\operatorname{Ext}_{\Lambda}^{k+1}(M, \Lambda)=0$ by Theorem 2.7, hence $1 . \mathrm{id}_{\Lambda} \Lambda \leq k$. On the other hand, if r.fin. $\operatorname{dim} \Lambda=k$, then $\operatorname{Ext}_{\Lambda}^{k+2}(M, \Lambda)=0$ by the dual statement of Theorem 2.7, hence $\operatorname{rid}_{\Lambda} \Lambda \leq k+1$.

In particular, if $\Lambda$ is $(k+1)$-Gorenstein, then, by Auslander's Theorem and Theorem 2.7, we get our conclusion similarly.

Corollary 2.15. If $1 . \mathrm{fd}_{\Lambda} I_{i}^{\prime} \leq i+1$ for any $i \geq 0$, then $1 . \mathrm{id}_{\Lambda} \Lambda=1$.fin. $\operatorname{dim} \Lambda$ and r.fin. $\operatorname{dim} \Lambda \leq \operatorname{rid}_{\Lambda} \Lambda \leq \mathrm{r} . f i n . \operatorname{dim} \Lambda+1$. In particular, if $\Lambda$ is an $\infty$-Gorenstein ring, then 1.id ${ }_{\Lambda} \Lambda=$ l.fin. $\operatorname{dim} \Lambda$ and $r . \operatorname{id}_{\Lambda} \Lambda=$ r.fin. $\operatorname{dim} \Lambda$.

## 3. FLAT DIMENSION AND GRADE OF MODULES

Recall that $\Lambda$ has dominant dimension at least $k$, written $\operatorname{dom} \cdot \operatorname{dim} \Lambda \geq k$, if $I_{i}$ is flat for any $0 \leq i \leq k-1$. We write dom. $\operatorname{dim} \Lambda=\infty$ if $I_{i}$ is flat for all $i$. In addition, we denote $K_{i}=\operatorname{Ker}\left(I_{i} \rightarrow I_{i+1}\right)$ for any $i \geq 0$.

Proposition 3.1. dom. $\operatorname{dim} \Lambda=\infty$ if and only if $\operatorname{s.grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{1}(M, \Lambda)=\infty$ for any $M \in \bmod \Lambda$.

Proof. The Sufficiency. Assume that s.grade $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)=\infty$ for any $M \in \bmod \Lambda$.
We will prove that $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{i}\right)=0$ for any $M \in \bmod \Lambda$ and $i \geq 0$ by using induction on $i$. We first claim that $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{0}\right)=0$. Otherwise, there is a nonzero homomorphism $f: \operatorname{Ext}_{\Lambda}^{1}(M, \Lambda) \rightarrow I_{0}$. Then $\operatorname{Im} f \cap \Lambda \neq 0$ since $\Lambda$ is essential in $I_{0}$. So there is a submodule $f^{-1}(\operatorname{Im} f \cap \Lambda)$ of $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)$ such that $\operatorname{Hom}_{\Lambda}\left(f^{-1}(\operatorname{Im} f \cap \Lambda), \Lambda\right) \neq 0$, which contradicts that s.grade Ext ${ }_{\Lambda}^{1}(M, \Lambda)=\infty$. Thus we conclude that $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{0}\right)=0$. Now suppose $i \geq 1$. Consider the exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), K_{i-1}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{i-1}\right) \\
& \rightarrow \operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), K_{i}\right) \rightarrow \operatorname{Ext}_{\Lambda}^{i}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), \Lambda\right) \rightarrow 0
\end{aligned}
$$

for any $i \geq 1$. Since $\operatorname{s.grade}_{\operatorname{Ext}}^{1}{ }_{\Lambda}(M, \Lambda)=\infty, \operatorname{Ext}_{\Lambda}^{i}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), \Lambda\right)=0$. On the other hand, by the induction hypothesis we have $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{i-1}\right)=$ 0 . So, by the above exact sequence, we have $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), K_{i}\right)=0$. By using an argument similar to the proof of the case $i=0$ we then get that $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{i}\right)=0$. The assertion is proved.

By Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3), we have that $\operatorname{Tor}_{1}^{\Lambda}\left(I_{i}, M\right) \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda), I_{i}\right)=0$ for any $M \in \bmod \Lambda$, which implies that $I_{i}$ is flat for any $i \geq 0$.

The Necessity. If dom. $\operatorname{dim} \Lambda=\infty$, then $\Lambda$ is an $\infty$-Gorenstein ring and s.grade $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda) \geq 1$ for any $M \in \bmod \Lambda$. Let $X$ be a submodule of $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)$. Then grade $X \geq 1$. Consider the exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\Lambda}\left(X, K_{i}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(X, I_{i}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(X, K_{i+1}\right) \rightarrow \operatorname{Ext}_{\Lambda}^{i+1}(X, \Lambda) \rightarrow 0
$$

for any $i \geq 0$. Since $\operatorname{dom} \cdot \operatorname{dim} \Lambda=\infty, I_{i}$ is flat for any $i \geq 0$. By Berrick and Keating (2000, Theorem 5.2.7), each $I_{i}$ is a direct limit of free modules in $\bmod \Lambda^{o p}$.

So $\operatorname{Hom}_{\Lambda}\left(X, I_{i}\right)=0$ and hence $\operatorname{Hom}_{\Lambda}\left(X, K_{i}\right)=0$. By the exactness of the above sequence, we have $\operatorname{Ext}_{\Lambda}^{i}(X, \Lambda)=0$ for any $i \geq 0$ and grade $X=\infty$.

The generalized Nakayama conjecture has an equivalent version as follows: grade $S<\infty$ for any simple module $S$ in $\bmod \Lambda^{o p}$ over an artin algebra $\Lambda$ (see Auslander and Reiten, 1975); and the strong Nakayama conjecture says that grade $N=\infty$ implies $N=0$ for any $N$ in $\bmod \Lambda^{o p}$ (see Colby and Fuller, 1990). It is clear that the generalized Nakayama conjecture is a special case of the strong Nakayama conjecture. The following result shows that these conjectures are equivalent if the right flat dimension of each $I_{i}$ is finite.

Proposition 3.2. If $\mathrm{r} . \mathrm{fd}_{\Lambda} I_{i}<\infty$ for all $i$, then the following statements are equivalent:
(1) grade $N=\infty$ implies $N=0$ for any $N$ in $\bmod \Lambda^{o p}$;
(2) grade $S<\infty$ for any simple module $S$ in $\bmod \Lambda^{o p}$;
(3) $\bigoplus_{i \geq 0} I_{i}$ is an injective cogenerator for the category of right $\Lambda$-modules.

Proof. (1) $\Rightarrow$ (2) It is trivial.
(2) $\Rightarrow$ (3) Let $S$ be a simple module in $\bmod \Lambda^{o p}$. By (2), grade $S<\infty$ and there is a non-negative integer $t$ such that $\operatorname{Ext}_{\Lambda}^{t}(S, \Lambda) \neq 0$.

Consider the exact sequences

$$
0 \rightarrow \operatorname{Hom}_{\Lambda}\left(S, K_{i}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(S, I_{i}\right)
$$

and

$$
\operatorname{Hom}_{\Lambda}\left(S, K_{i}\right) \rightarrow \operatorname{Ext}_{\Lambda}^{i}(S, \Lambda) \rightarrow 0,
$$

where $K_{i}=\operatorname{Ker}\left(I_{i} \rightarrow I_{i+1}\right)$ for any $i \geq 0$. Since $\operatorname{Ext}_{\Lambda}^{t}(S, \Lambda) \neq 0, \operatorname{Hom}_{\Lambda}\left(S, K_{t}\right) \neq 0$. So $\operatorname{Hom}_{\Lambda}\left(S, I_{t}\right) \neq 0$ and $\operatorname{Hom}_{\Lambda}\left(S, \bigoplus_{i \geq 0} I_{i}\right) \neq 0$. It then follows from Anderson and Fuller (1992, Proposition 18.15) that $\bigoplus_{i \geq 0} I_{i}$ is an injective cogenerator for the category of right $\Lambda$-modules.
(3) $\Rightarrow$ (1) Let $N \in \bmod \Lambda^{o p}$ with grade $N=\infty$ and

$$
\cdots \rightarrow Q_{i} \rightarrow \cdots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow N \rightarrow 0
$$

a projective resolution of $N$ in $\bmod \Lambda^{o p}$. Put $X_{i}=\operatorname{Coker}\left(Q_{i-1}^{*} \rightarrow Q_{i}^{*}\right)$ for any $i \geq 1$. By Lemma 2.8, we have $N \cong \operatorname{Ext}_{\Lambda}^{i}\left(X_{i}, \Lambda\right)$ for any $i \geq 1$.

Without loss of generality, we assume that $\operatorname{r.fd}_{\Lambda} I_{i}=n_{i}(<\infty)$ for any $i \geq$ 0. It follows from Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3) that $\operatorname{Hom}_{\Lambda}\left(N, I_{i}\right) \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{n_{i}+1}\left(X_{n_{i}+1}, \Lambda\right), I_{i}\right) \cong \operatorname{Tor}_{n_{i}+1}^{\Lambda}\left(I_{i}, X_{n_{i}+1}\right)=0$ for any $i \geq$ 0 . So $\operatorname{Hom}_{\Lambda}\left(N, \bigoplus_{i \geq 0} I_{i}\right)=0$. However, $\bigoplus_{i \geq 0} I_{i}$ is an injective cogenerator for the category of right $\Lambda$-modules. We then conclude that $N=0$.

The famous Nakayama conjecture says that an artin algebra $\Lambda$ is self-injective if dom. $\operatorname{dim} \Lambda=\infty$. From Auslander and Reiten (1975) we know that the generalized Nakayama conjecture implies the Nakayama conjecture. By Propositions 3.1 and 3.2, we give here a simple proof of this implication. Assume that the generalized

Nakayama conjecture is true. If dom. $\operatorname{dim} \Lambda=\infty$, then $\operatorname{s.grade} \operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)=\infty$ for any $M \in \bmod \Lambda$ by Proposition 3.1. It follows from Proposition 3.2 that $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)=0$ for any $M \in \bmod \Lambda$, and $\Lambda$ is self-injective.

In the rest of this section, we study the properties of pure modules. Let $k$ be a non-negative integer. A nonzero module $M$ in $\bmod \Lambda\left(\right.$ resp. $\left.\bmod \Lambda^{o p}\right)$ is said to be pure of grade $k$ if grade $A=k$ for each nonzero submodule $A$ of $M$. The notion of pure modules here coincides with that given in Björk (1989) when $\Lambda$ is AuslanderGorenstein.

Lemma 3.3. Let $\Lambda$ be a 1-Gorenstein ring. Then a module $N$ in $\bmod \Lambda^{o p}$ is pure of grade 0 if and only if it is torsionless.

Proof. If $N$ is torsionless, then each nonzero submodule $A$ of $N$ is also torsionless and so $A^{*} \neq 0$, that is, grade $A=0$. Conversely, assume that $N$ is pure of grade 0 . By Lemma 2.8, there is a module $A \in \bmod \Lambda$ such that $\operatorname{Ker} \sigma_{N} \cong \operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)$. Since $\Lambda$ is 1-Gorenstein, $\left[\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)\right]^{*}=0$. So $\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)=0$ since $N$ is pure of grade 0 . It follows that $\sigma_{N}$ is a monomorphism and $N$ is torsionless.

Remark. The proof of Lemma 3.3 in fact proves the following more general result. If $\left[\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda)\right]^{*}=0$ for any $M \in \bmod \Lambda$, then a module $N$ in $\bmod \Lambda^{o p}$ is pure of grade 0 if and only if it is torsionless. So, by the dual statement of Auslander and Reiten (1996, Theorem 4.7) we have that if $\Lambda$ is a noetherian algebra with $1 . \mathrm{fd}_{\Lambda} I_{0}^{\prime} \leq$ 1 , then a module $N$ in $\bmod \Lambda^{o p}$ is pure of grade 0 if and only if it is torsionless.

Lemma 3.4. Let $k$ be a positive integer and $m \geq-1$ an integer. Then the following statements are equivalent:
(1) r.fd $_{\Lambda} \bigoplus_{i=0}^{k-1} I_{i} \leq k+m$;
(2) $\operatorname{s.grade} \operatorname{Ext}_{\Lambda}^{k+m+1}(M, \Lambda) \geq k$ for any $M \in \bmod \Lambda$.

Proof. It was proved in Huang (1999, Theorem 2.8) in case $m$ is a non-negative integer. When $m=-1$, the proof is similar to that of Huang (1999, Theorem 2.8), so we omit it.

The following lemma is a dual statement of Lemma 3.4.
Lemma 3.5. Let $k$ be a positive integer and $m \geq-1$ an integer. Then the following statements are equivalent:
(1) $1 . \mathrm{fd}_{\Lambda} \bigoplus_{i=0}^{k-1} I_{i}^{\prime} \leq k+m$;
(2) s.grade $\operatorname{Ext}_{\Lambda}^{k+m+1}(N, \Lambda) \geq k$ for any $N \in \bmod \Lambda^{o p}$.

We are now in a position to give the main result in this section.
Theorem 3.6. Let $k$ be a non-negative integer and $N$ in $\bmod \Lambda^{o p}$ with grade $N=$ $k<\infty$.
(1) If 1. $\mathrm{fd}_{\Lambda} \bigoplus_{i=0}^{k} I_{i}^{\prime} \leq k$ and $N$ is pure of grade $k$, then $N$ can be embedded into a finite direct sum of copies of $I_{k}$.
(2) If $\operatorname{r.fd}_{\Lambda} \bigoplus_{i=0}^{k-1} I_{i} \leq k-1$, $\operatorname{r.fd}_{\Lambda} I_{k} \leq k$, and $N$ can be embedded into a finite direct sum of copies of $I_{k}$, then $N$ is pure of grade $k$.

Proof. The case $k=0$ follows from Lemma 3.3. Now suppose $k \geq 1$.
(1) Also put $K_{i}=\operatorname{Ker}\left(I_{i} \rightarrow I_{i+1}\right)$ for any $i \geq 0$. Since $N$ is pure of grade $k$, grade $X=k$ for any submodule $X$ of $N$. Then it is not difficult to see that $\operatorname{Hom}_{\Lambda}\left(N, I_{i}\right)=0$ for any $0 \leq i \leq k-1$ and so $\operatorname{Ext}_{\Lambda}^{k}(N, \Lambda) \cong \operatorname{Hom}_{\Lambda}\left(N, K_{k}\right)$.

Let $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ be a set of generators of $\operatorname{Hom}_{\Lambda}\left(N, K_{k}\right)$ in $\operatorname{End}_{\Lambda}\left(K_{k}\right)$. Put $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)^{\prime}: N \rightarrow K_{k}^{(n)}, U=\operatorname{Ker} \eta$ and $V=\operatorname{Im} \eta$. We use $\pi: N \rightarrow$ $V$ to denote the natural epimorphism. Since grade $N=k$ and grade $U \geq k$ by assumption, grade $V \geq k$. By using an argument similar to the above, we then have $\operatorname{Ext}_{\Lambda}^{k}(V, \Lambda) \cong \operatorname{Hom}_{\Lambda}\left(V, K_{k}\right)$. In addition, it is not difficult to see that $\operatorname{Hom}_{\Lambda}\left(\eta, K_{k}\right)$ is an epimorphism, so $\operatorname{Hom}_{\Lambda}\left(\pi, K_{k}\right): \operatorname{Hom}_{\Lambda}\left(V, K_{k}\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(N, K_{k}\right)$ is also an epimorphism and hence an isomorphism.

On the other hand, we have an exact sequence

$$
0=\operatorname{Ext}_{\Lambda}^{k-1}(U, \Lambda) \rightarrow \operatorname{Ext}_{\Lambda}^{k}(V, \Lambda) \xrightarrow{\operatorname{Ext}_{\Lambda}^{k}(\pi, \Lambda)} \operatorname{Ext}_{\Lambda}^{k}(N, \Lambda) \rightarrow \operatorname{Ext}_{\Lambda}^{k}(U, \Lambda) \rightarrow \operatorname{Ext}_{\Lambda}^{k+1}(V, \Lambda) .
$$

So $\operatorname{Ext}_{\Lambda}^{k}(\pi, \Lambda)$ is an isomorphism and $\operatorname{Ext}_{\Lambda}^{k}(U, \Lambda)$ is isomorphic to a submodule
 It then follows from Lemma 2.3 that $\operatorname{Ext}_{\Lambda}^{k}(U, \Lambda)=0$ and grade $U \geq k+1$, which implies that $U=0$ and $\eta$ is a monomorphism.
(2) Since grade $N=k$, by Lemma 2.8 , there is an $X \in \bmod \Lambda$ such that $N \cong$ $\operatorname{Ext}_{\Lambda}^{k}(X, \Lambda)$. On the other hand, notice that ${\mathrm{r} . \mathrm{fd}_{\Lambda} \bigoplus_{i=0}^{k-1} I_{i} \leq k-1 \text {, so s.grade } N=}^{\prime}=$ s.grade $\operatorname{Ext}_{\Lambda}^{k}(X, \Lambda) \geq k$ by Lemma 3.4.

Let $U$ be a submodule of $N$. Then grade $U \geq k$. If grade $U \geq k+1$, then, again by Lemma 2.8, there is a $Y \in \bmod \Lambda$ such that $U \cong \operatorname{Ext}_{\Lambda}^{k+1}(Y, \Lambda)$. It follows from Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3) that $\operatorname{Hom}_{\Lambda}\left(U, I_{k}\right) \cong$ $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{k+1}(Y, \Lambda), I_{k}\right) \cong \operatorname{Tor}_{k+1}^{\Lambda}\left(I_{k}, Y\right)=0$ since $\operatorname{r.fd}_{\Lambda} I_{k} \leq k$. However, $U$ can be embedded into a finite direct sum of copies of $I_{k}$, so $U=0$. This completes the proof.

Especially, we have the following theorem.
Theorem 3.7. Let $k$ be a non-negative integer and $\Lambda a(k+1)$-Gorenstein ring. Then the following statements are equivalent for a module $N \in \bmod \Lambda^{\text {op }}$ with grade $N=$ $k<\infty$ :
(1) $N$ is pure of grade $k$;
(2) $N$ can be embedded into a finite direct sum of copies of $I_{k}$.

Corollary 3.8 (Hoshino, 1993, Theorem 6.3). Let I be an indecomposable injective right $\Lambda$-module with $\operatorname{r.fd}_{\Lambda} I=k<\infty$. If $\operatorname{r.fd} \bigoplus_{i=0}^{k-1} I_{i} \leq k-1$ and $1 . \mathrm{fd}_{\Lambda} \bigoplus_{i=0}^{k} I_{i}^{\prime} \leq k$, then $I$ appears as a direct summand of $I_{k}$.

Proof. We first prove the case $k=0$. Let $0 \neq X$ be a finitely generated submodule of $I$. Then $I$ is the injective envelope of $X$. By Lazard (1969, Theorem 1.2), $X$ is
torsionless. So $X$ can be embedded into a finite direct sum of copies of $\Lambda$, and hence $I$ can be embedded into a finite direct sum of copies of $I_{0}$, which yields that $I$ is isomorphic to a direct summand of $I_{0}$.

Now suppose $k \geq 1$. Put $E=\bigoplus_{i=0}^{k-1} I_{i}$. Then $\operatorname{r.fd}_{\Lambda} E \leq k-1$. Notice that r.fd ${ }_{\Lambda} I=k$, so $E$ does not cogenerate $I$ and hence there is a submodule $X$ of $I$ such that $\operatorname{Hom}_{\Lambda}(X, E)=0$. We may assume that $X$ is finitely generated. Let $Y$ be a submodule of $X$. Clearly, we have $\operatorname{Hom}_{\Lambda}(Y, E)=0$. It follows that grade $Y \geq k$. If grade $Y \geq k+1$, then by Lemma 2.8, there is a module $M \in \bmod \Lambda$ such that $Y \cong$ $\operatorname{Ext}_{\Lambda}^{k+1}(M, \Lambda)$. Thus, by Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3), we have $\operatorname{Hom}_{\Lambda}(Y, I) \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{k+1}(M, \Lambda), I\right) \cong \operatorname{Tor}_{k+1}^{\Lambda}(I, M)=0$ since r.fd ${ }_{\Lambda} I=k$, which is a contradiction. Therefore, $X$ is pure of grade $k$. By Theorem 3.6, $X$, and hence $I$, can be embedded into a finite direct sum of copies of $I_{k}$. This completes the proof.

Recall that $\Lambda$ is called an Auslander-Gorenstein ring if it is an $\infty$-Gorenstein ring with finite left and right self-injective dimensions.

Corollary 3.9. Let $\Lambda$ be an Auslander-Gorenstein ring and $M$ in $\bmod \Lambda$ with grade $M=k$. Then $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ can be embedded into a finite direct sum of $I_{k}$.

Proof. By Huang and Qin (Preprint, Corollary 3.7), $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ is pure of grade $k$. It follows from Theorem 3.7 that $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ can be embedded into a finite direct sum of $I_{k}$.

Proposition 3.10. Let $\Lambda$ be an Auslander-Gorenstein ring with $1 . \mathrm{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$. Then $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ is pure of grade $k$ for any $M \in \bmod \Lambda$ with $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \neq 0$.

Proof. Let $M$ be in $\bmod \Lambda$ with $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \neq 0$. Since $\Lambda$ is an $\infty$-Gorenstein ring, s.grade $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \geq k$. Let $Y$ be a submodule of $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ in $\bmod \Lambda^{o p}$. Then grade $Y \geq k$. If grade $Y \geq k+1$, then grade $Y=\infty$ since $\operatorname{r.id}{ }_{\Lambda} \Lambda=k$. It follows from Colby and Fuller (1990, Theorem 2) that $Y=0$. This completes the proof.

By Iwanaga and Sato (1996, Proposition 1), we have that if $1 . \mathrm{id}_{\Lambda} \Lambda=$ $\operatorname{r.id}_{\Lambda} \Lambda=k$, then $\operatorname{r.fd}_{\Lambda} I_{k}=k$. So a $k$-Gorenstein ring with $1 . \operatorname{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$ is just an Auslander-Gorenstein ring with $1 . \operatorname{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$. By Theorem 3.7 and Proposition 3.10, we then get the following corollary.

Corollary 3.11 (Iwanaga and Sato, 1996, Corollary 5). Let $\Lambda$ be a $k$-Gorenstein ring with $1 . \operatorname{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$ and $M$ in $\bmod \Lambda$. Then $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ can be embedded into a finite direct sum of $I_{k}$. Moreover, if $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \neq 0$, then $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ is pure of grade $k$.

Recall from Anderson and Fuller (1992) that a nonzero right $\Lambda$-module $H$ is called uniform if each of its nonzero submodules is essential in $H$.

Corollary 3.12. Let $\Lambda$ be an Auslander-Gorenstein ring with $1 . \operatorname{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$ and $N$ a uniform module in $\bmod \Lambda^{o p}$. If $N$ is pure of grade $k$, then $N$ can be embedded into $I_{k}$, but cannot be embedded into $\bigoplus_{i=0}^{k-1} I_{i}($ if $k \geq 1)$.

Proof. Let $N$ be a uniform module in $\bmod \Lambda^{o p}$. Then $E(N)$ (the envelope of $N$ ) is indecomposable. If $N$ is pure of grade $k$, then, by Theorem 3.7, $N$ and $E(N)$ can be embedded into a finite direct sum of $I_{k}$. So $E(N)$ is isomorphic to a direct summand of $I_{k}$ and hence $N$ can be embedded into $I_{k}$. On the other hand, if $k \geq 1$, then, by Iwanaga and Sato (1996, Corollary 7), we have that $I_{k}$ and $\bigoplus_{i=0}^{k-1} I_{i}$ have no isomorphic direct summands in common. It follows from the above argument that $E(N)$, and hence $N$, cannot be embedded into $\bigoplus_{i=0}^{k-1} I_{i}$.

## 4. THE SOCLE OF THE LAST TERM IN A MINIMAL INJECTIVE RESOLUTION

For a right $\Lambda$-module $X$, the unique largest semisimple submodule of $X$ is called the socle of $X$, and denoted by $\operatorname{Soc}(X)$ (see Anderson and Fuller, 1992). In this section we show that under some grade conditions of modules the socle of $I_{k}$ is nonzero. In fact, we will prove the following theorem.

Theorem 4.1. Assume that $1 \cdot \operatorname{id}_{\Lambda} \Lambda=\operatorname{rid}_{\Lambda} \Lambda=k$. If $\operatorname{grade}_{\operatorname{Ext}}^{\alpha}{ }_{\Lambda}^{k}(M, \Lambda) \geq k$ for any $M \in \bmod \Lambda$ and $\operatorname{grade}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{i}(N, \Lambda) \geq i$ for any $N \in \bmod \Lambda^{o p}$ with $1 \leq i \leq k-1$, then $\operatorname{Soc}\left(I_{k}\right) \neq 0$.

Proof. The case $k \leq 2$ was proved in Hoshino (1993, Theorem 4.5). Now suppose $k \geq 3$.

Since $1 . \operatorname{id}_{\Lambda} \Lambda=k$, there is a module $M \in \bmod \Lambda \operatorname{such}$ that $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \neq 0$. Let $N$ be a maximal submodule of $\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda)$ and

$$
0 \rightarrow N \rightarrow \operatorname{Ext}_{\Lambda}^{k}(M, \Lambda) \rightarrow S \rightarrow 0
$$

an exact sequence in $\bmod \Lambda^{o p}$. Then $S$ is simple.
 assumption, r.fd $I_{i} \leq i+1$ for any $0 \leq i \leq k-2$ by Auslander and Reiten (1996, Theorem 0.1) and the remark following it. It follows from Cartan and Eilenberg (1999, Chapter VI, Proposition 5.3) that $\operatorname{Hom}_{\Lambda}\left(\operatorname{Ext}_{\Lambda}^{k}(M, \Lambda), I_{i}\right) \cong \operatorname{Tor}_{k}^{\Lambda}\left(I_{i}, M\right)=0$ for any $0 \leq i \leq k-2$. We then have $\operatorname{Hom}_{\Lambda}\left(N, I_{i}\right)=0=\operatorname{Hom}_{\Lambda}\left(S, I_{i}\right)$ for any $0 \leq$ $i \leq k-2$, and therefore grade $N \geq k-1$ and grade $S \geq k-1$.

On the other hand, $\operatorname{gradeExt}_{\Lambda}^{k}(M, \Lambda) \geq k$ by assumption, so we have $\operatorname{Ext}_{\Lambda}^{k-1}(S, \Lambda) \cong \operatorname{Ext}_{\Lambda}^{k-2}(N, \Lambda)=0$ and hence grade $S \geq k$. If grade $S \geq k+1$, then grade $S=\infty$ since $\operatorname{rid}_{\Lambda} \Lambda=k$. It follows from Lemma 2.8 that $S$ is reflexive and $S=0$, which is a contradiction. So we conclude that grade $S=k$ and $\operatorname{Ext}_{\Lambda}^{k}(S, \Lambda) \neq$ 0 . Thus we have $\operatorname{Hom}_{\Lambda}\left(S, I_{k}\right) \neq 0$, which implies that $S$ is isomorphic to a simple submodule of $I_{k}$ and $\operatorname{Soc}\left(I_{k}\right) \neq 0$.

Corollary 4.2. Assume that $\Lambda$ is a noetherian algebra with $1 . \operatorname{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$. If $\operatorname{r.fd}{ }_{\Lambda} I_{i} \leq i+1$ for any $0 \leq i \leq k-2$ and $1 . \mathrm{fd}_{\Lambda} I_{i}^{\prime} \leq i+1$ for any $0 \leq i \leq k-1$, then $\operatorname{Soc}\left(I_{k}\right) \neq 0$.

Proof. Since r.fd $I_{\Lambda} I_{i} \leq i+1$ for any $0 \leq i \leq k-2$, by Auslander and Reiten (1996, Theorem 4.7) we have grade $\operatorname{Ext}_{\Lambda}^{i}(N, \Lambda) \geq i$ for any $N \in \bmod \Lambda^{o p}$ and $1 \leq i \leq k-1$. On the other hand, since $1 . \mathrm{fd}_{\Lambda} I_{i}^{\prime} \leq i+1$ for any $0 \leq i \leq k-1$, by the dual statement
of Auslander and Reiten (1996, Theorem 4.7), we have grade $\operatorname{Ext}_{\Lambda}^{i}(M, \Lambda) \geq i$ for any $M \in \bmod \Lambda$ and $1 \leq i \leq k$. We now get our conclusion by Theorem 4.1.

From Auslander's Theorem and Theorem 4.1, we obtain the following corollary.

Corollary 4.3 (Fuller and Iwanaga, 1993, Proposition 1.1). Let $\Lambda$ be an AuslanderGorenstein ring with $. \mathrm{id}_{\Lambda} \Lambda=\operatorname{r.id}_{\Lambda} \Lambda=k$. Then $\operatorname{Soc}\left(I_{k}\right) \neq 0$.

Example 4.4. There are rings satisfying the assumption in Theorem 4.1 but not satisfying the assumption in Corollary 4.3. Let $K$ be a field and $\Lambda$ the finite dimensional path algebra over $K$ given by the quiver

modulo the ideal generated by $\beta \alpha$. Then 1.fd $I_{\Lambda}^{\prime}=1 \cdot \mathrm{fd}_{\Lambda} I_{1}^{\prime}=\operatorname{r.fd}_{\Lambda} I_{0}=\operatorname{r.fd}{ }_{\Lambda} I_{1}=1$, 1.fd ${ }_{\Lambda} I_{2}^{\prime}=\operatorname{r.fd} I_{2}=2$, and $1 . \mathrm{id}_{\Lambda} \Lambda=\operatorname{rid}_{\Lambda} \Lambda=2$. By Auslander and Reiten (1996, Theorem 4.7) and its dual statement, for any $i \geq 1$, we have ${\operatorname{grade~} \operatorname{Ext}_{\Lambda}^{i}(M, \Lambda) \geq}^{( })$ $i$ for any $M \in \bmod \Lambda$ and $\operatorname{grade}^{\operatorname{Ext}_{\Lambda}^{i}}(N, \Lambda) \geq i$ for any $N \in \bmod \Lambda^{o p}$. So $\Lambda$ satisfies the assumption in Theorem 4.1 (in fact $\Lambda$ also satisfies the assumption in Corollary 4.2). But $\Lambda$ is clearly not Auslander-Gorenstein.

## ACKNOWLEDGMENTS

The author's research was partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060284002), NSFC (Grant No. 10771095), and NSF of Jiangsu Province of China (Grant No. BK2007517).

## REFERENCES

Anderson, F. W., Fuller, K. R. (1992). Rings and Categories of Modules. 2nd ed. Graduate Texts in Mathematics. Vol. 13. Berlin-Heidelberg-New York: Springer-Verlag.
Auslander, M., Bridger, M. (1969). Stable Module Theory. Memoirs Amer. Math. Soc. Vol. 94. Providence, RI: American Mathematical Society.
Auslander, M., Reiten, I. (1975). On a generalized version of the Nakayama conjecture. Proc. Amer. Math. Soc. 52:69-74.
Auslander, M., Reiten, I. (1996). Syzygy modules for noetherian rings. J. Algebra 183: 167-185.
Bass, H. (1960). Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc. 95:466-488.
Berrick, A. J., Keating, M. E. (2000). Categories and Modules (With K-Theory in View). Cambridge Studies in Advanced Mathematics. Vol. 67. Cambridge: Cambridge University Press.

Björk, J. E. (1989). The Auslander condition on Noetherian rings. In: Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année, Paris, 1987/1988. Lecture Notes in Mathematics. Vol. 1404. Berlin: Springer-Verlag, pp. 137-173.
Cartan, H., Eilenberg, S. (1999). Homological Algebra. Reprint of the 1956 original, Princeton Landmarks in Mathematics. Princeton: Princeton University Press.
Colby, R. R., Fuller, K. R. (1990). A note on the Nakayama conjectures. Tsukaba J. Math. 14:343-352.
Fossum, R. M., Griffith, P. A., Reiten, I. (1975). Trivial Extensions of Abelian Categories. Lecture Notes in Mathematics. Vol. 456. Berlin-Heidelberg-New York: SpringerVerlag.
Fuller, K. R., Iwanaga, Y. (1993). On n-Gorenstein rings and Auslander rings of low injective dimension. Canadian Mathematical Society Cofenence Proceedings 14:175-183.
Hoshino, M. (1993). Noetherian rings of self-injective dimension two. Comm. Algebra 21:1071-1094.
Huang, Z. Y. (1999). Extension closure of $k$-torsionfree modules. Comm. Algebra 27: 1457-1464.
Huang, Z. Y. (2003). Selforthogonal modules with finite injective dimension II. J. Algebra 264:262-268.
Huang, Z. Y., Qin, H. R. Homological behavior of Auslander's $k$-Gorenstein rings. Preprint.
Iwanaga, Y., Sato, H. (1996). On Auslander's n-Gorenstein rings. J. Pure Appl. Algebra 106:61-76.
Jans, J. P. (1963). On finitely generated modules over noetherian rings. Trans. Amer. Math. Soc. 106:330-340.
Lazard, D. (1969). Autour de la platitude. Bull. Soc. Math. France 97:81-128.
Zaks, A. (1969). Injective dimension of semiprimary rings. J. Algebra 13:73-89.

