Research Article

Zhaoyong Huang*

Duality pairs induced by Auslander and Bass classes

https://doi.org/10.1515/gmj-2021-2101
Received January 9, 2020; accepted November 26, 2020

Abstract: Let R and S be arbitrary rings and let ${ }_{R} C_{S}$ be a semidualizing bimodule, and let $\mathcal{A}_{C}\left(R^{\text {op }}\right)$ and $\mathcal{B}_{C}(R)$ be the Auslander and Bass classes, respectively. Then both pairs

$$
\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{B}_{C}(R)\right) \quad \text { and } \quad\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)\right)
$$

are coproduct-closed and product-closed duality pairs and both $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ and $\mathcal{B}_{C}(R)$ are covering and preenveloping; in particular, the former duality pair is perfect. Moreover, if $\mathcal{B}_{C}(R)$ is enveloping in $\operatorname{Mod} R$, then $\mathcal{A}_{C}(S)$ is enveloping in Mod S. Also, some applications to the Auslander projective dimension of modules are given.

Keywords: Duality pairs, Auslander classes, Bass classes, semidualizing bimodules, (pre)covers, (pre)envelopes, cotorsion pairs, Auslander projective dimension

MSC 2010: 18G25, 16E10, 16E30

1 Introduction

In relative homological algebra, the theory of covers and envelopes is fundamental and important. Let R be a ring and let $\operatorname{Mod} R$ be the category of left R-modules. Given a subcategory of $\operatorname{Mod} R$, it is always worth studying whether or when it is (pre)covering or (pre)enveloping. This problem has been studied extensively; see [3-10] and the references therein.

Let R be a commutative noetherian ring, let C be a semidualizing R-module, and let $\mathcal{A}_{C}(R)$ and $\mathcal{B}_{C}(R)$ be the Auslander and Bass classes, respectively. By proving that both $\mathcal{A}_{C}(R)$ and $\mathcal{B}_{C}(R)$ are Kaplansky classes, Enochs and Holm got in [6, Theorems 3.11 and 3.12] that the pair $\left(\mathcal{A}_{C}(R),\left(\mathcal{A}_{C}(R)\right)^{\perp}\right)$ is a perfect cotorsion pair, $\mathcal{A}_{C}(R)$ is covering and preenveloping and $\mathcal{B}_{C}(R)$ is preenveloping. Holm and Jørgensen introduced the notion of duality pairs and proved the following remarkable result. Let R be an arbitrary ring, and let \mathscr{X} and \mathscr{Y} be subcategories of $\operatorname{Mod} R$ and $\operatorname{Mod} R^{\text {op }}$, respectively. When $(\mathscr{X}, \mathscr{Y})$ is a duality pair, the following assertions hold true: (1) If \mathscr{X} is closed under coproducts, then \mathscr{X} is covering; (2) if \mathscr{X} is closed under products, then \mathscr{X} is preenveloping; and (3) if ${ }_{R} R \in \mathscr{X}$ and \mathscr{X} is closed under coproducts and extensions, then $\left(\mathscr{X}, \mathscr{X}^{\perp}\right)$ is a perfect cotorsion pair [10, Theorem 3.1]. By using it, they generalized the above result of Enochs and Holm to the category of complexes, and Enochs and Iacob investigated in [7] the existence of Gorenstein injective envelopes over commutative noetherian rings.

Let R and S be arbitrary rings, let ${ }_{R} C_{S}$ be a semidualizing bimodule, let $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ be the Auslander class in $\operatorname{Mod} R^{\mathrm{op}}$ and let $\mathcal{B}_{C}(R)$ be the Bass class in Mod R. Our first main result reads as follows.

Theorem 1.1 (see Theorem 3.3). (1) Both pairs $\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{B}_{C}(R)\right)$ and $\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)\right)$ are coproduct-closed and product-closed duality pairs. Furthermore, the former one is perfect.
(2) $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{\mathrm{op}}$ and $\mathcal{B}_{C}(R)$ is covering and preenveloping in $\operatorname{Mod} R$.

[^0]As a consequence of Theorem 1.1, we get that the pair $\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)^{\perp}\right)$ is a hereditary perfect cotorsion pair and $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{\mathrm{op}}$, where $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)^{\perp}$ is the right Ext-orthogonal class of $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ (Corollary 3.4). This result was proved in [6, Theorem 3.11] when R is a commutative noetherian ring and ${ }_{R} C_{S}={ }_{R} C_{R}$.

By Theorem 1.1 and its symmetric result, we have that $\mathcal{B}_{C}(R)$ is preenveloping in $\operatorname{Mod} R$ and $\mathcal{A}_{C}(S)$ is preenveloping in Mod S. Moreover, we prove the following theorem.

Theorem 1.2 (see Theorem 3.7 (2)). If $\mathcal{B}_{C}(R)$ is enveloping in $\operatorname{Mod} R$, then $\mathcal{A}_{C}(S)$ is enveloping in Mod S.
Then we apply these results and their symmetric results to study the Auslander projective dimension of modules. We obtain some criteria for computing the Auslander projective dimension of modules in Mod S (Theorem 4.4). Furthermore, we get the following theorem.

Theorem 1.3 (see Theorem 4.10). If $R_{R} C$ has an ultimately closed projective resolution, then

$$
\mathcal{A}_{C}(S)=C_{S}{ }^{\top}={ }^{\perp} \mathcal{J}_{C}(S)
$$

where $C_{S}{ }^{\top}$ is the Tor-orthogonal class of C_{S} and ${ }^{\perp} \mathcal{J}_{C}(S)$ is the left Ext-orthogonal class of the subcategory $\mathcal{J}_{C}(S)$ of $\operatorname{Mod} S$ consisting of C-injective modules.

As a consequence, we have that if ${ }_{R} C$ has an ultimately closed projective resolution, then the projective dimension of C_{S} is at most n if and only if the Auslander projective dimension of any module in $\operatorname{Mod} S$ is at most n (Corollary 4.11).

2 Preliminaries

In this paper, all rings are associative with identities. Let R be a ring. We use $\operatorname{Mod} R$ to denote the category of left R-modules and all subcategories of Mod R involved are full and closed under isomorphisms. For a subcategory \mathscr{X} of $\operatorname{Mod} R$, we write

$$
\begin{aligned}
\perp \mathscr{X} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(A, X)=0 \text { for any } X \in \mathscr{X}\right\}, \\
\mathscr{X}^{\perp} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(X, A)=0 \text { for any } X \in \mathscr{X}\right\}, \\
\perp_{1} \mathscr{X} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1}(A, X)=0 \text { for any } X \in \mathscr{X}\right\}, \\
\mathscr{X}^{\perp_{1}} & :=\left\{A \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1}(X, A)=0 \text { for any } X \in \mathscr{X}\right\} .
\end{aligned}
$$

For subcategories \mathscr{X}, \mathscr{Y} of $\operatorname{Mod} R$, we write $\mathscr{X} \perp \mathscr{Y}$ if $\operatorname{Ext}_{R}^{\geq 1}(X, Y)=0$ for any $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$.
Definition 2.1 ([5, 8]). Let $\mathscr{X} \subseteq \mathscr{Y}$ be subcategories of $\operatorname{Mod} R$. A homomorphism $f: X \rightarrow Y$ in $\operatorname{Mod} R$ with $X \in \mathscr{X}$ and $Y \in \mathscr{Y}$ is called an \mathscr{X}-precover of Y if $\operatorname{Hom}_{R}\left(X^{\prime}, f\right)$ is epic for any $X^{\prime} \in \mathscr{X}$; and f is called right minimal if an endomorphism $h: X \rightarrow X$ is an automorphism whenever $f=f h$. An \mathscr{X}-precover $f: X \rightarrow Y$ is called an \mathscr{X}-cover of Y if it is right minimal. The subcategory \mathscr{X} is called (pre)covering in \mathscr{Y} if any object in \mathscr{Y} admits an \mathscr{X}-(pre)cover. Dually, the notions of an \mathscr{X}-(pre)envelope, a left minimal homomorphism and a (pre)enveloping subcategory are defined.

Definition $2.2([8,9])$. Let \mathscr{U}, \mathscr{V} be subcategories of $\operatorname{Mod} R$.
(1) The pair $(\mathscr{U}, \mathscr{V})$ is called a cotorsion pair in $\operatorname{Mod} R$ if $\mathscr{U}=\perp_{1} \mathscr{V}$ and $\mathscr{V}=\mathscr{U}^{\perp_{1}}$.
(2) A cotorsion pair $(\mathscr{U}, \mathscr{V})$ is called perfect if \mathscr{U} is covering and \mathscr{V} is enveloping in $\operatorname{Mod} R$.
(3) A cotorsion pair $(\mathscr{U}, \mathscr{V})$ is called hereditary if one of the following equivalent conditions is satisfied:
(3a) $\mathscr{U} \perp \mathscr{V}$.
(3b) \mathscr{U} is projectively resolving in the sense that \mathscr{U} contains all projective modules in $\operatorname{Mod} R$, and \mathscr{U} is closed under extensions and kernels of epimorphisms.
(3c) \mathscr{V} is injectively coresolving in the sense that \mathscr{V} contains all injective modules in $\operatorname{Mod} R$, and \mathscr{V} is closed under extensions and cokernels of monomorphisms.

Set $(-)^{+}:=\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q} / \mathbb{Z})$, where \mathbb{Z} is the additive group of integers and \mathbb{Q} is the additive group of rational numbers. The following is the definition of duality pairs (cf. [7, 10]).

Definition 2.3. Let \mathscr{X} and \mathscr{Y} be subcategories of $\operatorname{Mod} R$ and $\operatorname{Mod} R^{\mathrm{op}}$, respectively.
(1) The pair (\mathscr{X}, \mathscr{Y}) is called a duality pair if the following conditions are satisfied:
(1a) For a module $X \in \operatorname{Mod} R$, one has $X \in \mathscr{X}$ if and only if $X^{+} \in \mathscr{Y}$.
(1b) \mathscr{Y} is closed under direct summands and finite direct sums.
(2) A duality pair (\mathscr{X}, \mathscr{Y}) is called (co)product-closed if \mathscr{X} is closed under (co)products.
(3) A duality pair (\mathscr{X}, \mathscr{Y}) is called perfect if it is coproduct-closed, if ${ }_{R} R \in \mathscr{X}$ and if \mathscr{X} is closed under extensions.

We also recall the following remarkable result.
Lemma 2.4 ([7, p. 7, Theorem] and [10, Theorem 3.1]). Let \mathscr{X} and \mathscr{Y} be subcategories of $\operatorname{Mod} R$ and Mod $R^{\text {op }}$, respectively. If $(\mathscr{X}, \mathscr{Y})$ is a duality pair, then the following assertions hold true:
(1) If $(\mathscr{X}, \mathscr{Y})$ is coproduct-closed, then \mathscr{X} is covering.
(2) If $(\mathscr{X}, \mathscr{Y})$ is product-closed, then \mathscr{X} is preenveloping.
(3) If $(\mathscr{X}, \mathscr{Y})$ is perfect, then ($\left.\mathscr{X}, \mathscr{X}^{\perp}\right)$ is a perfect cotorsion pair.

Definition 2.5 ([1, 11]). Let R and S be rings. An (R, S)-bimodule ${ }_{R} C_{S}$ is called semidualizing if the following conditions are satisfied:
(a1) ${ }_{R} C$ admits a degreewise finite R-projective resolution.
(a2) C_{S} admits a degreewise finite S^{op}-projective resolution.
(b1) The homothety $\operatorname{map}_{R} R_{R} \xrightarrow{R \gamma} \operatorname{Hom}_{S^{\text {op }}}(C, C)$ is an isomorphism.
(b2) The homothety map $S_{S} \xrightarrow{\gamma_{S}} \operatorname{Hom}_{R}(C, C)$ is an isomorphism.
(c1) $\operatorname{Ext}_{R}^{\geq 1}(C, C)=0$.
(c2) $\operatorname{Ext}_{S^{\text {op }}}^{\geq 1}(C, C)=0$.
Wakamatsu [18] introduced and studied the so-called generalized tilting modules, which are usually called Wakamatsu tilting modules; see [3,16]. Note that a bimodule ${ }_{R} C_{S}$ is semidualizing if and only if it is Wakamatsu tilting [20, Corollary 3.2]. For examples of semidualizing bimodules, the reader is referred to [11, 19].

3 Duality pairs

In this section, R and S are arbitrary rings and ${ }_{R} C_{S}$ is a semidualizing bimodule. We write $(-)_{*}:=\operatorname{Hom}(C,-)$ and

$$
\begin{aligned}
& { }_{R} C^{\perp}:=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geq 1}(C, M)=0\right\} \quad \text { and } \quad C_{S}^{\perp}:=\left\{B \in \operatorname{Mod} S^{\mathrm{op}} \mid \operatorname{Ext}_{\left.S_{\text {op }}(C, B)=0\right\},}^{{ }^{\top}{ }_{R} C:=\left\{N \in \operatorname{Mod} R^{\mathrm{op}} \mid \operatorname{Tor}_{\geq 1}^{R}(N, C)=0\right\} \quad \text { and } \quad C_{S}^{\top}:=\left\{A \in \operatorname{Mod} S \mid \operatorname{Tor}_{\geq 1}^{S}(C, A)=0\right\} .} .\right.
\end{aligned}
$$

Definition 3.1 ([11]). (1) The Auslander class $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ with respect to C consists of all modules N in Mod $R^{\text {op }}$ satisfying the following conditions:
(a1) $N \in{ }^{\top}{ }_{R} C$.
(a2) $N \otimes_{R} C \in C_{S}{ }^{\perp}$.
(a3) The canonical evaluation homomorphism

$$
\mu_{N}: N \rightarrow\left(N \otimes_{R} C\right)_{*}
$$

defined by $\mu_{N}(x)(c)=x \otimes c$ for any $x \in N$ and $c \in C$ is an isomorphism in $\operatorname{Mod} R^{\mathrm{op}}$.
(2) The Bass class $\mathcal{B}_{C}(R)$ with respect to C consists of all modules M in $\operatorname{Mod} R$ satisfying the following conditions:
(b1) $M \in{ }_{R} C^{\perp}$.
(b2) $M_{*} \in C_{S}{ }^{\top}$.
(b3) The canonical evaluation homomorphism

$$
\theta_{M}: C \otimes_{S} M_{*} \rightarrow M
$$

defined by $\theta_{M}(c \otimes f)=f(c)$ for any $c \in C$ and $f \in M_{*}$ is an isomorphism in $\operatorname{Mod} R$.
(3) The Auslander class $\mathcal{A}_{C}(S)$ in Mod S and the Bass class $\mathcal{B}_{C}\left(S^{\mathrm{op}}\right)$ in Mod S^{op} are defined symmetrically.

The following result is crucial. From its proof, it is known that the conditions in the definitions of $\mathcal{A}_{C}\left(R^{\text {op }}\right)$ and $\mathcal{B}_{C}(R)$ are dual item by item.

Proposition 3.2. (1) For a module $N \in \operatorname{Mod} R^{\mathrm{op}}$, one has $N \in \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ if and only if $N^{+} \in \mathcal{B}_{C}(R)$.
(2) For a module $M \in \operatorname{Mod} R$, one has $M \in \mathcal{B}_{C}(R)$ if and only if $M^{+} \in \mathcal{A}_{C}\left(R^{\text {op }}\right)$.

Proof. (1) Let $N \in \operatorname{Mod} R^{\mathrm{op}}$. Then we have the following assertions:
(a) We have the equivalences

$$
\begin{aligned}
N \in{ }^{\top}{ }_{R} C & \Longleftrightarrow \operatorname{Tor}_{\geq 1}^{R}(N, C)=0 \\
& \Longleftrightarrow\left[\operatorname{Tor}_{\geq 1}^{R}(N, C)\right]^{+}=0 \\
& \left.\left.\Longleftrightarrow \operatorname{Ext}_{R}^{\geq 1}\left(C, N^{+}\right)=0 \quad \text { (by [9, Lemma } 2.16(\mathrm{~b})\right]\right) \\
& \Longleftrightarrow N^{+} \in{ }_{R} C^{\perp} .
\end{aligned}
$$

(b) We have the equivalences

$$
\begin{aligned}
N \otimes_{R} C \in C_{S}^{\perp} & \Longleftrightarrow \operatorname{Ext}_{S_{S o p}}^{\geq 1}\left(C, N \otimes_{R} C\right)=0 \\
& \Longleftrightarrow\left[\operatorname{Ext}_{\text {Sop }}^{\geq 1}\left(C, N \otimes_{R} C\right)\right]^{+}=0 \\
& \Longleftrightarrow \operatorname{Tor}_{\geq 1}^{S}\left(C,\left(N \otimes_{R} C\right)^{+}\right)=0 \quad \text { (by [9, Lemma 2.16(d)]) } \\
& \Longleftrightarrow \operatorname{Tor}_{\geq 1}^{S}\left(C,\left(N^{+}\right)_{*}\right)=0 \quad \text { (by [9, Lemma 2.16(a)]) } \\
& \Longleftrightarrow\left(N^{+}\right)_{*} \in C_{S}^{\top} .
\end{aligned}
$$

(c) By [9, Lemma 2.16 (c)], the canonical evaluation homomorphism

$$
\alpha: C \otimes_{S}\left(N \otimes_{R} C\right)^{+} \rightarrow\left[\operatorname{Hom}_{S^{\text {op }}}\left(C, N \otimes_{R} C\right)\right]^{+}
$$

defined by $\alpha(c \otimes g)(f)=g f(c)$ for any $c \in C, g \in\left(N \otimes_{R} C\right)^{+}$and $f \in \operatorname{Hom}_{S^{\circ p}}\left(C, N \otimes_{R} C\right)$ is an isomorphism in Mod R. By [9, Lemma 2.16 (a)], the canonical evaluation homomorphism

$$
\beta:\left(N \otimes_{R} C\right)^{+} \rightarrow \operatorname{Hom}_{R}\left(C, N^{+}\right)
$$

defined by $\beta(g)(c)(x)=g(x \otimes c)$ for any $g \in\left(N \otimes_{R} C\right)^{+}, c \in C$ and $x \in N$ is an isomorphism in Mod S. So,

$$
1_{C} \otimes \beta: C \otimes_{S}\left(N \otimes_{R} C\right)^{+} \rightarrow C \otimes_{S} \operatorname{Hom}_{R}\left(C, N^{+}\right)
$$

defined by $\left(1_{C} \otimes \beta\right)(c \otimes g)=c \otimes \beta(g)$ for any $c \in C$ and $g \in\left(N \otimes_{R} C\right)^{+}$is an isomorphism in Mod R.
Consider the following diagram:

where

$$
\left(\mu_{N}\right)^{+}:\left[\operatorname{Hom}_{S^{\text {op }}}\left(C, N \otimes_{R} C\right)\right]^{+} \rightarrow N^{+}
$$

defined by $\left(\mu_{N}\right)^{+}\left(f^{\prime}\right)=f^{\prime} \mu_{N}$ for any $f^{\prime} \in\left[\operatorname{Hom}_{S^{\circ p}}\left(C, N \otimes_{R} C\right)\right]^{+}$is a natural homomorphism in $\operatorname{Mod} R$, and

$$
\theta_{N^{+}}: C \otimes_{S} \operatorname{Hom}_{R}\left(C, N^{+}\right) \rightarrow N^{+}
$$

defined by $\theta_{N^{+}}\left(c \otimes f^{\prime \prime}\right)=f^{\prime \prime}(c)$ for any $c \in C$ and $f^{\prime \prime} \in \operatorname{Hom}_{R}\left(C, N^{+}\right)$is a canonical evaluation homomorphism in $\operatorname{Mod} R$. Then, for any $c \in C, g \in\left(N \otimes_{R} C\right)^{+}$and $x \in N$, we have

$$
\begin{aligned}
\left(\mu_{N}\right)^{+} \alpha(c \otimes g)(x) & =\alpha(c \otimes g) \mu_{N}(x)=g \mu_{N}(x)(c)=g(x \otimes c), \\
\theta_{N^{+}}\left(1_{C} \otimes \beta\right)(c \otimes g)(x) & =\theta_{N^{+}}(c \otimes \beta(g))(x)=\beta(g)(c)(x)=g(x \otimes c) .
\end{aligned}
$$

Thus

$$
\left(\mu_{N}\right)^{+} \alpha=\theta_{N^{+}}\left(1_{C} \otimes \beta\right) .
$$

Therefore, μ_{N} is an isomorphism, which is equivalent to the fact that $\left(\mu_{N}\right)^{+}$is an isomorphism, which in turn is equivalent to $\theta_{N^{+}}$being an isomorphism.

We conclude that $N \in \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$, which is equivalent to $N^{+} \in \mathcal{B}_{C}(R)$.
(2) Let $M \in \operatorname{Mod} R$. Then we have the following assertions.
(a) We have the equivalences

$$
\begin{aligned}
M \in_{R} C^{\perp} & \Longleftrightarrow \operatorname{Ext}_{R}^{\geq 1}(C, M)=0 \\
& \Longleftrightarrow\left[\operatorname{Ext}_{R}^{\geq 1}(C, M)\right]^{+}=0 \\
& \Longleftrightarrow \operatorname{Tor}_{\geq 1}^{R}\left(M^{+}, C\right)=0 \quad(\text { by }[9, \text { Lemma } 2.16(\mathrm{~d})]) \\
& \Longleftrightarrow M^{+} \in^{\top} C .
\end{aligned}
$$

(b) We have the equivalences

$$
\begin{aligned}
& M_{*} \in C_{S}{ }^{\top} \Longleftrightarrow \operatorname{Tor}_{\geq 1}^{S}\left(C, M_{*}\right)=0 \\
& \Longleftrightarrow\left[\operatorname{Tor}_{\geq 1}^{S}\left(C, M_{*}\right)\right]^{+}=0 \\
& \Longleftrightarrow \operatorname{Ext}_{\text {Sop }^{\geq 1}}^{\geq 1}\left(C,\left(M_{*}\right)^{+}\right)=0 \quad \text { (by [9, Lemma 2.16(b)]) } \\
& \Longleftrightarrow \operatorname{Ext}_{\text {Sop }}^{21}\left(C, M^{+} \otimes_{R} C\right)=0 \quad \text { (by [9, Lemma } 2.16 \text { (c)]) } \\
& \Longleftrightarrow M^{+}{ }_{\otimes R} C \in C_{S^{\perp}} .
\end{aligned}
$$

(c) By [9, Lemma 2.16 (a)], the canonical evaluation homomorphism

$$
\tau:\left[C \otimes_{S} \operatorname{Hom}_{R}(C, M)\right]^{+} \rightarrow \operatorname{Hom}_{S^{\circ p}}\left(C,\left[\operatorname{Hom}_{R}(C, M)\right]^{+}\right)
$$

defined by $\tau\left(g^{\prime}\right)(c)(f)=g^{\prime}(c \otimes f)$ for any $g^{\prime} \in\left[C \otimes_{S} \operatorname{Hom}_{R}(C, M)\right]^{+}, c \in C$ and $f \in \operatorname{Hom}_{R}(C, M)$ is an isomorphism in $\operatorname{Mod} R^{\text {op }}$. By [9, Lemma 2.16(c)], the canonical evaluation homomorphism

$$
\sigma: M^{+} \otimes_{R} C \rightarrow\left[\operatorname{Hom}_{R}(C, M)\right]^{+}
$$

defined by $\sigma(g \otimes c)(f)=g f(c)$ for any $g \in M^{+}, c \in C$ and $f \in \operatorname{Hom}_{R}(C, M)$ is an isomorphism in Mod $S^{\text {op }}$. So,

$$
\operatorname{Hom}_{S \circ p}(C, \sigma): \operatorname{Hom}_{S^{\circ p}}\left(C, M^{+} \otimes_{R} C\right) \rightarrow \operatorname{Hom}_{\text {Sop }}\left(C,\left[\operatorname{Hom}_{R}(C, M)\right]^{+}\right)
$$

Consider the following diagram:

where

$$
\left(\theta_{M}\right)^{+}: M^{+} \rightarrow\left[C \otimes_{S} \operatorname{Hom}_{R}(C, M)\right]^{+}
$$

defined by $\left(\theta_{M}\right)^{+}(g)=g \theta_{M}$ for any $g \in M^{+}$is a natural homomorphism in Mod $R^{\text {op }}$, and

$$
\mu_{M^{+}}: M^{+} \rightarrow \operatorname{Hom}_{\operatorname{sop}}\left(C, M^{+} \otimes_{R} C\right)
$$

defined by $\mu_{M^{+}}(g)(c)=g \otimes c$ for any $g \in M^{+}$and $c \in C$ is a canonical evaluation homomorphism in $\operatorname{Mod} R^{\mathrm{op}}$.

Then, for any $g \in M^{+}, c \in C$ and $f \in \operatorname{Hom}_{R}(C, M)$, we have

$$
\begin{aligned}
& \tau\left(\theta_{M}\right)^{+}(g)(c)(f)=\left(\theta_{M}\right)^{+}(g)(c \otimes f)=g \theta_{M}(c \otimes f)=g f(c), \\
& \operatorname{Hom}_{S_{\text {op }}(C, \sigma) \mu_{M^{+}}(g)(c)(f)}=\sigma \mu_{M^{+}}(g)(c)(f)=\sigma(g \otimes c)(f)=g f(c) .
\end{aligned}
$$

Thus

$$
\tau\left(\theta_{M}\right)^{+}=\operatorname{Hom}_{S^{\text {op }}}(C, \sigma) \mu_{M^{+}} .
$$

Therefore, θ_{M} is an isomorphism, which is equivalent to the fact that $\left(\theta_{M}\right)^{+}$is an isomorphism, which in turn is equivalent to $\mu_{M^{+}}$being an isomorphism.

We conclude that $M \in \mathcal{B}_{C}(R)$, which is equivalent to $M^{+} \in \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$.
As a consequence, we get the following theorem.
Theorem 3.3. (1) The pair $\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{B}_{C}(R)\right)$ is a perfect coproduct-closed and product-closed duality pair and $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{\mathrm{op}}$.
(2) The pair $\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)\right)$ is a coproduct-closed and product-closed duality pair and $\mathcal{B}_{C}(R)$ is covering and preenveloping in $\operatorname{Mod} R$.

Proof. It follows from [11, Proposition 4.2 (a)] that both $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ and $\mathcal{B}_{C}(R)$ are closed under direct summands, coproducts and products. So, by Lemma 2.4 (1) and (2), and by Proposition 3.2, we have that both the pairs

$$
\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{B}_{C}(R)\right) \quad \text { and } \quad\left(\mathcal{B}_{C}(R), \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)\right)
$$

are coproduct-closed and product-closed duality pairs, $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ is covering and preenveloping in Mod R^{op} and $\mathcal{B}_{C}(R)$ is covering and preenveloping in Mod R. Moreover, $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ is projectively resolving by [11, Theorem 6.2], so the duality pair $\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{B}_{C}(R)\right)$ is perfect.

We write

$$
\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)^{\perp}:=\left\{Y \in \operatorname{Mod} R^{\mathrm{op}} \mid \operatorname{Ext}_{R^{\mathrm{op}}}^{\geq 1}(N, Y)=0 \text { for any } N \in \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)\right\} .
$$

The following corollary was proved in [6, Theorem 3.11] when R is a commutative noetherian ring and ${ }_{R} C_{S}={ }_{R} C_{R}$.

Corollary 3.4. The pair $\left(\mathcal{A}_{C}\left(R^{\mathrm{op}}\right), \mathcal{A}_{C}\left(R^{\mathrm{op}}\right)^{\perp}\right)$ is a hereditary perfect cotorsion pair and $\mathcal{A}_{C}\left(R^{\mathrm{op}}\right)$ is covering and preenveloping in $\operatorname{Mod} R^{\mathrm{op}}$.

Proof. It follows from Theorem 3.3 (1) and Lemma 2.4 (3).
The following two results are the symmetric versions of Theorem 3.3 and Corollary 3.4, respectively.
Theorem 3.5. (1) The pair $\left(\mathcal{A}_{C}(S), \mathcal{B}_{C}\left(S^{\circ \mathrm{p}}\right)\right)$ is a perfect coproduct-closed and product-closed duality pair and $\mathcal{A}_{C}(S)$ is covering and preenveloping in $\operatorname{Mod} S$.
(2) The pair $\left(\mathcal{B}_{C}\left(S^{\mathrm{op}}\right)\right.$, $\left.\mathcal{A}_{C}(S)\right)$ is a coproduct-closed and product-closed duality pair and $\mathcal{B}_{C}\left(S^{\mathrm{op}}\right)$ is covering and preenveloping in $\operatorname{Mod} S^{\mathrm{op}}$.

We write

$$
\mathcal{A}_{C}(S)^{\perp}:=\left\{X \in \operatorname{Mod} S \mid \operatorname{Ext}_{S}^{\geq 1}\left(N^{\prime}, X\right)=0 \text { for any } N^{\prime} \in \mathcal{A}_{C}(S)\right\} .
$$

Corollary 3.6. The pair $\left(\mathcal{A}_{C}(S), \mathcal{A}_{C}(S)^{\perp}\right)$ is a hereditary perfect cotorsion pair and $\mathcal{A}_{C}(S)$ is covering and preenveloping in Mod S.

Holm and White proved in [11, Proposition 4.1] that there exist the following (Foxby) equivalences of categories:

$$
\begin{aligned}
& \mathcal{A}_{C}(S) \underset{\underset{\operatorname{Hom}_{R}(C,-)}{\sim}}{\stackrel{C \otimes_{S^{-}}}{\rightleftarrows}} \mathcal{B}_{C}(R), \\
& \mathcal{A}_{C}\left(R^{\mathrm{op})} \underset{\underset{\operatorname{Hom}_{S^{\mathrm{op}}(C,-)}}{\stackrel{-\otimes_{R} C}{\rightleftarrows}}}{\sim} \mathcal{B}_{C}\left(S^{\mathrm{op}}\right) .\right.
\end{aligned}
$$

Compare this result with Theorems 3.3 and 3.5.

By Theorems 3.3 (2) and 3.5 (1), $\mathcal{B}_{C}(R)$ is preenveloping in $\operatorname{Mod} R$ and $\mathcal{A}_{C}(S)$ is preenveloping in Mod S. In the following result, we construct an $\mathcal{A}_{C}(S)$-preenvelope of a given module in $\operatorname{Mod} S$ from a $\mathcal{B}_{C}(R)$-preenvelope of some module in $\operatorname{Mod} R$.

Theorem 3.7. (1) Let $N \in \operatorname{Mod} S$ and let $f: C \otimes_{S} N \rightarrow B$ be a $\mathcal{B}_{C}(R)$-preenvelope of $C \otimes_{S} N$ in $\operatorname{Mod} R$. Then we have the following assertions:
(1a) $f_{*} \mu_{N}: N \rightarrow B_{*}$ is an $\mathcal{A}_{C}(S)$-preenvelope of N in $\operatorname{Mod} S$.
(1b) Iff is a $\mathcal{B}_{C}(R)$-envelope of $C \otimes_{S} N$, then $f_{*} \mu_{N}$ is an $\mathcal{A}_{C}(S)$-envelope of N.
(2) If $\mathcal{B}_{C}(R)$ is enveloping in $\operatorname{Mod} R$, then $\mathcal{A}_{C}(S)$ is enveloping in $\operatorname{Mod} S$.

Proof. (1a) Let $N \in \operatorname{Mod} S$ and let

$$
f: C \otimes_{S} N \rightarrow B
$$

be a $\mathcal{B}_{C}(R)$-preenvelope in $\operatorname{Mod} R$. By [11, Proposition 4.1], we have $B_{*} \in \mathcal{A}_{C}(S)$. Let $g \in \operatorname{Hom}_{S}(N, A)$ with $A \in \mathcal{A}_{C}(S)$. By [11, Proposition 4.1] again, we have $C \otimes_{S} A \in \mathcal{B}_{C}(R)$. So there exists $h \in \operatorname{Hom}_{R}\left(B, C \otimes_{S} A\right)$ such that $1_{C} \otimes g=h f$, that is, the diagram

commutes. From the commutative diagram

we get $\mu_{A} g=\left(1_{C} \otimes g\right)_{*} \mu_{N}$. Since μ_{A} is an isomorphism, we have

$$
g=\mu_{A}^{-1}\left(1_{C} \otimes g\right)_{*} \mu_{N}=\left(\mu_{A}^{-1} h_{*}\right)\left(f_{*} \mu_{N}\right)
$$

that is, the diagram

commutes. Thus $f_{*} \mu_{N}: N \rightarrow B_{*}$ is an $\mathcal{A}_{C}(S)$-preenvelope of N.
(1b) By (1a), it suffices to prove that if f is left minimal, then so is $f_{*} \mu_{N}$.
Let f be left minimal and let $h \in \operatorname{Hom}_{S}\left(B_{*}, B_{*}\right)$ such that $f_{*} \mu_{N}=h\left(f_{*} \mu_{N}\right)$. Then we have

$$
\begin{align*}
\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right) & =1_{C} \otimes\left(f_{*} \mu_{N}\right)=1_{C} \otimes\left(h\left(f_{*} \mu_{N}\right)\right) \tag{3.1}\\
& =\left(1_{C} \otimes h\right)\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right) .
\end{align*}
$$

From the commutative diagram

we get

$$
\begin{equation*}
f \theta_{C \otimes_{S} N}=\theta_{B}\left(1_{C} \otimes f_{*}\right) \tag{3.2}
\end{equation*}
$$

So we have

$$
\begin{align*}
f & =f 1_{C \otimes_{S} N} & & \\
& =f\left(\theta_{C \otimes_{S} N}\left(1_{C} \otimes \mu_{N}\right)\right) & & \text { (by [21, Proposition 2.2 (1)]) } \\
& =\theta_{B}\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right) & & \text { (by (3.2)) } \\
& =\theta_{B}\left(1_{C} \otimes h\right)\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right) & & (\text { by (3.1)) } \tag{3.1}\\
& =\theta_{B}\left(1_{C} \otimes h\right)\left(\theta_{B}^{-1} \theta_{B}\right)\left(1_{C} \otimes f_{*}\right)\left(1_{C} \otimes \mu_{N}\right) & & \text { (because } \theta_{B} \text { is an isomorphism) } \\
& =\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}^{-1} f \theta_{C \otimes_{S} N}\left(1_{C} \otimes \mu_{N}\right) & & \text { (by (3.2)) } \\
& =\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}^{-1} f 1_{C \otimes_{S} N} & & \text { (by [21, Proposition 2.2 (1)]) } \\
& =\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}^{-1} f . & &
\end{align*}
$$

Because f is left minimal, $\theta_{B}\left(1_{C} \otimes h\right) \theta_{B}{ }^{-1}$ is an isomorphism, which implies that $1_{C} \otimes h$ and $\left(1_{C} \otimes h\right)_{*}$ are also isomorphisms. From the commutative diagram

we get

$$
\left(1_{C} \otimes h\right)_{*} \mu_{B_{*}}=\mu_{B_{*}} h .
$$

Because $B_{*} \in \mathcal{A}_{C}(S)$ by [11, Proposition 4.1], we obtain that $\mu_{B_{*}}$ is an isomorphism. It follows that h is also an isomorphism and $f_{*} \mu_{N}$ is left minimal.
(2): It follows from assertion (1b) immediately.

We do not know whether a $\mathcal{B}_{C}(R)$-preenvelope of a given module in $\operatorname{Mod} R$ can be constructed from an $\mathcal{A}_{C}(S)$-preenvelope of some module in $\operatorname{Mod} S$, and we do not know whether the converse of Theorem 3.7 (2) holds true.

By Theorems 3.3 (2) and $3.5(1), \mathcal{B}_{C}(R)$ is covering in $\operatorname{Mod} R$ and $\mathcal{A}_{C}(S)$ is covering in $\operatorname{Mod} S$. In the following result, we construct a $\mathcal{B}_{C}(R)$-cover of a given module in Mod R from an $\mathcal{A}_{C}(S)$-cover of some module in Mod S.

Proposition 3.8. Let $M \in \operatorname{Mod} R$ and let

$$
g: A \rightarrow M_{*}
$$

be an $\mathcal{A}_{C}(S)$-cover of M_{*} in $\operatorname{Mod} S$. Then

$$
\theta_{M}\left(1_{C} \otimes g\right): C \otimes_{S} A \rightarrow M
$$

is a $\mathcal{B}_{C}(R)$-cover of M in $\operatorname{Mod} R$.
Proof. Let $M \in \operatorname{Mod} R$ and let $g: A \rightarrow M_{*}$ be an $\mathcal{A}_{C}(S)$-cover of M_{*} in Mod S. By [11, Proposition 4.1], we have $C \otimes_{S} A \in \mathcal{B}_{C}(R)$. Let $f \in \operatorname{Hom}_{R}(B, M)$ with $B \in \mathcal{B}_{C}(R)$. By [11, Proposition 4.1] again, we have $B_{*} \in \mathcal{A}_{C}(S)$. So there exists $h \in \operatorname{Hom}_{S}\left(B_{*}, A\right)$ such that $f_{*}=g h$, that is, the diagram

commutes. From the commutative diagram

we get $f \theta_{B}=\theta_{M}\left(1_{C} \otimes f_{*}\right)$. Because θ_{B} is an isomorphism, we have

$$
f=\theta_{M}\left(1_{C} \otimes f_{*}\right) \theta_{B}^{-1}=\theta_{M}\left(1_{C} \otimes(g h)\right) \theta_{B}^{-1}=\left(\theta_{M}\left(1_{C} \otimes g\right)\right)\left(\left(1_{C} \otimes h\right) \theta_{B}{ }^{-1}\right),
$$

that is, the diagram

commutes. Thus $\theta_{M}\left(1_{C} \otimes \mathrm{~g}\right): C \otimes_{S} A \rightarrow M$ is a $\mathcal{B}_{C}(R)$-precover of M.
In the following, it suffices to prove that $\theta_{M}\left(1_{C} \otimes g\right)$ is right minimal.
Let $h \in \operatorname{Hom}_{R}\left(C \otimes_{S} A, C \otimes_{S} A\right)$ such that $\theta_{M}\left(1_{C} \otimes g\right)=\left(\theta_{M}\left(1_{C} \otimes g\right)\right) h$. Then we have

$$
\begin{equation*}
\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*}=\left(\theta_{M}\left(1_{C} \otimes g\right)\right)_{*}=\left(\left(\theta_{M}\left(1_{C} \otimes g\right)\right) h\right)_{*}=\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} h_{*} . \tag{3.3}
\end{equation*}
$$

From the commutative diagram

we get

$$
\begin{equation*}
\mu_{M_{*}} g=\left(1_{C} \otimes g\right)_{*} \mu_{A} . \tag{3.4}
\end{equation*}
$$

So we have

$$
\begin{aligned}
g & =1_{M_{*}} g & & \\
& =\left(\theta_{M}\right)_{*} \mu_{M *} g & & \text { (by [21, Proposition 2.2 (1)]) } \\
& =\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} \mu_{A} & & \text { (by (3.4)) } \\
& =\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} h_{*} \mu_{A} & & \text { (by (3.3)) } \\
& =\left(\theta_{M}\right)_{*}\left(1_{C} \otimes g\right)_{*} \mu_{A} \mu_{A}{ }^{-1} h_{*} \mu_{A} & & \text { (because } \mu_{A} \text { is an isomorphism) } \\
& =\left(\theta_{M}\right)_{*} \mu_{M *} g \mu_{A}{ }^{-1} h_{*} \mu_{A} & & \text { (by (3.4)) } \\
& =1_{M *} g \mu_{A}{ }^{-1} h_{*} \mu_{A} & & \text { (by [21, Proposition 2.2 (1)]) } \\
& =g \mu_{A}{ }^{-1} h_{*} \mu_{A} . & &
\end{aligned}
$$

Because g is right minimal, $\mu_{A}{ }^{-1} h_{*} \mu_{A}$ is an isomorphism, which implies that h_{*} and $1_{C} \otimes h_{*}$ are also isomorphisms. From the commutative diagram

we get

$$
h \theta_{C \otimes_{S} A}=\theta_{C \otimes_{s} A}\left(1_{C} \otimes h_{*}\right) .
$$

Because $C \otimes_{S} A \in \mathcal{B}_{C}(R)$ by [11, Proposition 4.1], we obtain that $\theta_{C \otimes_{S} A}$ is an isomorphism. It follows that h is also an isomorphism and $\theta_{M}\left(1_{C} \otimes g\right)$ is right minimal.

We do not know whether an $\mathcal{A}_{C}(S)$-cover of a given module in $\operatorname{Mod} S$ can be constructed from a $\mathcal{B}_{C}(R)$-cover of some module in Mod R.

4 The Auslander projective dimension of modules

For a subcategory \mathscr{X} of $\operatorname{Mod} S$ and $N \in \operatorname{Mod} S$, the \mathscr{X}-projective dimension $\mathscr{X}-\mathrm{pd}_{S} N$ of N is defined as $\inf \left\{n \mid\right.$ there exists an exact sequence $0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow N \rightarrow 0$ in $\operatorname{Mod} S$ with all $\left.X_{i} \in \mathscr{X}\right\}$,
and we set $\mathscr{X}-\operatorname{pd}_{S} N$ infinite if no such integer exists. We call $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N$ the Auslander projective dimension of N. For any $n \geq 0$, we use $\Omega^{n}(N)$ to denote the n-th syzygy of N (note: $\left.\Omega^{0}(N)=N\right)$.
Lemma 4.1. Let $N \in \operatorname{Mod} S$ and $n \geq 0$. If $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$ and

$$
0 \rightarrow K_{n} \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_{1} \rightarrow A_{0} \rightarrow N \rightarrow 0
$$

is an exact sequence in $\operatorname{Mod} S$ with all A_{i} in $\mathcal{A}_{C}(S)$, then $K_{n} \in \mathcal{A}_{C}(S)$; in particular, $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$.
Proof. Because $\mathcal{A}_{C}(S)$ is projectively resolving and is closed under direct summands and coproducts by [11, Theorem 6.2 and Proposition 4.2 (a)], the assertion follows from [2, Lemma 3.12].
We use $\mathcal{A}_{C}(S)-\mathrm{pd}^{<\infty}$ to denote the subcategory of $\operatorname{Mod} S$ consisting of modules with finite Auslander projective dimension.

Proposition 4.2. The category $\mathcal{A}_{C}(S)-\mathrm{pd}^{<\infty}$ is closed under extensions, kernels of epimorphisms and cokernels of monomorphisms.
Proof. Let

$$
0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ and let $n \geq 0$. If $\max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{1}, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{3}\right\}=n$, then, by Lemma 4.1, there exist exact sequences

$$
\begin{aligned}
& 0 \rightarrow \Omega^{n}\left(N_{1}\right) \rightarrow P_{1}^{n-1} \rightarrow \cdots \rightarrow P_{1}^{1} \rightarrow P_{1}^{0} \rightarrow N_{1} \rightarrow 0 \\
& 0 \rightarrow \Omega^{n}\left(N_{3}\right) \rightarrow P_{3}^{n-1} \rightarrow \cdots \rightarrow P_{3}^{1} \rightarrow P_{3}^{0} \rightarrow N_{3} \rightarrow 0
\end{aligned}
$$

in Mod S with all P_{i}^{j} projective and $\Omega^{n}\left(N_{1}\right), \Omega^{n}\left(N_{3}\right) \in \mathcal{A}_{C}(S)$. Then we get exact sequences

$$
\begin{aligned}
& 0 \rightarrow K_{n} \rightarrow P_{1}^{n-1} \oplus P_{3}^{n-1} \rightarrow \cdots \rightarrow P_{1}^{1} \oplus P_{3}^{1} \rightarrow P_{1}^{0} \oplus P_{3}^{0} \rightarrow N_{2} \rightarrow 0 \\
& 0 \rightarrow \Omega^{n}\left(N_{1}\right) \rightarrow K_{n} \rightarrow \Omega^{n}\left(N_{3}\right) \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$. By [11, Theorem 6.2], we have $K_{n} \in \mathcal{A}_{C}(S)$ and $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{2} \leq n$.
If

$$
\max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{1}, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{2}\right\}=n
$$

then, by Corollary 3.6 and Lemma 4.1, there exist $\operatorname{Hom}_{S}\left(\mathcal{A}_{C}(S)\right.$, -)-exact exact sequences

$$
\begin{aligned}
& 0 \rightarrow A_{1}^{n} \rightarrow A_{1}^{n-1} \rightarrow \cdots \rightarrow A_{1}^{1} \rightarrow A_{1}^{0} \rightarrow N_{1} \rightarrow 0 \\
& 0 \rightarrow A_{2}^{n} \rightarrow A_{2}^{n-1} \rightarrow \cdots \rightarrow A_{2}^{1} \rightarrow A_{2}^{0} \rightarrow N_{2} \rightarrow 0
\end{aligned}
$$

in Mod S with all A_{i}^{j} in $\mathcal{A}_{C}(S)$. By [12, Theorem 3.6], we get an exact sequence

$$
0 \rightarrow A_{1}^{n} \rightarrow A_{1}^{n-1} \oplus A_{2}^{n} \rightarrow \cdots \rightarrow A_{1}^{0} \oplus A_{2}^{1} \rightarrow A_{2}^{0} \rightarrow N_{3} \rightarrow 0
$$

in $\operatorname{Mod} S$, and so $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{3} \leq n+1$.
If

$$
\max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{2}, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} N_{3}\right\}=n
$$

then, by Corollary 3.6 and Lemma 4.1, there exist $\operatorname{Hom}_{S}\left(\mathcal{A}_{C}(S)\right.$, -)-exact exact sequences

$$
\begin{aligned}
& 0 \rightarrow A_{2}^{n} \rightarrow A_{2}^{n-1} \rightarrow \cdots \rightarrow A_{2}^{1} \rightarrow A_{2}^{0} \rightarrow N_{2} \rightarrow 0 \\
& 0 \rightarrow A_{3}^{n} \rightarrow A_{3}^{n-1} \rightarrow \cdots \rightarrow A_{3}^{1} \rightarrow A_{3}^{0} \rightarrow N_{3} \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$ with all A_{i}^{j} in $\mathcal{A}_{C}(S)$. By [12, Theorem 3.2], we get exact sequences

$$
\begin{aligned}
& 0 \rightarrow A_{2}^{n} \rightarrow A_{2}^{n-1} \oplus A_{3}^{n} \rightarrow \cdots \rightarrow A_{2}^{1} \oplus A_{3}^{2} \rightarrow A \rightarrow N_{1} \rightarrow 0 \\
& 0 \rightarrow A \rightarrow A_{2}^{0} \oplus A_{3}^{1} \rightarrow A_{3}^{0} \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$. By [11, Theorem 6.2], we have $A \in \mathcal{A}_{C}(S)$, and so $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} N_{1} \leq n$.
We write

$$
\mathcal{J}_{C}(S):=\left\{I_{*} \mid I \text { is injective in } \operatorname{Mod} R\right\}
$$

The module in $\mathcal{J}_{C}(S)$ is called C-injective [11]. Let Q be an injective cogenerator for Mod R. Then

$$
\mathcal{J}_{C}(S)=\operatorname{Prod}_{S} Q_{*}
$$

by [15, Proposition 2.4 (2)], where $\operatorname{Prod}_{S} Q_{*}$ is the subcategory of $\operatorname{Mod} S$ consisting of direct summands of products of copies of Q_{*}. By [9, Lemma $\left.2.16(\mathrm{~b})\right]$, we have the following isomorphism of functors:

$$
\operatorname{Hom}_{R}\left(\operatorname{Tor}_{i}^{S}(C,-), Q\right) \cong \operatorname{Ext}_{S}^{i}\left(-, Q_{*}\right)
$$

for any $i \geq 1$. This gives the following lemma.
Lemma 4.3. One has $C_{S}{ }^{\top}={ }^{\perp} \mathcal{J}_{C}(S)$.
For a subcategory \mathscr{X} of $\operatorname{Mod} S$, a sequence in $\operatorname{Mod} S$ is called $\operatorname{Hom}_{S}(-, \mathscr{X})$-exact if it is exact after applying the functor $\operatorname{Hom}_{S}(-, X)$ for any $X \in \mathscr{X}$. Now we give some criteria for computing the Auslander projective dimension of modules.

Theorem 4.4. Let $N \in \operatorname{Mod} S$ with $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N<\infty$ and $n \geq 0$. Then the following statements are equivalent:
(1) $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} N \leq n$.
(2) $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$.
(3) $\operatorname{Tor}_{\geq n+1}^{S}(C, N)=0$.
(4) There exists an exact sequence

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A \in \mathcal{A}_{C}(S)$ and $\mathcal{J}_{C}(S)-\mathrm{pd}_{S} H \leq n-1$.
(5) There exists $a\left(\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)\right.$-exact) exact sequence

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A^{\prime} \in \mathcal{A}_{C}(S)$ and $\mathcal{J}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$.
Proof. By Lemma 4.1 and the dimension shifting, we have $(1) \Longleftrightarrow(2)$ and $(2) \Longrightarrow$ (3).
$(3) \Longrightarrow(2)$: Because $\operatorname{Tor}_{\geq n+1}^{S}(C, N)=0$ by (3), we have $\Omega^{n}(N) \in C_{S}{ }^{\top}$, and so $\Omega^{n}(N) \in{ }^{\perp} \mathcal{J}_{C}(S)$ by Lemma 4.3. Note that all projective modules in $\operatorname{Mod} S$ are in $\mathcal{A}_{C}(S)$ by [11, Theorem 6.2]. Because $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} N<\infty$ by assumption, we have $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} \Omega^{n}(N)<\infty$ by Proposition 4.2.

Assume that $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} \Omega^{n}(N)=m(<\infty)$ and

$$
\begin{equation*}
0 \rightarrow A_{m} \rightarrow \cdots \rightarrow A_{1} \rightarrow A_{0} \rightarrow \Omega^{n}(N) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

is an exact sequence in $\operatorname{Mod} S$ with all A_{j} in $\mathcal{A}_{C}(S)$. Because $\mathcal{A}_{C}(S) \subseteq C_{S}{ }^{\top}={ }^{\perp} \mathcal{J}_{C}(S)$ by Lemma 4.3, the exact sequence (4.1) is $\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$-exact. By [17, Theorem 3.11 (1)], we have the following $\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$ exact exact sequence:

$$
0 \rightarrow A_{j} \rightarrow U_{j}^{0} \rightarrow U_{j}^{1} \rightarrow \cdots \rightarrow U_{j}^{i} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all U_{j}^{i} in $\mathcal{J}_{C}(S)$ for any $0 \leq j \leq m$ and $i \geq 0$. It follows from [12, Corollary 3.5] that there exist the following two exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \Omega^{n}(N) \rightarrow U \rightarrow \bigoplus_{i=0}^{m} U_{i}^{i+1} \rightarrow \bigoplus_{i=0}^{m} U_{i}^{i+2} \rightarrow \bigoplus_{i=0}^{m} U_{i}^{i+3} \rightarrow \cdots \\
& 0 \rightarrow U_{m}^{0} \rightarrow U_{m}^{1} \oplus U_{m-1}^{0} \rightarrow \cdots \rightarrow \bigoplus_{i=2}^{m} U_{i}^{i-2} \rightarrow \bigoplus_{i=1}^{m} U_{i}^{i-1} \rightarrow \bigoplus_{i=0}^{m} U_{i}^{i} \rightarrow U \rightarrow 0
\end{aligned}
$$

and the former one is $\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$-exact. Because $\mathcal{J}_{C}(S)$ is closed under finite direct sums and cokernels of monomorphisms by [11, Proposition 5.1 (c) and Corollary 6.4], we have $U \in \mathcal{J}_{C}(S)$. By [17, Theorem 3.11 (1)] again, we have $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$.
$(1) \Longrightarrow(4)$: By [11, Theorem 6.2], $\mathcal{A}_{C}(S)$ is closed under extensions. By [17, Theorem 3.11 (1)], we have that $\mathcal{J}_{C}(S)$ is an $\mathcal{J}_{C}(S)$-coproper cogenerator for $\mathcal{A}_{C}(S)$ in the sense of [13]. Then the assertion follows from [13, Theorem 4.7].
$(4) \Longrightarrow$ (5): Let

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A \in \mathcal{A}_{C}(S)$ and $\mathcal{J}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$. By [17, Theorem 3.11 (1)], there exists $\operatorname{aHom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow A \rightarrow U \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $U \in \mathcal{J}_{C}(S)$ and $A^{\prime} \in \mathcal{A}_{C}(S)$. Consider the following push-out diagram:

By the middle row in this diagram, we have $\mathcal{J}_{C}(S)-\mathrm{pd}_{S} H^{\prime} \leq n$. Because the middle column in the above diagram is $\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$-exact, the rightmost column is also $\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$-exact by [12, Lemma 2.4 (2)] and it is the desired exact sequence.
$(5) \Longrightarrow(1)$: Let

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A^{\prime} \in \mathcal{A}_{C}(S)$ and $\mathcal{J}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$. Then there exists an exact sequence

$$
0 \rightarrow U_{n} \rightarrow \cdots \rightarrow U_{1} \rightarrow U_{0} \rightarrow H^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with all U_{i} in $\mathcal{J}_{C}(S)$. Set $H:=\operatorname{Ker}\left(U_{0} \rightarrow H^{\prime}\right)$. Then $\mathcal{J}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$. Consider the following pullback diagram:

Applying [11, Theorem 6.2] to the middle row in this diagram yields $A \in \mathcal{A}_{C}(S)$. Thus $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} N \leq n$ by the leftmost column in the above diagram.

The only place where the assumption $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N<\infty$ in Theorem 4.4 is used is in showing that (3) implies (2). By Theorem 4.4, it is easy to get the following standard observation.

Corollary 4.5. Let

$$
0 \rightarrow L \rightarrow M \rightarrow K \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$.
(1) We have

$$
\mathcal{A}_{C}(S)-\operatorname{pd}_{S} K \leq \max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} L+1\right\}
$$

and the equality holds true if $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} M \neq \mathcal{A}_{C}(S)-\mathrm{pd}_{S} L$.
(2) We have

$$
\mathcal{A}_{C}(S)-\operatorname{pd}_{S} L \leq \max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} K-1\right\}
$$

and the equality holds true if $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M \neq \mathcal{A}_{C}(S)-\operatorname{pd}_{S} K$.
(3) We have

$$
\mathcal{A}_{C}(S)-\operatorname{pd}_{S} M \leq \max \left\{\mathcal{A}_{C}(S)-\operatorname{pd}_{S} L, \mathcal{A}_{C}(S)-\operatorname{pd}_{S} K\right\}
$$

and the equality holds true if $\mathcal{A}_{C}(S)-\mathrm{pd}_{S} K \neq \mathcal{A}_{C}(S)-\mathrm{pd}_{S} L+1$.
The following corollary is an addendum to the implications $(1) \Longrightarrow(4)$ and $(1) \Longrightarrow(5)$ in Theorem 4.4.
Corollary 4.6. Let $N \in \operatorname{Mod} S$ with $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N=n(<\infty)$. Then there exist exact sequences

$$
\begin{aligned}
& 0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0 \\
& 0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
\end{aligned}
$$

in $\operatorname{Mod} S$ with $A, A^{\prime} \in \mathcal{A}_{C}(S), \mathcal{J}_{C}(S)-\operatorname{pd}_{S} H=n-1$ and $\mathcal{J}_{C}(S)-\operatorname{pd}_{S} H^{\prime}=n$.
Proof. Let $N \in \operatorname{Mod} S$ with $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N=n(<\infty)$. By Theorem 4.4, there exists an exact sequence

$$
0 \rightarrow H \rightarrow A \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A \in \mathcal{A}_{C}(S)$ and $\left(\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H \leq\right) \mathcal{J}_{C}(S)-\operatorname{pd}_{S} H \leq n-1$. By Theorem 4.4 again, we have

$$
\sup \left\{i \geq 0 \mid \operatorname{Tor}_{i}^{S}(C, N) \neq 0\right\}=n
$$

So $\sup \left\{i \geq 0 \mid \operatorname{Tor}_{i}^{S}(C, H) \neq 0\right\}=n-1$, and hence $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H=n-1$ by Theorem 4.4. It follows that $\mathcal{J}_{C}(S)$ $\mathrm{pd}_{S} H=n-1$.

By Theorem 4.4, there exists an exact sequence

$$
0 \rightarrow N \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A^{\prime} \in \mathcal{A}_{C}(S)$ and $\left(\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H \leq\right) \mathcal{J}_{C}(S)-\operatorname{pd}_{S} H^{\prime} \leq n$. By Corollary 4.5 (3), we have

$$
\mathcal{A}_{C}(S)-\operatorname{pd}_{S} H=\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N=n
$$

and so $\mathcal{J}_{C}(S)-\mathrm{pd}_{S} H^{\prime}=n$.
Let $N \in \operatorname{Mod} S$. Bican, El Bashir and Enochs proved in [4] that N has a flat cover. We use

$$
\begin{equation*}
\cdots \xrightarrow{f_{n+1}} F_{n}(N) \xrightarrow{f_{n}} \cdots \xrightarrow{f_{2}} F_{1}(N) \xrightarrow{f_{1}} F_{0}(N) \xrightarrow{f_{0}} N \rightarrow 0 \tag{4.2}
\end{equation*}
$$

to denote a minimal flat resolution of N in $\operatorname{Mod} S$, where each $F_{i}(N) \rightarrow \operatorname{Im} f_{i}$ is a flat cover of $\operatorname{Im} f_{i}$.
Lemma 4.7. Let $N \in \operatorname{Mod} S$ and $n \geq 0$. If $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$, then we have the following assertions:
(1) There exists an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \rightarrow N \xrightarrow{\mu_{N}}\left(C \otimes_{S} N\right)_{*} \rightarrow \operatorname{Ext}_{R}^{n+2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \rightarrow 0
$$

in $\operatorname{Mod} S$.
(2) $\operatorname{Ext}_{R}^{1 \leq i \leq n}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$.

Proof. (1): The case for $n=0$ follows from [17, Proposition 3.2]. Now suppose $n \geq 1$. If $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$, then the exact sequence (4.2) yields the following exact sequence:

$$
\begin{align*}
& 0 \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right) \longrightarrow C \otimes_{S} F_{n+1}(N) \xrightarrow{1_{C} \otimes f_{n+1}} C \otimes_{S} F_{n}(N) \xrightarrow{1_{C} \otimes f_{n}} \cdots \\
& \xrightarrow{1_{C} \otimes f_{2}} C \otimes_{S} F_{1}(N) \xrightarrow{1_{C} \otimes f_{1}} C \otimes_{S} F_{0}(N) \xrightarrow{1_{C} \otimes f_{0}} C \otimes_{S} N \longrightarrow \tag{4.3}
\end{align*}
$$

in $\operatorname{Mod} R$. Because all $C \otimes_{S} F_{i}(N)$ are in ${ }_{R} C^{\perp}$ by [17, Lemma 2.3 (1)], we have

$$
\begin{aligned}
& \operatorname{Ext}_{R}^{1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{1}\right)\right) \cong \operatorname{Ext}_{R}^{n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n}\right)\right), \\
& \operatorname{Ext}_{R}^{2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{1}\right)\right) \cong \operatorname{Ext}_{R}^{n+2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n}\right)\right) .
\end{aligned}
$$

Now the assertion follows from [17, Proposition 3.2].
(2): Applying the functor $(-)_{*}$ to the exact sequence (4.3), we get the following commutative diagram:

All columns are isomorphisms by [11, Lemma 4.1]. So the bottom row in this diagram is exact. Because all $C \otimes_{S} F_{i}(N)$ are in ${ }_{R} C^{\perp}$, we have $\operatorname{Ext}_{R}^{1 \leq i \leq n}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$.

Let $X \in \operatorname{Mod} R$ and let

$$
\cdots \xrightarrow{1_{c} g_{n+1}} P_{n} \xrightarrow{1_{c} \otimes g_{n}} \cdots \xrightarrow{1_{c \otimes g_{2}}} P_{1} \xrightarrow{1_{c \otimes g_{1}}} P_{0} \xrightarrow{1_{c \otimes g_{0}}} X \longrightarrow 0
$$

be a projective resolution of X in $\operatorname{Mod} R$. If there exists $n \geq 1$ such that $\operatorname{Im} g_{n} \cong \oplus_{j} W_{j}$, where each W_{j} is isomorphic to a direct summand of some $\operatorname{Im} g_{i_{j}}$ with $i_{j}<n$, then we say that X has an ultimately closed projective resolution at n; and we say that X has an ultimately closed projective resolution if it has an ultimately closed projective resolution at some n (see [14]). It is trivial that if $\operatorname{pd}_{R} X$ (the projective dimension of X) is less than or equal to n, then X has an ultimately closed projective resolution at $n+1$. Let R be an Artin algebra. If either R is of finite representation type or the square of the radical of R is zero, then any finitely generated left R-module has an ultimately closed projective resolution [14, p. 341]. Following [21], a module $N \in \operatorname{Mod} S$ is called C-adstatic if μ_{N} is an isomorphism.

Proposition 4.8. Let $N \in \operatorname{Mod} S$ and $n \geq 1$. If $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$, then N is C-adstatic provided that one of the following conditions is satisfied:
(1) $\mathrm{pd}_{R} C \leq n$.
(2) ${ }_{R} C$ has an ultimately closed projective resolution at n.

Proof. (1): It follows directly from Lemma 4.7 (1).
(2): Let

$$
\cdots \xrightarrow{1_{C} \otimes g_{n+1}} P_{n} \xrightarrow{1_{C} \otimes g_{n}} \cdots \xrightarrow{1_{c} \otimes g_{2}} P_{1} \xrightarrow{1_{C} \otimes g_{1}} P_{0} \xrightarrow{1_{c} \otimes g_{0}} C \longrightarrow 0
$$

be a projective resolution of C in $\operatorname{Mod} R$ ultimately closed at n. Then $\operatorname{Im} g_{n} \cong \oplus_{j} W_{j}$ such that each W_{j} is isomorphic to a direct summand of some $\operatorname{Im} g_{i_{j}}$ with $i_{j}<n$. Let $N \in \operatorname{Mod} S$ with $\operatorname{Tor}_{1 \leq i \leq n}^{S}(C, N)=0$. By Lemma 4.7 (2), we have

$$
\operatorname{Ext}_{R}^{1}\left(\operatorname{Im} g_{i_{j}}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \cong \operatorname{Ext}_{R}^{i_{j}+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0
$$

Because W_{j} is isomorphic to a direct summand of some $\operatorname{Im} g_{i_{j}}$, we have $\operatorname{Ext}{ }_{R}^{1}\left(W_{j}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$ for any j, which implies

$$
\begin{aligned}
\operatorname{Ext}_{R}^{n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) & \cong \operatorname{Ext}_{R}^{1}\left(\operatorname{Im} g_{n}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
& \cong \operatorname{Ext}_{R}^{1}\left(\oplus_{j} W_{j}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
& \cong \Pi_{j} \operatorname{Ext}_{R}^{1}\left(W_{j}, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right) \\
& =0 .
\end{aligned}
$$

Then, by Lemma 4.7 (2), we conclude that $\operatorname{Ext}_{R}^{1 \leq i \leq n+1}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$. Similarly to the above argument, we get $\operatorname{Ext}_{R}^{n+2}\left(C, \operatorname{Ker}\left(1_{C} \otimes f_{n+1}\right)\right)=0$. It follows from Lemma 4.7 (1) that μ_{N} is an isomorphism and N is C-adstatic.

Corollary 4.9. For any $n \geq 1$, a module $N \in \operatorname{Mod} S$ satisfying $\operatorname{Tor}_{0 \leq i \leq n}^{S}(C, N)=0$ implies $N=0$ provided that one of the following conditions is satisfied:
(1) $\mathrm{pd}_{R} C \leq n$.
(2) ${ }_{R} C$ has an ultimately closed projective resolution at n.

Proof. Let $N \in \operatorname{Mod} S$ with

$$
\operatorname{Tor}_{0 \leq i \leq n}^{S}(C, N)=0
$$

By Proposition 4.8, we have that N is C-adstatic and $N \cong\left(C \otimes_{S} N\right)_{*}=0$.
We are now in a position to give the following theorem.
Theorem 4.10. If ${ }_{R} C$ has an ultimately closed projective resolution, then

$$
\mathcal{A}_{C}(S)=C_{S}{ }^{\top}={ }^{{ }_{\mathcal{J}}^{C}}(S)
$$

Proof. By the definition of $\mathcal{A}_{C}(S)$ and by Lemma 4.3, we have $\mathcal{A}_{C}(S) \subseteq C_{S}{ }^{\top}={ }^{\perp} \mathcal{J}_{C}(S)$.
Now let $N \in{ }^{\mathcal{J}_{C}}(S)$ and let $f: C \otimes_{S} N \rightarrow B$ be a $\mathcal{B}_{C}(R)$-preenvelope of $C \otimes_{S} N$ in $\operatorname{Mod} R$ as in Theorem 3.7. Because $\mathcal{B}_{C}(R)$ is injectively coresolving in $\operatorname{Mod} R$ by [11, Theorem 6.2], f is monic. By Proposition 4.8, μ_{N} is an isomorphism. Then, by Theorem 3.7 (1), we have a monic $\mathcal{A}_{C}(S)$-preenvelope

$$
f^{0}: N \mapsto A^{0}
$$

of N, where $f^{0}=f_{*} \mu_{N}$ and $A^{0}=B_{*}$. So we have a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow N \xrightarrow{f^{0}} A^{0} \rightarrow N^{1} \rightarrow 0
$$

in $\operatorname{Mod} S$, where $N^{1}=\operatorname{Coker} f^{0}$. Because $A^{0} \in{ }^{\perp} \mathcal{J}_{C}(S)$, we have $N^{1} \in{ }^{\perp} \mathcal{J}_{C}(S)$. Similarly to the above argument, we get a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow N^{1} \xrightarrow{f^{1}} A^{1} \rightarrow N^{2} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $A^{1} \in \mathcal{A}_{C}(S)$ and $N^{2} \in{ }^{\perp} \mathcal{J}_{C}(S)$. Repeating this procedure, we get a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow N \xrightarrow{f^{0}} A^{0} \xrightarrow{f^{1}} A^{1} \xrightarrow{f^{2}} \cdots \xrightarrow{f^{i}} A^{i} \xrightarrow{f^{i+1}} \cdots
$$

in $\operatorname{Mod} S$ with all A^{i} in $\mathcal{A}_{C}(S)$. Since $\mathcal{J}_{C}(S) \subseteq \mathcal{A}_{C}(S)$ by [11, Corollary 6.1], this exact sequence is $\operatorname{Hom}_{S}\left(-, \mathcal{J}_{C}(S)\right)$ exact. By [17, Theorem 3.11 (1)], there exists a $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$-exact exact sequence

$$
0 \rightarrow A^{i} \rightarrow U_{0}^{i} \rightarrow U_{1}^{i} \rightarrow \cdots \rightarrow U_{j}^{i} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all U_{j}^{i} in $\mathcal{J}_{C}(S)$ for any $i, j \geq 0$. Then, by [12, Corollary 3.9], we get the following $\operatorname{Hom}_{S}\left(-, \mathcal{A}_{C}(S)\right)$ exact exact sequence:

$$
0 \rightarrow N \rightarrow U_{0}^{0} \rightarrow U_{1}^{0} \oplus U_{0}^{1} \rightarrow \cdots \rightarrow \bigoplus_{i=0}^{n} U_{n-i}^{i} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all terms in $\mathcal{J}_{C}(S)$. It follows from [17, Theorem 3.11 (1)] that $N \in \mathcal{A}_{C}(S)$.
We use $\mathrm{pd}_{\text {Sop }^{\text {р }}} C$ and $\mathrm{fd}_{S_{\text {op }}} C$ to denote the projective and flat dimensions of C_{S}, respectively.
Corollary 4.11. If ${ }_{R} C$ has an ultimately closed projective resolution, then the following statements are equivalent for any $n \geq 0$:
(1) $\operatorname{pd}_{S_{\mathrm{op}}} C \leq n$.
(2) $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$ for any $N \in \operatorname{Mod} S$.

Proof. Assume that ${ }_{R} C$ has an ultimately closed projective resolution. By Theorem 4.10, we have $\mathcal{A}_{C}(S)=C_{S}{ }^{\top}$. Then it is easy to see that C_{S} is flat (equivalently, projective) if and only if $\mathcal{A}_{C}(S)=\operatorname{Mod} S$, so the assertion for the case $n=0$ follows. Now let $N \in \operatorname{Mod} S$ and $n \geq 1$.
$(2) \Longrightarrow$ (1): By (2) and Theorem 4.4, we have $\Omega^{n}(N) \in \mathcal{A}_{C}(S)\left(\subseteq C_{S}{ }^{\top}\right)$. Then, by dimension shifting, we have $\operatorname{Tor}_{\geq n+1}^{S}(C, N)=0$, and so $\mathrm{pd}_{S_{\text {op }}} C=\mathrm{fd}_{S_{\text {op }} C \leq n \text {. }}$
(1) \Longrightarrow (2): If $\mathrm{pd}_{S^{\text {op }}} C \leq n$, then we have $\Omega^{n}(N) \in C_{S}{ }^{\top}$ by dimension shifting. By Theorem 4.10, we have $\Omega^{n}(N) \in \mathcal{A}_{C}(S)$ and $\mathcal{A}_{C}(S)-\operatorname{pd}_{S} N \leq n$.

Acknowledgment: The author thanks the referee for useful suggestions.

Funding: This research was partially supported by NSFC (Grant no. 11971225).

References

[1] T. Araya, R. Takahashi and Y. Yoshino, Homological invariants associated to semi-dualizing bimodules, J. Math. Kyoto Univ. 45 (2005), no. 2, 287-306.
[2] M. Auslander and M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc. 94, American Mathematical Society, Providence, 1969.
[3] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, 1-207.
[4] L. Bican, R. El Bashir and E. Enochs, All modules have flat covers, Bull. Lond. Math. Soc. 33 (2001), no. 4, 385-390.
[5] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209.
[6] E. E. Enochs and H. Holm, Cotorsion pairs associated with Auslander categories, Israel J. Math. 174 (2009), 253-268.
[7] E. E. Enochs and A. Iacob, Gorenstein injective covers and envelopes over Noetherian rings, Proc. Amer. Math. Soc. 143 (2015), no. 1, 5-12.
[8] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Exp. Math. 30, Walter de Gruyter, Berlin, 2000.
[9] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules. Vol. 1 and 2, De Gruyter Exp. Math 41, Walter de Gruyter, Berlin, 2012.
[10] H. Holm and P. Jørgensen, Cotorsion pairs induced by duality pairs, J. Commut. Algebra 1 (2009), no. 4, 621-633.
[11] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808.
[12] Z. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169.
[13] Z. Huang, Homological dimensions relative to preresolving subcategories, Kyoto J. Math. 54 (2014), no. 4, 727-757.
[14] J. P. Jans, Some generalizations of finite projective dimension, Illinois J. Math. 5 (1961), 334-344.
[15] Z. Liu, Z. Huang and A. Xu, Gorenstein projective dimension relative to a semidualizing bimodule, Comm. Algebra 41 (2013), no. 1, 1-18.
[16] F. Mantese and I. Reiten, Wakamatsu tilting modules, J. Algebra 278 (2004), no. 2, 532-552.
[17] X. Tang and Z. Huang, Homological aspects of the adjoint cotranspose, Colloq. Math. 150 (2017), no. 2, 293-311.
[18] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106-114.
[19] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), no. 2, 298-325.
[20] T. Wakamatsu, Tilting modules and Auslander's Gorenstein property, J. Algebra 275 (2004), no. 1, 3-39.
[21] R. Wisbauer, Static modules and equivalences, in: Interactions Between Ring Theory and Representations of Algebras (Murcia), Lecture Notes Pure Appl. Math. 210, Dekker, New York (2000), 423-449.

[^0]: *Corresponding author: Zhaoyong Huang, Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China, e-mail: huangzy@nju.edu.cn

