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Abstract: LetA be an abelian category having enough projective and injective objects, and letT be an addi-
tive subcategory of A closed under direct summands. A known assertion is that in a short exact sequence
in A , the T -projective (resp. T -injective) dimensions of any two terms can sometimes induce an upper
bound of that of the third term by using the same comparison expressions. We show that if T contains all
projective (resp. injective) objects ofA , then the above assertion holds true if and only ifT is resolving (resp.
coresolving). As applications, we get that a left and right Noetherian ring R is n-Gorenstein if and only if the
Gorenstein projective (resp. injective, flat) dimension of any left R-module is at most n. In addition, in several
cases, for a subcategory C of T , we show that the finitistic C -projective and T -projective dimensions of A
are identical.
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1 Introduction
Homological dimensions are fundamental invariants in homological theory, which play a crucial role in
studying the structures of modules and rings. Let R be an arbitrary ring, let Mod R be the category of left
R-modules, and let T be a subcategory of Mod R. For a module A ∈ Mod R, we use T -pd A to denote the
T -projective dimension of A. Let

0→ A1 → A2 → A3 → 0
be an exact sequence in Mod R. Consider the following assertions:
(1) T -pd A2 ≤ max{T -pd A1,T -pd A3} with equality if T -pd A1 + 1 ̸= T -pd A3.
(2) T -pd A1 ≤ max{T -pd A2,T -pd A3 − 1} with equality if T -pd A2 ̸= T -pd A3.
(3) T -pd A3 ≤ max{T -pd A1 + 1,T -pd A2} with equality if T -pd A1 ̸= T -pd A2.
It has been known that these assertions hold true if T is the subcategory of Mod R consisting of one kind of
the following modules (among others):∙ Projective modules.∙ Flat modules.∙ Gorenstein projective modules [9, Lemma 2.4].∙ C-Gorenstein projective modules with C a semidualizing bimodule [27, Lemma 3.2].∙ Gorenstein flat modules (see [7, Theorem 2.11] and [31, Theorem 4.11]).∙ Auslander classes [25, Corollary 4.5].
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It is natural to ask the following question: what properties should a subcategory of Mod R have in order for
properties (1)–(3) to hold? One of the aims in this paper is to study this question. In fact, we will show that
if T is an additive subcategory of Mod R which is closed under direct summands and contains all projective
left R-modules, then the above assertions hold true if and only if T is resolving.

On theotherhand,Auslander andBridger proved that a commutativeNoetherian local ringR isGorenstein
if and only if any finitely generated R-module has finite Gorenstein dimension (or Gorenstein projective
dimension, in more popular terminology) [3, Theorem 4.20]. Then Hoshino developed Auslander and
Bridger’s arguments to prove that an artin algebra R is Gorenstein if and only if any finitely generated
left R-module has finite Gorenstein dimension [21, Theorem]. Furthermore, Huang and Huang generalized
it to left and right Noetherian rings [22, Theorem 1.4]. By applying the results obtained by studying the
question mentioned above, our other aim is to generalize this result to arbitrary modules over left and right
Noetherian rings. Note that for a left and right Noetherian ring R, if R is n-Gorenstein (that is, the left and right
self-injective dimensions of R are at most n), then the Gorenstein projective dimension of any left R-module
is at most n [13, Theorem 11.5.1]. However, the converse seems to be far from clear.

The paper is organized as follows. In Section 2, we give some notions and notations that will be used in
the sequel. Let A be an abelian category having enough projective objects. In Section 3, we first prove the
following result.

Theorem 1.1 (Theorem 3.2). Let T be an additive subcategory of A which is closed under direct summands
and contains all projective objects of A . Then the following statements are equivalent:
(1) T is resolving.
(2) For any exact sequence

0→ A1 → A2 → A3 → 0
in A , we have
(2.1) T -pd A2 ≤ max{T -pd A1,T -pd A3} with equality if T -pd A1 + 1 ̸= T -pd A3;
(2.2) T -pd A1 ≤ max{T -pd A2,T -pd A3 − 1} with equality if T -pd A2 ̸= T -pd A3;
(2.3) T -pd A3 ≤ max{T -pd A1 + 1,T -pd A2} with equality if T -pd A1 ̸= T -pd A2.

Thenweapply it to prove that ifT is a resolving subcategory ofA which is closedunder direct summands and
admits an E -coproper cogenerator C with E a subcategory of A , then the finitistic T -projective dimension
ofA is atmost its finitisticC -projective dimension, andwith equalitywhenExt≥1A (T, C) = 0 for any T ∈ T and
C ∈ C (Corollary 3.5). We also list the duals of these results without proofs (Theorem 3.9 and Corollary 3.12).

In Section 4, we first present a partial list of examples of how the results obtained in Section 3 can be
applied (Remark 4.4). Then it is shown that Corollaries 3.5 and 3.12 can be applied in many cases for mod-
ule categories (Corollaries 4.5–4.7). Some known results are obtained as corollaries. The main result in this
section is the following theorem.

Theorem 1.2 (Theorems 4.9, 4.11 and 4.13). Let R be a left and right Noetherian ring and let n ≥ 0. Then the
following statements are equivalent:
(1) R is n-Gorenstein.
(2) The Gorenstein projective dimension of any left R-module is at most n.
(3) The Gorenstein injective dimension of any left R-module is at most n.
(4) The Gorenstein flat dimension of any left R-module is at most n.
(5) The strongly Gorenstein flat dimension of any left R-module is at most n.
(6) The projectively coresolved Gorenstein flat dimension of any left R-module is at most n.
(i)op Opposite side version of (i), with 2 ≤ i ≤ 6.
The Gorenstein symmetric conjecture states that for any artin algebra R, the left self-injective dimension of R
is finite implies that so is its right self-injective dimension (see [4, p. 410]). By Theorem 1.2, we have that the
Gorenstein symmetric conjecture holds true is equivalent to that for any artin algebra R, the left self-injective
dimension of R being at most n implies that any of (2)–(6) (resp. (2)op–(6)op) is satisfied.

Let R, S be arbitrary rings, let RCS be a semidualizing bimodule and let M ∈ Mod R. We show that M is
C-flat if and only if its charactermodule is C-injective, and thatM is C-Gorenstein flat implies that its character
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module is C-Gorenstein injective (Theorem4.17), which are the C-versions of [8, Theorem2.2] and [18, Theo-
rem 3.6], respectively. As a consequence, we get that the C-Gorenstein flat dimension ofM is at most its C-flat
dimension with equality if the C-flat dimension of M is finite; moreover, the finitistic flat and Gorenstein flat
dimensions of R are identical (Theorem 4.19). It extends [16, Theorem 2.1] and [18, Theorem 3.24].

2 Preliminaries
Throughout this paper, A is an abelian category and all subcategories of A involved are full, additive and
closed under isomorphisms and direct summands. We use P(A ) (resp. I(A )) to denote the subcategory ofA
consisting of projective (resp. injective) objects.

Let X be a subcategory of A . We write
⊥X := {A ∈ A | Ext≥1A (A, X) = 0 for any X ∈X },
X ⊥ := {A ∈ A | Ext≥1A (X, A) = 0 for any X ∈X }.

Let M ∈ A . The X -projective dimension X -pdM of M is defined by

inf{n | there exists an exact sequence 0→ Xn → ⋅ ⋅ ⋅ → X1 → X0 → M → 0 in A with all Xi ∈X },
and set X -pdM = ∞ if no such integer exists. Dually, the X -injective dimension X -idM of M is defined by

inf{n | there exists an exact sequence 0→ M → X0 → X1 → ⋅ ⋅ ⋅ → Xn → 0 in A with all Xi ∈X },
and set X -idM = ∞ if no such integer exists. We use X -pd<∞ (resp. X -id<∞) to denote the subcategory
of A consisting of objects with finite X -projective (resp. X -injective) dimension. We write

X -FPD := sup{X -pdM | M ∈X -pd<∞},
X -FID := sup{X -idM | M ∈X -id<∞}.

Let E be a subcategory of A . Recall from [13] that a sequence𝕊 : ⋅ ⋅ ⋅ → S1 → S2 → S3 → ⋅ ⋅ ⋅
in A is called HomA (E , −)-exact (resp. HomA (−, E )-exact) if HomA (E, 𝕊) (resp. HomA (𝕊, E)) is exact for
any E ∈ E . Let C ⊆ T be subcategories of A . Recall from [24] that C is called an E -proper generator (resp.
E -coproper cogenerator) for T if for any T ∈ T there exists a HomA (E , −) (resp. HomA (−, E ))-exact exact
sequence

0→ T󸀠 → C → T → 0 (resp. 0→ T → C → T󸀠 → 0)
in A with C ∈ C and T󸀠 ∈ T . When E = P(A ) (resp. I(A )), an E -proper generator (resp. E -coproper cogen-
erator) is exactly a usual generator (resp. cogenerator).

We define

r̃esE C := {M ∈ A | there exists a HomA (E , −)-exact exact sequence⋅ ⋅ ⋅ → Ci → ⋅ ⋅ ⋅ → C1 → C0 → M → 0 in A with all Ci ∈ C }.
Dually, we definẽcoresE C := {M ∈ A | there exists a HomA (−, E )-exact exact sequence

0→ M → C0 → C1 → ⋅ ⋅ ⋅ → Ci → ⋅ ⋅ ⋅ in A with all Ci in C }.
Definition 2.1 ([24]). Let E and T be subcategories of A .
(1) The subcategory T is called E -preresolving in A if the following conditions are satisfied:

(1.1) T admits an E -proper generator.
(1.2) T is closed under E -proper extensions, that is, for any HomA (E , −)-exact exact sequence

0→ A1 → A2 → A3 → 0

in A , if both A1 and A3 are in T , then A2 is also in T .
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(2) The subcategory T is called E -precoresolving in A if the following conditions are satisfied:
(2.1) T admits an E -coproper cogenerator.
(2.2) T is closed under E -coproper extensions, that is, for any HomA (−, E )-exact exact sequence

0→ A1 → A2 → A3 → 0

in A , if both A1 and A3 are in T , then A2 is also in T .

The following definition is cited from [14].

Definition 2.2. Let U , V be subcategories of A .
(1) The pair (U , V ) is called a cotorsion pair in A if

U = {A ∈ A | Ext1A (A, V) = 0 for any V ∈ V }
and

V = {A ∈ A | Ext1A (U, A) = 0 for any U ∈ U }.
(2) A cotorsion pair (U , V ) is called hereditary if one of the following equivalent conditions is satisfied:

(2.1) Ext≥1A (U, V) = 0 for any U ∈ U and V ∈ V .
(2.2) U is resolving in the sense that P(A ) ⊆ U and U is closed under extensions and kernels of epi-

morphisms.
(2.3) V is coresolving in the sense that I(A ) ⊆ V and V is closed under extensions and cokernels of

monomorphisms.

3 General results

3.1 Projective dimension relative to resolving subcategories

We begin with the following observation.

Lemma 3.1. Let M ∈ A and n ≥ 0.
(1) Assume that A has enough projective objects. If T is a resolving subcategory of A , then the following

statements are equivalent:
(1.1) T -pdM ≤ n.
(1.2) There exists an exact sequence

0→ Kn → Pn−1 → ⋅ ⋅ ⋅ → P1 → P0 → M → 0

in A with all Pi projective and Kn ∈ T .
(1.3) For any exact sequence

0→ Kn → Pn−1 → ⋅ ⋅ ⋅ → P1 → P0 → M → 0

in A , if all Pi are projective, then Kn ∈ T .
(1.4) For any exact sequence

0→ Kn → Tn−1 → ⋅ ⋅ ⋅ → T1 → T0 → M → 0

in A , if all Ti are in T , then Kn ∈ T .
(2) Let E be a subcategory of A . If T is an E -precoresolving subcategory of A admitting an E -coproper

cogenerator C , then the following statements are equivalent:
(2.1) T -pdM ≤ n.
(2.2) There exists an exact sequence

0→ Cn → Cn−1 → ⋅ ⋅ ⋅ → C1 → T0 → M → 0
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in A with all Ci in C and T0 ∈ T ; that is, there exists an exact sequence

0→ K → T → M → 0

in A with T ∈ T and C -pd K ≤ n − 1.
Proof. (1) The implications (1.4) 󳨐⇒ (1.3) 󳨐⇒ (1.2) are trivial. By [24, Theorem 3.6], we have that (1.1) is
equivalent to (1.2). By [3, Lemma 3.12], we have that (1.1) implies (1.4).

(2) It follows from [24, Theorem 4.7].

The main result in this subsection is as follows.

Theorem 3.2. Assume that A has enough projective objects and T is a subcategory of A containing P(A ).
Then the following statements are equivalent:
(1) T is resolving.
(2) For any exact sequence

0→ A1 → A2 → A3 → 0

in A , we have
(2.1) (a) T -pd A2 ≤ max{T -pd A1,T -pd A3}, (b) the equality holds if T -pd A1 + 1 ̸= T -pd A3;
(2.2) (a) T -pd A1 ≤ max{T -pd A2,T -pd A3 − 1}, (b) the equality holds if T -pd A2 ̸= T -pd A3;
(2.3) (a) T -pd A3 ≤ max{T -pd A1 + 1,T -pd A2}, (b) the equality holds if T -pd A1 ̸= T -pd A2.

Proof. “(2) 󳨐⇒ (1)”: By (2.1) (a) and (2.2) (a), we have that T is closed under extensions and kernels of
epimorphisms, respectively, and so T is resolving.

“(1) 󳨐⇒ (2)”: (2.1) (a) If max{T -pd A1,T -pd A3} = 0, that is, both A1 and A3 are in T , then A2 is also
inT by (1), and the assertion follows. Now supposemax{T -pd A1,T -pd A3} = n ≥ 1. By Lemma 3.1 (1), we
have the following two exact sequences:

0→ K󸀠
n → P󸀠

n−1 → ⋅ ⋅ ⋅ → P󸀠
1 → P󸀠

0 → A1 → 0,

0→ K󸀠󸀠
n → P󸀠󸀠

n−1 → ⋅ ⋅ ⋅ → P󸀠󸀠
1 → P󸀠󸀠

0 → A3 → 0

inA with all P󸀠
i , P

󸀠󸀠
i projective and K

󸀠
n , K

󸀠󸀠
n ∈ T . Then, by the horseshoe lemma,we get the following two exact

sequences:
0→ Kn → P󸀠

n−1 ⊕ P󸀠󸀠
n−1 → ⋅ ⋅ ⋅ → P󸀠

1 ⊕ P󸀠󸀠
1 → P󸀠

0 ⊕ P󸀠󸀠
0 → A2 → 0, (3.1)

0→ K󸀠
n → Kn → K󸀠󸀠

n → 0. (3.2)

By the exact sequence (3.2) and by (1), we have Kn ∈ T . Then the exact sequence (3.1) impliesT -pd A2 ≤ n.
(2.2) (a) Let T -pd A2 = n2 and T -pd A3 = n3 with n2, n3 < ∞.
We first suppose n3 = 0 (that is, A3 ∈ T ). If n2 = 0 (that is, A2 ∈ T ), then A1 ∈ T by (1). If n2 ≥ 1, then

by Lemma 3.1 (1), there exists an exact sequence

0→ A󸀠
2 → P → A2 → 0

in A with P projective and T -pd A󸀠
2 ≤ n2 − 1. Consider the following pull-back diagram:

0

��

0

��

A󸀠
2

��

A󸀠
2

��

0 // T //

��

P //

��

A3 // 0

0 // A1 //

��

A2 //

��

A3 // 0

0 0.
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By (1) and the middle row in the above diagram, we have T ∈ T . Then the leftmost column in that diagram
implies T -pd A1 ≤ n2.

Now suppose n3 ≥ 1. Then, by Lemma 3.1 (1), there exists an exact sequence

0→ A󸀠
3 → Q → A3 → 0

in A with Q projective and T -pd A󸀠
3 ≤ n3 − 1. Consider the following pull-back diagram:

0

��

0

��

A󸀠
3

��

A󸀠
3

��

0 // A1 // A1 ⊕ Q
��

// Q

��

// 0

0 // A1 // A2

��

// A3

��

// 0

0 0.

By (2.1) (a) and themiddle column in the above diagram,wehaveT -pd(A1 ⊕ Q) ≤ max{n2, n3 − 1}. It follows
from [24, Corollary 3.9] that T -pd A1 ≤ max{n2, n3 − 1}.

(2.3) (a) Let T -pd A1 = n1 and T -pd A2 = n2 with n1, n2 < ∞. If n2 = 0, that is, A2 ∈ T , then

T -pd A3 = n1 + 1.
Now suppose n2 ≥ 1. Then, by Lemma 3.1 (1), there exists an exact sequence

0→ A󸀠
2 → P → A2 → 0

in A with P projective and T -pd A󸀠
2 ≤ n2 − 1. Consider the following pull-back diagram:

0

��

0

��

A󸀠
2

��

A󸀠
2

��

0 // K //

��

P //

��

A3 // 0

0 // A1 //

��

A2 //

��

A3 // 0

0 0.

By (1) and the leftmost column in the above diagram, we have

T -pd K ≤ max{T -pd A1,T -pd A󸀠
2} ≤ max{n1, n2 − 1}.

Then the middle row in that diagram implies

T -pd A3 ≤ T -pd K + 1 ≤ max{n1, n2 − 1} + 1 = max{n1 + 1, n2}.
(2.1) (b) If T -pd A1 + 1 < T -pd A3, then we have T -pd A2 ≤ T -pd A3 and T -pd A3 ≤ T -pd A2 by

(2.1) (a) and (2.3) (a), respectively. Thus, T -pd A2 = T -pd A3.
If T -pd A3 < T -pd A1 + 1, then we have T -pd A2 ≤ T -pd A1 and T -pd A1 ≤ T -pd A2 by (2.1) (a) and

(2.2) (a), respectively. Thus, T -pd A2 = T -pd A1.
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(2.2) (b) If T -pd A2 < T -pd A3, then we have T -pd A1 ≤ T -pd A3 − 1 and T -pd A3 ≤ T -pd A1 + 1 by
(2.2) (a) and (2.3) (a), respectively. Thus, T -pd A1 = T -pd A3 − 1.

If T -pd A3 < T -pd A2, then we have T -pd A1 ≤ T -pd A2 and T -pd A2 ≤ T -pd A1 by (2.2) (a) and
(2.1) (a), respectively. Thus, T -pd A1 = T -pd A2.

(2.3) (b) If T -pd A1 < T -pd A2, then we have T -pd A3 ≤ T -pd A2 and T -pd A2 ≤ T -pd A3 by (2.3) (a)
and (2.1) (a), respectively. Thus, T -pd A3 = T -pd A2.

If T -pd A2 < T -pd A1, then we have T -pd A3 ≤ T -pd A1 + 1 and T -pd A1 ≤ T -pd A3 − 1 by (2.3) (a)
and (2.2) (a), respectively. Thus, T -pd A3 = T -pd A1 + 1.
As an immediate consequence, we get the following result.

Corollary 3.3. Assume that A has enough projective objects and T is a resolving subcategory of A . Then
T -pd<∞ satisfies the two-out-of-three property; that is, in a short exact sequence in A , if any two terms are in
T -pd<∞, then so is the third term.

The following result shows that if the resolving subcategory T of A admits an E -coproper cogenerator C ,
then any object inA with finiteT -projective dimension is isomorphic to a kernel (resp. a cokernel) of a mor-
phism from an object in A with finite C -projective dimension to an object in T .

Corollary 3.4. Let E be a subcategory of A . If T is an E -precoresolving subcategory of A admitting an
E -coproper cogenerator C , then, for any M ∈ A with T -pdM = n < ∞, the following assertions hold:
(1) There exists an exact sequence

0→ K → T → K󸀠 → T󸀠 → 0

in A with C -pd K ≤ n − 1, C -pd K󸀠 ≤ n and T, T󸀠 ∈ T such that M ≅ Im(T → K󸀠 ).
(2) If A has enough projective objects and T is resolving in A , then the two “≤” in (1) are “=”.
Proof. (1) LetM ∈A withT -pdM = n <∞. The case for n = 0 is trivial. Now suppose n ≥ 1. By Lemma 3.1 (2),
there exists an exact sequence

0→ K → T → M → 0 (3.3)

in A with C -pd K ≤ n − 1 and T ∈ T . Thus, there exists an exact sequence

0→ T → C → T󸀠 → 0

in A with C ∈ C and T󸀠 ∈ T . Consider the following push-out diagram:

0

��

0

��

0 // K // T //

��

M //

��

0

0 // K // C //

��

K󸀠
//

��

0

T󸀠
��

T󸀠
��

0 0.

By the middle row in the above diagram, we have C -pd K󸀠 ≤ n. Now splicing (3.3) and the rightmost column

0→ M → K󸀠 → T󸀠 → 0, (3.4)

we get the desired exact sequence.
(2) Assume that A has enough projective objects and T is resolving in A . Then, by (3.3) and Theo-

rem 3.2 (2.2), we have T -pd K = n − 1. Since C -pd K ≥ T -pd K, we have C -pd K = n − 1. By (3.4) and
Theorem 3.2 (2.1), we have T -pd K󸀠 = n, and so C -pd K󸀠 = n.
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Furthermore, we get the following result.

Corollary 3.5. Assume that A has enough projective objects and T is a resolving subcategory of A admitting
an E -coproper cogenerator C . Then the following assertions hold:
(1) T -FPD ≤ C -FPD.
(2) If T ⊆ ⊥C , then T -pdM = C -pdM for any M ∈ A with C -pdM < ∞.
(3) If T ⊆ ⊥C , then T -FPD = C -FPD.

Proof. (1) Let M ∈ A with T -pdM = n < ∞. By Corollary 3.4, there exists K󸀠 ∈ A such that C -pd K󸀠 = n. It
follows that T -FPD ≤ C -FPD.

(2) Let M ∈ A with C -pdM = n < ∞. Then T -pdM = m ≤ n. By Corollary 3.4, there exists an exact
sequence

0→ M → K󸀠 → T󸀠 → 0

in A with C -pd K󸀠 = m and T󸀠 ∈ T . Since T ⊆ ⊥C by assumption, we have Ext≥1A (T󸀠 ,M) = 0 by dimen-
sion shifting. So, the above exact sequence splits and M is a direct summand of K󸀠 . So, n = C -pdM ≤ m by
[24, Corollary 3.9], and hence m = n and T -pdM = n.

(3) By (2), we have C -FPD ≤ T -FPD. So, the assertion follows from (1).

In the next section, we need the following two propositions.

Proposition 3.6. Let E and C be subcategories of A . If ⊥E ∩ ̃coresE C is closed under (E -coproper) exten-
sions, then it is closed under kernels of epimorphisms. In particular, if coresC := ̃coresI(A ) C is closed under
extensions, then it is closed under kernels of epimorphisms.

Proof. Let
0→ A → T1 → T2 → 0

be an exact sequence in A with T1, T2 ∈ ⊥E ∩ ̃coresE C . Then there exists a HomA (−, E )-exact exact
sequence

0→ T1 → C → T󸀠
1 → 0

in A with C ∈ C and T󸀠
1 ∈ ⊥E ∩ ̃coresE C . Consider the following push-out diagram:

0

��

0

��

0 // A // T1 //

��

T2 //

��

0

0 // A // C //

��

T //

��

0

T󸀠
1

��

T󸀠
1

��

0 0.

By [23, Lemma 2.4 (2)], all columns and rows in this diagram are HomA (−, E )-exact exact sequences. If
⊥E ∩ ̃coresE C is closedunderE -coproper extensions, then the rightmost column implies T ∈ ⊥E ∩ ̃coresE C ,
and thus the middle row yields A ∈ ⊥E ∩ ̃coresE C .

The latter assertion follows from the former one by putting E = I(A ).
Proposition 3.7. Let E be a subcategory of A . If T is an E -precoresolving subcategory of A admitting an
E -coproper cogenerator C , then ̃coresE C = ̃coresE T .

Proof. It is trivial that ̃coresE C ⊆ ̃coresE T . Now let M ∈ ̃coresE T and let

0→ M → T → M󸀠 → 0
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be a HomA (−, E )-exact exact sequence inA with T ∈ T andM󸀠 ∈ ̃coresE T . SinceT admits an E -coproper
cogenerator C by assumption, there exists a HomA (−, E )-exact exact sequence

0→ T → C0 → T󸀠 → 0

in A with C0 ∈ C and in T󸀠 ∈ T . Then we have the following push-out diagram:

0

��

0

��

0 // M // T //

��

M󸀠
//

��

0

0 // M // C0 //

��

M1 //

��

0

T󸀠
��

T󸀠
��

0 0.

Since there also exists a HomA (−, E )-exact exact sequence
0→ M󸀠 → T󸀠󸀠 → M󸀠󸀠 → 0

in A with T󸀠󸀠 ∈ T and M󸀠󸀠 ∈ ̃coresE T , we have the following push-out diagram:

0

��

0

��

0 // M󸀠
//

��

T󸀠󸀠
//

��

M󸀠󸀠
// 0

0 // M1 //

��

T1 //

��

M󸀠󸀠
// 0

T󸀠
��

T󸀠
��

0 0.

Due to [23, Lemma 2.4 (2)], all columns and rows in the above two diagrams are HomA (−, E )-exact exact
sequences. SinceT is closed under E -coproper extensions by assumption, the middle column in the second
diagram implies T1 ∈ T , and hence themiddle row in that diagram impliesM1 ∈ ̃coresE T . Similarly, we get
a HomA (−, E )-exact exact sequence

0→ M1 → C1 → M2 → 0

in A with C1 ∈ C and M2 ∈ ̃coresE T . Continuing this process, we get a HomA (−, E )-exact exact sequence
0→ M → C0 → C1 → ⋅ ⋅ ⋅ → Ci → ⋅ ⋅ ⋅

in A with all Ci in C . It follows that M ∈ ̃coresE C and ̃coresE T ⊆ ̃coresE C .

3.2 Injective dimension relative to coresolving subcategories

All results and their proofs in this subsection are completely dual to those in Subsection 3.1, so we only list
the results without proofs.
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Lemma 3.8. Let M ∈ A and n ≥ 0.
(1) Assume that A has enough injective objects. If T is a coresolving subcategory of A , then the following

statements are equivalent:
(1.1) T -idM ≤ n.
(1.2) There exists an exact sequence

0→ M → I0 → I1 → ⋅ ⋅ ⋅ → In−1 → Kn → 0

in A with all I i injective and Kn ∈ T .
(1.3) For any exact sequence

0→ M → I0 → I1 → ⋅ ⋅ ⋅ → In−1 → Kn → 0

in A , if all I i are injective, then Kn ∈ T .
(1.4) For any exact sequence

0→ M → T0 → T1 → ⋅ ⋅ ⋅ → Tn−1 → Kn → 0

in A , if all T i are in T , then Kn ∈ T .
(2) Let E be a subcategory of A . If T is an E -preresolving subcategory of A admitting an E -proper genera-

tor C , then the following statements are equivalent:
(2.1) T -idM ≤ n.
(2.2) There exists an exact sequence

0→ M → T0 → C1 → ⋅ ⋅ ⋅ → Cn−1 → Cn → 0

in A with T0 ∈ T and all Ci in C ; that is, there exists an exact sequence

0→ M → T → K → 0

in A with T ∈ T and C -id K ≤ n − 1.
The main result in this subsection is as follows.

Theorem 3.9. Assume thatA has enough injective objects andT is a subcategory ofA containing I(A ). Then
the following statements are equivalent:
(1) T is coresolving.
(2) For any exact sequence

0→ A1 → A2 → A3 → 0
in A , we have
(2.1) (a) T -id A2 ≤ max{T -id A1,T -id A3}, (b) the equality holds if T -id A1 ̸= T -id A3 + 1;
(2.2) (a) T -id A3 ≤ max{T -id A1 − 1,T -id A2}, (b) the equality holds if T -id A1 ̸= T -id A2;
(2.3) (a) T -id A1 ≤ max{T -id A2,T -id A3 + 1}, (b) the equality holds if T -id A2 ̸= T -id A3.

As an immediate consequence, we get the following result.

Corollary 3.10. Assume that A has enough injective objects and T is a coresolving subcategory of A . Then
T -id<∞ satisfies the two-out-of-three property; that is, in a short exact sequence in A , if any two terms are in
T -id<∞, then so is the third term.

The following result shows that if the coresolving subcategoryT ofA admits an E -proper generatorC , then
any object in A with finite T -injective dimension is isomorphic to a kernel (resp. a cokernel) of a morphism
from an object in T to an object in A with finite C -injective dimension.

Corollary 3.11. LetE bea subcategory ofA . IfT is anE -preresolving subcategory ofA admitting anE -proper
generator C , then, for any M ∈ A with T -idM = n < ∞, the following assertions hold:
(i) There exists an exact sequence

0→ T󸀠 → K󸀠 → T → K → 0
in A with C -id K󸀠 ≤ n, C -id K ≤ n − 1 and T󸀠 , T ∈ T such that M ≅ Im(K󸀠 → T).

(ii) If A has enough injective objects and T is coresolving in A , then the two “≤” in (1) are “=”.
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Furthermore, we get the following result.

Corollary 3.12. Assume thatA has enough injective objects andT is a coresolving subcategory ofA admitting
an E -proper generator C . Then the following assertions hold:
(1) T -FID ≤ C -FID.
(2) If T ⊆ C ⊥, then T -idM = C -idM for any M ∈ A with C -idM < ∞.
(3) If T ⊆ C ⊥, then T -FID = C -FID.

Proposition 3.13. Let E and C be subcategories of A . If E ⊥ ∩ r̃esE C is closed under (E -proper) extensions,
then it is closed under cokernels of monomorphisms. In particular, if resC := ̃resP(A ) C is closed under exten-
sions, then it is closed under cokernels of monomorphisms.

Proposition 3.14. Let E be a subcategory of A . If T is an E -preresolving subcategory of A admitting an
E -proper generator C , then r̃esE C = ̃resE T .

4 Applications to module categories
In this section, all rings are associative rings with unit and all modules are unital. For a ring R, we use Mod R
to denote the category of left R-modules, and we use mod R to denote the category of finitely generated left
R-modules.

Definition 4.1 ([2, 20]). Let R and S be arbitrary rings. An (R-S)-bimodule RCS is called semidualizing if the
following conditions are satisfied:
(1) RC admits a degreewise finite R-projective resolution.
(2) CS admits a degreewise finite Sop-projective resolution.
(3) The homothety map RRR

Rγ󳨀󳨀→ HomSop (C, C) is an isomorphism.
(4) The homothety map SSS

γS󳨀󳨀→ HomR(C, C) is an isomorphism.
(5) Ext≥1R (C, C) = 0.
(6) Ext≥1Sop (C, C) = 0.
Wakamatsu [37] introduced and studied the so-called generalized tilting modules, which are usually called
Wakamatsu tilting modules; see [6, 29]. Note that a bimodule RCS is semidualizing if and only if it is Waka-
matsu tilting [39, Corollary 3.2]. Typical examples of semidualizing bimodules include the free module of
rank one and the dualizing module over a Cohen–Macaulay local ring. For more examples of semidualizing
bimodules, the reader is referred to [20, 35, 38].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule RCS. We write(−)∗ := Hom(C, −),
and write

PC(R) := {C ⊗S P | P is projective in Mod S},
FC(R) := {C ⊗S F | F is flat in Mod S},

IC(Rop) := {I∗ | I is injective in Mod Sop}.
The modules in PC(R), FC(R) and IC(Rop) are called C-projective, C-flat and C-injective, respectively. When
RCS = RRR, C-projective, C-flat and C-injective modules are exactly projective, flat and injective modules,
respectively.

LetB be a subcategory of Mod Rop. Recall that a sequence in Mod R is called (B ⊗R −)-exact if it is exact
after applying the functor B ⊗R − for any B ∈ B. We write

B⊤ := {M ∈ Mod R | TorR≥1(B,M) = 0 for any B ∈ B}.
The following notions were introduced by Holm and Jørgensen [19] for commutative rings. The following are
their non-commutative versions.
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Definition 4.2. (1) A module M ∈ Mod R is called C-Gorenstein projective if M ∈ ⊥PC(R) and there exists
a HomR(−,PC(R))-exact exact sequence

0→ M → G0 → G1 → ⋅ ⋅ ⋅ → Gi → ⋅ ⋅ ⋅
in Mod R with all Gi in PC(R).

(2) A module M ∈ Mod R is called C-Gorenstein flat if M ∈ IC(Rop)⊤ and there exists an (IC(Rop) ⊗R −)-exact
exact sequence

0→ M → Q0 → Q1 → ⋅ ⋅ ⋅ → Qi → ⋅ ⋅ ⋅
in Mod R with all Qi in FC(R).

(3) AmoduleN ∈Mod Rop is called C-Gorenstein injective ifN ∈ IC(Rop)⊥ and there exists aHomRop (IC(Rop),−)-
exact exact sequence ⋅ ⋅ ⋅ → Ei → ⋅ ⋅ ⋅ → E1 → E0 → N → 0

in Mod Rop with all Ei in IC(Rop).
We use GPC(R) (resp. GFC(R)) to denote the subcategory of Mod R consisting of C-Gorenstein projective (resp.
flat) modules, and we use GIC(Rop) to denote the subcategory of Mod Rop consisting of C-Gorenstein injec-
tive modules. When RCS = RRR, C-Gorenstein projective, flat and injective modules are exactly Gorenstein
projective, flat and injective modules, respectively [13, 18]; in this case, we write

P(R) := PC(R), I(Rop) := IC(Rop), F(R) := FC(R),
GP(R) := GPC(R), GI(Rop) := GIC(Rop), GF(R) := GFC(R).

Definition 4.3 ([20]). (1) The Auslander classAC(Rop)with respect to C consists of all modules N in Mod Rop

satisfying the following conditions:
(1.1) TorR≥1(N, C) = 0.
(1.2) Ext≥1Sop (C, N ⊗R C) = 0.
(1.3) The canonical evaluation homomorphism

μN : N → (N ⊗R C)∗,
defined by μN(x)(c) = x ⊗ c for any x ∈ N and c ∈ C, is an isomorphism in Mod Rop.

(2) The Bass class BC(R) with respect to C consists of all modules M in Mod R satisfying the following con-
ditions:
(2.1) Ext≥1R (C,M) = 0.
(2.2) TorS≥1(C,M∗) = 0.
(2.3) The canonical evaluation homomorphism

θM : C ⊗S M∗ → M,

defined by θM(c ⊗ f) = f(c) for any c ∈ C and f ∈ M∗, is an isomorphism in Mod R.

For a subcategory X of Mod R (or Mod Rop), we write

X + := {X+ | X ∈X },
where (−)+ = Homℤ(−,ℚ/ℤ) with ℤ being the additive group of integers and ℚ being the additive group of
rational numbers. For simplicity, we write

r̃esC := ̃resC C and ̃coresC := ̃coresC C .

In the following, we present a partial list of examples of how the results obtained in Section 3 can be
applied.

Remark 4.4. (1) It is well known that P(R) and F(R) are resolving and I(R) is coresolving in Mod R.
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(2) Let (U , V ) be a hereditary cotorsion pair in Mod R, and let C := U ∩ V be its kernel. Then the following
assertions hold:
(a) U is resolving in Mod R admitting a C -coproper cogenerator C (see [33, Lemma 4.4]).
(b) Dually, V is coresolving in Mod R admitting a C -proper generator C .

(3) (a) It holds that
GPC(R) = ⊥PC(R) ∩ ̃coresPC(R)

is resolving in Mod R admitting a PC(R)-coproper cogenerator PC(R) (see [33, Example 3.2 (2) and
Proposition 3.3]). In particular,

GP(R) = ⊥P(R) ∩ ̃coresP(R)
is resolving in Mod R admitting a P(R)-coproper cogenerator P(R).

(b) Dually,
GIC(Rop) = IC(Rop)⊥ ∩ ̃res IC(Rop)

is coresolving in Mod Rop admitting an IC(Rop)-proper generator IC(Rop) (see [33, Example 3.2 (2)
and the dual of Proposition 3.3]). In particular,

GI(Rop) = I(Rop)⊥ ∩ ̃res I(Rop)
is coresolving in Mod Rop admitting an I(Rop)-proper generator I(Rop).

(c) Let R be a left and right Noetherian ring, and let p(R) be the subcategory of mod R consisting of
projective modules. Recall that a moduleM ∈ mod R is said to have Gorenstein dimension zero [3] or
be totally reflexive [5] if M ∈ Gp(R), where

Gp(R) = ⊥RR ∩ ̃cores p(R),
which is resolving in mod R admitting a p(R)-coproper cogenerator p(R).

(4) (a) Recall from [12] that a module M ∈ Mod R is called strongly Gorenstein flat if M ∈ SGF(R), where
SGF(R) = ⊥F(R) ∩ ̃coresF(R) P(R).

It is trivial that ⊥F(R) is closed under extensions. By the dual version of [13, Lemma 8.2.1] (cf.
[18, Horseshoe Lemma 1.7]), it is easy to see that SGF(R) is closed under extensions. It follows from
Proposition 3.6 that SGF(R) is resolving in Mod R admitting an F(R)-coproper cogenerator P(R),
which generalizes [12, Proposition 2.10 (1) and (2)].

(b) Recall from [28, 34] that amoduleM ∈ Mod R is called FP-injective (or absolutely pure) ifM ∈ FI(R),
where

FI(R) = {M ∈ Mod R | Ext1R(X,M) = 0 for all finitely presented left R-modules X}.
Recall from [30] that a module M ∈ Mod R is called Gorenstein FP-injective if M ∈ GFI(R), where

GFI(R) = FI(R)⊥ ∩ ̃resFI(R) I(R).
It is trivial thatFI(R)⊥ is closed under extensions. By [13, Lemma 8.2.1], it is easy to see that GFI(R)
is closed under extensions. It follows from Proposition 3.13 that GFI(R) is coresolving in Mod R
admitting an FI(R)-proper generator I(R), which generalizes [30, Proposition 2.6 (1) and (2)].

(5) (a) Recall from [10] that a module M ∈ Mod R is called level if M ∈ L(R), where
L(R) = {M ∈ Mod R | TorR1 (X,M) = 0 for all right R-modules X

admitting a degreewise finite Rop-projective resolution}.
Also, recall that a module M ∈ Mod R is called Gorenstein AC-projective if M ∈ GPac(R), where

GPac(R) = ⊥L(R) ∩ ̃coresL(R) P(R).
By [10, Lemma 8.6], we have that GPac(R) is resolving in Mod R admitting a L(R)-coproper cogen-
erator P(R).
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(b) Recall from [10] that a module M ∈ Mod R is called absolutely clean if M ∈ AC(R), where
AC(R) = {M ∈ Mod R | Ext1R(X,M) = 0 for all left R-modules X

admitting a degreewise finite R-projective resolution}.
Also, recall that a module M ∈ Mod R is called Gorenstein AC-injective if M ∈ GIac(R), where

GIac(R) = AC(R)⊥ ∩ ̃resAC(R) I(R).
By [10, Lemma 5.6], we have that GIac(R) is coresolving in Mod R admitting an AC(R)-proper gen-
erator I(R).

(6) (a) It holds that
AC(Rop) = ⊥IC(Rop) ∩ ̃cores IC(Rop),

which is resolving in Mod Rop admitting an IC(Rop)-coproper cogenerator IC(Rop) (see [33, Example
3.2 (2) and Proposition 3.3]; also, cf. [20, Theorem 2]).

(b) Dually,
BC(R) = PC(R)⊥ ∩ ̃resPC(R),

which is coresolving in Mod R admitting a PC(R)-proper generator PC(R) (see [33, Example 3.2 (2)
and the dual of Proposition 3.3]; also cf. [20, Theorem 6.1]).

(7) Let B be a subcategory of Mod Rop. Recall from [15] that a module M ∈ Mod R is called Gorenstein
B-flat (resp. projectively coresolved GorensteinB-flat) ifM ∈ B⊤ and there exists a (B ⊗R −)-exact exact
sequence

0→ M → Q0 → Q1 → ⋅ ⋅ ⋅ → Qi → ⋅ ⋅ ⋅
in Mod R with all Qi in F(R) (resp. P(R)). We use GFB(R) (resp. PGFB(R)) to denote the subcategory of
Mod R consisting ofGorensteinB-flatmodules (resp. projectively coresolvedGorensteinB-flatmodules).
Also recall from [15] that B is semi-definable if B is closed under direct products and its definable clo-
sure ⟨B⟩ (the smallest subcategory ofMod Rop containingBwhich is closed under direct products, direct
limits and pure submodules) contains a pure injective module D such that any module in ⟨B⟩ is a pure
submodule of some direct product of copies of D.
Let B ∈ Mod Rop, M ∈ Mod R and n ≥ 1. By [17, Lemma 2.16 (a) und (b)], we have(B ⊗R −)+ ≅ HomR(−, B+), (4.1)[TorRn (B,M)]+ ≅ ExtnR(M, B+). (4.2)

This yields that

GFB(R) = ⊥(B+) ∩ ̃coresB+ F(R),
PGFB(R) = ⊥(B+) ∩ ̃coresB+ P(R).

By [15, Theorem2.8],wehave thatPGFB(R) is resolving inMod R admitting an IC(Rop)+-coproper cogen-
erator P(R). When B = I(Rop), projectively coresolved Gorenstein B-flat modules are called projectively
coresolved Gorenstein flat [31]; in this case, we write

PGF(R) := PGFB(R).
We have (see [26, Lemma 3])

P(R) ⊆ PGF(R) = SGF(R)(R) ∩ GF(R).
On the other hand, it follows from [15, Theorem 2.12 and Corollary 2.14] that if B is semi-definable,
then GFB(R) is resolving in Mod R admitting a B+-coproper cogenerator F(R). In particular, GF(R) is
resolving in Mod R admitting an IC(Rop)+-coproper cogenerator F(R) (also, cf. [31, Theorem 4.11]).
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(8) By (4.1) and (4.2), we have that

GFC(R) = ⊥(IC(Rop)+) ∩ ̃coresIC(Rop)+ FC(R),
which admits an IC(Rop)+-coproper cogenerator FC(R). It is trivial that

P(R) ⊆ F(R) ⊆ GFC(R).
By Proposition 3.6, we have that if GFC(R) is closed under extensions, then it is resolving in Mod R.

4.1 Finitistic dimensions

In this subsection, R is an arbitrary associative ring.
By Corollaries 3.5 and 3.12 and Remark 4.4 (2), we immediately get the following result.

Corollary 4.5. Let (U , V ) be a hereditary cotorsion pair inMod R with the kernel C . Then the following asser-
tions hold:
(1) For any M ∈ Mod R with C -pdM < ∞, we have

U -pdM = C -pdM.

Moreover, we have
U -FPD = C -FPD .

(2) For any M ∈ Mod R with C -idM < ∞, we have
V -idM = C -idM.

Moreover, we have
V -FID = C -FID .

Following the usual customary notation, we write

pdR M := P(R)-pdM, idR M := I(R)-idM, fdR M := F(R)-pdM,
G-pdR M := GP(R)-pdM, G-idR M := GI(R)-idM, G-fdR M := GF(R)-pdM,
GC-pdRM := GPC(R)-pdM, GC-idRM := GIC(R)-idM, GC-fdRM := GFC(R)-pdM.

By Corollary 3.5 and Remark 4.4 (3)–(7), we immediately get the following result, in which assertion (2)
extends [18, Proposition 2.27 and Theorem 2.28], and assertion (3) generalizes [40, Lemma 4.6].

Corollary 4.6. (1) For any M ∈ Mod R with PC(R)-pdM < ∞, we have
GC-pdRM = PC(R)-pdM.

Moreover, we have
GPC(R)-FPD = PC(R)-FPD .

(2) For any M ∈ Mod R with pdR M < ∞, we have
G-pdR M = GPac(R)-pdM = SGF(R)-pdM = PGF(R)-pdM = pdR M.

Moreover, we have

GP(R)-FPD = GPac(R)-FPD = SGF(R)-FPD = PGF(R)-FPD = P(R)-FPD .

(3) Let R be a left and right Noetherian ring. Then, for any M ∈ mod R with pdR M < ∞, we have
Gp(R)-pdM = pdR M.

Moreover, we have
Gp(R)-FPD = p(R)-FPD .
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(4) For any N ∈ Mod Rop with IC(Rop)-pdN < ∞, we have
AC(Rop)-pdN = IC(Rop)-pdN.

Moreover, we have
AC(Rop)-FPD = IC(Rop)-FPD .

By Corollary 3.12 and Remark 4.4 (3)–(6), we immediately get the following result, in which assertion (2)
extends [18, Theorem 2.29].

Corollary 4.7. (1) For any M ∈ Mod R with IC(R)-idM < ∞, we have
GC-idRM = IC(R)-idM.

Moreover, we have
GIC(R)-FID = IC(R)-FID .

(2) For any M ∈ Mod R with idR M < ∞, we have
G-idR M = GIac(R)-idM = GFI(R)-idM = idR M.

Moreover, we have
GI(R)-FID = GIac(R)-FID = GFI(R)-FID = I(R)-FID .

(3) For any M ∈ Mod R with PC(R)-idM < ∞, we have
BC(R)-idM = PC(R)-idM.

Moreover, we have
BC(R)-FID = PC(R)-FID .

4.2 Equivalent characterizations of Gorenstein rings

In this subsection, R is a left and right Noetherian ring and n ≥ 0. Recall that R is called n-Gorenstein if
idR R = idRop R ≤ n.

The following lemma plays a crucial role in the sequel.

Lemma 4.8. Let T be an E -precoresolving subcategory of Mod R admitting an E -coproper cogenerator C ,
where E is a subcategory ofMod R and C ⊆ F(R). If T -pdM ≤ n for any M ∈ mod R, then idRop R ≤ n.
Proof. Let M ∈ mod R. If T -pdM ≤ n, then, by assumption and by Corollary 3.4 (1), there exists an exact
sequence

0→ M → K󸀠 → T󸀠 → 0

in Mod R with C -pd K󸀠 ≤ n and T󸀠 ∈ T . Since C ⊆ F(R), we have fdR K
󸀠 ≤ n. Therefore, idRop R ≤ n by

[22, Lemma 3.8].

Recall from Remark 4.4 (3) and (4) that

⊥P(R) ∩ ̃coresP(R) = GP(R) ⊇ SGF(R) = ⊥F(R) ∩ ̃coresF(R) P(R).
In terms of the projective dimensions relative to all six subcategories of Mod R that appear in this relation, we
give some equivalent characterizations of n-Gorenstein rings as follows.

Theorem 4.9. The following statements are equivalent:
(1) R is n-Gorenstein.
(2) G-pdR M ≤ n for any M ∈ Mod R.
(2)op G-pdRop N ≤ n for any N ∈ Mod Rop.
(3) ⊥P(R)-pdM ≤ n and ⊥P(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
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(4) ̃coresP(R)-pdM ≤ n and ̃coresP(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(5) SGF(R)-pdM ≤ n for any M ∈ Mod R.
(5)op SGF(R)-pdN ≤ n for any N ∈ Mod Rop.
(6) ⊥F(R)-pdM ≤ n and ⊥F(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(7) ̃coresF(R) P(R)-pdM ≤ n and ̃coresF(Rop) P(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
Proof. First, the implications (2) + (2)op 󳨐⇒ (3) + (4), (5) + (5)op 󳨐⇒ (6) + (7), (5) 󳨐⇒ (2), (5)op 󳨐⇒ (2)op,
(6) 󳨐⇒ (3) and (7) 󳨐⇒ (4) are trivial. By [13, Theorem 11.5.1], we have (1) 󳨐⇒ (2) + (2)op.

If R is n-Gorenstein, then GP(R) = SGF(R) and GP(Rop) = SGF(Rop) by [12, Corollary 2.8], and thus
(1) 󳨐⇒ (5) + (5)op holds true.

“(3) 󳨐⇒ (1)”: By (3) and dimension shifting, it is easy to see that

Ext≥n+1R (M, R) = 0 = Ext≥n+1Rop (N, R)
for any M ∈ Mod R and N ∈ Mod Rop. This implies idR R ≤ n and idRop R ≤ n.

“(2) 󳨐⇒ (1)”: By (2) and dimension shifting, it is easy to get Ext≥n+1R (M, R) = 0 for any M ∈ Mod R, and
so idR R ≤ n. By [18, Theorem 2.5], we have that GP(R) is resolving in Mod R admitting a P(R)-coproper
cogenerator P(R) (⊆ F(R)). Thus, idRop R ≤ n by (2) and Lemma 4.8.

Symmetrically, we get (2)op 󳨐⇒ (1).
“(4) 󳨐⇒ (1)”: By the dual version of [13, Lemma 8.2.1] (cf. [18, Horseshoe Lemma 1.7]), we have that̃coresP(R) is closed under P(R)-coproper extensions. Thus ̃coresP(R) is a P(R)-precoresolving subcategory

of Mod R admitting a P(R)-coproper cogenerator P(R) (⊆ F(R)). Thus, idRop R ≤ n by (4) and Lemma 4.8.
Symmetrically, we have idR R ≤ n.
The following result is a dual version of Lemma 4.8.

Lemma 4.10. Let T be an E -preresolving subcategory ofMod R admitting an E -proper generator C , where E

is a subcategory ofMod R and C ⊆ I(R). If T -idM ≤ n for any M ∈ Mod R, then idR R ≤ n.
Proof. Let N ∈ mod Rop. Then N+ ∈ Mod R andT -idN+ ≤ n by assumption. It follows from Corollary 3.11 (1)
that there exists an exact sequence

0→ T󸀠 → K󸀠 f󳨀→ N+ → 0

in Mod R with T󸀠 ∈ T and C -id K󸀠 ≤ n. Since C ⊆ I(R), we have idR K󸀠 ≤ n. It follows from [16, Theorem 2.2]
that fdRop K󸀠+ ≤ n.

On the other hand, by [13, Proposition 5.3.9], there exists a monomorphism λ : N 󴀚󴀠 N++ in Mod Rop,
and hence λf+ : N 󴀚󴀠 K󸀠+ is also a monomorphism in Mod Rop. Thus, idR R ≤ n by [22, Lemma 3.8].

Recall from Remark 4.4 (3) that
GI(R) = I(R)⊥ ∩ ̃res I(R).

In terms of the injective dimensions relative to all three subcategories of Mod R that appear in this equality,
we give some equivalent characterizations of n-Gorenstein rings as follows.

Theorem 4.11. The following statements are equivalent:
(1) R is n-Gorenstein.
(2) G-idR M ≤ n for any M ∈ Mod R.
(2)op G-idRop N ≤ n for any N ∈ Mod Rop.
(3) I(R)⊥-idM ≤ n and I(Rop)⊥-idN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(4) ̃res I(R)-idM ≤ n and ̃res I(Rop)-idN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
Proof. The implications (2) + (2)op 󳨐⇒ (3) + (4) are trivial. On account of [13, Theorem 11.2.1], we have
(1) 󳨐⇒ (2) + (2)op.

“(3) 󳨐⇒ (1)”: By [16, Theorem 2.1], we have (RR)+ ∈ I(R) and (RR)+ ∈ I(Rop). Then, by (3) and dimen-
sion shifting, it is easy to see that

Ext≥n+1R ((RR)+,M) = 0 = Ext≥n+1Rop ((RR)+, N)
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for any M ∈ Mod R and N ∈ Mod Rop. This implies

fdR(RR)+ ≤ pdR(RR)+ ≤ n and fdRop (RR)+ ≤ pdRop (RR)+ ≤ n.
It follows from [16, Theorem 2.2] that idRop R ≤ n and idR R ≤ n.

“(2) 󳨐⇒ (1)”: Similar to the proof of (3) 󳨐⇒ (1), wehave idRop R ≤ n. By [18, Theorem2.6],wehave that
GI(R) is coresolving inMod R admitting an I(R)-proper generator I(R). Thus, idR R ≤ n by (2) andLemma4.10.

Symmetrically, we get (2)op 󳨐⇒ (1).
“(4) 󳨐⇒ (1)”: By [13, Lemma 8.2.1], we have that ̃res I(R) is closed under I(R)-proper extensions. Thus̃res I(R) is an I(R)-preresolving subcategory of Mod Rop admitting an I(R)-proper generator I(Rop). Thus,

idR R ≤ n by (4) and Lemma 4.10. Symmetrically, we have idRop R ≤ n.
Recall from [13] that a moduleM ∈ Mod R is called cotorsion if Ext1R(F,M) = 0 for any F ∈ F(R) (equivalently,
M ∈ F(R)⊥). We write

FC(R) := {flat and cotorsion modules in Mod R}.
Lemma 4.12. (1) I(Rop)+ is an I(Rop)+-coproper cogenerator and FC(R) is an FC(R)-coproper cogenerator

for F(R).
(2) We have ̃cores I(Rop)+ = ̃coresI(Rop)+ FC(R) = ̃coresI(Rop)+ F(R)= ̃coresFC(R) = ̃coresFC(R) F(R) ⊇ ̃coresF(R).

Moreover, all of these subcategories except ̃coresF(R) are closed under I(Rop)+-coproper extensions.
Proof. (1) It essentially follows from [32, Proposition 4.4] and its proof. However, we still give the proof in
details.

Let Q ∈ F(R). By [17, Corollary 2.21 (b)], there exists the following pure exact sequence:
0→ Q → Q++ → Q++/Q → 0 (4.3)

in Mod R. Since Q+ ∈ I(Rop) and Q++ ∈ I(Rop)+ ∩ F(R) by [16, Theorems 2.1 and 2.2], we have Q++/Q ∈ F(R)
by [20, Lemma 5.2(a)], and so (4.3) is a HomR(−, I(Rop)+)-exact exact sequence by [32, Lemma 4.13]. It
follows that I(Rop)+ is an I(Rop)+-coproper cogenerator for F(R).

Since Q++ is pure injective by [13, Proposition 5.3.7], we have Q++ ∈ FC(R) by [32, Proposition 4.4 (1)].
Notice that (4.3) is a HomR(−,FC(R))-exact exact sequence, so FC(R) is an FC(R)-coproper cogenerator
for F(R).

(2) Since I(Rop)+ ⊆ FC(R) ⊆ F(R) by [13, Proposition 5.3.7] and [32, Lemma 4.13], we havẽcores I(Rop)+ ⊆ ̃coresI(Rop)+ FC(R) ⊆ ̃coresI(Rop)+ F(R) ⊇ ̃coresFC(R) F(R) ⊇ ̃coresF(R).
By (1) and Proposition 3.7, we havẽcores I(Rop)+ = ̃coresI(Rop)+ F(R) and ̃coresFC(R) = ̃coresFC(R) F(R).
Suppose that M ∈ ̃coresI(Rop)+ F(R) and

0→ M → F0 → F1 → ⋅ ⋅ ⋅ → F i → ⋅ ⋅ ⋅ (4.4)

is a HomR(−, I(Rop)+)-exact exact sequence in Mod R with all F i flat. Let D ∈ FC(R). Then D++ ∈ I(Rop)+ by
[16, Theorem 2.1]. Since D is pure injective by [32, Proposition 4.4 (1)], D is a direct summand of D++ by
[17, Theorem 2.27]. Notice that (4.4) is HomR(−, D++)-exact, so it is also HomR(−, D)-exact. Thus,

M ∈ ̃coresFC(R) F(R) and ̃coresI(Rop)+ F(R) ⊆ ̃coresFC(R) F(R).
Since I(Rop)+ is closedunder I(Rop)+-coproper extensions by [18,Horseshoe Lemma1.7], the latter asser-

tion follows.
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Recall from Remark 4.4 (7) and (8) and [32, Theorem 4.6] that

⊥(I(Rop)+) ∩ ̃coresI(Rop)+ F(R) = ⊥FC(R) ∩ ̃coresFC(R) F(R)= ⊥FC(R) ∩ ̃coresFC(R) = GF(R)⊇ PGF(R)= ⊥(I(Rop)+) ∩ ̃coresI(Rop)+ P(R).
In terms of the projective dimensions relative to ̃coresF(R) and all eight subcategories of Mod R that appear
in the above relation, we give some equivalent characterizations of n-Gorenstein rings as follows.

Theorem 4.13. The following statements are equivalent:
(1) R is n-Gorenstein.
(2) G-fdR M ≤ n for any M ∈ Mod R.
(2)op G-fdRop N ≤ n for any N ∈ Mod Rop.
(3) ⊥(I(Rop)+)-pdM ≤ n and ⊥(I(R)+)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(4) ⊥FC(R)-pdM ≤ n and ⊥FC(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(5) ̃coresI(Rop)+ F(R)-pdM ≤ n and ̃coresI(R)+ F(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(6) ̃coresFC(R) F(R)-pdM ≤ n and ̃coresFC(Rop) F(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(7) ̃coresFC(R)-pdM ≤ n and ̃coresFC(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(8) ̃coresF(R)-pdM ≤ n and ̃coresF(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
(9) PGF(R)-pdM ≤ n for any M ∈ Mod R.
(9)op PGF(Rop)-pdN ≤ n for any N ∈ Mod Rop.
(10) ̃coresI(Rop)+ P(R)-pdM ≤ n and ̃coresI(R)+ P(Rop)-pdN ≤ n for any M ∈ Mod R and N ∈ Mod Rop.
Proof. The implications (2)+ (2)op 󳨐⇒ (3)+ (4), (9) 󳨐⇒ (2), (9)op 󳨐⇒ (2)op and (9)+ (9)op 󳨐⇒ (10) 󳨐⇒ (5)
are trivial. By Lemma 4.12, we have (5) ⇐⇒ (6) ⇐⇒ (7) ⇐󳨐 (8).

Since ̃coresF(R) ⊇ ̃coresF(R) P(R) and ̃coresF(Rop) ⊇ ̃coresF(Rop) P(Rop),
we have (1) 󳨐⇒ (8) by Theorem 4.9.

By [16, Theorem 2.2] and [32, Lemma 4.13], we have I(Rop)+ ⊆ FC(R) and I(R)+ ⊆ FC(Rop). Thus,
⊥(I(Rop)+) ⊇ ⊥FC(R) and ⊥(I(R)+) ⊇ ⊥FC(Rop),

and the implication (4) 󳨐⇒ (3) follows.
“(1) 󳨐⇒ (9) + (9)op”: By (1) and [26, Theorem 2], we have

SGF(R) = PGF(R) and SGF(Rop) = PGF(Rop).
Now the assertion follows from Theorem 4.9.

“(3) 󳨐⇒ (1)”: By [16, Theorem 2.1], we have (RR)+ ∈ I(Rop) and (RR)+ ∈ I(R). Then, by (3) and dimen-
sion shifting, it is easy to see that

Ext≥n+1R (M, (RR)++) = 0 = Ext≥n+1Rop (N, (RR)++)
for any M ∈ Mod R and N ∈ Mod Rop. This now implies idR(RR)++ ≤ n and idRop (RR)++ ≤ n. It follows from
[16, Theorems 2.1 and 2.2] that

idR R = fdRop (RR)+ ≤ n and idRop R = fdR(RR)+ ≤ n.
“(2) 󳨐⇒ (1)”: Similar to the proof of (3) 󳨐⇒ (1), we have idR R ≤ n. By Remark 4.4 (7), we have that

GF(R) is resolvingandadmits an IC(Rop)+-coproper cogeneratorF(R). Thus, idRop R ≤ n by (2) andLemma4.8.
Symmetrically, we get (2)op 󳨐⇒ (1).
“(5) 󳨐⇒ (1)”: It follows from Lemma 4.12 (2) that ̃coresI(Rop)+ F(R) is an I(Rop)+-precoresolving subcat-

egory of Mod R admitting an I(Rop)+-coproper cogenerator F(R). Thus, idRop R ≤ n by (5) and Lemma 4.8.
Symmetrically, we have idR R ≤ n.
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4.3 C-Gorenstein flat modules

In this subsection, R, S are arbitrary rings and RCS is a semidualizing bimodule.

Lemma 4.14. For any M ∈ Mod R, we have fdS M∗ = idSop M+ ⊗R C.
Proof. By [17, Lemma 2.16 (c)], we have (M∗)+ ≅ M+ ⊗R C.
It follows from [16, Theorem 2.1] that

fdS M∗ = idSop (M∗)+ = idSop M+ ⊗R C,
as desired.

We also need the following observation.

Lemma 4.15. Let n ≥ 0. Then the following assertions hold:
(1) For any M ∈ Mod R, we have

FC(R)-pdM ≤ n if and only if M ∈ BC(R) and fdS M∗ ≤ n.
(2) For any N ∈ Mod Rop, we have

IC(Rop)-idN ≤ n if and only if N ∈ AC(Rop) and idSop N ⊗R C ≤ n.
Proof. By [20, Corollary 6.1], we have

FC(R)-pd<∞ ⊆ BC(R) and IC(Rop)-id<∞ ⊆ AC(Rop).
Then the assertions follow from [36, Lemma 2.6 (1) and (3)].

For any M ∈ Mod R, we have the following canonical evaluation homomorphism:

σM : M → M++

defined by σM(x)(α) = α(x) for any x ∈ M and α ∈ M+.
Lemma 4.16. (1) Let I be an injective right S-module. Then (I∗)++ ≅ (I++)∗. Moreover, (I∗)+ ∈ FC(R) if S is

a right coherent ring.
(2) Let f : M+1 → M+2 be a homomorphism inMod Rop with M1,M2 ∈ Mod R. If M1 is pure injective, then there

exists a homomorphism g : M2 → M1 inMod R such that f = g+.
Proof. (1) Let I be an injective right S-module. Then (I∗)+ ≅ C ⊗S I+ by [17, Lemma 2.16 (c)], and hence(I∗)++ ≅ (C ⊗S I+)+ ≅ (I++)∗
by [17, Lemma 2.16 (a)]. If S is a right coherent ring, then I+ is a flat left S-module by [11, Theorem 1], and
hence (I∗)+ ≅ C ⊗S I+ ∈ FC(R).

(2) Let f : M+1 → M+2 be a homomorphism in Mod Rop with M1,M2 ∈ Mod R. If M1 is pure injective, then
σM1 : M1 → M++1 is a split monomorphism in Mod R by [17, Proposition 2.27]. So there exists a split epimor-
phism β : M++1 → M1 in Mod R such that βσM1 = 1M1 , and hence (σM1 )+β+ = 1M+

1
. On the other hand, we also

have (σM1 )+σM+
1
= 1M+

1
by [1, Proposition 20.14 (1)]. It follows that

β+ = σM+
1
. (4.5)

Since the diagram

M+1
σM+

1
��

f
// M+2

σM+
2

��

M+++1
f++
// M+++2



Z. Huang, Homological dimensions relative to subcategories | 527

is commutative, we have σM+
2
f = f++σM+

1
. Then, by [1, Proposition 20.14 (1)] and (4.5), we have

f = 1M+
2
f = (σM2 )+σM+

2
f = (σM2 )+f++σM+

1
= (σM2 )+f++β+ = (βf+σM2 )+.

Set g := βf+σM2 . Then f = g+.
The assertions in the following result are the C-versions of [16, Theorem 2.1] and [18, Theorem 3.6],
respectively.

Theorem 4.17. For any M ∈ Mod R, the following assertions hold:
(1) FC(R)-pdM = IC(Rop)-idM+.
(2) GC-fdRM ≥ GC-idRopM+ with equality if S is a right coherent ring.

Proof. (1) For any n ≥ 0, we have, by Lemma 4.15 (1),

FC(R)-pdM ≤ n if and only if M ∈ BC(R) and fdS M∗ ≤ n.
The latter is equivalent, by [25, Proposition 3.2(b)] and Lemma 4.14, to

M+ ∈ AC(Rop) and idSop M+ ⊗R C ≤ n,
which in turn, by Lemma 4.15 (2), is equivalent to

IC(Rop)-idM+ ≤ n.
(2) Let E ∈ IC(Rop) and n ≥ 1. By [17, Lemma 2.16 (a) and (b)], we have(E ⊗R −)+ ≅ HomRop (E, (−)+), (4.6)[TorRn (E, −)]+ ≅ ExtnRop (E, (−)+). (4.7)

If G ∈ GFC(R), then G ∈ IC(Rop)⊤ and there exists an (IC(Rop) ⊗R −)-exact exact sequence
0→ G → Q0 → Q1 → ⋅ ⋅ ⋅ → Qi → ⋅ ⋅ ⋅

in Mod R with all Qi in FC(R). It follows from (1) and the above two isomorphisms that

G+ ∈ IC(Rop)⊥ ∩ ̃res IC(Rop),
and thus G+ ∈ GIC(Rop) by Remark 4.4 (3) (b). Then it is easy to get GC-fdRM ≥ GC-idRopM+ for anyM ∈ Mod R.

Now, let S be a right coherent ring and let G ∈ Mod R.
Claim. If G+ ∈ GIC(Rop), then G ∈ GFC(R).
By Remark 4.4 (3) (b), we have

G+ ∈ IC(Rop)⊥ ∩ ̃res IC(Rop).
It follows from (4.7) that G ∈ IC(Rop)⊤. In addition, there exists the following HomRop (IC(Rop), −)-exact exact
sequence: ⋅ ⋅ ⋅ → (Ii)∗ → ⋅ ⋅ ⋅ → (I1)∗ → (I0)∗ → G+ → 0 (4.8)

in Mod Rop with all Ii injective right S-modules. Set Ki := Im((Ii)∗ → (Ii−1)∗) for any i ≥ 1. Since I0 ⊕ I󸀠0 ≅ I++0
for some injective right S-module I󸀠0, from Lemma 4.16 (1) and the exact sequence (4.8), we get the following
HomRop (IC(Rop), −)-exact short exact sequence:

0→ K1 ⊕ (I󸀠0)∗ → (I0)∗ ⊕ (I󸀠0)∗(≅ ((I0)∗)++) → G+ → 0

in Mod Rop. Similarly, since (I1 ⊕ I󸀠0) ⊕ I󸀠1 ≅ (I1 ⊕ I󸀠0)++ for some injective right S-module I󸀠1, from Lemma
4.16 (1) and the exact sequence (4.8), we get the following HomRop (IC(Rop), −)-exact short exact sequence:

0→ K2 ⊕ (I󸀠1)∗ → (I1)∗ ⊕ (I󸀠0)∗ ⊕ (I󸀠1)∗(≅ ((I1 ⊕ I󸀠0)∗)++) → K1 ⊕ (I󸀠0)∗ → 0
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in Mod Rop. Continuing this process and splicing these obtained short exact sequences, we get the following
HomRop (IC(Rop), −)-exact exact sequence:⋅ ⋅ ⋅ → ((Ii ⊕ I󸀠i−1)∗)++ → ⋅ ⋅ ⋅ → ((I1 ⊕ I󸀠0)∗)++ → ((I0)∗)++ → G+ → 0 (4.9)

in Mod Rop with all I󸀠i injective right S-modules. Since ((I0)∗)+ and all ((Ii ⊕ I󸀠i−1)∗)+ are pure injective by
[13, Proposition 5.3.7], according to Lemma 4.16 (2), we can rewrite (4.9) as follows:⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀→ ((Ii ⊕ I󸀠i−1)∗)++ (gi)+󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ → ((I1 ⊕ I󸀠0)∗)++ (g1)+󳨀󳨀󳨀󳨀→ ((I0)∗)++ (g0)+󳨀󳨀󳨀󳨀→ G+ 󳨀󳨀󳨀󳨀→ 0.

Then, by (4.6), we get the following (IC(Rop) ⊗R −)-exact exact sequence:
0 󳨀󳨀→ G

g0󳨀󳨀→ ((I0)∗)+ g1󳨀󳨀→ ((I1 ⊕ I󸀠0)∗)+ 󳨀󳨀→ ⋅ ⋅ ⋅ gi󳨀→ ((Ii ⊕ I󸀠i−1)∗)+ 󳨀󳨀→ ⋅ ⋅ ⋅
in Mod R. By Lemma 4.16 (1), we have that ((I0)∗)+ and all ((Ii ⊕ I󸀠i−1)∗)+ are in FC(R). Consequently, we
conclude that G ∈ GFC(R). The claim is proved.

Let M ∈ Mod R with GC-idRopM+ = n < ∞, and let
0→ Kn → Gn−1 → ⋅ ⋅ ⋅ → G1 → G0 → M → 0

be an exact sequence in Mod R with all Gi in GFC(R). Then we get the following exact sequence:
0→ M+ → G+0 → G+1 ⋅ ⋅ ⋅ → G+n−1 → K+n → 0

in Mod Rop. By the former assertion, all G+i are in GIC(Rop). It follows from Remark 4.4 (3) (b) and Lemma
3.8 (1) that K+n ∈ GIC(Rop). Then Kn ∈ GFC(R) by the above claim, and thus GC-fdRM ≤ n.
As a consequence, we get the following result, in which assertion (1) generalizes [20, Lemma 5.2 (a)].

Corollary 4.18. For any n ≥ 0, the following assertions hold:
(1) The class of left R-modules withFC(R)-projective dimension at most n is closed under pure submodules and

pure quotients; in particular, the class FC(R) is closed under pure submodules and pure quotients.
(2) If S is a right coherent ring, then the class of left R-modules with GFC(R)-projective dimension at most n

is closed under pure submodules and pure quotients; in particular, the class GFC(R) is closed under pure
submodules and pure quotients.

Proof. (1) Let
0→ K → G → L → 0

be a pure exact sequence in Mod R with FC(R)-pdG ≤ n. Then, by [13, Proposition 5.3.8], the induced exact
sequence

0→ L+ → G+ → K+ → 0

splits and both K+ and L+ are direct summands of G+. By Theorem 4.17 (1), we have IC(Rop)-idG+ ≤ n.
Since IC(Rop) is closed under direct summands by [20, Proposition 5.1 (c)], the class of right R-modules with
IC(Rop)-injective dimension at most n is closed under direct summands by [24, Corollary 4.9]. It follows that
IC(Rop)-id K+ ≤ n and IC(Rop)-id L+ ≤ n. Thus,FC(R)-pd K ≤ n andFC(R)-pd L ≤ n by Theorem4.17 (1) again.

(2) It is trivial that IC(Rop)⊥ is closed under direct summands. By [23, Theorem 4.6 (1)], the class̃res IC(Rop) is closed under direct summands. Notice that

GIC(Rop) = IC(Rop)⊥ ∩ ̃res IC(Rop)
by Remark 4.4 (3) (b), thus GIC(Rop) is also closed under direct summands. We also know from Remark
4.4 (3) (b) that GIC(Rop) is coresolving in Mod Rop. Thus, the class of right R-modules with GIC(Rop)-injective
dimension atmost n is closed under direct summands by [24, Corollary 4.9]. Now applying Theorem4.17 (2),
we obtain the assertion by using an argument similar to that in the proof of (1).

In the following result, assertion (1) is the C-version of [8, Theorem2.2]. Assertion (3)means that the assump-
tion “R is a right coherent ring” in [18, Theorem 3.24] is superfluous; compare it with Corollaries 4.6 (2)
and 4.7 (2).
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Theorem 4.19. (1) For any M ∈ Mod R, it holds
GC-fdRM ≤ FC(R)-pdM,

with equality if FC(R)-pdM < ∞.
(2) FC(R)-FPD ≤ GFC(R)-FPD, with equality if GFC(R) is closed under extensions.
(3) F(R)-FPD = GF(R)-FPD.
Proof. (1) Since GFC(R) ⊆ FC(R), we have

GC-fdRM ≤ FC(R)-pdM for any M ∈ Mod R.
Now let FC(R)-pdM < ∞. By Theorem 4.17 (1),

IC(Rop)-idM+ < ∞.
This implies, by Corollary 4.7 (1),

GC-idRopM+ = IC(Rop)-idM+.
This in turn implies, by Theorem 4.17,

GC-fdRM ≥ FC(R)-pdM,

which finally implies
GC-fdRM = FC(R)-pdM.

(2) The assertion that FC(R)-FPD ≤ GFC(R)-FPD follows from (1).
It is trivial that P(R) ⊆ F(R) ⊆ GFC(R). By Remark 4.4 (8), we have that

GFC(R) = ⊥(IC(Rop)+) ∩ ̃coresIC(Rop)+ FC(R)
and it admits an IC(Rop)+-coproper cogenerator FC(R). If GFC(R) is closed under extensions, then GFC(R) is
resolving in Mod R by Proposition 3.6. Now letM ∈ Mod R with GC-fdRM = n < ∞. By Corollary 3.4 (2), there
exists an exact sequence

0→ M → K󸀠 → T󸀠 → 0

in Mod R with FC(R)-pd K󸀠 = n. It follows that GFC(R)-FPD ≤ FC(R)-FPD.
(3) Since GF(R) is closed under extensions by [31, Theorem 4.11], the assertion follows from (2) by

putting RCS = RRR.
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