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1 Introduction

Recollements of abelian categories and triangulated categories play an
important role in geometry of singular spaces, representation theory,
polynomial functors theory, and ring theory [2,3,5,6,12,14,15,19], where
recollements are known as torsion torsion-free (TTF) theories. They first
appeared in the construction of the category of perverse sheaves on a singular
space [2]. Recollements of abelian categories and recollements of triangulated
categories are closely related; for instance, Chen [4] constructed a recollement
of abelian categories from a recollement of triangulated categories, generalizing
a result of Lin and Wang [16]. In addition, the properties of torsion pairs
and recollements of abelian categories have been studied by Psaroudakis and
Vitória [22]. They established a correspondence between recollements of abelian
categories up to equivalence and certain TTF-triples.

Let (A ,B,C ) be a recollement of triangulated categories. Chen [4]
described how to glue together cotorsion pairs (which are essentially equal to
torsion pairs [11]) in A and C to obtain a cotorsion pair in B, which is a
natural generalization of a similar result in [2] on gluing together t-structures
of A and C to obtain a t-structure in B. After taking the hearts A ′,B′,C ′ of
the glued t-structures, (A ′,B′,C ′) is a recollement of abelian categories and
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a construction of gluing of torsion pairs in this recollement was given by Liu
et al. [18] (also see [13]). Note that the results of Liu et al. [18, Proposition
6.5, Lemma 6.2] depend on the recollements of triangulated categories and the
proofs there do not work in the general case. Our aim is to glue torsion pairs
and TTF-triples in a recollement of general abelian categories.

This paper is organized as follows. In Section 2, we give some terminologies
and some preliminary results. In Section 3, we study torsion pairs in a
recollement of abelian categories. Letting (A ,B,C ) be a recollement of abelian
categories, we obtain a torsion pair in B from torsion pairs in A and C .
Conversely, we show that, under certain conditions, a torsion pair in B can
induce torsion pairs in A and C .

2 Preliminaries

Throughout this paper, all subcategories are full, additive, and closed under
isomorphisms.

Definition 1 [8] A recollement, denoted by (A ,B,C ), of abelian categories
is a diagram

A i∗ // B
i∗oo

i!oo
j∗ // C
j!oo

j∗oo

of abelian categories and additive functors such that

(1) (i∗, i∗), (i∗, i
!), (j!, j

∗), and (j∗, j∗) are adjoint pairs,

(2) i∗, j! and j∗ are fully faithful,

(3) Im i∗ = Ker j∗.

See [8,17,20] for examples of recollements of abelian categories. We list some
properties of recollements (see [8,20–22]), which will be used in the sequel.

Lemma 1 Let (A ,B,C ) be a recollement of abelian categories. Then we
have

(1) i∗j! = 0 = i!j∗;

(2) the functors i∗ and j
∗ are exact, i∗ and j! are right exact, and i! and j∗

are left exact;

(3) all the natural transformations

i∗i∗ → 1A , 1A → i!i∗, 1C → j∗j!, j∗j∗ → 1C ,

are natural isomorphisms;

(4) for any B ∈ B, there exist exact sequences

0→ i∗(A)→ j!j
∗(B)

εB−→ B → i∗i
∗(B)→ 0,

0→ i∗i
!(B)→ B

ηB−→ j∗j
∗(B)→ i∗(A

′)→ 0,
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in B with A,A′ ∈ A ;

(5) there exists an exact sequence of natural transformations:

0→ i∗i
!j! → j! → j∗ → i∗i

∗j∗ → 0;

(6) if i∗ is exact, then i!j! = 0, and if i! is exact, then i∗j∗ = 0.

Definition 2 [7] A pair of subcategories (X ,Y ) of an abelian category A is
called a torsion pair if the following conditions are satisfied:

(1) HomA (X ,Y ) = 0, that is, HomA (X,Y ) = 0 for any X ∈ X and
Y ∈ Y ;

(2) for any object M ∈ A , there exists an exact sequence

0→ X →M → Y → 0

in A with X ∈X and Y ∈ Y .

Let (X ,Y ) be a torsion pair in an abelian category A . Then we have

(1) X is closed under extensions and quotient objects,

(2) Y is closed under extensions and subobjects.

Moreover, we have

X = ⊥0Y := {M ∈ A | HomA (M,Y ) = 0},
Y = X ⊥0 := {M ∈ A | HomA (X ,M) = 0}.

Definition 3 [3,10] Let (X ,Y ) be a torsion pair in an abelian category A .

(1) (X ,Y ) is called tilting (resp. cotilting) if any object in A is isomorphic
to a subobject of an object in X (resp. a quotient object of an object in Y ).

(2) (X ,Y ) is called hereditary (resp. cohereditary) if X is closed under
subobjects (resp. Y is closed under quotient objects).

3 Torsion pairs in a recollement

In this section, assume that (A ,B,C ) is a recollement of abelian categories:

A i∗ // B
i∗oo

i!oo
j∗ // C
j!oo

j∗oo

We begin with the following result.

Lemma 2 For any B ∈ B,

(1) if i∗ is exact, then there exists an exact sequence

0→ j!j
∗(B)

εB−→ B → i∗i
∗(B)→ 0;
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(2) if i! is exact, then there exists an exact sequence

0→ i∗i
!(B)→ B

ηB−→ j∗j
∗(B)→ 0;

(3) i∗ and i! are exact if and only if i∗ ∼= i!, and in this case, we have
j∗ ∼= j!.

Proof (1) By Lemma 1 (4), it suffices to prove that εB is monic. Applying i!

to the first exact sequence in Lemma 1 (4), we get an exact sequence

0→ i!i∗(A)→ i!j!j
∗(B).

By Lemma 1 (6), we have
i!j!j

∗(B) = 0.

So
A ∼= i!i∗(A) = 0

by Lemma 1 (3), and hence, εB is monic.

(2) It is similar to (1).

(3) If i∗ ∼= i!, then i∗ and i! are exact by Lemma 1 (2). Conversely,
applying i! to the exact sequence in (1), we get an exact sequence of natural
transformations:

0→ i!j!j
∗ → i! → i!i∗i

∗ → 0.

By Lemma 1 (6) and (3), we have

i! ∼= i!i∗i
∗ ∼= i∗.

The isomorphism j∗ ∼= j! follows from Lemma 1 (5) and (6). �

Our main result is the following theorem.

Theorem 1 Let (X ′,Y ′) and (X ′′,Y ′′) be torsion pairs in A and C ,
respectively, and let

X := {B ∈ B | i∗(B) ∈X ′, j∗(B) ∈X ′′},
Y := {B ∈ B | i!(B) ∈ Y ′, j∗(B) ∈ Y ′′}.

Then we have

(1) (X ,Y ) is a torsion pair in B;

(2) (X ′,Y ′) = (i∗(X ), i!(Y )) and (X ′′,Y ′′) = (j∗(X ), j∗(Y ));

(3) if (X ′,Y ′) and (X ′′,Y ′′) are cohereditary (resp. hereditary), and i!

(resp. i∗) is exact, then (X ,Y ) is cohereditary (resp. hereditary);

(4) if (X ′,Y ′) and (X ′′,Y ′′) are tilting (resp. cotilting), and i! and j!
(resp. i∗ and j∗) are exact, then (X ,Y ) is tilting (resp. cotilting).

Proof (1) Let X ∈X and Y ∈ Y . Applying the functor HomB(−, Y ) to the
exact sequence

j!j
∗(X)

εX−→ X → i∗i
∗(X)→ 0
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in B, we get an exact sequence

0→ HomB(i∗i
∗(X), Y )→ HomB(X,Y )→ HomB(j!j

∗(X), Y ).

By assumption, (X ′,Y ′) and (X ′′,Y ′′) are torsion pairs in A and C ,
respectively. Since i∗(X) ∈X ′, i!(Y ) ∈ Y ′, j∗(X) ∈X ′′, and j∗(Y ) ∈ Y ′′, we
have

HomB(j!j
∗(X), Y ) ∼= HomC (j∗(X), j∗(Y )) = 0,

HomB(i∗i
∗(X), Y ) ∼= HomA (i∗(X), i!(Y )) = 0.

It follows that

HomB(X,Y ) = 0, HomB(X ,Y ) = 0.

Let B ∈ B. There exists an exact sequence

0 // i∗i
!(B) // B

ηB //

!! !!

j∗j
∗(B) // i∗(A

′) // 0

Im ηB
::

::

in B with A′ ∈ A . Because j∗(B) ∈ C and (X ′′,Y ′′) is a torsion pair in C ,
there exists an exact sequence

0→ X ′′ → j∗(B)
h−→ Y ′′ → 0

in C with X ′′ ∈ X ′′ and Y ′′ ∈ Y ′′. Notice that j∗ is left exact by Lemma 1
(2). Then

0→ j∗(X
′′)→ j∗j

∗(B)
j∗(h)−→ j∗(Y

′′)

is exact and we have the following pullback diagram:

0

��

0

��

0

��
0 // K

f //

g

��

Im ηB //

��

Coker f

��

// 0

0 // j∗(X
′′)

��

// j∗j
∗(B) //

��

Im j∗(h)

��

// 0

0 // Coker g

��

// i∗(A
′)

��

// U

��

// 0

0 0 0

(3.1)
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Then we get the following pullback diagram:

0

��

0

��
i∗i

!(B)

��

i∗i
!(B)

��
0 //M //

��

B //

��

Coker f // 0

0 // K

��

// Im ηB //

��

Coker f // 0

0 0

(3.2)

Because i∗(M) ∈ A and (X ′,Y ′) is a torsion pair in A , there exists an exact
sequence

0→ X ′ → i∗(M)→ Y ′ → 0

in A with X ′ ∈ X ′ and Y ′ ∈ Y ′. Notice that i∗ is exact by Lemma 1 (2).
Then

0→ i∗(X
′)→ i∗i

∗(M)→ i∗(Y
′)→ 0

is exact and we have the following pullback diagram:

0

��

0

��
Im εM

��

Im εM

��
0 // X //

��

M //

��

i∗(Y
′) // 0

0 // i∗(X
′) //

��

i∗i
∗(M) //

��

i∗(Y
′) // 0

0 0

(3.3)

where the exactness of the middle column follows from Lemma 1 (4). Now, we
get the following pushout diagram:
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0

��

0

��
X

��

X

��
0 //M //

��

B //

��

Coker f // 0

0 // i∗(Y
′)

��

// Y //

��

Coker f // 0

0 0

(3.4)

To get the assertion, it suffices to show X ∈X and Y ∈ Y .
Since i∗j! = 0 and i∗ is right exact by Lemma 1 (1) and (2), we have

i∗(Im εM ) = 0.

Since i∗ is right exact by Lemma 1 (2), applying the functor i∗ to the leftmost
column in diagram (3.3) yields

i∗(X) ∼= i∗i∗(X
′) ∼= X ′ ∈X ′.

On the other hand, note that j∗ is exact (by Lemma 1 (2)) and Im i∗ = Ker j∗.
Then, applying the functor j∗ to the bottom row in diagram (3.1), we have

j∗(Coker g) = 0 = j∗(U);

furthermore, we have

j∗(X) ∼= j∗(M) (by applying j∗ to middle row in diagram (3.3))
∼= j∗(K) (by applying j∗ to leftmost column in diagram (3.2))
∼= j∗j∗(X

′′) (by applying j∗ to leftmost column in diagram (3.1))
∼= X ′′

∈ X ′′.

It implies X ∈X .
Applying the functor j∗ to the bottom row in diagram (3.4) and the right-

most column in diagram (3.1), since j∗ is exact and Im i∗ = Ker j∗, we have that
j∗(Y ) (∼= j∗(Coker f) ∼= j∗(Im j∗(h))) is isomorphic to a subobject of Y ′′ (∼=
j∗j∗(Y

′′)). Because Y ′′ is closed under subobjects, it follows that j∗(Y ) ∈ Y ′′.
On the other hand, applying the functor i! to the rightmost column in diagram
(3.1) and the bottom row in diagram (3.4), since i! is left exact and i!j∗ = 0 by
Lemma 1 (1) and (2), we have

i!(Im j∗(h)) = 0, i!(Coker f) = 0.
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So

i!(Y ) ∼= i!i∗(Y
′) ∼= Y ′ ∈ Y ′,

and hence, Y ∈ Y .

(2) It is trivial that i∗(X ) ⊆X ′. For any X ′ ∈X ′, since

i∗i∗(X
′) ∼= X ′ ∈X ′, j∗i∗(X

′) = 0 ∈X ′′,

we have i∗(X
′) ∈X , and hence,

X ′ ∼= i∗(i∗(X
′)) ∈ i∗(X ).

Thus,

X ′ ⊆ i∗(X ).

Similarly, we get

Y ′ = i!(Y ), X ′′ = j∗(X ), Y ′′ = j∗(Y ).

(3) Assume that (X ′,Y ′) and (X ′′,Y ′′) are cohereditary. Then Y ′ and
Y ′′ are closed under quotient objects. Let Y ∈ Y , and let

0 // Y ′ // Y // Y1 // 0

be an exact sequence in B. Since j∗ and i! are exact by Lemma 1 (2) and
assumption, we have j∗(Y1) and i!(Y1) are isomorphic to quotient objects of
j∗(Y ) (∈ Y ′′) and i!(Y ) (∈ Y ′), respectively. So

j∗(Y1) ∈ Y ′′, i!(Y1) ∈ Y ′.

It implies that Y1 ∈ Y and (X ,Y ) is cohereditary.
Dually, we get the assertion for the hereditary case.

(4) Assume that (X ′,Y ′) and (X ′′,Y ′′) are tilting. Let B ∈ B. By
Lemma 1 (4) and Lemma 2 (2), there exist exact sequences

0 // i∗(A) // j!j
∗(B)

εB //

$$ $$

B // i∗i
∗(B) // 0,

Im εB
<<

<<

0→ i∗i
!(B)→ B → j∗j

∗(B)→ 0,

in B with A ∈ A .
Since (X ′′,Y ′′) is tilting and j∗(B) ∈ C , there exists a monomorphism

0→ j∗(B)→ X ′′
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in C with X ′′ ∈X ′′. Since j! is exact by assumption, we get the exact sequence

0→ j!j
∗(B)→ j!(X

′′)→ j!(X
′′/j∗(B))→ 0

in B and the pushout diagram

0

��

0

��
0 // i∗(A) // j!j

∗(B) //

��

Im εB

��

// 0

0 // i∗(A) // j!(X
′′)

��

// U

��

// 0

j!(X
′′/j∗(B))

��

j!(X
′′/j∗(B))

��
0 0

(3.5)

Then we get the following pushout diagram:

0

��

0

��
0 // Im εB //

��

B //

��

i∗i
∗(B) // 0

0 // U

��

// V ′′ //

��

i∗i
∗(B) // 0

j!(X
′′/j∗(B))

��

j!(X
′′/j∗(B))

��
0 0

(3.6)

On the other hand, since (X ′,Y ′) is tilting and i!(B) ∈ A , there exists a
monomorphism

0→ i!(B)→ X ′

in A with X ′ ∈X ′. Since i∗ is exact by Lemma 1 (2), we get the exact sequence

0→ i∗i
!(B)→ i∗(X

′)→ i∗(X
′/i!(B))→ 0

in B and the pushout diagram
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0

��

0

��
0 // i∗i

!(B) //

��

B //

��

j∗j
∗(B) // 0

0 // i∗(X
′)

��

// V ′ //

��

j∗j
∗(B) // 0

i∗(X
′/i!(B))

��

i∗(X
′/i!(B))

��
0 0

(3.7)

Then we get the following pushout diagram:

0

��

0

��
0 // B //

��

V ′′ //

��

j!(X
′′/j∗(B)) // 0

0 // V ′

��

// X //

��

j!(X
′′/j∗(B)) // 0

i∗(X
′/i!(B))

��

i∗(X
′/i!(B))

��
0 0

(3.8)

Since j∗ is exact (by Lemma 1 (2)) and Im i∗ = Ker j∗, we have

j∗(X) ∼= j∗(V ′′) (by applying j∗ to middle column in diagram (3.8))
∼= j∗(U) (by applying j∗ to middle row in diagram (3.6))
∼= j∗j!(X

′′) (by applying j∗ to middle row in diagram (3.5))
∼= X ′′

∈ X ′′.

Since i! is exact by assumption, we have i∗j∗ = 0 by Lemma 1 (6). So, applying
i∗ to the middle row in diagram (3.7) yields that

i∗i∗(X
′)→ i∗(V ′)→ 0

is exact. Since i∗j! = 0 by Lemma 1 (1), applying i∗ to the middle row in
diagram (3.8) yields that

i∗(V ′)→ i∗(X)→ 0
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is exact. Thus, i∗(X) is isomorphic to a quotient object of i∗i∗(X
′) (∼= X ′ ∈

X ′). Notice that X ′ is closed under quotient objects, so i∗(X) ∈ X ′, and
hence X ∈X . Thus, we conclude that (X ,Y ) is tilting.

Dually, we get the assertion for the cotilting case. �

Recall from [9] that a triple of subcategories (X ,Y ,Z ) of an abelian
category is called a TTF-triple if (X ,Y ) and (Y ,Z ) are torsion pairs. By
[22, Theorem 4.3], we know that (Ker i∗, Im i∗,Ker i!) is a TTF-triple in B.

Corollary 1 Let (X ′,Y ′,Z ′) and (X ′′,Y ′′,Z ′′) are TTF-triples in A and
C , respectively. If i∗ and i! are exact, then (X ,Y ,Z ) is a TTF-triple in B,
where X , Y are as in Theorem 1 and

Z := {B ∈ B | i∗(B) ∈ Z ′, j∗(B) ∈ Z ′′}.

Proof It follows from Lemma 2 (3) and Theorem 1. �

To study the converse of Theorem 1, we need the following easy observation.

Lemma 3 If (X ,Y ) is a torsion pair in B, then we have

(1) j∗j
∗(Y ) ⊆ Y if and only if j!j

∗(X ) ⊆X ;

(2) i∗i
!(Y ) ⊆ Y if and only if i∗i

∗(X ) ⊆X .

Proof (1) Let X ∈X and Y ∈ Y . Since

HomB(X, j∗j
∗(Y )) ∼= HomC (j∗(X), j∗(Y )) ∼= HomB(j!j

∗(X), Y )

and
X = ⊥0Y , Y = X ⊥0 ,

the assertion follows.

(2) It is similar to (1). �

The following result shows that the converse of Theorem 1 (1) and (2) holds
true under certain conditions.

Theorem 2 Let (X ,Y ) be a torsion pair in B. Then we have

(1) (i∗(X ), i!(Y )) is a torsion pair in A ;

(2) j∗j
∗(Y ) ⊆ Y if and only if (j∗(X ), j∗(Y )) is a torsion pair in C ;

(3) if j∗j
∗(Y ) ⊆ Y , then

X = {B ∈ B | i∗(B) ∈ i∗(X ), j∗(B) ∈ j∗(X )},
Y = {B ∈ B | i!(B) ∈ i!(Y ), j∗(B) ∈ j∗(Y )}.

Proof (1) Let X ∈X and Y ∈ Y . Applying the functor HomB(−, Y ) to the
exact sequence

j!j
∗(X)

εX−→ X → i∗i
∗(X)→ 0

in B, we get an exact sequence

0→ HomB(i∗i
∗(X), Y )→ HomB(X,Y )→ HomB(j!j

∗(X), Y ).
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Since HomB(X,Y ) = 0, we have

HomB(i∗i
∗(X), Y ) = 0.

It follows that
i∗i
∗(X) ∈ ⊥0Y = X , i∗i

∗(X ) ⊆X .

So i∗i
!(Y ) ⊆ Y by Lemma 3 (2).

Let X ′ ∈ i∗(X ) and Y ′ ∈ i!(Y ). Then there exist X ∈X and Y ∈ Y such
that

X ′ = i∗(X), Y ′ = i!(Y ).

Because (X ,Y ) is a torsion pair in B (by assumption) and i∗i
!(Y ) ∈ Y , we

have

HomA (X ′, Y ′) = HomA (i∗(X), i!(Y )) ∼= HomB(X, i∗i
!(Y )) = 0

and
HomA (i∗(X ), i!(Y )) = 0.

Let A ∈ A . Because i∗(A) ∈ B, there exists an exact sequence

0→ X → i∗(A)→ Y → 0

in B with X ∈ X and Y ∈ Y . Since i∗(A ) is a Serre subcategory of B by
[22, Proposition 2.8], there exist X1, Y1 ∈ A such that

X ∼= i∗(X1), Y ∼= i∗(Y1).

Since i∗ : A → i∗(A ) is an equivalence, we get that

0→ X1 → A→ Y1 → 0

is an exact sequence in A with

X1
∼= i∗(i∗(X1)) ∼= i∗(X) ∈ i∗(X ), Y1 ∼= i!(i∗(Y1)) ∼= i!(Y ) ∈ i!(Y ).

Thus, we conclude that (i∗(X ), i!(Y )) is a torsion pair in A .

(2) Let j∗j
∗(Y ) ⊆ Y . For any X ′ ∈ j∗(X ) and Y ′ ∈ j∗(Y ), there exist

X ∈X and Y ∈ Y such that

X ′ = j∗(X), Y ′ = j∗(Y ).

Because (X ,Y ) is a torsion pair in B, we have

HomC (X ′, Y ′) = HomC (j∗(X), j∗(Y )) ∼= HomB(X, j∗j
∗(Y )) = 0

and
HomC (j∗(X ), j∗(Y )) = 0.
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Let C ∈ C . Because j∗(C) ∈ B, there exists an exact sequence

0→ X → j∗(C)→ Y → 0

in B with X ∈X and Y ∈ Y . Since j∗ is exact by Lemma 1 (2), we have

0→ j∗(X)→ j∗j∗(C) (∼= C)→ j∗(Y )→ 0

is also exact and the assertion follows.
Conversely, if (j∗(X ), j∗(Y )) is a torsion pair in C , then we have

HomB(X , j∗j
∗(Y )) ∼= HomC (j∗(X ), j∗(Y )) = 0,

which implies
j∗j
∗(Y ) ⊆X ⊥0 = Y .

(3) It is trivial that

X ⊆ {B ∈ B | i∗(B) ∈ i∗(X ), j∗(B) ∈ j∗(X )},
Y ⊆ {B ∈ B | i!(B) ∈ i!(Y ), j∗(B) ∈ j∗(Y )}.

Conversely, let B ∈ B with i∗(B) ∈ i∗(X ) and j∗(B) ∈ j∗(X ). By Lemma 1
(4), there exists an exact sequence

j!j
∗(B)

εB−→ B → i∗i
∗(B)→ 0

in B. For any Y ∈ Y , applying the functor HomB(−, Y ) to the above exact
sequence, we get an exact sequence

0→ HomB(i∗i
∗(B), Y )→ HomB(B, Y )→ HomB(j!j

∗(B), Y ).

By (1) and (2), (i∗(X ), i!(Y )) and (j∗(X ), j∗(Y )) are torsion pairs in A and
C , respectively. So we have

HomB(j!j
∗(B), Y ) ∼= HomC (j∗(B), j∗(Y )) = 0,

HomB(i∗i
∗(B), Y ) ∼= HomA (i∗(B), i!(Y )) = 0,

and hence, HomB(B, Y ) = 0 and B ∈ ⊥0Y = X . It follows that

{B ∈ B | i∗(B) ∈ i∗(X ), j∗(B) ∈ j∗(X )} ⊆X .

Dually, we have

{B ∈ B | i!(B) ∈ i!(Y ), j∗(B) ∈ j∗(Y )} ⊆ Y . �

The following corollary is a converse of Corollary 1.

Corollary 2 Let (X ,Y ,Z ) be a TTF-triple in B. Then we have

(1) (i∗(X ), i∗(Y ), i!(Z )) is a TTF-triple in A ;
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(2) if j∗j
∗(Y ) ⊆ Y and j!j

∗(Y ) ⊆ Y , then (j∗(X ), j∗(Y ), j∗(Z )) is a
TTF-triple in C .

Proof (1) By Theorem 2 (1), we have (i∗(X ), i!(Y )) and (i∗(Y ), i!(Z )) are
torsion pairs in A . As in the proof of Theorem 2, we have

i∗i
∗(X ) ⊆X , i∗i

∗(Y ) ⊆ Y .

By Lemma 3 (2), we have i∗i
!(Y ) ⊆ Y . It follows that i∗(Y ) = i!(Y ) since

i∗i∗ ∼= 1A
∼= i!i∗ by Lemma 1 (3). Thus, (i∗(X ), i∗(Y ), i!(Z )) is a TTF-triple

in A .

(2) Since j∗j
∗(Y ) ⊆ Y and j!j

∗(Y ) ⊆ Y by assumption, it follows from
Lemma 3 (1) and Theorem 2 (2) that (j∗(X ), j∗(Y )) and (j∗(Y ), j∗(Z )) are
torsion pairs in C . Thus, we get the assertion. �

The following result shows that the converse of Theorem 1 (3) and (4) also
holds true under certain conditions.

Proposition 1 Let (X ,Y ) be a torsion pair in B.

(1) Assume that (X ,Y ) is hereditary (resp. cohereditary). Then we have

(a) (i∗(X ), i!(Y )) is a hereditary (resp. cohereditary) torsion pair;

(b) if j! (resp. j∗) is exact and j∗j
∗(Y ) ⊆ Y , then (j∗(X ), j∗(Y )) is a

hereditary (resp. cohereditary) torsion pair.

(2) Assume that (X ,Y ) is tilting (resp. cotilting). Then we have

(a) if i∗ (resp. i!) is exact, then (i∗(X ), i!(Y )) is a tilting (resp. cotilting)
torsion pair;

(b) if j∗j
∗(Y ) ⊆ Y , then (j∗(X ), j∗(Y )) is a tilting (resp. cotilting) torsion

pair.

Proof (1) (a) Let (X ,Y ) be hereditary, and let

0→ X ′0 → X ′

be a monomorphism in A with X ′ ∈ i∗(X ). Since i∗ is exact by Lemma 1 (2),

0→ i∗(X
′
0)→ i∗(X

′)

is a monomorphism in B. As in the proof of Theorem 2, we have

i∗i
∗(X ) ⊆X , i∗(X

′) ∈X .

Since (X ,Y ) is hereditary, it follows that

i∗(X
′
0) ∈X , X ′0

∼= i∗i∗(X
′
0) ∈ i∗(X ).

Thus, (i∗(X ), i!(Y )) is a hereditary torsion pair by Theorem 2 (1).

(b) Let (X ,Y ) be hereditary, and let

0→ X ′′0 → X ′′
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be a monomorphism in C with X ′′ ∈ j∗(X ). Since j! is exact by assumption,

0→ j!(X
′′
0 )→ j!(X

′′)

is a monomorphism in B. Since j∗j
∗(Y ) ⊆ Y by assumption, by Lemma 3 (1),

we have
j!j
∗(X ) ⊆X , j!(X

′′) ∈X .

Since (X ,Y ) is hereditary, it follows that

j!(X
′′
0 ) ∈X , X ′′0

∼= j∗j!(X
′′
0 ) ∈ j∗(X ).

Thus, (j∗(X ), j∗(Y )) is a hereditary torsion pair by Theorem 2 (2).
Dually, we get the assertion for the cohereditary case.

(2) (a) Let (X ,Y ) be tilting and A ∈ A . Then i∗(A) ∈ B and we have a
monomorphism

0→ i∗(A)→ X

in B with X ∈ X . Since i∗ is exact by assumption and i∗i∗ ∼= 1A by Lemma
1 (3), we get a monomorphism

0→ A (∼= i∗i∗(A))→ i∗(X)

in A . Thus, (i∗(X ), i!(Y )) is a tilting torsion pair by Theorem 2 (1).

(b) Let (X ,Y ) be tilting and C ∈ C . Then j∗(C) ∈ B and we have a
monomorphism

0→ j∗(C)→ X

in B with X ∈ X . Since j∗ is exact and j∗j∗ ∼= 1C by Lemma 1 (2) and (3),
we get a monomorphism

0→ C (∼= j∗j∗(C))→ j∗(X)

in C . Thus, (j∗(X ), j∗(Y )) is a tilting torsion pair by Theorem 2 (2).
Dually, we get the assertion for the cotilting case. �

Finally, we give an example to illustrate the obtained results.
For an algebra A, we use modA to denote the category of finitely generated

left A-modules. Let A and B be artin algebras, let AMB be an (A,B)-bimodule,
and let

Λ =
(
A M
0 B

)
be a triangular matrix algebra. Then any module in mod Λ can be uniquely

written as a triple
(
X
Y

)
f

with ([1, p. 76])

X ∈ modA, Y ∈ modB, f ∈ HomA(M ⊗B Y,X).
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Example 1 Let A be a finite-dimensional algebra given by the quiver 1→ 2.
Then

Λ =
(
A A
0 A

)
is a finite-dimensional algebra given by the quiver

·
β

��
·

γ
��

α
@@

·

·
δ

@@

with the relation βα− δγ. The Auslander-Reiten quiver of Λ is(
P (1)

0

)
##

(
0

S(2)

)
##

(
S(1)
S(1)

)
##(

S(2)
0

) <<

##

(
P (1)
S(2)

) ;;

##

//
(
P (1)
P (1)

)
//
(
S(1)
P (1)

) ;;

##

(
0

S(1)

)
(
S(2)
S(2)

) ;; (
S(1)

0

) ;; (
0

P (1)

) <<

By [20, Example 2.12], we have

modA i∗ // mod Λ
i∗oo

i!oo
j∗ // modA
j!oo

j∗oo

is a recollement of abelian categories, where

i∗
((

X
Y

)
f

)
= Coker f, i∗(X) =

(
X
0

)
, i!

((
X
Y

)
f

)
= X,

j!(Y ) =
(
Y
Y

)
1
, j∗

((
X
Y

)
f

)
= Y, j∗(Y ) =

(
0
Y

)
.

(1) Take torsion pairs

(X ′,Y ′) = (add(P (1)⊕ S(1)), addS(2)),

(X ′′,Y ′′) = (addS(2), addS(1)),

in modA. Then, by Theorem 1 (1), we get a torsion pair

(X ,Y ) =
(

add
((

S(2)
S(2)

)
⊕

(
P (1)

0

)
⊕

(
P (1)
S(2)

)
⊕
(

0
S(2)

)
⊕
(
S(1)

0

))
,

add
((

S(2)
0

)
⊕

(
0

S(1)

)))
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in mod Λ.
In addition, take torsion pairs

(X ′,Y ′) = (X ′′,Y ′′) = (addS(2), addS(1))

in modA. Then by Theorem 1 (1), we get a torsion pair

(X ,Y ) =
(

add
((

0
S(2)

)
⊕
(
S(2)
S(2)

)
⊕

(
S(2)

0

))
,

add
((

S(1)
0

)
⊕
(
S(1)
S(1)

)
⊕
(

0
S(1)

)))
in mod Λ.

(2) Take a torsion pair

(X ,Y ) =
(

add
((

0
S(2)

)
⊕
(
P (1)
P (1)

)
⊕
(
S(1)

0

)
⊕
(
S(1)
P (1)

)
⊕
(
S(1)
S(1)

)
⊕
(

0
P (1)

)
⊕
(

0
S(1)

))
,

add
((

S(2)
0

)
⊕
(
S(2)
S(2)

)
⊕
(
P (1)

0

)
⊕

(
P (1)
S(2)

)))
in mod Λ. Then by Theorem 2 (1), we have

(i∗(X ), i!(Y )) = (addS(1), add (S(2)⊕ P (1)))

is a torsion pair in modA. Since

j∗j
∗(Y ) = add

(
0

S(2)

)
* Y ,

it follows from Theorem 2 (2) that

(j∗(X ), j∗(Y )) = (add(S(2)⊕ P (1)⊕ S(1)), addS(2))

is not a torsion pair in modA.
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