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Abstract

Let A be an artin algebra. We show that the bounded homotopy category of finitely generated
right A-modules has Auslander-Reiten triangles. Two applications are given: (1) we provide an
alternative proof of a theorem of Happel in [H2]; (2) we prove that over a Gorenstein algebra, the
bounded homotopy category of finitely generated Gorenstein projective (resp. injective) modules
admits Auslander-Reiten triangles, which improves a main result in [G].

1 Introduction

Throughout this paper, A is an artin algebra over a fixed commutative artin ring R and D :=

HomR(−, E(R/J)) is the usual duality, where J is the Jacobson radical of R and E(R/J) is the

injective envelope of R/J . We denote by modA the category of finitely generated right A-modules.

As usual, we write projA (resp. injA) the category of finitely generated projective (resp. injective)

right A-modules.

Auslander-Reiten sequences, also known as almost split sequences, are one of the central tools in

the representation theory of artin algebras. Auslander-Reiten triangles can also be defined by almost

split morphisms in Hom-finite Krull-Schmidt triangulated R-categories. Happel proved in [H3] that

the bounded homotopy category Kb(projA) of finitely generated projective right A-modules has right

Auslander-Reiten triangles if and only if the left self-injective dimension of A is finite; and dually,

the bounded homotopy category Kb(injA) of finitely generated injective right A-modules has left

Auslander-Reiten triangles if and only if the right self-injective dimension of A is finite.

There is a close relation between Auslander-Reiten triangles and Serre functors ([RV]): a Hom-

finite Krull-Schmidt triangulated R-category has right (resp. left) Auslander-Reiten triangles if and

only if it has a right (resp. left) Serre functor. A Serre functor by definition is a right Serre functor

which is an equivalence. In [BJ], Backelin and Jaramillo proved that the bounded homotopy category

Kb(modA) of modA has a right Serre duality. Their method is based on the construction of a t-

structure in Kb(modA), and their proof is somewhat complicated although they obtained some more

results. We use the terminology of Auslander-Reiten triangles to prove that the right Serre functor in

Kb(modA) is always an equivalence (Theorem 3.4). Our result is based on the fact that right (left)
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minimal almost split morphisms are stable under quotients. It seems more elementary. In particular,

we determine Auslander-Reiten triangles admitting special ending (resp. starting) terms (Proposition

4.2).

As in abelian categories, the existence of Auslander-Reiten triangles in subcategories were investi-

gated by Jørgensen in [J]. Note that Kb(projA) and Kb(injA) can be embedded in Kb(modA) natu-

rally. By using the obtained result about the existence of Auslander-Reiten triangles in Kb(modA),

we reprove the Happel’s theorem mentioned above (Theorem 4.4). The steps we take seem more

“categorization” and can be easily treated dually. The advantage here is that the Auslander-Reiten

triangles we treat always lie in Kb(modA). Similarly, we prove that over a Gorenstein algebra, the

bounded homotopy category of finitely generated Gorenstein projective (resp. injective) modules

admits Auslander-Reiten triangles, which improves a main result in [G].

2 Preliminaries

Recall that a right A-module M is called Gorenstein projective if there exists an exact sequence T • of

projective modules which remains exact when applying the functor HomA(−, P ) for any P ∈ projA

such that M is isomorphic to some kenrel of T •. Dually, The notion of Gorenstein injective modules

is defined. We denote the category of all finitely generated Gorenstein projective (resp. injective)

modules by GprojA (resp. GinjA). Note that we have projA ⊂ GprojA and injA ⊂ GinjA.

Let f : M → N be a morphism in modA. According to [AR1], f is called right almost split if

it is not a retraction, and any morphism g : L → N which is not a retraction factors through f ; it

is called right minimal if any morphism h satisfying f = f · h is an automorphism of M ; and it is

called right minimal almost split if it is both right almost split and right minimal. The left versions

are defined dually. An exact sequence

0 → M
α→ N

β→ L → 0

in modA is called an almost split sequence if either α is left minimal almost split or β is right minimal

almost split. This also means that M and L must be indecomposable. We say modA has almost

split sequences if for any indecomposable non-injective module M in modA there is an almost split

sequence starting at M , and for any indecomposable non-projective module N ∈ modA there is an

almost split sequence ending at N . By [AR1], modA always has almost split sequences.

Let T be a Hom-finite Krull-Schmidt triangulated R-category. The notion of almost split triangles

in T was introduced by Happel in [H1]. A triangle

X
α→ Y

β→ Z → X[1]

in T is called an Auslander-Reiten triangle (or almost split triangle) if either α is left minimal almost

split or β is right minimal almost split (see [H2], where the notions source morphisms and sink

morphisms were used). A triangulated category is said to have right (resp. left) Auslander-Reiten
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triangles if for any indecomposable object M there is an Auslander-Reiten triangle ending (resp.

starting) at M .

Let F : T → T be a triangulated functor. According to [RV], F is called a right Serre functor if

for any X, Y in T , there is an isomorphism DHomT (X,Y ) ∼= HomT (Y, FX) which is natural in X

and Y . This F is unique up to natural isomorphism. A left Serre functor is defined dually.

Theorem 2.1. ([BJ,Corollary 2.5 and Proposition 4.6])

Let A be an Artin algebra. Then there is a right serre functor S : Kb(modA) → Kb(modA),

equivalently, Kb(modA) has right Auslander-Reiten triangles.

3 AR-triangles in homotopy categories

Let A be an additive R-category. By an A-module, we mean a contravariant R-linear functor from

A to the category of R-modules. We denote by modA the category of finitely presented A-modules.

Note that, in general, modA is not an abelian category. It is an abelian category if and only if

A has pseudo-kernels ([A]). We call A a dualizing R-category if D gives a duality between modA
and modAop. Note that, in this case, modA is always an abelian category, and hence the bounded

complex category Cb(modA) of modA is also an abelian category. We begin with a main theorem

in [BJR].

Lemma 3.1. ([BJR,Theorem 4.3]) Let A be a dualizing R-category. Then Cb(modA) has

almost split sequences.

Note that modA is equivalent to mod(projA) as additive R-categories ([A]). This means that

Cb(modA) always has almost split sequences. As a consequence, for any indecomposable non-

projective (resp. non-injective) object X in Cb(modA), there is always an almost split sequence

ending (resp. starting) at X.

Let B be an additive category and C an additive full subcategory of B closed under summands.

Then we can form the factor category B/C. The objects in B/C are the same as in B, and the

morphisms are the morphisms in B modulo morphisms factor through an object of C. There is a

natural factor functor π : B → B/C. It is an additive functor. For both objects and morphisms, we

denote their images under π by adding ˜ above. The following lemma is a well known fact. For the

reader’s convenience we give a quick proof here.

Lemma 3.2. Let B be a Hom-finite Krull-Schmidt R-category and C an additive full subcategory

of B closed under summands. If f : M → N is a right (resp. left) minimal almost split morphism in

B, then f̃ : M̃ → Ñ is also a right (resp. left) minimal almost split morphism in B/C.

Proof. Obviously, N is indecomposable; in particular, it has no nonzero summands in C. By

[AR2, Lemma 1.1(c)], f̃ : M̃ → Ñ is not a retraction. Let g̃ : L̃ → Ñ be not a retraction. Then it is

induced by a morphism g : L → N which is also not a retraction. So g factors through f since f is
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right almost split, and hence g̃ factors through f̃ . If f̃ is not minimal, then f̃ has a direct summand

of the form W̃ → 0, and so f has a direct summand of the form W → 0 or W → C with 0 ̸= C ∈ C.
Note that the former one gives a contradiction to the minimality of f , and the latter one gives a

contradiction to the indecomposableness of N . �

A complex X is called contractible if it is isomorphic to zero in Kb(modA), that is, it is splitting

exact. Note that a chain map of complexes is homotopic to zero if and only if it factors through

some contractible complex. So Kb(modA) is exactly the factor category of Cb(modA) by modulo

contractible complexes ([H2, p.28]). We also need the following

Lemma 3.3. A complex X is a projective (resp. injective) object in Cb(modA) if and only if it

is a contractible complex consisting of projective (resp. injective) modules in modA.

Proof. See for example [EJ2, Theorem 1.4.7]. �

Now we can prove the following result, which improves Theorem 2.1.

Theorem 3.4. Kb(modA) has Auslander-Reiten triangles.

Proof. Let 0 ̸= X̃ ∈ Kb(modA) be indecomposable. Then it is induced by an indecomposable

object X in Cb(modA). Note that X is neither projective nor injective by Lemma 3.3. It follows

from Lemma 3.1 that there is a minimal right almost split morphism f : Y → X in Cb(modA). Then

by Lemma 3.2, its image f̃ : Ỹ → X̃ is also right minimal almost split. Complete it to a triangle

L → Ỹ → X̃ → L[1]

in Kb(modA). Then by definition, it is an Auslander-Reiten triangle in Kb(modA). Dually, there is

an Auslander-Reiten triangle starting at X̃. �

4 Applications

In this section, we will reprove the Happel’s theorem by using the main result in Section 3. Our

proof is based on the restriction of Auslander-Reiten triangles in subcategories. Also one can see

that using this technique, over a Gorenstein algebra the existence of Auslander-Reiten triangles in

the bounded homotopy category of Gorenstein projective modules is valid. This improves a result by

Gao in [G] where only the existence of right Auslander-Reiten triangles is proved and the condition

CM-finiteness is necessary.

Although Kb(modA) has Auslander-Reiten triangles, it is difficult to compute the Auslander-

Reiten translation. By [RV, Theorem I.2.4], Kb(modA) has Auslander-Reiten triangles if and only if

it has a Serre functor. Denote the Serre functor of Kb(modA) by S. Then by [RV, Proposition I.2.3],

we have that for any indecomposable object X, the left end term of an Auslander-Reiten triangle

ending at X is S · [−1], the other end term is its quasi-inverse S−1 · [1]. Thanks to this result, we

only need to compute the Serre dual object for an indecomposable object X.
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Lemma 4.1. Let X and Y be in Cb(modA).

(1) If X is degreewise projective, then we have a natural isomorphism

DHomA(X,Y ) ∼= HomA(Y,X ⊗A DA).

(2) If Y is degreewise injective, then we have a natural isomorphism

DHomA(X,Y ) ∼= HomA(HomA(DA,Y ), X).

Proof. (1) Note that for any X,Y in modA , we have a natural morphism

δY,X : Y ⊗A HomA(X,A) → HomA(X,Y ), y ⊗ f 7−→ (x 7−→ yf(x)).

So we have a natural morphism

ηX,Y : DHomA(X,Y )
DδY,X−→ D(Y ⊗A HomA(X,A))

∼= HomR(Y ⊗A HomA(X,A), E(R/J))

∼= HomA(Y,HomR(HomA(X,A), E(R/J))

∼= HomA(Y,X ⊗A DA).

It is known that if X is projective, then δY,X is an isomorphism. Thus DδY,X is also an isomorphism.

Therefore we have a natural isomorphism

ηX,Y : DHomA(X,Y ) ∼= HomA(Y,X ⊗A DA).

Now the isomorphism can be extended to the desired situation.

(2) Let Y be injective. Then Y ∼= DA⊗A P for some P ∈ projA. Then we have isomorphisms

HomA(HomA(DA,Y ), X)

∼= HomA(HomA(DA,DA⊗A P ), X)

∼= HomA(P,X)

∼= DHomA(X,P ⊗A DA) (by (1))

∼= DHomA(X,Y ).

Similarly, the isomorphism can be extended to the desired situation. �

Proposition 4.2. Let X and Y be in Cb(modA).

(1) If X is degreewise projective, then there is an Auslander-Reiten triangle in Kb(modA)

X[−1]⊗A DA → M → X → X ⊗A DA.

5



(2) If Y is degreewise injective, then there is an Auslander-Reiten triangle in Kb(modA)

Y → N → HomA(DA,Y [1]) → Y [1].

Proof. We only prove (1), and the proof of (2) is similar. Let X ∈ Kb(projA). By Lemma 4.1,

we have DHomA(X,Y ) ∼= HomA(Y,X ⊗A DA). Thus we have isomorphisms

DHomKb(modA)(X,Y ) ∼= DH0 HomA(X,Y ) ∼= H0DHomA(X,Y ) ∼=

H0 HomA(Y,X ⊗A DA) ∼= HomKb(modA)(Y,X ⊗A DA).

This holds for any Y ∈ Kb(modA). Then by the Yoneda’s lemma, the Serre dual object for X is

X ⊗A DA. Now by [RV, Proposition I.2.3], we have the desired triangle. �

Let B be an additive category and C a full subcategory of B. Recall that a morphism f : B → C

with B ∈ B and C ∈ C is called a C-preenvelope if the natural map HomB(C,C
′) → HomB(B,C ′) → 0

is exact for any C ′ ∈ C. A C-preenvelope C is called a C-envelope if it is left minimal. Dually, the notion

of (pre)covers is defined ([AR3, E]). The following proposition involves Auslander-Reiten triangles in

subcategories.

Lemma 4.3. ([J,Theorem 3.1 and Theorem 3.2]) Let T be a triangulated category and C a full

subcategory of T closed under extensions.

(1) Let X → Y → Z → X[1] be an Auslander-Reiten triangle in T with Z ∈ C. If there is an object

A′ ∈ C with a nonzero morphism Z → A′[1], then the following are equivalent.

• X has a C-cover of the form A → X.

• There is an Auslander-Reiten triangle A → B → Z → A[1] in C.

(2) Let X → Y → Z → X[1] be an Auslander-Reiten triangle in T with X ∈ C. If there is an object

Z ′ ∈ C with a nonzero morphism Z ′ → X[1], then the following are equivalent.

• Z has a C-envelope of the form Z → N .

• There is an Auslander-Reiten triangle X → M → N → X[1] in C.

As an application of Theorem 3.4, we now are in a position to reprove the following Happel’s

theorem. Our argument is very different from the original one.

Theorem 4.4. ([H2, Section 3.4])

(1) Kb(projA) has right Auslander-Reiten triangles if and only if idAAop < ∞.

(2) Kb(injA) has left Auslander-Reiten triangles if and only if idAA < ∞.

Proof. We only prove (2), and (1) is its dual.

Let 0 ̸= Y ∈ Kb(injA) be indecomposable. Then by Proposition 4.2, there is an Auslander-Reiten

triangle

Y → L → HomA(DA,Y )[1] → Y [1]
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in Kb(modA). Since (Y [1])[−1]
IdY→ Y is not homotopic to zero, by Lemma 4.3 we have that Kb(injA)

has left Auslander-Reiten triangles if and only if HomA(DA,Y ) has a Kb(injA)-envelope for any

Y ∈ Kb(injA). Now it suffices to prove that idAA < ∞ if and only if HomA(DA,Y ) has a Kb(injA)-

envelope for any Y ∈ Kb(injA).

If idAA < ∞, then the injective dimension of any module in projA is finite. Since HomA(DA,Y )

consists of modules in projA, then by using induction on the width of HomA(DA,Y ), one can get

an injective resolution f : HomA(DA,Y ) → L, where f is a quasi-isomorphism and L ∈ Kb(injA).

If there is a chain map α : HomA(DA,Y ) → I with I ∈ Kb(injA), then f∗ : HomA(L, I) →
HomA(HomA(DA,Y ), I) is a quasi-isomorphism and H0(f∗) is an isomorphism. Hence there is some

β : L → I such that α homotopic to β · f . If there is some g satisfying g · f homotopic to f , then it is

a quasi-isomorphism, and hence a homotopic equivalence. It follows that L is a Kb(injA)-envelope

of HomA(DA,Y ).

Now suppose that HomA(DA,Y ) has a Kb(injA)-envelope for any Y ∈ Kb(injA). Let Y = DA.

Then HomA(DA,Y ) ∼= A. Let A → I be the Kb(injA)-envelope of A. Complete it to a triangle

A
α→ I → L → A[1]

in Kb(modA). Then we have that HomKb(modA)(L,Z) ∼= 0 for any Z ∈ Kb(injA) by the Wakamatsu

lemma (see for example [J, Lemma 2.1]); in particular, HomKb(modA)(L, (DA)[i]) = 0 for all i, which

implies that L is exact. As a consequence, α is a quasi-isomorphism. Since any injective resolution

of A is homotopically equivalent to I. It follows that idAA < ∞. �

Remark 4.5. Note that the functor − ⊗A DA : Kb(projA) → Kb(injA) is an equivalence.

Hence the Gorenstein symmetry conjecture, which states that idAA = idAAop for any artin algebra

A, can be reformulated as follows.

•Kb(projA) has right Auslander-Reiten triangles if and only if it has left Auslander-Reiten tri-

angles. Dually,

•Kb(injA) has right Auslander-Reiten triangles if and only if it has left Auslander-Reiten trian-

gles.

Corollary 4.6. The following are equivalent.

(1) A is a Gorenstein algebra.

(2) Kb(projA) has Auslander-Reiten triangles.

(3) Kb(injA) has Auslander-Reiten triangles.

Let A and B be artin algebras. According to [R], A and B are derived equivalent if and only if

Kb(projA) and Kb(projB) are equivalent as triangulated categories.

Corollary 4.7. Let A and B be artin algebras. If A and B are derived equivalent, then A is

Gorenstein if and only if B is Gorenstein.
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In general, Theorem 3.4 only tells us the validity of Auslander-Reiten triangles in Kb(modA).

When consider some subcategory C of Kb(modA), one usually relies on the restriction as in Lemma

4.3. However, it is often difficult to compute the serre dual objects for A. For example, the isomor-

phism in Lemma 4.2 for projective modules can not be extended to Gorenstein projective version

unless A is self-injective, see [ASS, Lemma 2.12]. In the following, we only consider the subcategory

Kb(GprojA) (resp. Kb(GinjA)).

It was proved in [EJ1] that over a Gorenstein algebra any finitely generated module admits a

finitely generated Gorenstein projective precover. That is, for any M ∈ mod A, there is a complex

GM consisting of modules in GprojA and a chain map GM → M which is a quasi-isomorphism after

applying the functor HomA(G
′,−) for any G′ ∈ GprojA. Since M has finite Gorenstein projective

dimension, GM can be selected to be in Kb(GprojA) by [Ho, Proposition 2.18]. The dual version for

finitely generated Gorenstein injective modules is also valid.

Theorem 4.8. Let A be a Gorenstein algebra. Then Kb(GprojA) has Auslander-Reiten trian-

gles.

Proof. The proof is similar to that of Theorem 4.4. First, we prove that Kb(GprojA) has right

Auslander-Reiten triangles. Let 0 ̸= X ∈ Kb(GprojA) be indecomposable. Then by Theorem 3.4,

we have an Auslander-Reiten triangle

Y → L → X → Y [1]

in Kb(modA). We only need to prove that Y has a Kb(GprojA)-cover. In fact, we will prove that

any Y ∈ Kb(modA) has a Kb(GprojA)-cover. Note that for any M ∈ modA, there is a chain

map GM → M with GM ∈ Kb(GprojA), which is a quasi-isomorphism after applying the functor

HomA(G
′,−) for any G′ ∈ GprojA as above. By using induction on the width of Y , we have that

there is a chain map fY : GY → Y with GY ∈ Kb(GprojA), which is also a quasi-isomorphism

after applying the functor HomA(G
′,−) for any G′ ∈ GprojA. Hence HomA(G

′, fY ) is also a quasi-

isomorphism for any G′ ∈ Kb(GprojA). It is easy to see that GY is a Kb(GprojA)-cover of Y . If

we consider the category Kb(GinjA), we then obtain that Kb(GinjA) admits left Auslander-Reiten

triangles. Note that −⊗A DA : Kb(GprojA) → Kb(GinjA) is an equivalence by [B]. This completes

the proof. �
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