THE FINITISTIC DIMENSION AND CHAIN CONDITIONS ON IDEALS

JUNLING ZHENG
Department of Mathematics, China Jiliang University, Hangzhou 310018, Zhejiang Province, P.R. China Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China
e-mail: zjlshuxue@163.com
and ZHAOYONG HUANG
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China
e-mail:huangzy@nju.edu.cn

(Received 15 February 2019; revised 16 September 2020; accepted 2 October 2020; first published online 3 November 2020)

Abstract

Let Λ be an artin algebra and $0=I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}$ a chain of ideals of Λ such that $\left(I_{i+1} / I_{i}\right) \operatorname{rad}\left(\Lambda / I_{i}\right)=0$ for any $0 \leq i \leq n-1$ and Λ / I_{n} is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite projective dimension, then the finitistic dimension conjecture holds for Λ. As a consequence, we have that if either none or the direct sum of exactly two consecutive terms in the radical series of Λ has infinite projective dimension, then the finitistic dimension conjecture holds for Λ. Some known results are obtained as corollaries.

2020 Mathematics Subject Classification. Primary: 16E10; Secondary: 16E05

1. Introduction. Throughout this paper, Λ is an artin algebra, $\operatorname{rad}(\Lambda)$ is the Jacobson radical of Λ and $\bmod \Lambda$ is the category of finitely generated left Λ-modules. For a module M in $\bmod \Lambda$, we use $\operatorname{pd}_{\Lambda} M$ to denote the projective dimension of M.

Recall that the finitistic dimension $\operatorname{fin} . \operatorname{dim} \Lambda$ of Λ is defined as

$$
\sup \left\{\operatorname{pd}_{\Lambda} M \mid \operatorname{pd}_{\Lambda} M<\infty \text { with } M \in \bmod \Lambda\right\} .
$$

The famous finitistic dimension conjecture states that fin. $\operatorname{dim} \Lambda<\infty$ for any artin algebra Λ. This conjecture was initially an open question posed by Rosenberg and Zelinsky, published by Bass in 1960 ([1]). The finitistic dimension conjecture is one of the main problems in the representations theory of artin algebras and has a close relation with some other homological conjectures, such as the (generalised) Nakayama conjecture, the Gorenstein symmetry conjecture and the Wakamatsu tilting conjecture, and so on ([2, 24]). These conjectures are still open. See $[\mathbf{2 1}, \mathbf{2 6}]$ for some progress on the finitistic dimension conjecture.

Igusa and Todorov introduced the ϕ-function and the ψ-function from $\bmod \Lambda$ to \mathbb{N} (the natural numbers) in [11]. These two functions are powerful in studying the finitistic dimension conjecture, see [3, 4], [7]-[20], [22, 23, 25] and references therein. In particular, in [18], the finitistic dimension conjecture was investigated in terms of some chain conditions of ideals. Following this philosophy, the aim of this paper is to prove the following

Theorem 1.1. Let

$$
0=I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}
$$

be a chain of ideals of Λ such that $\left(I_{i+1} / I_{i}\right) \operatorname{rad}\left(\Lambda / I_{i}\right)=0$ for any $0 \leq i \leq n-1$ and Λ / I_{n} is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite projective dimension, then the finitistic dimension conjecture holds for Λ.

Recall that the Loewy length $L L(\Lambda)$ of Λ is defined as $\min \left\{l \mid \operatorname{rad}^{l-1}(\Lambda) \neq 0\right.$ and $\left.\operatorname{rad}^{l}(\Lambda)=0\right\}$. Let $L L(\Lambda)=n$ and

$$
0=\operatorname{rad}^{n}(\Lambda) \subseteq \operatorname{rad}^{n-1}(\Lambda) \subseteq \operatorname{rad}^{n-2}(\Lambda) \subseteq \cdots \subseteq \operatorname{rad}(\Lambda) \subseteq \Lambda
$$

be the radical series of Λ. By putting $I_{i}=\operatorname{rad}^{n-i}(\Lambda)$ for any $0 \leq i \leq n-1$ in Theorem 1.1, we immediately have the following

Corollary 1.2. Let $L L(\Lambda)=n$. If either none or the direct sum of exactly two consecutive terms in the radical series of Λ has infinite projective dimension, then the finitistic dimension conjecture holds for Λ.

The following three results are special cases of Corollary 1.2.
Corollary 1.3 ([5, Theorem 16]). If $L L(\Lambda) \leq 3$, then the finitistic dimension conjecture holds for Λ.

Corollary 1.4 ([18, Corollary 0.3]). If $\operatorname{pd}_{\Lambda} \operatorname{rad}^{i}(\Lambda)<\infty$ for all $i \geq 3$, then the finitistic dimension conjecture holds for Λ.

Corollary 1.5 ([18, Corollary 3.8]). Let $L L(\Lambda) \leq 4$. If either $\operatorname{pd}_{\Lambda} \operatorname{rad}^{2}(\Lambda)<\infty$ or $\operatorname{pd}_{\Lambda} \operatorname{rad}^{3}(\Lambda)<\infty$, then the finitistic dimension conjecture holds for Λ.
2. Preliminaries. In this section, we give some terminology and some preliminary results.

For a module M in $\bmod \Lambda$, we use $\operatorname{rad}_{\Lambda}(M)$ and $\Omega_{\Lambda}^{i}(M)$ to denote the radical and the i-th syzygy of M (in particular, $\Omega_{\Lambda}^{0}(M):=M$), respectively, and use add ${ }_{\Lambda} M$ to denote the subcategory of $\bmod \Lambda$ consisting of all direct summands of finite direct sums of copies of M.

Let K_{0} be the abelian group generated by all $[M]$, where $M \in \bmod \Lambda$, subject to the relations $[C]=[A]+[B]$ if $C \cong A \oplus B$ and $[P]=0$ if P is projective. Define a homomorphism $L: K_{0} \rightarrow K_{0}$ via $L[M]=[\Omega(M)]$. Let $M \in \bmod \Lambda$. Denote by $\left\langle\operatorname{add}_{\Lambda} M\right\rangle$ the subgroup of K_{0} generated by all indecomposable direct summands of M. Let f be an endomorphism of M and X a submodule of M. By the Fitting lemma, there exists a smallest integer $\eta_{f}(X)$ such that $\left.f\right|_{f^{m}(X)}: f^{m}(X) \rightarrow f^{m+1}(X)$ is an isomorphism for any $m \geq \eta_{f}(X)$. Moreover, if Y is a submodule of X, then $\eta_{f}(Y) \leq \eta_{f}(X)$. In [11], Igusa and Todorov defined

$$
\phi(M):=\eta_{L}\left(\left\langle\operatorname{add}_{\Lambda} M\right\rangle\right),
$$

$\psi(M):=\phi(M)+\sup \left\{\operatorname{pd}_{\Lambda} X \mid \operatorname{pd}_{\Lambda} X<\infty\right.$ with X a direct summand of $\left.\Omega_{\Lambda}^{\phi(M)}(M)\right\}$.
Lemma 2.1 ([11]). Let $M \in \bmod \Lambda$. Then the function $\psi: \bmod \Lambda \rightarrow \mathbb{N}$ satisfies the following properties.
(1) If $\operatorname{pd}_{\Lambda} M<\infty$, then $\psi(M)=\phi(M)=\operatorname{pd}_{\Lambda} M$. If M is indecomposable and $\operatorname{pd}_{\Lambda} M=\infty$, then $\psi(M)=0$.
(2) $\psi\left(M^{(n)}\right)=\psi(M)$ for any $n \geq 1$.
(3) $\psi(M) \leq \psi(M \oplus N)$ for any $N \in \bmod \Lambda$.
(4) $\psi(M)=\psi(M \oplus P)$ for any projective module P in $\bmod \Lambda$.
(5) Let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be an exact sequence in $\bmod \Lambda$ with $\operatorname{pd}_{\Lambda} C<\infty$, then $\operatorname{pd}_{\Lambda} C \leq \psi(A \oplus B)+1$.
3. Proof of Theorem 1.1. In this section, we give the proof of Theorem 1.1. We need some lemmas. The first assertion of the following lemma is essentially contained in the proof of [18, Theorem 3.6].

Lemma 3.1. Let

$$
0=I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}
$$

be a chain of ideals of Λ such that $\left(I_{i+1} / I_{i}\right) \operatorname{rad}\left(\Lambda / I_{i}\right)=0$ for any $0 \leq i \leq n-1$ and Λ / I_{n} is semisimple. Then for any $M \in \bmod \Lambda$, there exists an exact sequence

$$
0 \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow M \rightarrow 0
$$

in $\bmod \Lambda$ such that $M_{i} \in \operatorname{add}_{\Lambda} \Lambda / I_{i}$ for any $0 \leq i \leq n$.
Proof. Set $\Lambda_{i}:=\Lambda / I_{i}$ for any $0 \leq i \leq n$; in particular, $\Lambda_{0}=\Lambda$. Taking $X_{0} \in \bmod \Lambda$ and writing $X_{1}:=\Omega_{\Lambda}^{1}\left(X_{0}\right)$, then we get an exact sequence

$$
0 \longrightarrow X_{1} \longrightarrow P_{X_{0}} \longrightarrow X_{0} \longrightarrow 0
$$

in $\bmod \Lambda$ with $P_{X_{0}} \rightarrow X_{0}$ the projective cover of X_{0}. Since $I_{1} \operatorname{rad}(\Lambda)=0$, we have that $I_{1} X_{1}=I_{1} \Omega_{\Lambda}^{1}\left(X_{0}\right) \subseteq I_{1} \operatorname{rad}_{\Lambda}\left(P_{X_{0}}\right)=0$ and $X_{1} \in \bmod \Lambda_{1}$. Inductively, for $X_{i} \in \bmod \Lambda_{i}$ with $0 \leq i \leq n-1$, we have an exact sequence

$$
0 \longrightarrow X_{i+1} \longrightarrow P_{X_{i}} \longrightarrow X_{i} \longrightarrow 0,
$$

in $\bmod \Lambda_{i}$ with $P_{X_{i}} \rightarrow X_{i}$ the projective cover of X_{i}, such that $X_{i+1} \in \bmod \Lambda_{i+1}$. Moreover, restricting these exact sequences to Λ-modules and combining them, we get the following exact sequence

$$
0 \longrightarrow X_{n} \longrightarrow P_{X_{n-1}} \longrightarrow P_{X_{n-1}} \longrightarrow \cdots \longrightarrow P_{X_{0}} \longrightarrow X_{0} \longrightarrow 0
$$

in $\bmod \Lambda$, where $X_{n} \in \bmod \Lambda_{n}$ and each $P_{X_{i}}$ is projective as a Λ_{i}-module. We have $P_{X_{i}} \in \operatorname{add}_{\Lambda_{i}} \Lambda_{i}$ for any $0 \leq i \leq n-1$. Because $\Lambda_{n}=\Lambda / I_{n}$ is semisimple, we have that X_{n} is projective as a Λ_{n}-module and $X_{n} \in \operatorname{add}_{\Lambda_{n}} \Lambda_{n}$. Thus, $P_{X_{i}} \in \operatorname{add}_{\Lambda} \Lambda_{i}$ for any $0 \leq i \leq n$. Now putting $M:=X_{0}, M_{n}:=X_{n}$ and $M_{i}:=P_{X_{i}}$ for any $0 \leq i \leq n-1$, we get the required exact sequence.

The following lemma is useful.
Lemma 3.2. Let

$$
0 \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow M \rightarrow 0
$$

be an exact sequence in $\bmod \Lambda$.
(1) If $\mathrm{pd}_{\Lambda} M_{i}<\infty$ for all $0 \leq i \leq n-1$, then for all $t \geq 0$, we have

$$
\Omega_{\Lambda}^{(n+m)+t}(M) \oplus P \cong \Omega_{\Lambda}^{m+t}\left(M_{n}\right) \oplus Q,
$$

where $m=\max \left\{\operatorname{pd}_{\Lambda} M_{0}, \operatorname{pd}_{\Lambda} M_{1}, \cdots, \operatorname{pd}_{\Lambda} M_{n-1}\right\}$ and P, Q are projective in $\bmod \Lambda$.
(2) If $\operatorname{pd}_{\Lambda} M_{i}<\infty$ for all $1 \leq i \leq n$, then for all $t \geq 0$, we have

$$
\Omega_{\Lambda}^{(n+m+1)+t}(M) \oplus P \cong \Omega_{\Lambda}^{(n+m+1)+t}\left(M_{0}\right) \oplus Q,
$$

where $m=\max \left\{\operatorname{pd}_{\Lambda} M_{1}, \operatorname{pd}_{\Lambda} M_{2}, \cdots, \operatorname{pd}_{\Lambda} M_{n}\right\}$ and P, Q are projective in $\bmod \Lambda$.
Proof. Let

$$
\cdots \rightarrow P_{i}^{j} \rightarrow P_{i}^{j-1} \rightarrow \cdots \rightarrow P_{i}^{1} \rightarrow P_{i}^{0} \rightarrow M_{i} \rightarrow 0
$$

be the minimal projective resolution of M_{i} in $\bmod \Lambda$ for any $0 \leq i \leq n$. Then by [$\mathbf{6}$, Corollary 3.7], we get an exact sequence

$$
\begin{equation*}
\cdots \rightarrow \oplus_{i=0}^{r} P_{i}^{r-i} \rightarrow \cdots \rightarrow P_{0}^{1} \oplus P_{1}^{0} \rightarrow P_{0}^{0} \rightarrow M \rightarrow 0 \tag{3.1}
\end{equation*}
$$

(1) By assumption, we have $P_{i}^{j}=0$ for all $0 \leq i \leq n-1$ and $j \geq m+1$. So (3.1) in fact is the following exact sequence

$$
\cdots \rightarrow P_{n}^{m+1} \rightarrow P_{n}^{m} \rightarrow \oplus_{i=0}^{n} P_{i}^{(n+m-1)-i} \rightarrow \cdots \rightarrow P_{0}^{1} \oplus P_{1}^{0} \rightarrow P_{0}^{0} \rightarrow M \rightarrow 0
$$

and the assertion follows.
(2) By assumption, we have $P_{i}^{j}=0$ for all $1 \leq i \leq n$ and $j \geq m+1$. So (3.1) in fact is the following exact sequence

$$
\cdots \rightarrow P_{0}^{n+m+2} \rightarrow P_{0}^{n+m+1} \rightarrow \oplus_{i=0}^{n} P_{i}^{(n+m)-i} \rightarrow \cdots \rightarrow P_{0}^{1} \oplus P_{1}^{0} \rightarrow P_{0}^{0} \rightarrow M \rightarrow 0
$$

and the assertion follows.
Remark 3.3.
(1) Under the assumption of (1) (respectively, (2)) in Lemma 3.2, we have that $\mathrm{pd}_{\Lambda} M<\infty$ if and only if $\mathrm{pd}_{\Lambda} M_{n}<\infty$ (respectively, $\mathrm{pd}_{\Lambda} M_{0}<\infty$).
(2) If $\operatorname{pd}_{\Lambda} M=\infty$, then all syzygies appear in Lemma 3.2 are non-zero. If $\operatorname{pd}_{\Lambda} M<\infty$, then the syzygies appear there might be zero.

The following observation is standard.
Lemma 3.4. Let

$$
0 \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow M \rightarrow 0
$$

be an exact sequence in $\bmod \Lambda$. If $\operatorname{pd}_{\Lambda} M_{i}<\infty$ for all $0 \leq i \leq n$, then for any $l \geq 0$, we have

$$
\operatorname{pd}_{\Lambda} \Omega_{\Lambda}^{l}(M) \leq \operatorname{pd}_{\Lambda}\left(\Omega_{\Lambda}^{l}\left(\oplus_{i=0}^{n} M_{i}\right)\right)+n
$$

Proof. By the proof of Lemma 3.2(1), we have $\operatorname{pd}_{\Lambda}(M) \leq \operatorname{pd}_{\Lambda}\left(\oplus_{i=0}^{n} M_{i}\right)+n$. So the assertion follows.

Now we are in a position to prove the main result.
Theorem 3.5. Let

$$
0=I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}
$$

be a chain of ideals of Λ such that $\left(I_{i+1} / I_{i}\right) \operatorname{rad}\left(\Lambda / I_{i}\right)=0$ for any $0 \leq i \leq n-1$ and Λ / I_{n} is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite projective dimension, then the finitistic dimension conjecture holds for Λ.

Proof. Let $M \in \bmod \Lambda$ with $\operatorname{pd}_{\Lambda} M<\infty$. By Lemma 3.1, there exists an exact sequence

$$
0 \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow M \rightarrow 0
$$

in $\bmod \Lambda$, where $M_{i} \in \operatorname{add}_{\Lambda} \Lambda / I_{i}$ for any $0 \leq i \leq n$. Set $K_{i}:=\operatorname{Im}\left(M_{i} \rightarrow M_{i-1}\right)$ for any $1 \leq i \leq n-1, K_{n}:=M_{n}$ and $K_{0}:=M$. Then by the construction in the proof of Lemma 3.1 we have the following facts: (i) Each M_{i} is a projective Λ / I_{i}-module; (ii) each K_{i} is a Λ / I_{i} module; (iii) if $\mathrm{pd}_{\Lambda} I_{i}=\infty$, then $\mathrm{pd}_{\Lambda} M_{i}$ could be ∞; (iv) if $\mathrm{pd}_{\Lambda} M_{i}=\infty$, then at least one of the following are true: $\mathrm{pd}_{\Lambda} K_{i}=\infty$ or $\mathrm{pd}_{\Lambda} K_{i+1}=\infty$.

We will discuss the situation separately.
(1) If $\operatorname{pd}_{\Lambda} I_{i}<\infty$ for all $0 \leq i \leq n$, then $\operatorname{pd}_{\Lambda} M_{i} \leq \operatorname{pd}_{\Lambda} \Lambda / I_{i}<\infty$ for all $0 \leq i \leq n$. It follows from Lemma 3.4 that

$$
\operatorname{pd}_{\Lambda} M \leq \operatorname{pd}_{\Lambda}\left(\oplus_{i=0}^{n} M_{i}\right)+n \leq \operatorname{pd}_{\Lambda}\left(\oplus_{i=0}^{n} \Lambda / I_{i}\right)+n<\infty
$$

and fin. $\operatorname{dim} \Lambda \leq \operatorname{pd}_{\Lambda}\left(\oplus_{i=0}^{n} \Lambda / I_{i}\right)+n<\infty$.
(2) If there is some integer s with $1 \leq s \leq n$ such that $\operatorname{pd}_{\Lambda} I_{s}=\infty$ and $\operatorname{pd}_{\Lambda} I_{i}<\infty$ for all $1 \leq i \leq n$ but $i \neq s$, then $\operatorname{pd}_{\Lambda} M_{i} \leq \operatorname{pd}_{\Lambda} \Lambda / I_{i}<\infty$ for all $0 \leq i \leq n$ but $i \neq s$. Since $\operatorname{pd}_{\Lambda} M<\infty$, we have $\operatorname{pd}_{\Lambda} M_{s}<\infty$; that is, we have $\operatorname{pd}_{\Lambda} M_{i}<\infty$ for all $0 \leq i \leq n$. Note that $M_{i} \in \operatorname{add}_{\Lambda} \Lambda / I_{i}$ for any $0 \leq i \leq n$. Thus, we have

$$
\begin{aligned}
\operatorname{pd}_{\Lambda} M & \leq \operatorname{pd}_{\Lambda}\left(\oplus_{i=0}^{n} M_{i}\right)+n \quad(\text { by Lemma } 3.4) \\
& =\psi\left(\oplus_{i=0}^{n} M_{i}\right)+n \quad(\text { by Lemma } 2.1(1)) \\
& \leq \psi\left(\oplus_{i=0}^{n} \Lambda / I_{i}\right)+n \quad(\text { by Lemma } 2.1(2)(3))
\end{aligned}
$$

and fin. $\operatorname{dim} \Lambda \leq \psi\left(\oplus_{i=0}^{n} \Lambda / I_{i}\right)+n$.
(3) If there is some integer s with $1 \leq s<n$ such that $\mathrm{pd}_{\Lambda} I_{s}=\infty, \mathrm{pd}_{\Lambda} I_{s+1}=\infty$ and $\operatorname{pd}_{\Lambda} I_{i}<\infty$ for all $1 \leq i \leq n$ but $i \neq s, s+1$, then $\operatorname{pd}_{\Lambda} M_{i} \leq \operatorname{pd}_{\Lambda} \Lambda / I_{i}<\infty$ for all $0 \leq i \leq n$ but $i \neq s, s+1$.

By Lemma 3.2(1) and the exactness of the following sequence

$$
0 \rightarrow K_{s} \rightarrow M_{s-1} \rightarrow \cdots \rightarrow M_{1} \rightarrow M_{0} \rightarrow M \rightarrow 0
$$

we have

$$
\begin{equation*}
\Omega_{\Lambda}^{s+m_{1}}(M) \oplus P_{1} \cong \Omega_{\Lambda}^{m_{1}}\left(K_{s}\right) \oplus Q_{1} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
m_{1} & :=\max \left\{\operatorname{pd}_{\Lambda} \Lambda / I_{0}, \operatorname{pd}_{\Lambda} \Lambda / I_{1}, \cdots, \operatorname{pd}_{\Lambda} \Lambda / I_{s-1}\right\} \\
& \geq \max \left\{\operatorname{pd}_{\Lambda} M_{0}, \operatorname{pd}_{\Lambda} M_{1}, \cdots, \operatorname{pd}_{\Lambda} M_{s-1}\right\}
\end{aligned}
$$

and P_{1}, Q_{1} are projective in $\bmod \Lambda$.
Consider the following exact sequence

$$
0 \rightarrow M_{n} \rightarrow M_{n-1} \rightarrow \cdots \rightarrow M_{s+1} \rightarrow K_{s+1} \rightarrow 0
$$

By Lemma 3.2(2), we have

$$
\begin{equation*}
\Omega_{\Lambda}^{n-(s+2)+m_{2}+1}\left(K_{s+1}\right) \oplus P_{2} \cong \Omega_{\Lambda}^{n-(s+2)+m_{2}+1}\left(M_{s+1}\right) \oplus Q_{2}, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
m_{2} & :=\max \left\{\operatorname{pd}_{\Lambda} \Lambda / I_{s+2}, \operatorname{pd}_{\Lambda} \Lambda / I_{s+3}, \cdots, \operatorname{pd}_{\Lambda} \Lambda / I_{n}\right\} \\
& \geq \max \left\{\operatorname{pd}_{\Lambda} M_{s+2}, \operatorname{pd}_{\Lambda} M_{s+3}, \cdots, \operatorname{pd}_{\Lambda} M_{n}\right\}
\end{aligned}
$$

and P_{2}, Q_{2} are projective in $\bmod \Lambda$. Set $r_{1}:=\max \left\{s+m_{1}, n-(s+2)+m_{2}+1\right\}+1$. By (3.2) and (3.3), we have

$$
\begin{equation*}
\Omega_{\Lambda}^{r_{1}}(M) \cong \Omega_{\Lambda}^{r_{1}-s}\left(K_{s}\right) \text { and } \Omega_{\Lambda}^{r_{1}}\left(K_{s+1}\right) \cong \Omega_{\Lambda}^{r_{1}}\left(M_{s+1}\right) . \tag{3.4}
\end{equation*}
$$

Consider the following exact sequence

$$
0 \longrightarrow K_{s+1} \longrightarrow M_{s} \longrightarrow K_{s} \rightarrow 0
$$

By the horseshoe lemma, we have

$$
\begin{equation*}
0 \longrightarrow \Omega_{\Lambda}^{r_{1}}\left(K_{s+1}\right) \longrightarrow \Omega_{\Lambda}^{r_{1}}\left(M_{s}\right) \oplus P \longrightarrow \Omega_{\Lambda}^{r_{1}}\left(K_{s}\right) \longrightarrow 0 \tag{3.5}
\end{equation*}
$$

where P is projective in $\bmod \Lambda$. Moreover, from (3.4) and (3.5) we obtain the following exact sequence

$$
0 \longrightarrow \Omega_{\Lambda}^{r_{1}}\left(M_{s+1}\right) \longrightarrow \Omega_{\Lambda}^{r_{1}}\left(M_{s}\right) \oplus P \longrightarrow \Omega_{\Lambda}^{r_{1}+s}(M) \longrightarrow 0
$$

Thus,

$$
\begin{aligned}
\operatorname{pd}_{\Lambda} M & \leq \operatorname{pd}_{\Lambda} \Omega_{\Lambda}^{r_{1}+s}(M)+r_{1}+s \\
& \leq \psi\left(\Omega_{\Lambda}^{r_{1}}\left(M_{s+1}\right) \oplus \Omega_{\Lambda}^{r_{1}}\left(M_{s}\right) \oplus P\right)+1+r_{1}+s \quad(\text { by Lemma 2.1(5) }) \\
& \leq \psi\left(\Omega_{\Lambda}^{r_{1}}\left(\Lambda / I_{s+1}\right) \oplus \Omega_{\Lambda}^{r_{1}}\left(\Lambda / I_{s}\right)\right)+1+r_{1}+s,
\end{aligned}
$$

where the last inequality follows from Lemma 2.1(3)(4) and the fact that $M_{s} \in \operatorname{add}_{\Lambda} \Lambda / I_{s}$ and $M_{s+1} \in \operatorname{add}_{\Lambda} \Lambda / I_{s+1}$. Therefore,

$$
\text { fin. } \operatorname{dim} \Lambda \leq \psi\left(\Omega_{\Lambda}^{r_{1}}\left(\Lambda / I_{s+1}\right) \oplus \Omega_{\Lambda}^{r_{1}}\left(\Lambda / I_{s}\right)\right)+1+r_{1}+s<\infty
$$

The proof is finished.
Finally, we give an example to illustrate Theorem 3.5.
EXAMPLE 3.6. Let k be an algebraically closed field and $\Lambda=k Q / I$, where Q the quiver

and I is generated by $\left\{\alpha_{1}^{2}, \alpha_{2} \alpha_{1}, \alpha_{3} \beta_{1}-\alpha_{3} \beta_{2}, \alpha_{6} \alpha_{5}\right\}$. It is straightforward to verify that $L L(\Lambda)=6, \operatorname{pd}_{\Lambda} \operatorname{rad}(\Lambda)=\infty, \operatorname{pd}_{\Lambda} \operatorname{rad}^{2}(\Lambda)=\infty$ and $\operatorname{pd}_{\Lambda} \operatorname{rad}^{i}(\Lambda)<\infty$ for any $3 \leq i \leq 5$. So fin. $\operatorname{dim} \Lambda<\infty$ by Theorem 3.5.

Acknowledgements. This research was partially supported by NSFC (Grant Nos. 11971225 , 12001508) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referee for very useful suggestions.

REFERENCES

1. H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
2. A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Memoirs of the American Mathematical Society, vol. 188 (American Mathematical Society, Providence, RI, 2007).
3. S. M. Fernandes, M. Lanzilotta and O. Mendoza, The Φ-dimension: a new homological measure, Algebr. Represent. Theory 18 (2015), 463-476.
4. M. A. Gatica, M. Lanzilotta and M. I. Platzeck, Idempotent ideals and the Igusa-Todorov functions, Algebr. Represent. Theory 20 (2017), 275-287.
5. E. L. Green and B. Zimmermann-Huisgen, Finitistic dimension of artinian rings with vanishing radical cube, Math. Z. 206 (1991), 505-526.
6. Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169.
7. Z. Y. Huang and J. X. Sun, Endomorphism algebras and Igusa-Todorov algebras, Acta Math. Hungar. 140 (2013), 60-70.
8. F. Huard and M. Lanzilotta, Self-injective right artinian rings and Igusa-Todorov functions, Algebr. Reprenent Theory 16 (2013), 765-770.
9. F. Huard, M. Lanzilotta and O. Mendoza, An approach to the finitistic dimension conjecture, J. Algebra 319 (2008), 3918-3934.
10. F. Huard, M. Lanzilotta and O. Mendoza, Finitistic dimension through infinite projective dimension, Bull. London Math. Soc. 41 (2009), 367-376.
11. K. Igusa and G. Todorov, On the finitistic global dimension conjecture for artin algebras, Representations of Algebras and Related Topics, Fields Institute Communications, vol. 45 (American Mathematical Society, Providence, RI, 2005), 201-204.
12. M. Lanzilotta, E. N. Marcos and G. Mata, Igusa-Todorov functions for radical square zero algebras, J. Algebra 487 (2017), 357-385.
13. M. Lanzilotta and G. Mata, Igusa-Todorov functions for artin algebras, J. Pure Appl. Algebra 222 (2018), 202-212.
14. M. Lanzilotta and O. Mendoza, Relative Igusa-Todorov functions and relative homological dimensions, Algebr. Represent. Theory 20 (2017), 765-802.
15. C. X. Wang and C. C. Xi, Finitistic dimension conjecture and radical-power extensions, J. Pure Appl. Algebra 221 (2016), 832-846.
16. Y. Wang, A note on the finitistic dimension conjecture, Comm. Algebra 22 (1994), 2525-2528.
17. J. Q. Wei, Finitistic dimension and Igusa-Todorov algebras, Adv. Math. 222 (2009), 2215-2226.
18. J. Q. Wei, Finitistic dimension conjecture and conditions on ideals, Forum Math. 23 (2011), 549-564.
19. C. C. Xi, On the finitistic dimension conjecture I: related to representation-finite algebras, J. Pure Appl. Algebra 193 (2004), 287-305; and Erratum, J. Pure Appl. Algebra 202 (2005), 325-328.
20. C. C. Xi, On the finitistic dimension conjecture II: related to finite global dimension, $A d v$. Math. 201 (2006), 116-142.
21. C. C. Xi, Some new advances in finitistic dimension conjecture (in Chinese), Adv. Math. (China) 36 (2007), 13-17.
22. C. C. Xi, On the finitistic dimension conjecture III: related to $e A e \subseteq A$, J. Algebra 319 (2008), 3666-3688.
23. D. M. Xu, Generalized Igusa-Todorov function and finitistic dimensions, Arch. Math. 100 (2013), 309-322.
24. K. Yamagata, Frobenius algebras, in Handbook of algebra, Handbook of Algebra, vol. 1, (Elsevier/North-Holland, Amsterdam, 1996), 841-887.
25. A. P. Zhang and S. H. Zhang, Subalgebras and finitistic dimensions of artin algebras, Acta Math. Sin. English. Ser. 31 (2011), 2033-2040.
26. B. Zimmerman-Huisgen, The finitistic dimension conjectures-a tale of 3.5 decades, in Abelian groups and modules (Padova, 1994), Mathematics and Its Applications, vol. 343 (Kluwer Academic Publishers, Dordrecht, 1995), 501-517.
