Torsion pairs in recollements of abelian categories

Xin MA ${ }^{1}$, Zhaoyong HUANG ${ }^{2}$
1 College of Science, Henan University of Engineering, Zhengzhou 451191, China
2 Department of Mathematics, Nanjing University, Nanjing 210093, China

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

For a recollement $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ of abelian categories, we show that torsion pairs in \mathscr{A} and \mathscr{C} can induce torsion pairs in \mathscr{B}; and the converse holds true under certain conditions.

Keywords Torsion pairs, recollements, abelian categories
MSC 18E40, 18G99

1 Introduction

Recollements of abelian categories and triangulated categories play an important role in geometry of singular spaces, representation theory, polynomial functors theory, and ring theory $[2,3,5,6,12,14,15,19]$, where recollements are known as torsion torsion-free (TTF) theories. They first appeared in the construction of the category of perverse sheaves on a singular space [2]. Recollements of abelian categories and recollements of triangulated categories are closely related; for instance, Chen [4] constructed a recollement of abelian categories from a recollement of triangulated categories, generalizing a result of Lin and Wang [16]. In addition, the properties of torsion pairs and recollements of abelian categories have been studied by Psaroudakis and Vitória [22]. They established a correspondence between recollements of abelian categories up to equivalence and certain TTF-triples.

Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of triangulated categories. Chen [4] described how to glue together cotorsion pairs (which are essentially equal to torsion pairs [11]) in \mathscr{A} and \mathscr{C} to obtain a cotorsion pair in \mathscr{B}, which is a natural generalization of a similar result in [2] on gluing together t-structures of \mathscr{A} and \mathscr{C} to obtain a t-structure in \mathscr{B}. After taking the hearts $\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ of the glued t-structures, $\left(\mathscr{A}^{\prime}, \mathscr{B}^{\prime}, \mathscr{C}^{\prime}\right)$ is a recollement of abelian categories and

[^0]a construction of gluing of torsion pairs in this recollement was given by Liu et al. [18] (also see [13]). Note that the results of Liu et al. [18, Proposition 6.5, Lemma 6.2] depend on the recollements of triangulated categories and the proofs there do not work in the general case. Our aim is to glue torsion pairs and TTF-triples in a recollement of general abelian categories.

This paper is organized as follows. In Section 2, we give some terminologies and some preliminary results. In Section 3, we study torsion pairs in a recollement of abelian categories. Letting $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories, we obtain a torsion pair in \mathscr{B} from torsion pairs in \mathscr{A} and \mathscr{C}. Conversely, we show that, under certain conditions, a torsion pair in \mathscr{B} can induce torsion pairs in \mathscr{A} and \mathscr{C}.

2 Preliminaries

Throughout this paper, all subcategories are full, additive, and closed under isomorphisms.
Definition 1 [8] A recollement, denoted by $(\mathscr{A}, \mathscr{B}, \mathscr{C})$, of abelian categories is a diagram

of abelian categories and additive functors such that
(1) $\left(i^{*}, i_{*}\right),\left(i_{*}, i^{\text {! }}\right),\left(j_{!}, j^{*}\right)$, and $\left(j^{*}, j_{*}\right)$ are adjoint pairs,
(2) $i_{*}, j_{!}$and j_{*} are fully faithful,
(3) $\operatorname{Im} i_{*}=\operatorname{Ker} j^{*}$.

See $[8,17,20]$ for examples of recollements of abelian categories. We list some properties of recollements (see [8,20-22]), which will be used in the sequel.

Lemma 1 Let $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ be a recollement of abelian categories. Then we have
(1) $i^{*} j_{!}=0=i^{!} j_{*} ;$
(2) the functors i_{*} and j^{*} are exact, i^{*} and j ! are right exact, and $i^{!}$and j_{*} are left exact;
(3) all the natural transformations

$$
i^{*} i_{*} \rightarrow 1_{\mathscr{A}}, \quad 1_{\mathscr{A}} \rightarrow i^{!} i_{*}, \quad 1_{\mathscr{C}} \rightarrow j^{*} j_{!}, \quad j^{*} j_{*} \rightarrow 1_{\mathscr{C}}
$$

are natural isomorphisms;
(4) for any $B \in \mathscr{B}$, there exist exact sequences

$$
\begin{aligned}
& 0 \rightarrow i_{*}(A) \rightarrow j!j^{*}(B) \xrightarrow{\varepsilon_{B}} B \rightarrow i_{*} i^{*}(B) \rightarrow 0, \\
& 0 \rightarrow i_{*} i^{\prime}(B) \rightarrow B \xrightarrow{\eta_{B}} j_{*} j^{*}(B) \rightarrow i_{*}\left(A^{\prime}\right) \rightarrow 0,
\end{aligned}
$$

in \mathscr{B} with $A, A^{\prime} \in \mathscr{A}$;
(5) there exists an exact sequence of natural transformations:

$$
0 \rightarrow i_{*} i^{!} j_{!} \rightarrow j_{!} \rightarrow j_{*} \rightarrow i_{*} i^{*} j_{*} \rightarrow 0
$$

(6) if i^{*} is exact, then $i^{!} j_{!}=0$, and if $i^{!}$is exact, then $i^{*} j_{*}=0$.

Definition 2 [7] A pair of subcategories $(\mathscr{X}, \mathscr{Y})$ of an abelian category \mathscr{A} is called a torsion pair if the following conditions are satisfied:
(1) $\operatorname{Hom}_{\mathscr{A}}(\mathscr{X}, \mathscr{Y})=0$, that is, $\operatorname{Hom}_{\mathscr{A}}(X, Y)=0$ for any $X \in \mathscr{X}$ and $Y \in \mathscr{Y} ;$
(2) for any object $M \in \mathscr{A}$, there exists an exact sequence

$$
0 \rightarrow X \rightarrow M \rightarrow Y \rightarrow 0
$$

in \mathscr{A} with $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
Let $(\mathscr{X}, \mathscr{Y})$ be a torsion pair in an abelian category \mathscr{A}. Then we have
(1) \mathscr{X} is closed under extensions and quotient objects,
(2) \mathscr{Y} is closed under extensions and subobjects.

Moreover, we have

$$
\begin{aligned}
& \mathscr{X}=\perp_{0} \mathscr{Y}:=\left\{M \in \mathscr{A} \mid \operatorname{Hom}_{\mathscr{A}}(M, \mathscr{Y})=0\right\}, \\
& \mathscr{Y}=\mathscr{X}^{\perp_{0}}:=\left\{M \in \mathscr{A} \mid \operatorname{Hom}_{\mathscr{A}}(\mathscr{X}, M)=0\right\} .
\end{aligned}
$$

Definition $3[3,10]$ Let $(\mathscr{X}, \mathscr{Y})$ be a torsion pair in an abelian category \mathscr{A}.
(1) $(\mathscr{X}, \mathscr{Y})$ is called tilting (resp. cotilting) if any object in \mathscr{A} is isomorphic to a subobject of an object in \mathscr{X} (resp. a quotient object of an object in \mathscr{Y}).
(2) $(\mathscr{X}, \mathscr{Y})$ is called hereditary (resp. cohereditary) if \mathscr{X} is closed under subobjects (resp. \mathscr{Y} is closed under quotient objects).

3 Torsion pairs in a recollement

In this section, assume that $(\mathscr{A}, \mathscr{B}, \mathscr{C})$ is a recollement of abelian categories:

We begin with the following result.
Lemma 2 For any $B \in \mathscr{B}$,
(1) if i^{*} is exact, then there exists an exact sequence

$$
0 \rightarrow j!j^{*}(B) \xrightarrow{\varepsilon_{B}} B \rightarrow i_{*} i^{*}(B) \rightarrow 0
$$

(2) if $i^{!}$is exact, then there exists an exact sequence

$$
0 \rightarrow i_{*} i^{!}(B) \rightarrow B \xrightarrow{\eta_{B}} j_{*} j^{*}(B) \rightarrow 0 ;
$$

(3) i^{*} and $i^{!}$are exact if and only if $i^{*} \cong i^{!}$, and in this case, we have $j_{*} \cong j_{!}$.
Proof (1) By Lemma 1 (4), it suffices to prove that ε_{B} is monic. Applying $i^{!}$ to the first exact sequence in Lemma 1 (4), we get an exact sequence

$$
0 \rightarrow i^{!} i_{*}(A) \rightarrow i^{!} j!j^{*}(B) .
$$

By Lemma 1 (6), we have

$$
i^{!} j!j^{*}(B)=0 .
$$

So

$$
A \cong i^{\prime} i_{*}(A)=0
$$

by Lemma 1 (3), and hence, ε_{B} is monic.
(2) It is similar to (1).
(3) If $i^{*} \cong i^{!}$, then i^{*} and $i^{!}$are exact by Lemma 1 (2). Conversely, applying $i^{!}$to the exact sequence in (1), we get an exact sequence of natural transformations:

$$
0 \rightarrow i^{!} j!j^{*} \rightarrow i^{!} \rightarrow i^{!} i_{*} i^{*} \rightarrow 0
$$

By Lemma 1 (6) and (3), we have

$$
i^{!} \cong i^{!} i_{*} i^{*} \cong i^{*}
$$

The isomorphism $j_{*} \cong j_{\text {! }}$ follows from Lemma 1 (5) and (6).
Our main result is the following theorem.
Theorem 1 Let $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ be torsion pairs in \mathscr{A} and \mathscr{C}, respectively, and let

$$
\begin{aligned}
\mathscr{X} & :=\left\{B \in \mathscr{B} \mid i^{*}(B) \in \mathscr{X}^{\prime}, j^{*}(B) \in \mathscr{X}^{\prime \prime}\right\}, \\
\mathscr{Y} & :=\left\{B \in \mathscr{B} \mid i^{\prime}(B) \in \mathscr{Y}^{\prime}, j^{*}(B) \in \mathscr{Y}^{\prime \prime}\right\} .
\end{aligned}
$$

Then we have
(1) $(\mathscr{X}, \mathscr{Y})$ is a torsion pair in \mathscr{B};
(2) $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)=\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)=\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$;
(3) if $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ are cohereditary (resp. hereditary), and $i^{!}$ (resp. i^{*}) is exact, then $(\mathscr{X}, \mathscr{Y})$ is cohereditary (resp. hereditary);
(4) if $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ are tilting (resp. cotilting), and $i^{!}$and j ! (resp. i^{*} and j_{*}) are exact, then $(\mathscr{X}, \mathscr{Y})$ is tilting (resp. cotilting).
Proof (1) Let $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$. Applying the functor $\operatorname{Hom}_{\mathscr{B}}(-, Y)$ to the exact sequence

$$
j!j^{*}(X) \xrightarrow{\varepsilon_{X}} X \rightarrow i_{*} i^{*}(X) \rightarrow 0
$$

in \mathscr{B}, we get an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathscr{B}}\left(i_{*} i^{*}(X), Y\right) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}\left(j!j^{*}(X), Y\right)
$$

By assumption, $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ are torsion pairs in \mathscr{A} and \mathscr{C}, respectively. Since $i^{*}(X) \in \mathscr{X}^{\prime}, i^{!}(Y) \in \mathscr{Y}^{\prime}, j^{*}(X) \in \mathscr{X}^{\prime \prime}$, and $j^{*}(Y) \in \mathscr{Y}^{\prime \prime}$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{B}}\left(j!j^{*}(X), Y\right) & \cong \operatorname{Hom}_{\mathscr{C}}\left(j^{*}(X), j^{*}(Y)\right)=0 \\
\operatorname{Hom}_{\mathscr{B}}\left(i_{*} i^{*}(X), Y\right) & \cong \operatorname{Hom}_{\mathscr{A}}\left(i^{*}(X), i^{!}(Y)\right)=0
\end{aligned}
$$

It follows that

$$
\operatorname{Hom}_{\mathscr{B}}(X, Y)=0, \quad \operatorname{Hom}_{\mathscr{B}}(\mathscr{X}, \mathscr{Y})=0
$$

Let $B \in \mathscr{B}$. There exists an exact sequence

in \mathscr{B} with $A^{\prime} \in \mathscr{A}$. Because $j^{*}(B) \in \mathscr{C}$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ is a torsion pair in \mathscr{C}, there exists an exact sequence

$$
0 \rightarrow X^{\prime \prime} \rightarrow j^{*}(B) \xrightarrow{h} Y^{\prime \prime} \rightarrow 0
$$

in \mathscr{C} with $X^{\prime \prime} \in \mathscr{X}^{\prime \prime}$ and $Y^{\prime \prime} \in \mathscr{Y}^{\prime \prime}$. Notice that j_{*} is left exact by Lemma 1 (2). Then

$$
0 \rightarrow j_{*}\left(X^{\prime \prime}\right) \rightarrow j_{*} j^{*}(B) \xrightarrow{j_{*}(h)} j_{*}\left(Y^{\prime \prime}\right)
$$

is exact and we have the following pullback diagram:

Then we get the following pullback diagram:

Because $i^{*}(M) \in \mathscr{A}$ and $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ is a torsion pair in \mathscr{A}, there exists an exact sequence

$$
0 \rightarrow X^{\prime} \rightarrow i^{*}(M) \rightarrow Y^{\prime} \rightarrow 0
$$

in \mathscr{A} with $X^{\prime} \in \mathscr{X}^{\prime}$ and $Y^{\prime} \in \mathscr{Y}^{\prime}$. Notice that i_{*} is exact by Lemma 1 (2). Then

$$
0 \rightarrow i_{*}\left(X^{\prime}\right) \rightarrow i_{*} i^{*}(M) \rightarrow i_{*}\left(Y^{\prime}\right) \rightarrow 0
$$

is exact and we have the following pullback diagram:

where the exactness of the middle column follows from Lemma 1 (4). Now, we get the following pushout diagram:

To get the assertion, it suffices to show $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
Since $i^{*} j_{!}=0$ and i^{*} is right exact by Lemma 1 (1) and (2), we have

$$
i^{*}\left(\operatorname{Im} \varepsilon_{M}\right)=0
$$

Since i^{*} is right exact by Lemma 1 (2), applying the functor i^{*} to the leftmost column in diagram (3.3) yields

$$
i^{*}(X) \cong i^{*} i_{*}\left(X^{\prime}\right) \cong X^{\prime} \in \mathscr{X}^{\prime} .
$$

On the other hand, note that j^{*} is exact (by Lemma $1(2)$) and $\operatorname{Im} i_{*}=\operatorname{Ker} j^{*}$. Then, applying the functor j^{*} to the bottom row in diagram (3.1), we have

$$
j^{*}(\operatorname{Coker} g)=0=j^{*}(U) ;
$$

furthermore, we have

$$
\begin{aligned}
j^{*}(X) & \cong j^{*}(M) \quad\left(\text { by applying } j^{*} \text { to middle row in diagram }(3.3)\right) \\
& \cong j^{*}(K) \quad\left(\text { by applying } j^{*} \text { to leftmost column in diagram }(3.2)\right) \\
& \cong j^{*} j_{*}\left(X^{\prime \prime}\right) \quad\left(\text { by applying } j^{*} \text { to leftmost column in diagram }(3.1)\right) \\
& \cong X^{\prime \prime} \\
& \in \mathscr{X}^{\prime \prime}
\end{aligned}
$$

It implies $X \in \mathscr{X}$.
Applying the functor j^{*} to the bottom row in diagram (3.4) and the rightmost column in diagram (3.1), since j^{*} is exact and $\operatorname{Im} i_{*}=\operatorname{Ker} j^{*}$, we have that $j^{*}(Y)\left(\cong j^{*}(\operatorname{Coker} f) \cong j^{*}\left(\operatorname{Im} j_{*}(h)\right)\right)$ is isomorphic to a subobject of $Y^{\prime \prime}(\cong$ $\left.j^{*} j_{*}\left(Y^{\prime \prime}\right)\right)$. Because $\mathscr{Y}^{\prime \prime}$ is closed under subobjects, it follows that $j^{*}(Y) \in \mathscr{Y}^{\prime \prime}$. On the other hand, applying the functor $i^{!}$to the rightmost column in diagram (3.1) and the bottom row in diagram (3.4), since $i^{!}$is left exact and $i^{!} j_{*}=0$ by Lemma 1 (1) and (2), we have

$$
i^{!}\left(\operatorname{Im} j_{*}(h)\right)=0, \quad i^{!}(\text {Coker } f)=0
$$

So

$$
i^{\prime}(Y) \cong i^{\prime} i_{*}\left(Y^{\prime}\right) \cong Y^{\prime} \in \mathscr{Y}^{\prime}
$$

and hence, $Y \in \mathscr{Y}$.
(2) It is trivial that $i^{*}(\mathscr{X}) \subseteq \mathscr{X}^{\prime}$. For any $X^{\prime} \in \mathscr{X}^{\prime}$, since

$$
i^{*} i_{*}\left(X^{\prime}\right) \cong X^{\prime} \in \mathscr{X}^{\prime}, \quad j^{*} i_{*}\left(X^{\prime}\right)=0 \in \mathscr{X}^{\prime \prime}
$$

we have $i_{*}\left(X^{\prime}\right) \in \mathscr{X}$, and hence,

$$
X^{\prime} \cong i^{*}\left(i_{*}\left(X^{\prime}\right)\right) \in i^{*}(\mathscr{X}) .
$$

Thus,

$$
\mathscr{X}^{\prime} \subseteq i^{*}(\mathscr{X}) .
$$

Similarly, we get

$$
\mathscr{Y}^{\prime}=i^{!}(\mathscr{Y}), \quad \mathscr{X}^{\prime \prime}=j^{*}(\mathscr{X}), \quad \mathscr{Y}^{\prime \prime}=j^{*}(\mathscr{Y}) .
$$

(3) Assume that $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ are cohereditary. Then \mathscr{Y}^{\prime} and $\mathscr{Y}^{\prime \prime}$ are closed under quotient objects. Let $Y \in \mathscr{Y}$, and let

$$
0 \longrightarrow Y^{\prime} \longrightarrow Y \longrightarrow Y_{1} \longrightarrow 0
$$

be an exact sequence in \mathscr{B}. Since j^{*} and $i^{!}$are exact by Lemma 1 (2) and assumption, we have $j^{*}\left(Y_{1}\right)$ and $i^{!}\left(Y_{1}\right)$ are isomorphic to quotient objects of $j^{*}(Y)\left(\in \mathscr{Y}^{\prime \prime}\right)$ and $i^{!}(Y)\left(\in \mathscr{Y}^{\prime}\right)$, respectively. So

$$
j^{*}\left(Y_{1}\right) \in \mathscr{Y}^{\prime \prime}, \quad i^{!}\left(Y_{1}\right) \in \mathscr{Y}^{\prime}
$$

It implies that $Y_{1} \in \mathscr{Y}$ and $(\mathscr{X}, \mathscr{Y})$ is cohereditary.
Dually, we get the assertion for the hereditary case.
(4) Assume that $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ are tilting. Let $B \in \mathscr{B}$. By Lemma 1 (4) and Lemma 2 (2), there exist exact sequences

in \mathscr{B} with $A \in \mathscr{A}$.
Since $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)$ is tilting and $j^{*}(B) \in \mathscr{C}$, there exists a monomorphism

$$
0 \rightarrow j^{*}(B) \rightarrow X^{\prime \prime}
$$

in \mathscr{C} with $X^{\prime \prime} \in \mathscr{X}^{\prime \prime}$. Since $j!$ is exact by assumption, we get the exact sequence

$$
0 \rightarrow j!j^{*}(B) \rightarrow j!\left(X^{\prime \prime}\right) \rightarrow j!\left(X^{\prime \prime} / j^{*}(B)\right) \rightarrow 0
$$

in \mathscr{B} and the pushout diagram

Then we get the following pushout diagram:

On the other hand, since $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)$ is tilting and $i^{!}(B) \in \mathscr{A}$, there exists a monomorphism

$$
0 \rightarrow i^{!}(B) \rightarrow X^{\prime}
$$

in \mathscr{A} with $X^{\prime} \in \mathscr{X}^{\prime}$. Since i_{*} is exact by Lemma 1 (2), we get the exact sequence

$$
0 \rightarrow i_{*} i^{!}(B) \rightarrow i_{*}\left(X^{\prime}\right) \rightarrow i_{*}\left(X^{\prime} / i^{!}(B)\right) \rightarrow 0
$$

in \mathscr{B} and the pushout diagram

Then we get the following pushout diagram:

Since j^{*} is exact (by Lemma $\left.1(2)\right)$ and $\operatorname{Im} i_{*}=\operatorname{Ker} j^{*}$, we have

$$
\begin{aligned}
j^{*}(X) & \cong j^{*}\left(V^{\prime \prime}\right) \quad\left(\text { by applying } j^{*} \text { to middle column in diagram }(3.8)\right) \\
& \cong j^{*}(U) \quad\left(\text { by applying } j^{*} \text { to middle row in diagram }(3.6)\right) \\
& \cong j^{*} j_{1}\left(X^{\prime \prime}\right) \quad\left(\text { by applying } j^{*} \text { to middle row in diagram (3.5) }\right) \\
& \cong X^{\prime \prime} \\
& \in \mathscr{X}^{\prime \prime} .
\end{aligned}
$$

Since $i^{!}$is exact by assumption, we have $i^{*} j_{*}=0$ by Lemma 1 (6). So, applying i^{*} to the middle row in diagram (3.7) yields that

$$
i^{*} i_{*}\left(X^{\prime}\right) \rightarrow i^{*}\left(V^{\prime}\right) \rightarrow 0
$$

is exact. Since $i^{*} j!=0$ by Lemma 1 (1), applying i^{*} to the middle row in diagram (3.8) yields that

$$
i^{*}\left(V^{\prime}\right) \rightarrow i^{*}(X) \rightarrow 0
$$

is exact. Thus, $i^{*}(X)$ is isomorphic to a quotient object of $i^{*} i_{*}\left(X^{\prime}\right)\left(\cong X^{\prime} \in\right.$ $\left.\mathscr{X}^{\prime}\right)$. Notice that \mathscr{X}^{\prime} is closed under quotient objects, so $i^{*}(X) \in \mathscr{X}^{\prime}$, and hence $X \in \mathscr{X}$. Thus, we conclude that (\mathscr{X}, \mathscr{Y}) is tilting.

Dually, we get the assertion for the cotilting case.
Recall from [9] that a triple of subcategories $(\mathscr{X}, \mathscr{Y}, \mathscr{Z})$ of an abelian category is called a TTF-triple if $(\mathscr{X}, \mathscr{Y})$ and $(\mathscr{Y}, \mathscr{Z})$ are torsion pairs. By [22, Theorem 4.3], we know that $\left(\operatorname{Ker} i^{*}, \operatorname{Im} i_{*}, \operatorname{Ker} i^{!}\right)$is a TTF-triple in \mathscr{B}.
Corollary 1 Let $\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}, \mathscr{Z}^{\prime}\right)$ and $\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}, \mathscr{Z}^{\prime \prime}\right)$ are TTF-triples in \mathscr{A} and \mathscr{C}, respectively. If i^{*} and $i^{!}$are exact, then $(\mathscr{X}, \mathscr{Y}, \mathscr{Z})$ is a TTF-triple in \mathscr{B}, where \mathscr{X}, \mathscr{Y} are as in Theorem 1 and

$$
\mathscr{Z}:=\left\{B \in \mathscr{B} \mid i^{*}(B) \in \mathscr{Z}^{\prime}, j^{*}(B) \in \mathscr{Z}^{\prime \prime}\right\} .
$$

Proof It follows from Lemma 2 (3) and Theorem 1.
To study the converse of Theorem 1, we need the following easy observation.
Lemma 3 If $(\mathscr{X}, \mathscr{Y})$ is a torsion pair in \mathscr{B}, then we have
(1) $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$ if and only if $j!j^{*}(\mathscr{X}) \subseteq \mathscr{X}$;
(2) $i_{*} i^{\prime}(\mathscr{Y}) \subseteq \mathscr{Y}$ if and only if $i_{*} i^{*}(\mathscr{X}) \subseteq \mathscr{X}$.

Proof (1) Let $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$. Since

$$
\operatorname{Hom}_{\mathscr{B}}\left(X, j_{*} j^{*}(Y)\right) \cong \operatorname{Hom}_{\mathscr{G}}\left(j^{*}(X), j^{*}(Y)\right) \cong \operatorname{Hom}_{\mathscr{B}}\left(j!j^{*}(X), Y\right)
$$

and

$$
\mathscr{X}={{ }^{0}}_{0}^{Y}, \quad \mathscr{Y}=\mathscr{X}^{\perp_{0}}
$$

the assertion follows.
(2) It is similar to (1).

The following result shows that the converse of Theorem 1 (1) and (2) holds true under certain conditions.
Theorem 2 Let $(\mathscr{X}, \mathscr{Y})$ be a torsion pair in \mathscr{B}. Then we have
(1) $\left(i^{*}(\mathscr{X}), i^{l}(\mathscr{Y})\right)$ is a torsion pair in \mathscr{A};
(2) $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$ if and only if $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ is a torsion pair in \mathscr{C};
(3) if $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$, then

$$
\begin{aligned}
\mathscr{X} & =\left\{B \in \mathscr{B} \mid i^{*}(B) \in i^{*}(\mathscr{X}), j^{*}(B) \in j^{*}(\mathscr{X})\right\}, \\
\mathscr{Y} & =\left\{B \in \mathscr{B} \mid i^{\prime}(B) \in i^{!}(\mathscr{Y}), j^{*}(B) \in j^{*}(\mathscr{Y})\right\} .
\end{aligned}
$$

Proof (1) Let $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$. Applying the functor $\operatorname{Hom}_{\mathscr{B}}(-, Y)$ to the exact sequence

$$
j!j^{*}(X) \xrightarrow{\varepsilon_{X}} X \rightarrow i_{*} i^{*}(X) \rightarrow 0
$$

in \mathscr{B}, we get an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathscr{B}}\left(i_{*} i^{*}(X), Y\right) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}\left(j!j^{*}(X), Y\right) .
$$

Since $\operatorname{Hom}_{\mathscr{B}}(X, Y)=0$, we have

$$
\operatorname{Hom}_{\mathscr{B}}\left(i_{*} i^{*}(X), Y\right)=0
$$

It follows that

$$
i_{*} i^{*}(X) \in{ }^{\perp_{0}} \mathscr{Y}=\mathscr{X}, \quad i_{*} i^{*}(\mathscr{X}) \subseteq \mathscr{X} .
$$

So $i_{*}!(\mathscr{Y}) \subseteq \mathscr{Y}$ by Lemma 3 (2).
Let $X^{\prime} \in i^{*}(\mathscr{X})$ and $Y^{\prime} \in i^{!}(\mathscr{Y})$. Then there exist $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$ such that

$$
X^{\prime}=i^{*}(X), \quad Y^{\prime}=i^{!}(Y)
$$

Because $(\mathscr{X}, \mathscr{Y})$ is a torsion pair in \mathscr{B} (by assumption) and $i_{*} l^{l}(Y) \in \mathscr{Y}$, we have

$$
\operatorname{Hom}_{\mathscr{A}}\left(X^{\prime}, Y^{\prime}\right)=\operatorname{Hom}_{\mathscr{A}}\left(i^{*}(X), i^{!}(Y)\right) \cong \operatorname{Hom}_{\mathscr{B}}\left(X, i_{*} i^{!}(Y)\right)=0
$$

and

$$
\operatorname{Hom}_{\mathscr{A}}\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)=0 .
$$

Let $A \in \mathscr{A}$. Because $i_{*}(A) \in \mathscr{B}$, there exists an exact sequence

$$
0 \rightarrow X \rightarrow i_{*}(A) \rightarrow Y \rightarrow 0
$$

in \mathscr{B} with $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$. Since $i_{*}(\mathscr{A})$ is a Serre subcategory of \mathscr{B} by [22, Proposition 2.8], there exist $X_{1}, Y_{1} \in \mathscr{A}$ such that

$$
X \cong i_{*}\left(X_{1}\right), \quad Y \cong i_{*}\left(Y_{1}\right)
$$

Since $i_{*}: \mathscr{A} \rightarrow i_{*}(\mathscr{A})$ is an equivalence, we get that

$$
0 \rightarrow X_{1} \rightarrow A \rightarrow Y_{1} \rightarrow 0
$$

is an exact sequence in \mathscr{A} with

$$
X_{1} \cong i^{*}\left(i_{*}\left(X_{1}\right)\right) \cong i^{*}(X) \in i^{*}(\mathscr{X}), \quad Y_{1} \cong i^{!}\left(i_{*}\left(Y_{1}\right)\right) \cong i^{!}(Y) \in i^{!}(\mathscr{Y}) .
$$

Thus, we conclude that $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ is a torsion pair in \mathscr{A}.
(2) Let $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$. For any $X^{\prime} \in j^{*}(\mathscr{X})$ and $Y^{\prime} \in j^{*}(\mathscr{Y})$, there exist $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$ such that

$$
X^{\prime}=j^{*}(X), \quad Y^{\prime}=j^{*}(Y)
$$

Because $(\mathscr{X}, \mathscr{Y})$ is a torsion pair in \mathscr{B}, we have

$$
\operatorname{Hom}_{\mathscr{C}}\left(X^{\prime}, Y^{\prime}\right)=\operatorname{Hom}_{\mathscr{C}}\left(j^{*}(X), j^{*}(Y)\right) \cong \operatorname{Hom}_{\mathscr{B}}\left(X, j_{*} j^{*}(Y)\right)=0
$$

and

$$
\operatorname{Hom}_{\mathscr{C}}\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)=0 .
$$

Let $C \in \mathscr{C}$. Because $j_{*}(C) \in \mathscr{B}$, there exists an exact sequence

$$
0 \rightarrow X \rightarrow j_{*}(C) \rightarrow Y \rightarrow 0
$$

in \mathscr{B} with $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$. Since j^{*} is exact by Lemma 1 (2), we have

$$
0 \rightarrow j^{*}(X) \rightarrow j^{*} j_{*}(C)(\cong C) \rightarrow j^{*}(Y) \rightarrow 0
$$

is also exact and the assertion follows.
Conversely, if $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ is a torsion pair in \mathscr{C}, then we have

$$
\operatorname{Hom}_{\mathscr{B}}\left(\mathscr{X}, j_{*} j^{*}(\mathscr{Y})\right) \cong \operatorname{Hom}_{\mathscr{C}}\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)=0,
$$

which implies

$$
j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{X}^{\perp_{0}}=\mathscr{Y}
$$

(3) It is trivial that

$$
\begin{gathered}
\mathscr{X} \subseteq\left\{B \in \mathscr{B} \mid i^{*}(B) \in i^{*}(\mathscr{X}), j^{*}(B) \in j^{*}(\mathscr{X})\right\} \\
\mathscr{Y} \subseteq\left\{B \in \mathscr{B} \mid i^{!}(B) \in i^{!}(\mathscr{Y}), j^{*}(B) \in j^{*}(\mathscr{Y})\right\} .
\end{gathered}
$$

Conversely, let $B \in \mathscr{B}$ with $i^{*}(B) \in i^{*}(\mathscr{X})$ and $j^{*}(B) \in j^{*}(\mathscr{X})$. By Lemma 1 (4), there exists an exact sequence

$$
j!j^{*}(B) \xrightarrow{\varepsilon_{B}} B \rightarrow i_{*} i^{*}(B) \rightarrow 0
$$

in \mathscr{B}. For any $Y \in \mathscr{Y}$, applying the functor $\operatorname{Hom}_{\mathscr{B}}(-, Y)$ to the above exact sequence, we get an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathscr{B}}\left(i_{*} i^{*}(B), Y\right) \rightarrow \operatorname{Hom}_{\mathscr{B}}(B, Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}\left(j_{!} j^{*}(B), Y\right)
$$

By (1) and (2), $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ and $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ are torsion pairs in \mathscr{A} and \mathscr{C}, respectively. So we have

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{B}}\left(j!j^{*}(B), Y\right) & \cong \operatorname{Hom}_{\mathscr{C}}\left(j^{*}(B), j^{*}(Y)\right)=0 \\
\operatorname{Hom}_{\mathscr{B}}\left(i_{*} i^{*}(B), Y\right) & \cong \operatorname{Hom}_{\mathscr{A}}\left(i^{*}(B), i^{!}(Y)\right)=0
\end{aligned}
$$

and hence, $\operatorname{Hom}_{\mathscr{B}}(B, Y)=0$ and $B \in \perp_{0} \mathscr{Y}=\mathscr{X}$. It follows that

$$
\left\{B \in \mathscr{B} \mid i^{*}(B) \in i^{*}(\mathscr{X}), j^{*}(B) \in j^{*}(\mathscr{X})\right\} \subseteq \mathscr{X} .
$$

Dually, we have

$$
\left\{B \in \mathscr{B} \mid i^{!}(B) \in i^{!}(\mathscr{Y}), j^{*}(B) \in j^{*}(\mathscr{Y})\right\} \subseteq \mathscr{Y}
$$

The following corollary is a converse of Corollary 1.
Corollary $2 \operatorname{Let}(\mathscr{X}, \mathscr{Y}, \mathscr{Z})$ be a TTF-triple in \mathscr{B}. Then we have
(1) $\left(i^{*}(\mathscr{X}), i^{*}(\mathscr{Y}), i^{!}(\mathscr{Z})\right)$ is a TTF-triple in \mathscr{A};
(2) if $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$ and $j_{!} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$, then $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y}), j^{*}(\mathscr{Z})\right)$ is a TTF-triple in \mathscr{C}.
Proof (1) By Theorem $2(1)$, we have $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ and $\left(i^{*}(\mathscr{Y}), i^{!}(\mathscr{Z})\right)$ are torsion pairs in \mathscr{A}. As in the proof of Theorem 2, we have

$$
i_{*} i^{*}(\mathscr{X}) \subseteq \mathscr{X}, \quad i_{*} i^{*}(\mathscr{Y}) \subseteq \mathscr{Y}
$$

By Lemma $3(2)$, we have $i_{*} i^{!}(\mathscr{Y}) \subseteq \mathscr{Y}$. It follows that $i^{*}(\mathscr{Y})=i^{!}(\mathscr{Y})$ since $i^{*} i_{*} \cong 1_{\mathscr{A}} \cong i^{!} i_{*}$ by Lemma $1(3)$. Thus, $\left(i^{*}(\mathscr{X}), i^{*}(\mathscr{Y}), i^{!}(\mathscr{Z})\right)$ is a TTF-triple in \mathscr{A}.
(2) Since $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$ and $j!j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$ by assumption, it follows from Lemma 3 (1) and Theorem $2(2)$ that $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ and $\left(j^{*}(\mathscr{Y}), j^{*}(\mathscr{Z})\right)$ are torsion pairs in \mathscr{C}. Thus, we get the assertion.

The following result shows that the converse of Theorem 1 (3) and (4) also holds true under certain conditions.

Proposition $1 \operatorname{Let}(\mathscr{X}, \mathscr{Y})$ be a torsion pair in \mathscr{B}.
(1) Assume that $(\mathscr{X}, \mathscr{Y})$ is hereditary (resp. cohereditary). Then we have
(a) $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ is a hereditary (resp. cohereditary) torsion pair;
(b) if $j_{!}\left(\right.$resp. $\left.j_{*}\right)$ is exact and $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$, then $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ is a hereditary (resp. cohereditary) torsion pair.
(2) Assume that $(\mathscr{X}, \mathscr{Y})$ is tilting (resp. cotilting). Then we have
(a) if $i^{*}\left(\right.$ resp. $\left.i^{!}\right)$is exact, then $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ is a tilting (resp. cotilting) torsion pair;
(b) if $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$, then $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ is a tilting (resp. cotilting) torsion pair.
Proof (1) (a) Let ($\mathscr{X}, \mathscr{Y})$ be hereditary, and let

$$
0 \rightarrow X_{0}^{\prime} \rightarrow X^{\prime}
$$

be a monomorphism in \mathscr{A} with $X^{\prime} \in i^{*}(\mathscr{X})$. Since i_{*} is exact by Lemma 1 (2),

$$
0 \rightarrow i_{*}\left(X_{0}^{\prime}\right) \rightarrow i_{*}\left(X^{\prime}\right)
$$

is a monomorphism in \mathscr{B}. As in the proof of Theorem 2, we have

$$
i_{*} i^{*}(\mathscr{X}) \subseteq \mathscr{X}, \quad i_{*}\left(X^{\prime}\right) \in \mathscr{X}
$$

Since $(\mathscr{X}, \mathscr{Y})$ is hereditary, it follows that

$$
i_{*}\left(X_{0}^{\prime}\right) \in \mathscr{X}, \quad X_{0}^{\prime} \cong i^{*} i_{*}\left(X_{0}^{\prime}\right) \in i^{*}(\mathscr{X})
$$

Thus, $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ is a hereditary torsion pair by Theorem 2 (1).
(b) Let $(\mathscr{X}, \mathscr{Y})$ be hereditary, and let

$$
0 \rightarrow X_{0}^{\prime \prime} \rightarrow X^{\prime \prime}
$$

be a monomorphism in \mathscr{C} with $X^{\prime \prime} \in j^{*}(\mathscr{X})$. Since j ! is exact by assumption,

$$
0 \rightarrow j_{!}\left(X_{0}^{\prime \prime}\right) \rightarrow j_{!}\left(X^{\prime \prime}\right)
$$

is a monomorphism in \mathscr{B}. Since $j_{*} j^{*}(\mathscr{Y}) \subseteq \mathscr{Y}$ by assumption, by Lemma 3 (1), we have

$$
j_{!} j^{*}(\mathscr{X}) \subseteq \mathscr{X}, \quad j!\left(X^{\prime \prime}\right) \in \mathscr{X} .
$$

Since $(\mathscr{X}, \mathscr{Y})$ is hereditary, it follows that

$$
j_{!}\left(X_{0}^{\prime \prime}\right) \in \mathscr{X}, \quad X_{0}^{\prime \prime} \cong j^{*} j_{!}\left(X_{0}^{\prime \prime}\right) \in j^{*}(\mathscr{X})
$$

Thus, $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ is a hereditary torsion pair by Theorem $2(2)$.
Dually, we get the assertion for the cohereditary case.
(2) (a) Let $(\mathscr{X}, \mathscr{Y})$ be tilting and $A \in \mathscr{A}$. Then $i_{*}(A) \in \mathscr{B}$ and we have a monomorphism

$$
0 \rightarrow i_{*}(A) \rightarrow X
$$

in \mathscr{B} with $X \in \mathscr{X}$. Since i^{*} is exact by assumption and $i^{*} i_{*} \cong 1_{\mathscr{A}}$ by Lemma 1 (3), we get a monomorphism

$$
0 \rightarrow A\left(\cong i^{*} i_{*}(A)\right) \rightarrow i^{*}(X)
$$

in \mathscr{A}. Thus, $\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)$ is a tilting torsion pair by Theorem 2 (1).
(b) Let $(\mathscr{X}, \mathscr{Y})$ be tilting and $C \in \mathscr{C}$. Then $j_{*}(C) \in \mathscr{B}$ and we have a monomorphism

$$
0 \rightarrow j_{*}(C) \rightarrow X
$$

in \mathscr{B} with $X \in \mathscr{X}$. Since j^{*} is exact and $j^{*} j_{*} \cong 1_{\mathscr{C}}$ by Lemma 1 (2) and (3), we get a monomorphism

$$
0 \rightarrow C\left(\cong j^{*} j_{*}(C)\right) \rightarrow j^{*}(X)
$$

in \mathscr{C}. Thus, $\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)$ is a tilting torsion pair by Theorem 2 (2).
Dually, we get the assertion for the cotilting case.
Finally, we give an example to illustrate the obtained results.
For an algebra A, we use $\bmod A$ to denote the category of finitely generated left A-modules. Let A and B be artin algebras, let ${ }_{A} M_{B}$ be an (A, B)-bimodule, and let

$$
\Lambda=\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right)
$$

be a triangular matrix algebra. Then any module in $\bmod \Lambda$ can be uniquely written as a triple $\binom{X}{Y}_{f}$ with ([1, p. 76])

$$
X \in \bmod A, \quad Y \in \bmod B, \quad f \in \operatorname{Hom}_{A}\left(M \otimes_{B} Y, X\right) .
$$

Example 1 Let A be a finite-dimensional algebra given by the quiver $1 \rightarrow 2$. Then

$$
\Lambda=\left(\begin{array}{cc}
A & A \\
0 & A
\end{array}\right)
$$

is a finite-dimensional algebra given by the quiver

with the relation $\beta \alpha-\delta \gamma$. The Auslander-Reiten quiver of Λ is

By [20, Example 2.12], we have

is a recollement of abelian categories, where

$$
\begin{gathered}
i^{*}\left(\binom{X}{Y}_{f}\right)=\text { Coker } f, \quad i_{*}(X)=\binom{X}{0}, \quad i^{!}\left(\binom{X}{Y}_{f}\right)=X, \\
j!(Y)=\binom{Y}{Y}_{1}, \quad j^{*}\left(\binom{X}{Y}_{f}\right)=Y, \quad j_{*}(Y)=\binom{0}{Y}
\end{gathered}
$$

(1) Take torsion pairs

$$
\begin{gathered}
\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)=(\operatorname{add}(P(1) \oplus S(1)), \operatorname{add} S(2)) \\
\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)=(\operatorname{add} S(2), \operatorname{add} S(1))
\end{gathered}
$$

in $\bmod A$. Then, by Theorem 1 (1), we get a torsion pair

$$
\begin{aligned}
(\mathscr{X}, \mathscr{Y})= & \left(\operatorname{add}\left(\binom{S(2)}{S(2)} \oplus\binom{P(1)}{0} \oplus\binom{P(1)}{S(2)} \oplus\binom{0}{S(2)} \oplus\binom{S(1)}{0}\right)\right. \\
& \left.\quad \operatorname{add}\left(\binom{S(2)}{0} \oplus\binom{0}{S(1)}\right)\right)
\end{aligned}
$$

in $\bmod \Lambda$.
In addition, take torsion pairs

$$
\left(\mathscr{X}^{\prime}, \mathscr{Y}^{\prime}\right)=\left(\mathscr{X}^{\prime \prime}, \mathscr{Y}^{\prime \prime}\right)=(\operatorname{add} S(2), \operatorname{add} S(1))
$$

in $\bmod A$. Then by Theorem 1 (1), we get a torsion pair

$$
\begin{aligned}
(\mathscr{X}, \mathscr{Y})= & \left(\operatorname{add}\left(\binom{0}{S(2)} \oplus\binom{S(2)}{S(2)} \oplus\binom{S(2)}{0}\right),\right. \\
& \left.\quad \operatorname{add}\left(\binom{S(1)}{0} \oplus\binom{S(1)}{S(1)} \oplus\binom{0}{S(1)}\right)\right)
\end{aligned}
$$

in $\bmod \Lambda$.
(2) Take a torsion pair

$$
\begin{aligned}
(\mathscr{X}, \mathscr{Y})= & \left(\operatorname { a d d } \left(\binom{0}{S(2)} \oplus\binom{P(1)}{P(1)} \oplus\binom{S(1)}{0} \oplus\binom{S(1)}{P(1)}\right.\right. \\
& \left.\oplus\binom{S(1)}{S(1)} \oplus\binom{0}{P(1)} \oplus\binom{0}{S(1)}\right) \\
& \left.\quad \operatorname{add}\left(\binom{S(2)}{0} \oplus\binom{S(2)}{S(2)} \oplus\binom{P(1)}{0} \oplus\binom{P(1)}{S(2)}\right)\right)
\end{aligned}
$$

in $\bmod \Lambda$. Then by Theorem $2(1)$, we have

$$
\left(i^{*}(\mathscr{X}), i^{!}(\mathscr{Y})\right)=(\operatorname{add} S(1), \operatorname{add}(S(2) \oplus P(1)))
$$

is a torsion pair in $\bmod A$. Since

$$
j_{*} j^{*}(\mathscr{Y})=\operatorname{add}\binom{0}{S(2)} \nsubseteq \mathscr{Y}
$$

it follows from Theorem 2 (2) that

$$
\left(j^{*}(\mathscr{X}), j^{*}(\mathscr{Y})\right)=(\operatorname{add}(S(2) \oplus P(1) \oplus S(1)), \text { add } S(2))
$$

is not a torsion pair in $\bmod A$.

Acknowledgements The authors thank Daniel Juteau for sending us paper [13], and thank Teimuraz Pirashvili and the referees for the useful suggestions. This work was partially supported by the National Natural Science Foundation of China (Grant No. 11571164), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0019).

References

1. Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1997
2. Beĭlinson A A, Bernstein J, Deligne P. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5-171
3. Beligiannis A, Reiten I. Homological and Homotopical Aspects of Torsion Theories. Mem Amer Math Soc, Vol 188, No 883. Providence: Amer Math Soc, 2007
4. Chen J M. Cotorsion pairs in a recollement of triangulated categories. Comm Algebra, 2013, 41: 2903-2915
5. Cline E, Parshall B, Scott L. Derived categories and Morita theory. J Algebra, 1986, 104: 397-409
6. Cline E, Parshall B, Scott L. Finite-dimensional algebras and highest weight categories. J Reine Angew Math, 1988, 391: 85-99
7. Dickson S E. A torsion theory for Abelian categories. Trans Amer Math Soc, 1966, 121: 223-235
8. Franjou V, Pirashvili T. Comparison of abelian categories recollements. Doc Math, 2004, 9: 41-56
9. Gentle R. T.T.F. theories in abelian categories. Comm Algebra, 1988, 16: 877-908
10. Happel D, Reiten I, Smalø S O. Tilting in Abelian Categories and Quasitilted Algebras. Mem Amer Math Soc, Vol 120, No 575. Providence: Amer Math Soc, 1996
11. Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117-168
12. Jans J P. Some aspects of torsion. Pacific J Math, 1965, 15: 1249-1259
13. Juteau D. Decomposition numbers for perverse sheaves. Ann Inst Fourier (Grenoble), 2009, 59: 1177-1229
14. Kuhn N J. Generic representations of the finite general linear groups and the Steenrod algebra II. K-Theory, 1994, 8: 395-428
15. Kuhn N J. A stratification of generic representation theory and generalized Schur algebras. K-Theory, 2002, 26: 15-49
16. Lin Y N, Wang M X. From recollement of triangulated categories to recollement of abelian categories. Sci China Math, 2010, 53: 1111-1116
17. Lin Z Q, Wang M X. Koenig's theorem for recollements of module categories. Acta Math Sinica (Chin Ser), 2011, 54: 461-466 (in Chinese)
18. Liu Q H, Vitória J, Yang D. Gluing silting objects. Nagoya Math J, 2014, 216: 117-151
19. Pirashvili T I. Polynomial functors. Trudy Tbiliss Mat Inst Razmadze Akad Nauk Gruzin SSR, 1988, 91: 55-66
20. Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63-110
21. Psaroudakis C, Skartsæterhagen \varnothing, Solberg \varnothing. Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements. Trans Amer Math Soc (Ser B), 2014, 1: 45-95
22. Psaroudakis C, Vitória J. Recollements of module categories. Appl Categ Structures, 2014, 22: 579-593

[^0]: Received January 11, 2018; accepted July 11, 2018
 Corresponding author: Zhaoyong HUANG, E-mail: huangzy@nju.edu.cn

