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Abstract. As a dual of the Auslander transpose of modules, we introduce and study the
cotranspose of modules with respect to a semidualizing module C . Then using it we intro-
duce n-C -cotorsionfree modules, and show that n-C -cotorsionfree modules possess many
dual properties of n-torsionfree modules. In particular, we show that n-C -cotorsionfree
modules are useful in characterizing the Bass class and investigating the approximation
theory for modules. Moreover, we study n-cotorsionfree modules over Artin algebras and
answer negatively an open question of Huang and Huang posed in 2012.
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1 Introduction

It is well known that the Auslander–Reiten theory plays a very important role
in representation theory of Artin algebras and homological algebra. One of the
most powerful tools in this theory is the Auslander transpose. With the aid of the
Auslander transpose, as a special case of n-syzygy modules over left and right
Noether rings, Auslander and Bridger [1] introduced n-torsionfree modules and
obtained an approximation theory for finitely generated modules when n-syzygy
modules and n-torsionfree modules coincide. Ever since then many authors have
studied the homological properties of these modules and related modules; see
e.g. [1–4, 11–13, 16–18, 20], and so on. Based on these references, two natural
questions arise:

Question 1. How to dualize the Auslander transpose of modules appropriately?
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3718 X. Tang and Z. Huang

Question 2. Does the notion of n-torsionfree modules have its dual as many
notions in classical homological algebra do?

The aim of this paper is to study these two questions, and we will define and
investigate the cotranspose of modules and n-cotorsionfree modules.

The paper is organized as follows.
In Section 2 we give some terminology and some preliminary results, and we

also introduce the notions of cotorsionless modules and coreflexive modules.
In Section 3 we introduce the cotranspose of modules with respect to a semi-

dualizing bimodule C , and using it we introduce n-C -cotorsionfree modules as
a dual of n-(C -)torsionfree modules in [1, 20]. We show that n-C -cotorsionfree
modules possess many dual properties of n-(C -)torsionfree modules. For example,
we prove that a module is n-C -cotorsionfree if and only if it admits some special
proper resolutions of length at least n. Then, as an application, we deduce that
the Bass class with respect to C coincides with the intersection of the class of
1-C -cotorsionfree modules and that of 1-C -cospherical modules. As another
application, we get a dual version of the approximation theorem for finitely gen-
erated modules over left and right noetherian rings in [1, Proposition 2.21] and its
semiduazlizing version in [20, Theorem A].

In Section 4 we generalize the cograde of finitely generated modules in [14] to
general modules, and prove that for a ring R, the i -th cosyzygy of a left R-module
M is i -C -cotorsionfree for any 1� i � n if and only if the cograde of ExtiR.C;M/

with respect to C is at least i � 1 for any 1 � i � n. This result can be regarded
as a dual version of [1, Proposition 2.26].

In Section 5, we focus on studying some special finitely generated n-C -cotor-
sionfree modules (called n-cotorsionfree modules) over Artin algebras. In this
case, we first show that the ordinary Matlis duality induces a duality between the
cotranspose (resp. n-cotorsionfree modules) and the transpose (resp. n-torsionfree
modules). Then we obtain an equivalent characterization when (?GI;GI/ forms
a cotorsion pair, where GI denotes the class of finitely generated Gorenstein injec-
tive modules and ?GI is its left orthogonal class. Finally, we give an example to
illustrate that the class of 1-torsionfree modules is not closed under kernels of
epimorphisms in general. It answers negatively an open question of Huang and
Huang ([11]).

2 Preliminaries

Throughout this paper, R; S are fixed associative rings with units. We use ModR
(resp. ModSop) to denote the class of left R-modules (resp. right S -modules).
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Homological aspects of the dual Auslander transpose 3719

Definition 2.1 ([10]). An (R-S )-bimodule RCS is called semidualizing if

(a1) RC admits a degreewise finite R-projective resolution,

(a2) CS admits a degreewise finite S -projective resolution,

(b1) the homothety map RRR
R

��! HomS .C; C / is an isomorphism,

(b2) the homothety map SSS

S
��! HomR.C; C / is an isomorphism,

(c1) Ext>1R .C; C / D 0,

(c2) Ext>1S .C; C / D 0.

From now on, RCS is a semidualizing bimodule. We write .�/� D Hom.�; C /
and .�/� D Hom.C;�/. For a module M 2 ModR, we have the following two
canonical valuation homomorphisms:

�M WM !M ��

defined by �M .x/.f / D f .x/ for any x 2M and f 2M �, and

�M W C ˝S M� !M

defined by �M .x ˝ f / D f .x/ for any x 2 C and f 2M�.

Definition 2.2 ([10]). The Bass class BC .R/ with respect to C consists of all
left R-modules M satisfying

(B1) Ext>1R .C;M/ D 0,

(B2) TorS
>1.C;HomR.C;M// D 0,

(B3) �M is an isomorphism in ModR.

Let M be a finitely presented left R-module and let

P1
f0
�! P0 �!M �! 0

be a finitely generated projective presentation of M . Then TrC M WD Cokerf0�

is called the (Auslander) transpose with respect to C (see [12]). When R D S
and RCS D RRR, the Auslander transpose with respect to C is just the Auslander
transpose ([1]).

Proposition 2.3 ([1, Proposition 2.6] and [12, Lemma 2.1]). Let M be a finitely
presented left R-module. Then there exists an exact sequence

0 �! Ext1S .TrC M;C/ �!M
�M
�!M �� �! Ext2S .TrC M;C/ �! 0:
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3720 X. Tang and Z. Huang

Recall that a module M 2 ModR is called C -torsionless if �M is a monomor-
phism, and M is called C -reflexive if �M is an isomorphism. As the duals of
C -torsionless modules and C -reflexive modules, we introduce the following:

Definition 2.4. A module M 2 ModR is called C -cotorsionless if �M is an epi-
morphism, and M is called C -coreflexive if �M is an isomorphism.

For a module M 2 ModR, we denote by AddRM the subclass of ModR
consisting of all direct summands of direct sums of copies of M .

Lemma 2.5. The following statements hold.

(1) For any W 2 AddR C , W is C -coreflexive, W� is a projective left S -module
and Ext�1R .C;W / D 0.

(2) For any injective left R-module I , I is C -coreflexive and TorS
>1.C; I�/ D 0.

Proof. Statement (1) follows from [10, Lemma 5.1 (b)], and statement (2) follows
from [10, Lemma 5.1 (c)].

Definition 2.6 ([19]). Let X be a subclass of ModR.

(1) A sequence E in ModR is HomR.X;�/-exact (resp. HomR.�;X/-exact) if
HomR.X;E/ (resp. HomR.E; X/) is exact for any X 2 X.

(2) An exact sequence

X WD � � � ! X1 ! X0 ! X0 ! X1 ! � � �

in ModR with Xi ; X i 2 X is totally X-acyclic if it is HomR.X;�/-exact
and HomR.�;X/-exact.

Definition 2.7 ([7]). A module M 2 ModR is called Gorenstein injective if there
exists a totally acyclic complex of injective modules

I WD � � � ! I1 ! I0 ! I 0 ! I 1 ! � � �

in ModR such that M Š Im.I0 ! I 0/.

3 The cotranspose and n-C -cotorsionfree modules

In this section, we introduce and study the cotranspose of modules and n-cotor-
sionfree modules with respect to the given semidualizing bimodule RCS .
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Homological aspects of the dual Auslander transpose 3721

Let M 2 ModR. We use

0 �!M �! I 0.M/
f 0

�! I 1.M/
f 1

�! � � �
f i�1

�! I i .M/
f i

�! � � � (3.1)
to denote a minimal injective resolution of M in ModR. For any n � 1,

co�n.M/ WD Imf n�1

is called the n-th cosyzygy ofM , and in particular, put co�0.M/ WDM . A module
in ModR is called n-cosyzygy if it is isomorphic to the n-th cosyzygy of some
module in ModR. We introduce the dual notion of the Auslander transpose of
modules as follows.

Definition 3.1. For a module M 2 ModR, cTrC M WD Cokerf 0� is called the
cotranspose of M with respect to RCS .

The following result is a dual version of Proposition 2.3.

Proposition 3.2. Let M 2 ModR. Then there exists an exact sequence

0 �! TorS2 .C; cTrC M/ �! C ˝S M�
�M
�!M �! TorS1 .C; cTrC M/ �! 0:

Proof. By applying the functor .�/� to the minimal injective resolution (3.1)
of M , we get an exact sequence

0 �!M� �! I 0.M/�
f 0
�

�! I 1.M/� �! cTrC M �! 0

in ModS . Let
f 0 D ˛ � �

(where � W I 0.M/ � Imf 0 and ˛ W Imf 0 � I 1.M/) and

f 0� D ˛
0
� � 0

(where � 0 W I 0.M/�� Imf 0� and ˛0 W Imf 0�� I 1.M/�) be the natural epic-
monic decompositions of f 0 and f 0� respectively. Since TorS1 .C; I

0.M/�/ D 0

and �I0.M/ is an isomorphism by Lemma 2.5 (2), we have the following commu-
tative diagram with exact rows:

0 // TorS1 .C; Imf 0�/
// C˝RM� //

�M
��

C˝SI
0.M/�

1C˝�
0

//

�
I0.M/��

C˝S Imf 0�
//

h
��

0

0 // M // I 0.M/
�

// Imf 0 // 0,

where h is an induced homomorphism. Then

� � �I0.M/ D h � .1C ˝ �
0/:

In addition, by the snake lemma, we have

Ker �M Š TorS1 .C; Imf 0�/ and Coker �M Š Ker h:
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3722 X. Tang and Z. Huang

On the other hand, since TorS1 .C; I
1.M/�/ D 0 D TorS2 .C; I

1.M/�/ by Lem-
ma 2.5 (2), by applying the functor C ˝S � to the exact sequence

0 �! Imf 0�
˛0

�! I 1.M/� �! cTrC M �! 0;

we get the exact sequence

0 // TorS1 .C; cTrC M/ // C ˝S Imf 0�

1C˝˛
0

��

C ˝S I
1.M/�

// C ˝S cTrC M // 0

and the isomorphism

TorS1 .C; Imf 0�/ Š TorS2 .C; cTrC M/:

Because

C ˝S I
0.M/�

1C˝f
0
�
//

�
I0.M/

��

C ˝S I
1.M/�

�
I1.M/

��

I 0.M/
f 0

// I 1.M/

is a commutative diagram, we have

f 0 � �I0.M/ D �I1.M/ � .1C ˝ f
0
�/:

Because f 0� D ˛
0 � � 0, we get

1C ˝ f
0
� D 1C ˝ .˛

0
� � 0/ D .1C ˝ ˛

0/ � .1C ˝ �
0/:

Thus we have

˛ � h � .1C ˝ �
0/ D ˛ � � � �I0.M/ D f

0
� �I0.M/ D �I1.M/ � .1C ˝ f

0
�/

D �I1.M/ � .1C ˝ ˛
0/ � .1C ˝ �

0/:

Because 1C ˝ � 0 is epic, we get ˛ � h D �I1.M/ � .1C ˝ ˛
0/. Notice that ˛ is

monic and �I1.M/ is an isomorphism (by Lemma 2.5 (2)), so

Coker �M Š Ker h Š Ker.1C ˝ ˛0/ Š TorS1 .C; cTrC M/:

Consequently we obtain the desired exact sequence.

For any n � 1, recall from [20] that a finitely presented left R-module M is
called n-C -torsionfree if ExtiS .TrC M;C/ D 0 for any 1 � i � n. When R D S
and RCS D RRR, an n-C -torsionfree module is just an n-torsionfree module ([1]).
We introduce the dual notion of n-C -torsionfree modules as follows.
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Definition 3.3. Let M 2 ModR and n � 1. Then M is called n-C -cotorsionfree
if TorSi .C; cTrC M/ D 0 for any 1 � i � n; and M is called1-C -cotorsionfree
if it is n-C -cotorsionfree for all n. In particular, every left R-module is 0-C -cotor-
sionfree.

It is trivial that a left R-module is n-C -cotorsionfree if it is m-C -cotorsionfree
for somem � n. It is easy to verify that the class of n-C -cotorsionfree R-modules
is closed under direct summands and finite direct sums.

Note that for any M 2 ModR, there exists an exact sequence

0 ���!M� ���! I 0.M/�
f 0
�

���! I 1.M/� ���! cTrC M ���! 0:

The following corollary is an immediate consequence of Proposition 3.2.

Corollary 3.4. Let M 2 ModR. Then we have:

(1) M is 1-C -cotorsionfree if and only if it is C -cotorsionless.

(2) M is 2-C -cotorsionfree if and only if it is C -coreflexive.

(3) For any n � 3, M is n-C -cotorsionfree if and only if it is C -coreflexive and
TorSi .C;M�/ D 0 for any 1 � i � n � 2.

Proposition 3.5. Let 0! L!M ! N ! 0 be a HomR.C;�/-exact exact se-
quence in ModR with L being n-C -cotorsionfree. Then M is n-C -cotorsionfree
if and only if so is N .

Proof. By assumption we have an exact sequence 0! L� !M� ! N� ! 0

in ModS . Then we get the following commutative diagram with exact rows:

C ˝S L�

�L

��

// C ˝S M� //

�M

��

C ˝S N�

�N

��

// 0

0 // L // M // N // 0

and the following exact sequence:

TorSi .C;L�/! TorSi .C;M�/! TorSi .C;N�/! TorSi�1.C;L�/

for any i � 2. Now the assertion follows easily from the snake lemma and Corol-
lary 3.4.

Let X be a subclass of ModR and M 2 ModR. Following Enochs–Jenda [7],
a homomorphism � W X !M in ModR with X 2 X is called an X-precover
ofM if HomR.X 0; �/ W HomR.X 0; X/! HomR.X 0;M/ is epic for anyX 0 2 X.
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An X-precover � W X !M is an X-cover if every endomorphism g W X ! X

such that �g D � is an isomorphism. Dually the notion of an X-(pre)envelope
ofM is defined. Recall from [9] that an exact sequence (of finite or infinite length)

� � � ! Xn ! � � � ! X1 ! X0 !M ! 0

in ModR is called an X-resolution of M if each Xi 2 X. Such an X-resolution
is called proper if Xi � Im.Xi ! Xi�1/ is an X-precover of Im.Xi ! Xi�1/

(note: X�1 DM for any i � 0). Dually, the notion of an X-coresolution of M is
defined. The X-injective dimension X-idR.M/ ofM is defined as the infimum of
the set of all n such that there exists an X-coresolution

0!M ! X0 ! X1 ! � � � ! Xn ! 0

of M in ModR.

Lemma 3.6. Let M 2 ModR. Then we have:

(1) M is 1-C -cotorsionfree if and only if M admits an epic AddR C -precover
in ModR.

(2) M is 2-C -cotorsionfree if and only if there exists a proper AddR C -resolution
W1 ! W0 !M ! 0 of M in ModR.

Proof. (1) Let M be 1-C -cotorsionfree. Then �M is epic by Corollary 3.4. Since
there exists an epimorphism S .X/ � M�, we get an epimorphism

C .X/ � C ˝S M�;

which induces an epimorphism C .X/ � M because �M is epic. By [10, Proposi-
tion 5.3], every module in ModR admits an AddR C -precover. It follows that M
admits an epic AddR C -precover.

Conversely, let W0 � M be an epic AddR C -precover of M . Because �W0
is

an isomorphism by Lemma 2.5 (2), from the commutative diagram with exact rows

C ˝S W0� //

�W0

��

C ˝S M�

�M

��

// 0

W0 // M // 0

we get that �M is epic and M is 1-C -cotorsionfree.
(2) Let M be 2-C -cotorsionfree. By (1), there exists an exact sequence

0! N ! W0 !M ! 0

in ModR withW0 � M an AddR C -precover ofM . Then we have the following
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commutative diagram with exact rows:

C ˝S N� //

�N

��

C ˝S W0� //

�W0

��

C ˝S M� //

�M

��

0

0 // N // W0 // M // 0.

Because both �W0
; �M are isomorphisms by Lemma 2.5 (1) and Corollary 3.4 (2),

�N is epic by the snake lemma, and hence N is 1-C -cotorsionfree by Corol-
lary 3.4 (1). It follows from (1) thatN admits an epic AddR C -precoverW1 � N .
Then the spliced sequence W1 ! W0 !M ! 0 is as desired.

Conversely, let W1 ! W0 !M ! 0 be a proper AddR C -resolution of M .
Put N D Ker.W0 !M/. Then N is 1-C -cotorsionfree by (1), and so �N is epic
by Corollary 3.4 (1). Now the commutative diagram above implies that �M is an
isomorphism. Thus M is 2-C -cotorsionfree by Corollary 3.4 (2).

In the following result we give an equivalent characterization of n-C -cotor-
sionfree modules in terms of proper AddR C -resolutions of modules. It is dual
to [20, Corollary 3.3].

Proposition 3.7. LetM 2 ModR and n � 1. ThenM is n-C -cotorsionfree if and
only if there exists a proper AddR C -resolution

Wn�1 ! � � � ! W1 ! W0 !M ! 0

of M in ModR.

Proof. We proceed by induction on n. Note that the case for n � 2 follows from
Lemma 3.6. Now suppose n � 3.

If M is n-C -cotorsionfree, then �M is an isomorphism and TorSi .C;M�/ D 0
for any 1 � i � n � 2 by Corollary 3.4 (3). In addition, by Lemma 3.6 (1) there
exists an exact sequence 0! N ! W0 !M ! 0 in ModR withW0 2 AddR C
such that 0! N� ! W0� !M� ! 0 is also exact with W0� projective. Then
TorSi .C;N�/ Š TorSiC1.C;M�/ D 0 for 1 � i � n�3, and we have the following
commutative diagram with exact rows:

0 // C ˝S N�

�N

��

// C ˝S W0� //

�W0

��

C ˝S M�

�M

��

// 0

0 // N // W0 // M // 0.

Because �W0
is an isomorphism by Lemma 2.5 (1), �N is also an isomorphism.

ThusN is .n � 1/-C -cotorsionfree by Corollary 3.4 (3) and therefore the assertion
follows from the induction hypothesis.
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3726 X. Tang and Z. Huang

Conversely, assume that there exists a proper AddR C -resolution

Wn�1 ! � � � ! W1 ! W0 !M ! 0

of M in ModR. Put N D Im.W1 ! W0/. Then 0! N� ! W0� !M� ! 0 is
exact withW0� projective. BecauseN is .n � 1/-C -cotorsionfree by the induction
hypothesis, �N is an isomorphism and TorSi .C;N�/ D 0 for any 1 � i � n � 3 by
Corollary 3.4 (3).

Consider the following commutative diagram with exact rows:

C ˝S N�

�N

��

// C ˝S W0� //

�W0

��

C ˝S M�

�M

��

// 0

0 // N // W0 // M // 0.

Because �W0
is an isomorphism by Lemma 2.5 (1), �M is an isomorphism and

0! C ˝S N� ! C ˝S W0� ! C ˝S M� ! 0 is exact. So TorS1 .C;M�/ D 0
and TorSiC1.C;M�/ Š TorSi .C;N�/ D 0 for any 1 � i � n � 3, that is,

TorSi .C;M�/ D 0 for any 1 � i � n � 2.

Thus M is n-C -cotorsionfree by Corollary 3.4 (3).

As an immediate consequence of Proposition 3.7 we have the following

Corollary 3.8. For a moduleM 2ModR, the following statements are equivalent.

(1) M is 1-C -cotorsionfree (that is, M is C -cotorsionless).

(2) There exists an exact sequence

0! N ! W !M ! 0

in ModR with W 2 AddR C and Ext1R.C;N / D 0.

(3) There exists an epimorphism W � M in ModR with W 2 AddR C .

It follows from Proposition 3.7 that a module M 2 ModR is1-C -cotorsion-
free if and only if M has an exact proper AddR C -resolution

� � � ! W2 ! W1 ! W0 !M ! 0

in ModR. A module M 2 ModR is called n-C -cospherical if ExtiR.C;M/ D 0

for and 1 � i � n, and M is called 1-C -cospherical if it is n-C -cospherical
for all n. The following result shows that the Bass class with respect to C co-
incides with the intersection of the class of1-C -cotorsionfree modules and that
of1-C -cospherical modules.
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Homological aspects of the dual Auslander transpose 3727

Theorem 3.9. For a moduleM 2 ModR, the following statements are equivalent.

(1) M is1-C -cotorsionfree and1-C -cospherical.

(2) M 2 BC .R/.

Proof. By Proposition 3.7 and [10, Theorem 6.1].

Auslander and Bridger obtained in [1, Proposition 2.21] an approximation
theorem for finitely generated modules over left and right noetherian rings.
Takahashi in [20, Theorem A] got a semiduazlizing version of this result. We
dualize [20, Theorem A] as follows.

Theorem 3.10. Let M 2 ModR and n � 1. Then the following statements are
equivalent.

(1) co�n.M/ is n-C -cotorsionfree.

(2) There exists an exact sequence

0!M ! X ! Y ! 0

in ModR such that X is n-C -cospherical and AddR C -idR Y � n � 1.

Proof. (1)) (2) By Proposition 3.7 and Corollary 3.8, the fact that co�n.M/

is n-C -cotorsionfree implies that there exists an exact sequence in ModR

0! N0 ! W0 ! co�n.M/! 0

withW0 2 AddR C ,N0 being (n � 1)-C -cotorsionfree and Ext1R.C;N0/ D 0. We
get the following pullback diagram:

0

��

0

��

co�n�1.M/

��

co�n�1.M/

��

0 // N0 // X0 //

��

In�1.M/ //

��

0

0 // N0 // W0 //

��

co�n.M/ //

��

0

0 0.

If n D 1, then the middle column is the desired sequence.
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3728 X. Tang and Z. Huang

Let now n � 2. Since In�1.M/ 2 BC .R/, In�1.M/ is 1-C -cotorsionfree
by Theorem 3.9. Note that N0 is (n � 1)-C -cotorsionfree and Ext1R.C;N0/ D 0.
By Proposition 3.5, X0 is (n� 1)-C -cotorsionfree. Therefore there exists an exact
sequence 0! Z0 ! U0 ! X0 ! 0 in ModR with U0 2 AddR C , Z0 being
.n � 2/-C -cotorsionfree and Ext1R.C;Z0/ D 0 by Proposition 3.7. We construct
the pullback diagram

0

��

0

��

Z0

��

Z0

��

0 // Y0 //

��

U0 //

��

W0 // 0

0 // co�n�1.M/ //

��

X0 //

��

W0 // 0

0 0

such that AddR C -idR Y0 � 1 and ExtiR.C;Z0/ D 0 for i D 1; 2 because we have
Ext1R.C;X0/ D 0. Using the leftmost column in this diagram, we also have the
following pullback diagram:

0

��

0

��

co�n�2.M/

��

co�n�2.M/

��

0 // Z0 // X1 //

��

In�2.M/ //

��

0

0 // Z0 // Y0 //

��

co�n�1.M/ //

��

0

0 0.

It follows from the middle row in the above diagram that ExtiR.C;X1/ D 0 for
i D 1; 2. Therefore, if n D 2, then the middle column in the above diagram is the
desired exact sequence.

Let now n � 3. Since Z0 is (n � 2)-C -cotorsionfree and Ext1R.C;Z0/ D 0,
it follows that X1 is (n � 2)-C -cotorsionfree by Proposition 3.5. We have an
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exact sequence 0!Z1! U1!X1! 0 in ModR withU1 2 AddR C ,Z1 being
.n � 3/-C -cotorsionfree and Ext1R.C;Z1/ D 0 by Proposition 3.7 again. Iterating
the above construction of pullback diagrams, we eventually obtain the desired
exact sequence.

(2)) (1) Since AddR C -idR Y � n � 1, there exists an exact sequence

0 ���! Y
d0
���! W 0 d1

���! W 1
���! � � �

dn�1
���! W n�1

���! 0

in ModR with all W i 2 AddR C . Set Yi D Im di for each i . Then we have the
following pushout diagram:

0

��

0

��

0 // M //

��

I 0.M/ //

��

co�1.M/ // 0

0 // X //

��

H0 //

��

co�1.M/ // 0

Y

��

Y

��

0 0.

We now conclude that H0 Š Y ˚ I 0.M/. Adding I 0.M/ to the exact sequence
0! Y ! W 0 ! Y1 ! 0, we get an exact sequence

0! Y ˚ I 0.M/! W 0
˚ I 0.M/! Y1 ! 0:

Thus the following two pushout diagrams are obtained:

0

��

0

��

0 // X // Y ˚ I 0.M/ //

��

co�1.M/ //

��

0

0 // X // W 0 ˚ I 0.M/ //

��

X1 //

��

0

Y1

��

Y1

��

0 0
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and
0

��

0

��

0 // co�1.M/ //

��

I 1.M/ //

��

co�2.M/ // 0

0 // X1 //

��

H1 //

��

co�2.M/ // 0

Y1

��

Y1

��

0 0.

Repeating the procedure in this way yields the exact sequence

0! Xi ! W i
˚ I i .M/! XiC1 ! 0

for any 0 � i � n � 1, whereX0 D X . Since ExtiR.C;X0/ D 0 for any 1 � i � n
by assumption, we get ExtjR.C;Xi / D 0 for any 1 � j � n � i . Then there exists
an exact sequence

0! Xi� ! .W i
˚ I i .M//� ! XiC1� ! 0

for any 0 � i � n � 1. By Lemma 2.5, each �W i˚I i .M/ is an isomorphism. Now
we have the following commutative diagram with exact rows:

C ˝S .W
0 ˚ I 0.M//� //

�
W 0˚I0.M /

��

C ˝S X1�

�X1

��

// 0

W 0 ˚ I 0.M/ // X1 // 0:

It follows that �X1
is epic and so X1 is 1-C -cotorsionfree by Corollary 3.4 (1).

Also, there exists the following commutative diagram with exact rows:

C ˝S X1� //

�X1

��

C ˝S .W
1 ˚ I 1.M//� //

�
W 1˚I1.M/

��

C ˝S X2�

�X2

��

// 0

0 // X1 // W 1 ˚ I 1.M/ // X2 // 0.

So �X2
is an isomorphism and hence X2 is 2-C -cotorsionfree by Corollary 3.4 (2).
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Furthermore, there exists the following commutative diagram with exact rows:

0 // TorS1 .C;X3�/ // C˝SX2� //

�X2

��

C˝S .W
2˚I 2.M//� //

�
W 2˚I2.M/

��

C˝SX3�

�X3

��

// 0

0 // X2 // W 2˚I 2.M/ // X3 // 0.

So �X3
is an isomorphism and TorS1 .C;X3�/ D 0, and henceX3 is 3-C -cotorsion-

free by Corollary 3.4 (3). Repeating a similar argument, we eventually get that
co�n.M/ Š Xn is n-C -cotorsionfree.

The following result is an addendum to Theorem 3.10.

Proposition 3.11. Let M 2 ModR and n � 1. If co�n.M/ is 1-C -cotorsion-
free, then there exists an exact sequence 0!M ! X ! Y ! 0 in ModR with
X being1-cotorsionfree and AddR C -idR Y � n � 1.

Proof. We proceed by induction on n.
Let n D 1. Since co�1.M/ is1-C -cotorsionfree by assumption, there exists

an exact sequence
0! N1 ! W1 ! co�1.M/! 0

in ModR withW1 2 AddR C ,N1 being1-C -cotorsionfree and Ext1R.C;N1/D 0
by Proposition 3.7. Consider the following pullback diagram:

0

��

0

��

N1

��

N1

��

0 // M // X //

��

W1 //

��

0

0 // M // I 0.M/ //

��

co�1.M/ //

��

0

0 0.

It follows from Proposition 3.5 that the middle row in the above diagram is the
desired sequence.
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Now suppose n � 2. By the induction hypothesis, there exists an exact sequence

0! co�1.M/! X 0 ! Y 0 ! 0

in ModR with X 0 being 1-C -cotorsionfree and AddR C -idR Y 0 � n � 2. We
also have an exact sequence

0! X 00 ! W 0 ! X 0 ! 0

in ModRwithW 0 2AddR C ,X 00 being1-C -cotorsionfree and Ext1R.C;X
00/D 0

by Proposition 3.7. We have the following pullback diagram:

0

��

0

��

X 00

��

X 00

��

0 // Y //

��

W 0 //

��

Y 0 // 0

0 // co�1.M/ //

��

X 0 //

��

Y 0 // 0

0 0.

Then AddR C -idR Y � n � 1. Consider the following pullback diagram:

0

��

0

��

X 00

��

X 00

��

0 // M // X //

��

Y //

��

0

0 // M // I 0.M/ //

��

co�1.M/ //

��

0

0 0.

Note that the middle column in this diagram is HomR.C;�/-exact. Hence X is
1-C -cotorsionfree by Proposition 3.5. Therefore the middle row in this diagram
is as desired.
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4 Cograde and cotorsionfreeness

In this section, for a module M 2 ModR and a positive integer n, we will give
a criterion in terms of the properties of the cograde of modules for judging when
co�i .M/ is i -C -cotorsionfree for any 1 � i � n.

Let M 2 ModR and n � 1. From the exact sequence

0 ����! co�n�1.M/
�n�1

���! In�1.M/
pn

����! co�n.M/ ����! 0 (4.1)

we get the following exact sequence:

0 // .co�n�1.M//�
�n�1

�
// In�1.M/�

pn
�
// .co�n.M//�

��

ExtnS .C;M/ // 0.

Set Impn� D N , and decompose this sequence into two short exact sequences:

0 ����! .co�n�1.M//�
�n�1

�
����! In�1.M/�

ˇ
����! N ����! 0 (4.2)

and
0 �! N

˛
�! .co�n.M//� �! ExtnR.C;M/ �! 0:

Then we get the following commutative diagram with exact rows:

C˝S .co�n�1.M//�
1C˝�

n�1
�
//

�co �n�1.M/
��

C˝SI
n�1.M/�

1C˝ˇ
//

�
In�1.M/

��

C˝SN

g

��

// 0

0 // co�n�1.M/
�n�1

// In�1.M/
pn

// co�n.M/ // 0.
(4.3)

Then it is straightforward to check that there exists the following commutative
diagram with exact rows:

C ˝S N

g

��

1C˝˛
// C ˝S .co�n.M//� //

�co �n.M/

��

C ˝S ExtnR.C;M/ // 0

co�n.M/ co�n.M/.

(4.4)
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Lemma 4.1. For a module M 2 ModR, we have:

(1) co�1.M/ is 1-C -cotorsionfree.

(2) For any n � 2, Ker �co�n.M/ Š C ˝S ExtnR.C;M/.

Proof. (1) Since I 0.M/ is 1-C -cotorsionfree by Theorem 3.9, the assertion
follows from Corollary 3.8.

(2) If n � 2, then �co�n�1.M/ is an epimorphism by (1). Because �In�1.M/ is
an isomorphism by Theorem 3.9, g is an isomorphism in the above two diagrams.
So Ker �co�n.M/ Š C ˝S ExtnR.C;M/.

The notion of the cograde of finitely generated modules has been introduced
in [14, Corollary 3.11]. The following definition generalizes it to a general setting.

Definition 4.2. For a module N 2 ModS , the cograde of N with respect to C is
defined by cogradeC N WD inf¹i W TorSi .C;N / ¤ 0º.

We are now in a position to give the main result in this section, which can be
regarded as a dual version of [1, Proposition 2.26].

Theorem 4.3. Let M 2 ModR and n � 1. Then co�i .M/ is i -C -cotorsionfree
for any 1 � i � n if and only if cogradeC ExtiR.C;M/ � i � 1 for any 1 � i � n.

Proof. We proceed by induction on n. If n D 1, then the assertion follows from
Lemma 4.1 (1).

Let n D 2. Then co�2.M/ is 2-C -cotorsionfree if and only if �co�2.M/ is an
isomorphism by Corollary 3.4 (2). Note that �co�2.M/ is epic by Lemma 4.1 (1).
So co�2.M/ is 2-C -cotorsionfree if and only if �co�2.M/ is monic. But

Ker �co�2.M/ Š C ˝S Ext2R.C;M/

by Lemma 4.1 (2). So co�2.M/ is 2-C -cotorsionfree if and only if

C ˝S Ext2S .C;M/ D 0;

that is,
cogradeC Ext2S .C;M/ � 1:

Now suppose n � 3. If co�i .M/ is i -C -cotorsionfree for 1 � i � n, then by
the induction hypothesis, it suffices to show that cogradeC ExtnS .C;M/ � n � 1.
By Lemma 4.1 (2),

C ˝S ExtnR.C;M/ Š Ker �co�n.M/ D 0:
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From the exact sequence (4.1) we get the following exact sequence:

TorS1 .C; .co�n.M//�/ // TorS1 .C;ExtnR.C;M// // C ˝S N

1C˝˛

��

C ˝S .co�n.M//�

��

C ˝S ExtnR.C;M/

��

0.

Because both �co�n�1.M/ and �In�1.M/ are isomorphisms, the homomorphism g

in (4.3) is also an isomorphism. Then from (4.4) we know that 1C ˝ ˛ is monic.
In addition, by Corollary 3.4 (3) we have

TorSi .C; .co�n.M//�/ D 0 for any 1 � i � n � 2.

So TorS1 .C;ExtnR.C;M// D 0, and hence

cogradeC ExtnR.C;M/ � 2:

From the exact sequence (4.1) we get the following exact sequence:

0 // .co�n�1.M//�
�n�1

�
// In�1.M/�

pn
�
// .co�n.M//�

��

ExtnS .C;M/

��

0.

(4.5)

By Theorem 3.9 and Corollary 3.4 (3), TorSi .C; I
n�1.M/�/ D 0 for any i � 1.

Again by Corollary 3.4 (3) we have

TorSi .C; .co�n�1.M//�/ D 0 for any 1 � i � n � 3.

So by the dimension shifting, TorSi .C;ExtnR.C;M// D 0 for any 3 � i � n � 2,
and hence

cogradeC ExtnR.C;M/ � n � 1:
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Conversely, if cogradeC ExtiR.C;M/ � i � 1 for any 1 � i � n, then by the
induction hypothesis, it suffices to show that co�n.M/ is n-C -cotorsionfree.
Since co�n�1.M/ is .n � 1/-C -cotorsionfree by the induction hypothesis, it fol-
lows that �co�n�1.M/ is an isomorphism. Notice that �In�1.M/ is also an isomor-
phism, so is the homomorphism g in (4.3). Because cogradeC ExtnR.C;M/ � n�1

by assumption, 1C ˝ ˛ in (4.4) is an isomorphism. It implies that �co�n.M/ is
also an isomorphism and co�n.M/ is C -coreflexive. On the other hand, similar
to the above argument, using the dimension shifting, from the exact sequence (4.5)
we get that TorSi .C; .co�n.M//�/ D 0 for any 1 � i � n � 2. Then we conclude
that co�n.M/ is n-C -cotorsionfree by Corollary 3.4 (3).

5 Special cotorsionfree modules over Artin algebras

Throughout this section,ƒ is an ArtinR-algebra over a commutative Artin ringR.
Let modƒ be the class of finitely generated left ƒ-modules. We denote by D the
ordinary Matlis duality between modƒop and modƒ, that is,

D.�/ WD HomR.�; I 0.R=J.R///;

where J.R/ is the Jacobson radical ofR and I 0.R=J.R// is the injective envelope
of R=J.R/. It is easy to verify that the (ƒ;ƒ)-bimodule D.ƒ/ is semidualizing.
We use addD.ƒ/ to denote the subclass of modƒ consisting of modules iso-
morphic to direct summands of finite direct sums of copies of D.ƒ/. We use the
abbreviation cTr.�/ for cTrD.ƒ/.�/. Let A 2 modƒ and n � 1. Then A is called

� n-cotorsionfree if Torƒi .D.ƒ/; cTrA/ D 0 for any 1 � i � n,
� 1-cotorsionfree if it is n-cotorsionfree for all n;

in particular, every module in modƒ is 0-cotorsionfree. In addition, A is called

� n-cospherical if Extiƒ.D.ƒ/;A/ D 0 for any 1 � i � n,
� 1-cospherical if it is n-cospherical for all n.

Put .�/� WD Homƒ.�; ƒ/. The following result establishes the dual relation
between the cotranspose (resp. n-cotorsionfree modules) and the transpose (resp.
n-torsionfree modules).

Proposition 5.1. Let A 2 modƒ and n � 1. Then we have:

(1) TrA Š cTrD.A/,

(2) cTrA Š TrD.A/,

(3) A is n-torsionfree if and only if D.A/ is n-cotorsionfree,

(4) A is n-cotorsionfree if and only if D.A/ is n-torsionfree.
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Proof. Because (2) and (4) are duals of (1) and (3) respectively, it suffices to
prove (1) and (3).

(1) Let
P1 ! P0 ! A! 0

be a minimal projective presentation of A in modƒ. Then we have the exact se-
quence

0! A� ! P �0 ! P �1 ! TrA! 0;

and a minimal injective presentation

0! D.A/! D.P0/! D.P1/

of D.A/. Now we obtain another exact sequence:

0 // Homƒ.D.ƒ/;D.A// // Homƒ.D.ƒ/;D.P0//

��

Homƒ.D.ƒ/;D.P1// // cTrD.A/ // 0.

Since P �i Š Homƒ.D.ƒ/;D.Pi // for i D 1; 2, we get TrA Š cTrD.A/.
(3) For any i � 1, we have

Extiƒ.TrA;ƒ/ Š Extiƒ.TrA;Homƒ.D.ƒ/;D.ƒ///

Š Homƒ.Torƒi .TrA;D.ƒ//;D.ƒ//;

the second isomorphism by [6, Chapter VI, Proposition 5.1]. Note thatD.ƒ/ is an
injective cogenerator for Modƒ. So, for any i � 1we have that Extiƒ.TrA;ƒ/D 0
if and only if Torƒi .TrA;D.ƒ//D 0 and if and only if Torƒi .cTrD.A/;D.ƒ//D 0
by Proposition 5.1 (1). It follows that A is n-torsionfree if and only if D.A/ is
n-cotorsionfree.

Note that a module in modƒop is Gorenstein flat (see [7] for the definition)
if and only if it is Gorenstein projective by [5, Proposition 1.3]. So the ordinary
Matlis duality D between modƒop and modƒ induces a duality between Goren-
stein projective modules in modƒop and Gorenstein injective modules in modƒ
(cf. [9, Theorem 3.6]). Then by [7, Proposition 10.2.6] and Proposition 5.1, we
immediately have the following

Corollary 5.2. For a module A 2 modƒ, the following statements are equivalent.

(1) A is1-cotorsionfree and1-cospherical.

(2) There exists a totally addD.ƒ/-acyclic complex I (as in Definition 2.7) such
that A Š Im.I0 ! I 0/:

(3) A is Gorenstein injective.
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Recall that ƒ is called Gorenstein if idƒƒ D idƒop ƒ <1, where idƒƒ and
idƒopƒ are the left and right self-injective dimensions of ƒ respectively.

Corollary 5.3. The following statements are equivalent for any n � 0.

(1) ƒ is Gorenstein with idƒƒ D idƒop ƒ � n.

(2) The n-cosyzygy of a module in modƒ and that of a module in modƒop are
1-cotorsionfree.

(3) Every module in modƒ and every module in modƒop are quotient modules
of a left ƒ-module and a right ƒ-module with injective dimension at most n
respectively.

Proof. By Corollary 5.2 and [11, Theorem 1.4 and Lemma 3.8], using the duality
functor D we get the assertion.

The following example illustrates that the condition “1-cotorsionfree” in (2)
of Corollary 5.3 cannot be replaced by “n-cotorsionfree”.

Example 5.4. Let ƒ be a finite-dimensional algebra over an algebraically closed
field given by the quiver

�˛
%%

ˇ
yy

modulo the ideal generated by ¹˛2; ˇ2; ˛ˇ; ˇ˛º. Thenƒ is not Gorenstein, but for
any A 2 modƒ, co�1.A/ is 1-cotorsionfree.

Corollary 5.5. If both R andƒ are local, then the following statements are equiv-
alent.

(1) ƒ is Gorenstein.

(2) ƒ is self-injective.

(3) For A 2 modƒ and B 2 modƒop,D.ƒ/˝ƒ cTrA and cTrB ˝ƒ D.ƒ/ are
Gorenstein injective.

(4) For A 2 modƒ and B 2 modƒop,D.ƒ/˝ƒ cTrA and cTrB ˝ƒ D.ƒ/ are
1-cotorsionfree.

Proof. The implication (1)) (2) follows from [15, Corollary 2.15], and (3)) (4)
follows from Corollary 5.2.

Note that D.ƒ/˝ƒ cTrA (resp. cTrB ˝ƒ D.ƒ/) is isomorphic to the 2-co-
syzygy of A (resp. B). So both implications (4)) (1) and (2)) (3) follow from
Corollaries 5.3 and 5.2.
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We will denote by GI the class of finitely generated Gorenstein injective left
ƒ-modules. We write

?G I D ¹M 2 modƒ W Ext�1ƒ .M;X/ D 0 for any X 2 GIº

and

.?GI/? D ¹M 2 modƒ W Ext�1ƒ .M; Y / D 0 for any Y 2 ?GIº:

Lemma 5.6. Let 0 ! L ! M ! N ! 0 be an exact sequence in modƒ. If
L;M 2 ?GI, then N 2 ?GI.

Proof. By dimension shifting, we have Ext�2ƒ .N;A/ D 0 for any A 2 GI. Now
let X 2 GI. It suffices to prove Ext1ƒ.N;X/ D 0. By Corollary 5.2 there exists
an exact sequence 0! K ! I0 ! X ! 0 in modƒ with I0 2 addD.ƒ/ and
K 2 G I. So Ext1ƒ.N;X/ Š Ext2ƒ.N;K/ D 0.

Let X be a full subcategory of an abelian category A. We write

?X D ¹M 2 A W Ext�1
A
.M;X/ D 0 for any X 2 Xº

and

X? D ¹M 2 A W Ext�1
A
.X;M/ D 0 for any X 2 Xº:

Recall that a pair of subcategories .X;Y/ of an abelian category A is called
a cotorsion pair if X D ?Y and Y D X?. We denote by GInj.ƒ/ the subclass
of Modƒ consisting of Gorenstein injective modules, and write

?GInj.ƒ/ D ¹M 2 Modƒ W Ext�1ƒ .M;X/ D 0 for any X 2 GInj.ƒ/º:

It is known that .?GInj.ƒ/;GInj.ƒ// forms a cotorsion pair in Modƒ (see [5]).
The following result gives an equivalent characterization when .?GI;GI/ forms
a cotorsion pair in modƒ.

Theorem 5.7. The following statements are equivalent.

(1) .?GI/? D GI (that is, .?GI;GI/ forms a cotorsion pair).

(2) Every module in .?GI/? is 1-cotorsionfree.

(3) Every module in .?GI/? is1-cotorsionfree.

Proof. The implication (1)) (2) follows from Corollary 5.2.
(2)) (3) Let A 2 .?GI/?. Then A is 1-cotorsionfree by assumption. So there

exists a Homƒ.addD.ƒ/;�/-exact exact sequence 0! K ! I0 ! A! 0 in
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modƒ with I0 2 addD.ƒ/ by Proposition 3.7. We claim that K 2 .?GI/?. Let
Y 2 ?GI. Then Extiƒ.Y;K/Š Exti�1ƒ .Y; A/ for i � 2. Note that co�1.Y / 2 ?GI

by Lemma 5.6. Then from the exact sequence

Ext1ƒ.I
0.Y /;K/! Ext1ƒ.Y;K/! Ext2ƒ.co�1.Y /;K/

we get Ext1ƒ.Y;K/ D 0. The claim follows. So K is 1-cotorsionfree by assump-
tion, and hence A is 2-cotorsionfree by Proposition 3.7. By replacing A by K in
the above argument, we get thatK is 2-cotorsionfree and thenA is 3-cotorsionfree.
Continuing this process, we finally have that A is1-cotorsionfree.

(3)) (1) Obviously GI � .?GI/?. Now let A 2 .?GI/?. It suffices to prove
that A is Gorenstein injective. Because D.ƒ/ 2 ?GI, Ext�1ƒ .D.ƒ/;A/ D 0 and
A is1-cospherical. Note thatA is1-cotorsionfree by assumption. It follows from
Corollary 5.2 that A is Gorenstein injective.

Proposition 5.8. Let R be a commutative local Artin ring and let F be a free
R-module with rank.F / D 2n. If there exists an endomorphism f of F such that
f 2 D 0 and rank.Imf / D rank.Imf �/ D n, then .Imf /_ is 1-cotorsionfree,
where .�/_ D HomR.�; I 0.R=J.R///.

Proof. Since f 2 D 0, there exists a complex

0! Imf ! F
f
! F

f
! � � � :

Now consider the short exact sequence

0! Kerf ! F ! Imf ! 0:

Because rank.Imf / D rank.F /=2 by assumption, we have

rank.Imf / D rank.Kerf /:

Observing that Im f � Kerf , we get Imf D Kerf . Thus the above complex is
exact. In a similar way, we also get Imf � D Kerf �. Hence Im f is1-torsion-
free by [1, Theorem 2.17]. So .Imf /_ is1-cotorsionfree by Proposition 5.1.

We give an example to illustrate Proposition 5.8.

Example 5.9. Let k be a field and S D kŒŒX�� and R D S=.X2/, and let F D R2

and f W R2 ! R2 be a map given by the matrix 
x 0

x x

!
: (5.1)

Then .Imf /_ is a non-injective1-cotorsionfree module.
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Proof. Note that R has a basis consisting of the following two elements: 1 and x,
where x denotes the residue class of the variable X modulo the ideal hX2i. It is
easy to check that rank.F / D 4 and f 2 D 0. Since Im f is generated by the two
elements f .1; 0/ D .x; x/ and f .0; 1/ D .0; x/, it is clear that rank.Imf / D 2.
Similarly, the map f � is given by the transpose of the matrix defining f . One
can see that rank.Imf �/ D 2. Notice that Im f is not isomorphic to a direct sum-
mand of R2. So Imf is not projective. Consequently one gets the assertion by
Proposition 5.8.

Huang and Huang raised in [11] an open question: Is the class of 1-torsion-
free modules closed under kernels of epimorphisms? We will give an example to
show that for any n � 2, neither the class of n-torsionfree modules nor that of
1-torsionfree modules is closed under kernels of epimorphisms in general.
Nevertheless, the class of 1-torsionfree modules is closed under kernels of epi-
morphisms, since every submodule of a 1-torsionfree module is also 1-torsionfree.
The following example is due to Jorgensen and Şega (see [13]).

Example 5.10. LetR D QŒV; X; Y;Z�=I , where Q is the field of rational numbers
and

I D hV 2; Z2; XY; VX C 2XZ; V Y C YZ; VX C Y 2; V Y �X2i:

Let f W R2 ! R2 denote the map given by the matrix 
v 2x

y z

!
; (5.2)

where v; x; y; z denote the residue classes of the variables modulo I . Take

M D Cokerf and N D Imf :

Then there exists an exact sequence

0! N ! R2 !M ! 0

such that M is1-torsionfree and N is not n-torsionfree for any n � 2.

Proof. From [13, Lemma 1.5] we know that M is 1-torsionfree. By [13, Lem-
ma 1.4] we have a free presentation

R2
g
! R2 ! N ! 0

of N , where g is given by the following matrix: 
v x

y z

!
: (5.3)
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Then Img� is generated by the following elements:

g�.1; 0/ D .v; x/; g�.z; 0/ D .vz;�2�1vx/; g�.0; 1/ D .y; z/;

g�.0; v/ D .vy; vz/; g�.v; 0/ D .0; vx/; g�.0; x/ D .0;�2�1vx/;

g�.x; 0/ D .vx; vy/; g�.0; y/ D .�vx;�vy/; g�.y; 0/ D .vy; 0/;

g�.0; z/ D .�vy; 0/:

One can use a computer algebra software, like Singular (see [8]), to verify that
Ext1R.Img�; R/ ¤ 0. Thus we have Ext2R.TrN;R/ ¤ 0, and therefore N is not
n-torsionfree for any n � 2. The computation of Ext1R.Img�; R/ by Singular is
as follows.

LIB "homolog.lib";
ring S D 0; .V;X; Y;Z/, dp;
ideal I D V 2;Z2;XY; VX C 2XZ; V Y C YZ; VX C Y 2; V Y �X2;
qring R D std.I /; // define the ring R
module F D ŒV; X�; Œ2VZ;�VX�; ŒY;Z�; ŒV Y; VZ�; Œ0; VX�; ŒVX; V Y �; ŒV Y; 0�;
module H D 1;
module E D Ext.1; syz.F /; syz.H//I // compute Ext1R.Img�; R/

The output says that the dimension of Ext1R.Img�; R/ as a vector space is 3.

By Example 5.10 and Proposition 5.1, we have that the class of1-cotorsionfree
modules is not closed under cokernels of monomorphisms in general.
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