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1. Introduction

Let R be an arbitrary associative ring and M a left R-module. The right R-module M+ :=
HomZ(M,Q/Z) is called the character module of M, where Z is the additive group of integers and
Q is the additive group of rational numbers. Character modules are a kind of dual modules having nice
properties, which played an important role in studying the classification and structure of rings in terms
of their modules; see [1–5] and references therein. In particular, Cheatham and Stone [1] gave some
equivalent characterizations for a ring R being left coherent (and right perfect), left Noetherian and left
Artinian in terms of the (FP-)injectivity, flatness and projectivity of character modules of certain left
R-modules.

On the other hand, the study of semidualizing modules in commutative rings was initiated by Foxby
[6] and Golod [7]. Then Holm and White [8] extended it to arbitrary associative rings. Many authors
have studied the properties of semidualizing modules and related modules; see [6–17], and so on.
Among various research areas on semidualizing modules, one basic theme is to extend the “absolute”
classical results in homological algebra to the “relative” setting with respect to semidualizing modules.
The aim of this paper is to study whether those results of Cheatham and Stone [1] mentioned above
have relative counterparts with respect to semidualizing modules. The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.
Let R and S be arbitrary associative rings and RCS a semidualizing bimodule. Assume that R is
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a left coherent ring. In Section 3, we show that any FP-injective left R-module is in the Bass class
BC(R), and any left S -module with finite C-FP-injective dimension is in the Auslander class AC(S )
(Proposition 3.3). Then we get that for any module N in Mod S , the FP-injective dimension of C ⊗S N
is at most the C-FP-injective dimension of N, and with equality when N is inAC(S ) (Theorem 3.4).

In Section 4, we show that R is a left coherent (and right perfect) ring if and only if for any left
S -module N, the C-FP-injective dimension of N and the C-flat (respectively, C-projective) dimension
of N+ are identical, and if and only if (C(I)

S )++ is C-flat (respectively, C-projective) for any index set I
(Theorems 4.1 and 4.5). Moreover, we get that R is a left Noetherian (respectively, Artinian) ring if
and only if for any left S -module N, the C-injectivity of N coincides with the C-flatness (respectively,
C-projectivity) of N+ (Theorems 4.3 and 4.6).

2. Preliminaries

Throughout this paper, all rings are associative rings with unit and all modules are unital. For a ring
R, we use Mod R to denote the category of left R-modules.

Recall from [18, 19] that a module Q ∈ Mod R is called FP-injective (or absolutely pure) if
Ext1

R(X,Q) = 0 for any finitely presented left R-module X. The FP-injective dimension FP-idR M
of a module M ∈ Mod R is defined as inf{n ≥ 0 | Ext≥n+1

R (X,M) = 0 for any finitely presented left
R-module X}, and set FP-idR M = ∞ if no such integer exists. For a module B ∈ Mod Rop, we use
fdRop B to denote the flat dimension of B.

Definition 2.1. (see [8,20]). Let R and S be arbitrary rings. An (R-S )-bimodule RCS is called semidu-
alizing if the following conditions are satisfied.

(1) RC admits a degreewise finite R-projective resolution and CS admits a degreewise finite S op-
projective resolution.

(2) R = End(CS ) and S = End(RC).
(3) Ext≥1

R (C,C) = 0 = Ext≥1
S op(C,C).

Wakamatsu [15] introduced and studied the so-called generalized tilting modules, which are usually
called Wakamatsu tilting modules, see [21,22]. Note that a bimodule RCS is semidualizing if and only if
it is Wakamatsu tilting ( [17, Corollary 3.2]). Typical examples of semidualizing bimodules include the
free module of rank one and the dualizing module over a Cohen-Macaulay local ring. More examples
of semidualizing bimodules can be found in [8, 13, 16].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule RCS . We write
(−)∗ := Hom(C,−), and write

PC(S op) := {P ⊗R C | P is projective in Mod Rop},

FC(S op) := {F ⊗R C | F is flat in Mod Rop},

IC(S ) := {I∗ | I is injective in Mod R},

FIC(S ) := {Q∗ | Q is FP -injective in Mod R}.

The modules in PC(S op), FC(S op), IC(S ) and FIC(S ) are called C-projective, C-flat, C-injective and
C-FP-injective respectively. By [10, Proposition 2.4(1)], we have PC(S op) = Add CS , where Add CS
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is the subcategory of Mod S op consisting of direct summands of direct sums of copies of CS . When
RCS = RRR, C-projective, C-flat, C-injective and C-FP-injective modules are exactly projective, flat,
injective and FP-injective modules respectively.

Lemma 2.2. (see [27, Theorem 4.17(1) and Corollary 4.18(1)])

(1) A right S -module N ∈ FC(S op) if and only if N+ ∈ IC(S ).
(2) The class FC(S op) is closed under pure submodules and pure quotients.

The following definition is cited from [8].

Definition 2.3.
(1) The Auslander class AC(Rop) with respect to C consists of all modules N in Mod Rop satisfying

the following conditions.

(a1) TorR
≥1(N,C) = 0.

(a2) Ext≥1
S op(C,N ⊗R C) = 0.

(a3) The canonical evaluation homomorphism

µN : N → (N ⊗R C)∗

defined by µN(x)(c) = x ⊗ c for any x ∈ N and c ∈ C is an isomorphism in Mod Rop.

(2) The Bass class BC(R) with respect to C consists of all modules M in Mod R satisfying the follow-
ing conditions.

(b1) Ext≥1
R (C,M) = 0.

(b2) TorS
≥1(C,M∗) = 0.

(b3) The canonical evaluation homomorphism

θM : C ⊗S M∗ → M

defined by θM(c ⊗ f ) = f (c) for any c ∈ C and f ∈ M∗ is an isomorphism in Mod R.

(3) The Auslander class AC(S ) in Mod S and the Bass class BC(S op) in Mod S op are defined sym-
metrically.

The following lemma will be used frequently in the sequel.

Lemma 2.4. (see [5, Proposition 3.2])

(1) For a module N ∈ Mod Rop (respectively, Mod S ), N ∈ AC(Rop) (respectively,AC(S )) if and only
if N+ ∈ BC(R) (respectively, BC(S op)).

(2) For a module M ∈ Mod R (respectively, Mod S op), M ∈ BC(R) (respectively, BC(S op)) if and only
if M+ ∈ AC(Rop) (respectively,AC(S )).

Let X be a subcategory of Mod S . For a module A ∈ Mod S , the X -injective dimension X -id A
of A is defined as inf{n ≥ 0 | there exists an exact sequence

0→ A→ X0 → X1 → · · · → Xn → 0

in Mod S with all Xi ∈ X }, and set X -id A = ∞ if no such integer exists. Dually, for a subcategory
Y of Mod S op and a module B ∈ Mod S op, the Y -projective dimension Y -pd B of B is defined.
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3. The (C-)FP-injectivity of modules

Recall that a ring R is called left coherent if any finitely generated left ideal of R is finitely presented.
We begin with the following lemma.

Lemma 3.1. Let R, S ,T be arbitrary rings and consider the situation (T AS , RBS ) with AS and RB finitely
presented.

(1) If HomS op(A, B) is a finitely generated left R-module, then for any FP-injective left R-module E,
there exists a natural isomorphism

τA,B,E : A ⊗S HomR(B, E)→ HomR(HomS op(A, B), E)

in Mod T defined by τA,B,E(x ⊗ f )(g) = f g(x) for any x ∈ A, f ∈ HomR(B, E) and g ∈
HomS op(A, B).

(2) If R is a left coherent ring, then HomS op(A, B) is a finitely presented left R-module. Moreover, if
there exists an exact sequence

S tn+1 → · · · → S t1 → S t0 → A→ 0 (2.1)

in Mod S op with n ≥ 0 and all ti positive integers, then Exti
S op(A, B) is a finitely presented left

R-module for any 0 ≤ i ≤ n.

Proof. Since AS is finitely presented, there exists an exact sequence

S t1
f0
−→ S t0 → A→ 0

in Mod S op with s0, s1 positive integers. Then we get two exact sequences of abelian groups:

S t1 ⊗S HomR(B, E)→ S t0 ⊗S HomR(B, E)→ A ⊗S HomR(B, E)→ 0, and

0→ HomS op(A, B)→ HomS op(S t0 , B)
HomS op ( f0,B)
−→ HomS op(S t1 , B) (2.2)

with HomS op(S ti , B) � Bti being a finitely presented left R-module for i = 0, 1.
(1) If HomS op(A, B) is a finitely generated left R-module, then Im(HomS op( f0, B)) and

Coker(HomS op( f0, B)) are finitely presented left R-modules by [24, Proposition 1.6(ii)]. Thus for any
FP-injective left R-module E, applying the functor HomR(−, E) to (2.2) yields the following exact
sequence of abelian groups:

HomR(HomS op(S t1 , B), E)→ HomR(HomS op(S t0 , B), E)→ HomR(HomS op(A, B), E)→ 0.

By [28, Lemma 3.55(i)], there exists the following commutative diagram

S t1 ⊗S HomR(B, E)

τS t1 ,B,E

��

// S t0 ⊗S HomR(B, E)

τS t0 ,B,E

��

// A ⊗S HomR(B, E)

τA,B,E

��

// 0

HomR(HomS op (S t1 , B), E) // HomR(HomS op (S t0 , B), E) // HomR(HomS op (A, B), E) // 0

with both τS t0 ,B,E and τS t1 ,B,E being isomorphisms of abelian groups. So τA,B,E is also an isomorphism
of abelian groups. Notice that A is a (T, S )-bimodule, so τA,B,E is an isomorphism of left T -modules.
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(2) If R is a left coherent ring, then Im(HomS op( f0, B)) is a finitely generated left R-submodule of
the finitely presented left R-module HomS op(S t1 , B), and so Im(HomS op( f0, B)) is a finitely presented
left R-module. It follows from [24, Proposition 1.6(i)] that HomS op(A, B) is a finitely generated left R-
submodule of the finitely presented left R-module HomS op(S t0 , B), and hence HomS op(A, B) is a finitely
presented left R-module.

Assume that there exists an exact sequence as in (2.1). We prove the latter assertion by induction
on n. The case for n = 0 follows from the former assertion. Suppose n ≥ 1 and set K1 := Im f0. Then
we get an exact sequence

HomS op(S t0 , B)→ HomS op(K1, B)→ Ext1
S op(A, B)→ 0

and an isomorphism
Exti+1

S op(A, B) � Exti
S op(K1, B)

in Mod R for any i ≥ 1. Now the assertion follows easily from the induction hypothesis. □

The following result is a generalization of [28, Theorem 10.66].

Lemma 3.2. Let R, S ,T be arbitrary rings and consider the situation (T AS , RBS ) such that RB is finitely
presented and there exists an exact sequence as in (2.1). If R is a left coherent ring, then for any FP-
injective left R-module E, there exists a natural isomorphism

TorS
i (A,HomR(B, E)) � HomR(Exti

S op(A, B), E)

in Mod T for any 0 ≤ i ≤ n.

Proof. Applying Lemma 3.1, we get the assertion by using an argument similar to that in the proof
of [28, Theorem 10.66]. □

It was shown in [8, Lemma 4.1] that any injective left R-module is in BC(R). The assertion (1) in
the following proposition extends this result.

Proposition 3.3. Let R be a left coherent ring. Then we have

(1) Any FP-injective left R-module is in BC(R).
(2) If N ∈ Mod S with FIC(S )-id N < ∞, then N ∈ AC(S ).

Proof. (1) Let E be an FP-injective left R-module. Then Ext≥1
R (C, E) = 0. By Lemma 3.2, we have

TorS
i (C, E∗) � HomR(Exti

S op(C,C), E) = 0

for any i ≥ 1. Finally, consider the following sequence of left R-module homomorphisms:

C ⊗S E∗
τC,C,E
−→ HomR(C∗, E) = HomR(R, E)

α
−→ E,

where α is the canonical evaluation homomorphism defined by α(h) = h(1R) for any h ∈ C∗. It is well
known that α is an isomorphism with the inverse β : E → HomR(R, E) defined by β(e)(r) = re for any
e ∈ E and r ∈ R. Note that the unit 1R of R coincides with the identity homomorphism idC of CS . So,
for any x ∈ C and f ∈ E∗, we have

ατC,C,E(x ⊗ f ) = τC,C,E(x ⊗ f )(1R) = τC,C,E(x ⊗ f )(idC) = f idC(x) = f (x),
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which implies θE = ατC,C,E. Since τC,C,E is an isomorphism by Lemma 3.1(1), it follows that θE is also
an isomorphism. Thus we conclude that E ∈ BC(R).

(2) Let Q ∈ FIC(S ). Then Q = E∗ for some FP-injective left R-module E. By (1) and [8,
Proposition 4.1], we have Q ∈ AC(S ). Now the assertion follows from [8, Theorem 6.2]. □

Now we are in a position to prove the following result.

Theorem 3.4. Let R be a left coherent ring and N ∈ Mod S . Then

FP - idR C ⊗S N ≤ FIC(S )- id N

with equality when N ∈ AC(S ).

Proof. Let N ∈ Mod S with FIC(S )-id N = n < ∞. Then there exists an exact sequence

0→ N → E0
∗ → E1

∗ → · · · → En
∗ → 0 (2.3)

in Mod S with all Ei being FP-injective left R-modules. By Proposition 3.3(2), we have Ei
∗ ∈ AC(S )

and TorS
≥1(C, Ei

∗) = 0 for any 0 ≤ i ≤ n. Then applying the functor C ⊗S − to the exact sequence (2.3)
yields the following exact sequence

0→ C ⊗S N → C ⊗S E0
∗ → C ⊗S E1

∗ → · · · → C ⊗S En
∗ → 0

in Mod R. By Proposition 3.3(1), we have that Ei ∈ BC(R) and C ⊗S Ei
∗ � Ei is FP-injective for any

0 ≤ i ≤ n. Thus FP-idR C ⊗S N ≤ n.
Now suppose N ∈ AC(S ). Then N � (C⊗S N)∗ and Ext≥1

R (C,C⊗S N) = 0. If FP-idR C⊗S N = n < ∞,
then there exists an exact sequence

0→ C ⊗S N → E0 → E1 → · · · → En → 0

in Mod R with all Ei being FP-injective. Applying the functor HomR(C,−) to it yields the following
exact sequence

0→ (C ⊗S N)∗(� N)→ E0
∗ → E1

∗ → · · · → En
∗ → 0

in Mod S with all Ei
∗ ∈ FIC(S ), and so FIC(S )-id N ≤ n. □

We also need the following lemma.

Lemma 3.5.
(1) For any M ∈ Mod Rop, we have (M ⊗R C)++ � M++ ⊗R C.
(2) For any N ∈ Mod S , we have (C ⊗S N)++ � C ⊗S N++.

Proof. (1) By [4, Lemma 2.16(a)(c)], we have (M ⊗R C)++ � [(M+)∗]+ � M++ ⊗R C.
Symmetrically, we get (2). □

The following observation is useful in the next section.

Proposition 3.6.
(1) For any N ∈ Mod S , if N+ ∈ FC(S op), then N ∈ FIC(S ).
(2) For any N ∈ Mod S , if N++ ∈ IC(S ), then N ∈ FIC(S ).
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(3) For any Q ∈ Mod S op, if Q++ ∈ FC(S op), then Q ∈ FC(S op).

Proof. (1) Let N+ ∈ FC(S op). Then N+ ∈ BC(S op) and N ∈ AC(S ) by [8, Corollary 6.1] and Lemma
2.4(1). On the other hand, N++ ∈ IC(S ) by Lemma 2.2(1). Then C⊗S N++ is an injective left R-module
by [8, Lemma 5.1(c)]. Since (C⊗S N)++ � C⊗S N++ by Lemma 3.5(2), it follows that (C⊗S N)++ is also
an injective left R-module. Notice that C ⊗S N is a pure submodule of (C ⊗S N)++ by [2, Proposition
5.3.9], so C ⊗S N is an FP-injective left R-module by [18, Lemma 4]. Since N ∈ AC(S ), we have
N � (C ⊗S N)∗ ∈ FIC(S ).

(2) It follows from Lemma 2.2(1) and (1).
(3) Let Q ∈ Mod S op. Note that Q is a pure submodule of Q++ by [2, Proposition 5.3.9]. Thus, if

Q++ ∈ FC(S op), then Q ∈ FC(S op) by Lemma 2.2(2). □

4. Equivalent characterizations of several kinds of rings

In the following result, we give some equivalent characterizations for R being left coherent in terms
of the C-FP-injectivity and flatness of character modules of certain left S -modules, in which the equiv-
alence between (1) and (3) has been obtained in [12, Lemma 4.1] when RCS is faithful.

Theorem 4.1. The following statements are equivalent.

(1) R is a left coherent ring.
(2) FIC(S )-id N = FC(S op)-pd N+ for any N ∈ Mod S .
(3) A left S -module N is C-FP-injective (if and) only if N+ is a C-flat right S -module.
(4) A left S -module N is C-FP-injective (if and) only if N++ is a C-injective left S -module.
(5) A right S -module Q is C-flat (if and) only if Q++ is a C-flat right S -module.
(6) If Q is a C-projective right S -module, then Q++ is a C-flat right S -module.
(7) (C(I)

S )++ is a C-flat right S -module for any index set I.

Proof. (1)⇒ (2) Let N ∈ Mod S . Then for any finitely presented left R-module A and i ≥ 1, we have

TorR
i ((N+)∗, A) � TorR

i ((C ⊗S N)+, A) � [Exti
R(A,C ⊗S N)]+

by [4, Lemma 2.16(a)(d)], and so TorR
i ((N+)∗, A) = 0 if and only if Exti

R(A,C ⊗S N) = 0. It implies

fdRop(N+)∗ = FP - idR C ⊗S N. (3.1)

By Proposition 3.3(2) and Lemma 2.4(1), we have that if FIC(S )- id N < ∞, then N ∈ AC(S )
and N+ ∈ BC(S op). On the other hand, by [8, Corollary 6.1] and Lemma 2.4(1), we have that if
FC(S op)-pd N+ < ∞, then N+ ∈ BC(S op) and N ∈ AC(S ). Then for any n ≥ 0, we have

FIC(S )- id N = n

⇔ FP - idR C ⊗ N = n (by Theorem 3.4)
⇔ fdRop(N+)∗ = n (by (3.1))
⇔ FC(S op)- pd N+ = n. (by [14, Lemma 2.6(1)])

The implications (2)⇒ (3) and (5)⇒ (6)⇒ (7) are trivial.
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(3) ⇒ (4) If N++ ∈ IC(S ), then N+ ∈ FC(S op) by Lemma 2.2(1), and hence N ∈ FIC(S ) by
Proposition 3.6(1). Conversely, if N ∈ FIC(S ), then N+ ∈ FC(S op) by (3), and hence N++ ∈ IC(S ) by
Lemma 2.2(1) again.

(4) ⇒ (5) If Q++ ∈ FC(S op), then Q ∈ FC(S op) by Proposition 3.6(3). Conversely, if Q ∈ FC(S op),
then Q+ ∈ IC(S ) by Lemma 2.2(1). Thus Q+++ ∈ IC(S ) by (4), and therefore Q++ ∈ FC(S op) by
Lemma 2.2(1) again.

(7)⇒ (1) By [26, Theorem 2.1], it suffices to prove that (RR)I is a flat right R-module for any index
set I. By (7), we have [((CS )+)I]+ � (C(I)

S )++ ∈ FC(S op). Since there exists a pure monomorphism
λ : [(CS )+](I) → [(CS )+]I by [1, Lemma 1(1)], it follows from [2, Proposition 5.3.8] that λ+ is a split
epimorphism and [(CS )++]I(� [((CS )+)(I)]+) is a direct summand of [((CS )+)I]+. Then [(CS )++]I ∈

FC(S op) by [8, Proposition 5.1(a)]. By [2, Theorem 3.2.22] and Lemma 3.5(1), we have

[(RR)++]I ⊗R C � [(RR)++ ⊗R C]I � [(R ⊗R C)++]I � [(CS )++]I ∈ FC(S op).

Since RR ∈ AC(Rop), both (RR)++ and [(RR)++]I are in AC(Rop) by Lemma 2.4 and [8, Proposition
4.2(a)]. So [(RR)++]I � ([(RR)++]I ⊗R C)∗ is a flat right R-module by [14, Lemma 2.6(1)]. Since RR is
a pure submodule of (RR)++ by [2, Proposition 5.3.9], it follows from [1, Lemma 1(2)] that (RR)I is a
pure submodule of [(RR)++]I , and hence (RR)I is also a flat right R-module. □

We need the following lemma.

Lemma 4.2. For any U ∈ FIC(S ), there exists a module N ∈ IC(S ) such that U+ is a direct summand
of N+.

Proof. Let U ∈ FIC(S ) such that U = E∗ with E being FP-injective in Mod R. Then there exists a
pure exact sequence

0→ E → I → L→ 0

in Mod R with I being injective. By [2, Proposition 5.3.8], the induced exact sequence

0→ L+ → I+ → E+ → 0

in Mod Rop splits and E+ is a direct summand of I+. Then E+ ⊗R C is a direct summand of I+ ⊗R C.
By [4, Lemma 2.16(c)], we have

U+ = (E∗)+ � E+ ⊗R C and (I∗)+ � I+ ⊗R C.

Thus U+(� E+ ⊗R C) is a direct summand of (I∗)+(� I+ ⊗R C). □

We give some equivalent characterizations for R being left Noetherian in terms of the C-injectivity
and flatness of character modules of certain left S -modules as follows.

Theorem 4.3. The following statements are equivalent.

(1) R is a left Noetherian ring.
(2) IC(S )-id N = FC(S op)-pd N+ for any N ∈ Mod S .
(3) A left S -module N is C-injective if and only if N+ is a C-flat right S -module.
(4) A left S -module N is C-injective if and only if N++ is a C-injective left S -module.
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Proof. (1) ⇒ (2) Let R be a left Noetherian ring. Then a left R-module is FP-injective if and only if it
is injective, and so a left S -module is C-FP-injective if and only if it is C-injective. Thus the assertion
follows from Theorem 4.1.

(2)⇒ (3) It is trivial.
By Lemma 2.2(1), we have that for a left S -module N, N+ ∈ FC(S op) if and only if N++ ∈ IC(S ).

Thus the assertion (3)⇔ (4) follows.
(3) ⇒ (1) Let U ∈ FIC(S ). By Lemma 4.2, there exists a module N ∈ IC(S ) such that U+ is a

direct summand of N+. Then U+ ∈ FC(S op) by (3) and [8, Proposition 5.1(a)]. Thus R is a left coherent
ring by Theorem 4.1.

To prove that R is a left Noetherian ring, it suffices to prove that the class of injective left R-modules
is closed under direct sums by [25, Theorem 2.1]. Let {Ei | i ∈ I} be a family of injective left R-modules
with I any index set. By [4, Lemma 2.7], we have

[(⊕i∈IEi)∗]+ � [⊕i∈I(Ei)∗]+ � Πi∈I[(Ei)∗]+.

Since R is a left coherent ring and since all [(Ei)∗]+ are in FC(S op) by (3), we have that Πi∈I[(Ei)∗]+, and
hence [(⊕i∈IEi)∗]+, is also in FC(S op) by [8, Proposition 5.1(a)]. Then (⊕i∈IEi)∗ ∈ IC(S ) by (3) again.
Since all Ei are inBC(R), we have ⊕i∈IEi ∈ BC(R) by [8, Proposition 4.2(a)]. It follows from [8, Lemma
5.1(c)] that ⊕i∈IEi � C ⊗S (⊕i∈IEi)∗ is an injective left R-module. □

As a consequence of Theorems 4.1 and 4.3, we get the following corollary, which generalizes [8,
Lemma 5.2(c)].

Corollary 4.4.
(1) Let R be a left coherent ring and n ≥ 0. Then the subcategory of Mod S consisting of modules N

with FIC(S )-id N ≤ n is closed pure submodules and pure quotients.
(2) Let R be a left Noetherian ring and n ≥ 0. Then the subcategory of Mod S consisting of modules

N with IC(S )-id N ≤ n is closed pure submodules and pure quotients.

Proof. (1) Let
0→ K → N → L→ 0

be a pure exact sequence in Mod S with FIC(S )-pd N ≤ n. Then by [2, Proposition 5.3.8], the induced
exact sequence

0→ L+ → N+ → K+ → 0

in Mod S op splits and both K+ and L+ are direct summands of N+. By Theorem 4.1, we have FC(S op)-
pd N+ ≤ n. Note that the class of right S -modules with FC(S op)-projective dimension at most n is
closed under direct summands by [27, Corollary 4.18(1)]. It follows that FC(S op)-pd K+ ≤ n and
FC(S op)-pd L+ ≤ n. Thus FIC(S )-pd K ≤ n and FIC(S )-pd L ≤ n by Theorem 4.1 again.

(2) From the proof of (1) ⇒ (2) in Theorem 4.3, we know that if R is a left Noetherian ring, then
FIC(S ) = IC(S ). Now the assertion follows from (1). □

In the following result, we give some equivalent characterizations for R being left coherent and right
perfect in terms of the C-FP-injectivity and projectivity of character modules of certain left S -modules.

Theorem 4.5. The following statements are equivalent.
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(1) R is a left coherent and right perfect ring.
(2) FIC(S )-id N = PC(S op)-pd N+ for any N ∈ Mod S .
(3) A left S -module N is C-FP-injective (if and) only if N+ is a C-projective right S -module.
(4) A right S -module Q is C-flat (if and) only if Q++ is a C-projective right S -module.
(5) If Q is a C-projective right S -module, then Q++ is a C-projective right S -module.
(6) (C(I)

S )++ is a C-projective right S -module for any index set I.

Proof. (1)⇒ (2) Let R be a left coherent and right perfect ring. Then a right R-module is flat and only
if it is projective by [23, Theorem 28.4], and hence FC(S op) = PC(S op). Thus the assertion follows
from Theorem 4.1.

The implications (2)⇒ (3) and (4)⇒ (5)⇒ (6) are trivial.
(3) ⇒ (4) If Q++ ∈ PC(S op), then Q ∈ FC(S op) by Proposition 3.6(3). Conversely, if Q ∈ FC(S op),

then Q+ ∈ IC(S ) by Lemma 2.2(1), and hence Q++ ∈ PC(S op) by (3).
(6) ⇒ (1) It follows from (6) and Theorem 4.1 that R is a left coherent ring. Let I be an infinite

set such that its cardinality is greater than the cardinality of R. By using an argument similar to that in
the proof (7) ⇒ (1) in Theorem 4.1, we get that [(RR)++]I is a projective right R-module and (RR)I is a
pure submodule of [(RR)++]I , and hence (RR)I is a pure submodule of a free right R-module. It follows
from [26, Theorems 3.1 and 3.2] that R is a right perfect ring. □

Observe from [23, Corollary 15.23 and Theorem 28.4] that R is a left Artinian ring if and only if R
is a left Noetherian and right (or left) perfect ring. Finally, we give some equivalent characterizations
for R being left Artinian in terms of the C-injectivity and projectivity of character modules of certain
left S -modules as follows.

Theorem 4.6. The following statements are equivalent.

(1) R is a left Artinian ring.
(2) IC(S )-id N = PC(S op)-pd N+ for any N ∈ Mod S .
(3) A left S -module N is C-injective if and only if N+ is a C-projective right S -module.

Proof. The implication (2)⇒ (3) is trivial.
If R is a left Artinian ring, then FIC(S ) = IC(S ) and FC(S op) = PC(S op). Thus the implication

(1)⇒ (2) follows from Theorems 4.3 and 4.5.
(3) ⇒ (1) Let E be an FP-injective left R-module. Then by Lemma 4.2, there exists a module

N ∈ IC(S ) such that (E∗)+ is a direct summand of N+. So (E∗)+ ∈ PC(S op) by (3) and [8, Proposition
5.1(b)], and hence R is a left coherent and right perfect ring by Theorem 4.5.

On the other hand, E∗ ∈ IC(S ) by (3) again. It follows from Lemma 3.1 and [8, Lemma 5.1(c)] that
E � C ⊗S E∗ is an injective left R-module. Then R is left Noetherian ring by [18, Theorem 3]. Thus
we conclude that R is a left Noetherian and right perfect ring, and hence a left Artinian ring. □
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