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Abstract. Let R be an arbitrary ring. We introduce and study a generalization of
injective and flat complexes of modules, called weak injective and weak flat complexes
of modules respectively. We show that a complex C is weak injective (resp. weak flat)
if and only if C is exact and all cycles of C are weak injective (resp. weak flat) as
R-modules. In addition, we discuss the weak injective and weak flat dimensions of
complexes of modules. Finally, we show that the category of weak injective (resp. weak
flat) complexes is closed under pure subcomplexes, pure epimorphic images and direct
limits. As a result, we then determine the existence of weak injective (resp. weak flat)
covers and preenvelopes of complexes.
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1. Introduction. Throughout this paper, R denotes an associative ring with a
unit, Mod R (resp. Mod Rop) denotes the category of left (resp. right) R-modules and
C (resp. C op) denotes the abelian category of complexes of left (resp. right) R-modules.
A complex

· · · −→ C2
δC

2−→ C1
δC

1−→ C0
δC

0−→ C−1
δC
−1−→ · · ·

in C (or C op) is denoted by (C, δ) or C. The nth cycle and boundary of C are denoted
by Zn(C) = Ker δC

n and Bn(C) = Im δC
n+1 respectively; and C is exact if Zn(C) = Bn(C)

for any n ∈ �, where � is the additive group of integers. General background materials
are referred to [10, 11, 15, 22].

As one of important abelian categories, the category of complexes of modules has
been studied by many authors (see, for example [1, 4, 9–11, 15, 23]), and many results
of the category of modules have been generalized to the category of complexes of
modules. As we know, injective and flat complexes play important roles in the study
of the category of complexes of modules, and a complex C is injective (resp. flat) if
and only if C is exact and Zm(C) is injective (resp. flat) as an R-module for any m ∈ �.
In [21, 23], Liu et al. introduced the notion of FP-injective complexes. They obtained
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many nice characterizations of them over coherent rings, and they showed that some
properties of injective complexes have counterparts for FP-injective complexes. More
recently, we introduced and investigated in [12,14] weak injective and weak flat modules,
and generalized many results from coherent rings to arbitrary rings. In this process,
finitely presented modules are replaced by super finitely presented modules. Following
the above philosophy, it is natural to extend the notions of weak injective and weak flat
modules to those of complexes, and then establish the relationship between the weak
injectivity (resp. weak flatness) of a complex and that of its cycles.

In this paper, we introduce the notions of weak injective and weak flat complexes
and show that some properties of injective and flat complexes have counterparts for
weak injective and weak flat complexes respectively, and there exists a close link between
the weak injective dimensions and weak flat dimensions of complexes. We also study
the existence of weak injective and weak flat covers and preenvelopes of complexes.
This paper is organized as follows.

In Section 2, we collect some notations and preliminary results.
In Section 3, we introduce the notions of weak injective and weak flat complexes.

We show that a complex C is weak flat (resp. weak injective) if and only if C+ is weak
injective (resp. weak flat), where C+ stands for the character complex of C. Then we
get that a complex C in C is weak injective if and only if C is exact and Zm(C) is weak
injective in Mod R for any m ∈ �; a complex C in C op is weak flat if and only if C is
exact and Zm(C) is weak flat in Mod Rop for any m ∈ �.

In Section 4, we introduce and study the weak injective dimension wid C and the
weak flat dimension wfd C of a complex C. For a complex C in C , we prove that wid C ≤
n if and only if C is exact and widR Zm(C) (the weak injective dimension of Zm(C) in
Mod R) ≤ n for any m ∈ �. Dually, for a complex C in C op, we have that wfd C ≤ n if
and only if C is exact and wfdRop Zm(C) (the weak flat dimension of Zm(C) in Mod Rop)
≤ n for any m ∈ �. As a consequence, we get that if C is an exact complex in C (resp.
C op), then wid C = sup{widR Zm(C) | m ∈ �} (resp. wfd C = sup{wfdRop Zm(C) | m ∈
�}). Moreover, for a complex C, we prove that wid C = wfd C+ and wfd C = wid C+.

In Section 5, we show that the category of weak injective complexes and the
category of weak flat complexes are closed under pure subcomplexes, pure epimorphic
images and direct limits. As a consequence, we get that any complex has a weak injective
(resp. weak flat) cover and a weak injective (resp. weak flat) preenvelope.

2. Preliminaries. In this paper, we use the superscripts to distinguish complexes
and the subscripts for a complex. For example, if {Ci}i∈I is a family of complexes in C ,
then Ci

n denotes the degree-n term of the complex Ci. Given an R-module M, we use
M to denote the complex

· · · −→ 0 −→ M
id−→ M −→ 0 −→ · · ·

with the M in the 1st and 0th positions; and we denote by Sn(M) the complex with M
in the nth place and 0 in the other places. Given a complex C in C and an integer m,
C[m] denotes the complex such that C[m]n = C−m+n and whose boundary operators
are (−1)mδC

−m+n.
For complexes C and D in C , Hom(C, D) is the abelian group of morphisms from

C to D in the category of complexes, and Exti(C, D) for i ≥ 1 will denote the groups we
get from the right derived functor of Hom. Let H om(C, D) be the complex of abelian
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groups

· · · δn+1−→
∏

i∈�

HomR(Ci, Dn+i)
δn−→

∏

i∈�

HomR(Ci, Dn−1+i)
δn−1−→ · · ·

such that if f ∈ H om(C, D)n, then

(δnf )m = δD
n+mfm − (−1)nfm−1δ

C
m .

Let Hom(C, D) = Z(H om(C, D)). Then Hom(C, D) can be made into a complex
with Hom(C, D)n the abelian group of morphisms from C to D[n] and with
a boundary operator given by δn(f ) : C → D[n − 1], where f ∈ Hom(C, D)n and
(δnf )m = (−1)nδDfm for any m ∈ �. Note that the new functor Hom(C, D) will have
right derived functors whose values will be complexes. These values are denoted by
Exti(C, D). One easily sees that Exti(C, D) is the complex

· · · → Exti(C, D[n + 1]) → Exti(C, D[n]) → Exti(C, D[n − 1]) → · · ·

with boundary operator induced by the boundary operator of D. For any complex C,
the character complex C+ = Hom(C, �/�), where � is the additive group of rational
numbers.

For any D ∈ C op and C ∈ C , let D ⊗· C be the usual tensor product of the
complexes. We define D ⊗ C to be D⊗·C

B(D⊗·C) with the maps

(D ⊗· C)n

Bn(D ⊗· C)
→ (D ⊗· C)n−1

Bn−1(D ⊗· C)
, x ⊗ y �→ δD(x) ⊗ y,

where x ⊗ y is used to denote the coset in (D⊗·C)n
Bn(D⊗·C) . In this way, we get a complex of

abelian groups. It is obvious that the new functor − ⊗ C is a right exact functor, so we
can construct the corresponding left derived functor Tori(−, C).

Recall from [10] that a complex C is called finitely generated if, in case C =∑
i∈I Di with Di ∈ C subcomplexes of C, there exists a finite subset J ⊆ I such that

C = ∑
i∈J Di; and a complex C is called finitely presented if C is finitely generated and

for any exact sequence of complexes

0 → K → L → C → 0

with L finitely generated, K is also finitely generated. A complex C is called bounded
above (resp. bounded below, bounded) [4] if there exists an n ∈ � such that Ci = 0 for
i < n (resp. i > n, |i| ≥ n). By [10, Lemma 2.2], a complex C in C is finitely generated
(resp. finitely presented) if and only if C is bounded and Cn is finitely generated (resp.
finitely presented) in Mod R for any n ∈ �.

A complex P is called projective [11] if for any morphism P → D and any
epimorphism C → D, the diagram

P

��
C �� D
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can be completed to a commutative diagram by a morphism P → C. Dually, the notion
of injective complexes is defined. Also a complex C in C is projective (resp. injective) if
and only if C is exact and Zm(C) is projective (resp. injective) in Mod R for any m ∈ �.

Following [8], for any subcategory F of an abelian category A , a morphism
f : F → M in A with F ∈ F is called an F -precover of M if for any morphism
g : F0 → M in A with F0 ∈ F , there exists a morphism h : F0 → F such that the
following diagram commutes:

F0

g

��

h

���
�

�
�

F
f �� M.

The morphism f : F → M is called right minimal if an endomorphism h : F → F is
an automorphism whenever f = f h. An F -precover f : F → M is called an F -cover
if f is right minimal. The category F is called a (pre)covering subcategory in A if
every object in A has an F -(pre)cover. Dually, the notions of F -(pre)envelopes, left
minimal morphisms and (pre)enveloping subcategories are defined.

Recall from [13] that a left R-module M is called super finitely presented if there
exists an exact sequence:

· · · → Pn → · · · → P1 → P0 → M → 0

in Mod R with each Pi finitely generated projective. Note that the super finitely
presented modules are also called strongly finitely presented in [17], or FP∞ in [3,5,18].
A left R-module M (resp. right R-module N) is called weak injective (resp. weak
flat) if Ext1

R(F, M) = 0 (resp. TorR
1 (N, F) = 0) for any super finitely presented left

R-module F . The weak injective dimension of M, denoted by widR M, is defined as
inf{n | Extn+1

R (F, M) = 0 for any super finitely presented left R-module F}. If no such
n exists, set widR M = ∞. The weak flat dimension wfdRop N of N is defined dually.

3. Weak injective and weak flat complexes. In this section, we give a treatment of
weak injective and weak flat complexes. It is showed that some properties of injective
and flat complexes have counterparts for weak injective and weak flat complexes
respectively.

DEFINITION 3.1. A complex C is called super finitely presented if there exists an
exact sequence of complexes of R-modules

· · · → Pn → · · · → P1 → P0 → C → 0

with each Pi finitely generated projective.

From the definition, it follows that every super finitely presented complex is finitely
presented.

PROPOSITION 3.2. The following statements are equivalent for a complex C in C .

(1) C is super finitely presented.
(2) C is bounded and Cm is super finitely presented in Mod R for any m ∈ �.
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(3) There exists an exact sequence

0 → K → P → C → 0

in C with P finitely generated projective and K super finitely presented.
(4) For every exact sequence

0 → K → P → C → 0

in C with P finitely generated projective (assume that the set of such sequences is not
empty), K is super finitely presented.

Proof. (2) ⇒ (1) Let C be the complex

C := · · · → 0 → Cn → Cn−1 → · · · → Cl → 0 → · · ·

in C with each Ci a super finitely presented left R-module. For each m, there exists an
exact sequence

P0
m

∂0
m→ Cm → 0

in Mod R with P0
m finitely generated projective. Then we have the following

commutative diagram:

P0 : 0 �� P0
n

��

∂0
n

��

P0
n ⊕ P0

n−1
��

(dC
n ∂0

n , ∂0
n−1)

��

· · · �� P0
l+1 ⊕ P0

l

(dC
l+1∂0

l+1, ∂0
l )

��

�� P0
l

0

��

�� 0

C : 0 �� Cn
dC

n �� Cn−1

dC
n−1 �� · · · dC

l+1 �� Cl �� 0 �� 0

in C , where P0 is a finitely generated projective complex. Set K1 = Ker(P0 → C).
Then K1 is bounded and K1

m is super finitely presented in Mod R for any m ∈ � by [18,
Lemma 2.3]. By repeating this process, we obtain an exact sequence

· · · → Pn → Pn−1 → · · · → P0 → C → 0

in C with each Pi finitely generated projective. Thus C is super finitely presented.
(4) ⇒ (3) ⇒ (1) ⇒ (2) are trivial. From the equivalence between (1) and (2), it is

easy to get (2) ⇒ (4). �
We now introduce the notions of weak injective and weak flat complexes as follows.

DEFINITION 3.3. A complex C in C is called weak injective if Ext1(F, C) = 0 for
any super finitely presented complex F in C . A complex D in C op is called weak flat if
Tor1(D, F) = 0 for any super finitely presented complex F in C .

REMARK 3.4.

(1) Because every super finitely presented complex is finitely presented, every
FP-injective (resp. flat) complex is weak injective (resp. weak flat). When R
is left coherent, the category of super finitely presented complexes coincides
with that of finitely presented complexes by Proposition 3.2, so a complex
is weak injective (resp. weak flat) if and only if it is FP-injective (resp. flat).
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(2) By definition, one easily checks that the category of weak injective complexes
is closed under extensions, direct products and direct summands; and the
category of weak flat complexes is closed under extensions, direct sums and
direct summands.

PROPOSITION 3.5. The category of weak injective complexes is closed under direct
sums.

Proof. Let {Ci}i∈I be a family of weak injective complexes and F a super finitely
presented complex in C . Then there exists an exact sequence 0 → K → P → F → 0
in C with P finitely generated projective and K super finitely presented by Proposition
3.2. By [23, Lemma 2.8], we have the following commutative diagram with exact
rows:

0 �� Hom(F,
⊕

i∈I Ci) ��

∼=��

Hom(P,
⊕

i∈I Ci) ��

∼=��

Hom(K,
⊕

i∈I Ci)
∼=��

0 �� ⊕
i∈I HomR(F, Ci) �� ⊕

i∈I HomR(P, Ci) �� ⊕
i∈I HomR(K, Ci) �� 0.

Because Ext1(P,
⊕

i∈I Ci) = 0, we have that Ext1(F,
⊕

i∈I Ci) = 0 and
⊕

i∈I Ci is weak
injective. �

The following result shows that there exists a dual between weak injective
complexes in C and weak flat complexes in C op.

PROPOSITION 3.6.

(1) A complex C in C is weak flat if and only if C+ is weak injective in C op.
(2) A complex C in C is weak injective if and only if C+ is weak flat in C op.

Proof.

(1) By [15, Lemma 5.4.2], we have that Ext1(G, C+) ∼= Tor1(G, C)+ for any
complex C in C and any complex G in C op. So the assertion follows.

(2) Let F be a super finitely presented complex in C . Then there exists an exact
sequence 0 → K → P → F → 0 in C with P finitely generated projective
and K super finitely presented. Consider the commutative diagram with
exact rows:

0 �� Tor1(C+, F) ��

��

C+ ⊗ K ��

θK��

C+ ⊗ P
θP��

0 �� Ext1(F, C)+ �� Hom(K, C)+ �� Hom(P, C)+.

Since θK and θP are isomorphisms by [9, Lemma 2.3], we have Ext1(F, C)+ ∼=
Tor1(C+, F). Thus the desired result follows.

�
PROPOSITION 3.7.

(1) If C is a weak injective left R-module, then C[n] is a weak injective complex.
(2) If D is a weak flat right R-module, then D[n] is a weak flat complex.
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Proof.

(1) We will show that Ext1(F, C[n]) = 0 for any super finitely presented complex
F in C . Let

0 −→ C −→ X
β−→ Fn −→ 0

be an exact sequence in Mod R with Fn super finitely presented. By the factor
theorem ([2, Theorem 3.6(2)]), we have the following commutative diagram:

Fn+2
θ

��� � � �
δF

n+2��
0 �� Ker δF

n+1 λ
�� Fn+1,

where λ is the inclusion. Consider the pullback of X
β−→ Fn and Fn+1

δF
n+1−→ Fn:

0

��

0

��
Ker δF

n+1

γ

��

Ker δF
n+1

λ
��

0 �� C
αn+1 �� D

u ��

v
��

Fn+1

δF
n+1��

�� 0

0 �� C
αn �� X

β �� Fn �� 0.

Then we get the following commutative diagram

...

��

...

��

...

��
0 �� 0

��

�� Fn+3

δF
n+3

��

id �� Fn+3

δF
n+3

��

�� 0

0 �� 0

��

�� Fn+2

γ θ

��

id �� Fn+2

δF
n+2

��

�� 0

0 �� C
αn+1 �� D

v

��

u �� Fn+1

δF
n+1

��

�� 0

0 �� C
αn ��

��

X

δF
n β

��

β �� Fn

δF
n

��

�� 0

0 �� 0 ��

��

Fn−1

δF
n−1

��

id �� Fn−1

δF
n−1

��

�� 0

0 �� 0 ��

��

Fn−2

��

id �� Fn−2

��

�� 0

...
...

...
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and a complex

H := · · · → Fn+3 → Fn+2 → D → X → Fn−1 → · · · .

Thus we obtain an exact sequence

0 −→ C[n]
α−→ H −→ F −→ 0 (3.1)

in C . By Proposition 3.2, Fn is a super finitely presented left R-module. Since C is
weak injective, we have Ext1

R(Fn, C) = 0. So the exact sequence

0 −→ C
αn−→ X −→ Fn −→ 0

in Mod R splits, and there exists an R-homomorphism fn : X → C such that fnαn =
1C . Now define fn+1 : D → C by fn+1 = fnv and fi = 0 for i �= n, n + 1. Then we get
a morphism of complexes f : H → C[n] such that f α = 1C[n], so the sequence (3.1)
splits. It follows that Ext1(F, C[n]) = 0 for any super finitely presented complex F
in C , as desired.

(2) Let D be a weak flat right R-module. Then D+ is weak injective in Mod R by
[14, Remark 2.2(2)], and so D+[n] is a weak injective complex in C by (1). One
easily sees that D+[n] ∼= D[n]+, and it follows that D[n] is weak flat in C op by
Proposition 3.6(1). The desired assertion follows.

�
LEMMA 3.8. The following statements are equivalent for a complex C in C .

(1) C is a weak injective complex.
(2) Cn is weak injective in Mod R for any n ∈ � and H om(F, C) is exact for any super

finitely presented complex F in C .
(3) For any exact sequence

0 → Q → X → F → 0

in C with F super finitely presented, the functor Hom(−, C) preserves the exactness.

Proof. (1) ⇒ (2) Let G be a super finitely presented left R-module. Then there
exists an exact sequence

0 → N → P0 → G → 0

in Mod R with P0 finitely generated projective and N super finitely presented. So

0 → N → P0 → G → 0

is exact in C , where G is a super finitely presented complex. Let C be a weak injective
complex in C . Then, by [9, Proposition 2.1], we have the following commutative
diagram with the upper row exact:

0 �� Hom(G, C) ��

∼=
��

Hom(P0, C) ��

∼=
��

Hom(N, C) ��

∼=
��

0

0 �� HomR(G, C)[1] �� HomR(P0, C)[1] �� HomR(N, C)[1].
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So

0 → HomR(G, C) → HomR(P0, C) → HomR(N, C) → 0

is exact, which gives the exactness of

0 → HomR(G, Cn) → HomR(P0, Cn) → HomR(N, Cn) → 0

for any n ∈ �. Since Ext1
R(P0, Cn) = 0, we have that Ext1

R(G, Cn) = 0 and Cn is weak
injective.

Now let F be a super finitely presented complex and f : F → C[i] any morphism
in C . Then, for any i ∈ �, there exists a split exact sequence

0 → C[i] → M(f ) → F [1] → 0

in C , where M(f ) is the mapping cone of f . Thus f is homotopic to 0 by
[15, Lemma 2.3.2]. It follows that H om(F, C) is exact, as desired.

(2) ⇒ (1) Let

0 → C → H → F → 0

be an exact sequence in C with F super finitely presented. Since each Ci is weak injective
by (2), this exact sequence splits at the module level and it is isomorphic to

0 → C → M(f ) → F → 0,

where f : F [−1] → C is a map of complexes. Since H om(F, C) is exact by (2), f is
homotopic to 0. It follows that

0 → C → M(f ) → F → 0

is a split exact sequence in C by [15, Lemma 2.3.2]. Therefore Ext1(F, C) = 0 and C is
weak injective.

(1) ⇒ (3) is trivial.
(3) ⇒ (1) Let F be any super finitely presented complex in C . Then there exists an

exact sequence

0 → Q → P → F → 0

in C with P finitely generated projective. Applying Hom(−, C) to it we get the exactness
of

Hom(P, C) → Hom(Q, C) → Ext1(F, C) → 0

But the sequence

Hom(P, C) → Hom(Q, C) → 0

is exact by (3). Consequently Ext1(F, C) = 0 and C is weak injective. �
We are now in the position to give our main result.
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THEOREM 3.9. The following statements are equivalent for a complex C in C .

(1) C is weak injective.
(2) C is exact and Zm(C) is weak injective in Mod R for any m ∈ �.

Proof. (1) ⇒ (2) Let C be a weak injective complex in C . Then Ext1(Sn(R), C) =
0 since Sn(R) is super finitely presented for any n ∈ �. Because H−n+1(C) =
Ext1(Sn(R), C) for any n ∈ � (see [15, p.33]), it follows that C is exact. Next we will
show that Ext1(F, Zm(C)) = 0 for any super finitely presented left R-module F and
m ∈ �.

Let F be a super finitely presented left R-module and

0 → Q → P → F → 0 (3.2)

be an exact sequence in Mod R with P finitely generated projective. It induces an exact
sequence

0 → Sn(Q) → Sn(P) → Sn(F) → 0

in C . Then Ext1(Sn(F), C) = 0 by assumption. So we have the exactness of

Hom(Sn(P), C) → Hom(Sn(Q), C) → 0. (3.3)

Now let f : Q → Zn(C) be an R-module homomorphism. Consider the following
diagram with exact row:

Q

f
��

0 �� Zn(C) i �� Cn �� Zn−1(C) �� 0

in Mod R. Define αn : Q → Cn by αn = if and αj = 0 for j �= n. Then we obtain a
morphism α : Sn(Q) → C in C . Because the sequence (3.3) is exact, one easily gets the
commutative diagram:

Q
f

����������
��

αn

��

P
βn

���
�

�
�

0 �� Zn(C) i �� Cn
δC

n �� Cn−1

in Mod R. It is clear that δC
n βn = 0, and so Im βn ⊆ Ker δC

n = Zn(C). Thus we can
define a morphism g : P → Zn(C) by g = βn. Consequently, the sequence

HomR(P, Zn(C)) → HomR(Q, Zn(C)) → 0

is exact. On the other hand, applying HomR(−, Zn(C)) to the sequence (3.2), we have
the exactness of

HomR(P, Zn(C)) → HomR(Q, Zn(C)) → Ext1
R(F, Zn(C)) → 0.

It follows that Ext1
R(F, Zn(C)) = 0 and Zn(C) is weak injective.



WEAK INJECTIVE AND WEAK FLAT COMPLEXES 549

(2) ⇒ (1) Because C is exact by (2), for any n ∈ � we have an exact sequence

0 → Zn(C) → Cn → Zn−1(C) → 0

in Mod R. Since both Zn(C) and Zn−1(C) are weak injective, Cn is weak injective. Now,
by Lemma 3.8, it suffices to prove that H om(G, C) is exact for any super finitely
presented complex G in C .

Let G be super finitely presented in C . Then G is bounded by Proposition 3.2, and
we may suppose

G := · · · −→ 0 −→ Gn
δG

n−→ Gn−1
δG

n−1−→ · · · δG
2−→ G1

δG
1−→ G0 −→ 0 −→ · · · .

Since H om(G, C) is a complex of abelian groups with

H om(G, C) := · · · δn+1−→
∏

t∈�

HomR(Gt, Cn+t)
δn−→

∏

t∈�

HomR(Gt, Cn−1+t)
δn−1−→ · · · ,

it follows that Im δn ⊆ Ker δn−1 for any n ∈ �. So we only need to show that Ker δn−1 ⊆
Im δn.

Let f ∈ Ker δn−1. Then δn−1(f ) = (δC
n−1+tft − (−1)n−1ft−1δ

G
t )t∈� = 0. Next we will

construct a morphism

g ∈ H omC (G, C)n =
∏

t∈�

HomR(Gt, Cn+t),

such that δn(g) = (δC
n+tgt − (−1)ngt−1δ

G
t )t∈� = (ft)t∈� = f.

Notice that ft = 0 for t ≤ −1, so we take gt = 0 if t ≤ −1.
If t = 0, then δC

n−1f0 = 0. It follows that Im f0 ⊆ Ker δC
n−1 = Im δC

n . Since Zn(C)
is weak injective and G0 is super finitely presented in Mod R, there exists a
homomorphism g0 : G0 → Cn in Mod R such that f0 = δC

n g0. If t = 1, then we have

δC
n (f1 − (−1)n−1g0δ

G
1 ) = δC

n f1 − (−1)n−1δC
n g0δ

G
1 = δC

n f1 − (−1)n−1f0δ
G
1 = 0,

and so

Im(f1 − (−1)n−1g0δ
G
1 ) ⊆ Ker δC

n = Im δC
n+1.

Put h1 = f1 − (−1)n−1g0δ
G
1 . Since Zn+1(C) is weak injective and G1 is super finitely

presented in Mod R, there exists a homomorphism g1: G1 → Cn+1 in Mod R such that
h1 = δC

n+1g1. Thus

f1 = h1 − (−1)ng0δ
G
1 = δC

n+1g1 − (−1)ng0δ
G
1 .

Continuing this process, one can easily deduce that

ft = δC
n+tgt − (−1)ngt−1δ

G
t for t = 2, 3, . . ..

Therefore f = (ft)t∈� = δn(g) ∈ Im δn. Consequently Ker δn−1 ⊆ Im δn. The proof is
finished. �

Similar to the proof of [10, Theorem 2.4], we have the following
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THEOREM 3.10. The following statements are equivalent for a complex D in C op.

(1) D is a weak flat complex.
(2) D is exact and Zi(D) is weak flat in ModRop for any i ∈ �.
(3) D+ is a weak injective complex in C , where

D+ := · · · → (Di−2)+ → (Di−1)+ → (Di)+ → · · · .

4. Weak injective and weak flat dimensions of complexes . In this section, we
introduce and investigate weak injective and weak flat dimensions of complexes. Some
known results in [15] are generalized. We also show that there exists a close link between
the weak injective dimensions and the weak flat dimensions of complexes.

DEFINITION 4.1.

(1) The weak injective dimension of a complex C in C , written as wid C, is
defined as inf{n | there exists an exact sequence

0 → C → E0 → E1 → · · · → En → 0

in C with each Ei weak injective}. If no such n exists, set wid C = ∞.
(2) The weak flat dimension of a complex D in C op, written as wfd D, is defined as

inf{n | there exists an exact sequence

0 → Fn → · · · → F1 → F0 → D → 0

in C op with each Fi weak flat}. If no such n exists, set wfd C = ∞.

Garcı́a Rozas proved in [15, Theorem 3.1.3] that for any complex C in C , the
injective dimension of C in C is at most n if and only if C is exact and the injective
dimension of Zm(C) in Mod R is at most n for any m ∈ �. The following theorem
generalizes this result.

THEOREM 4.2. Let C be a complex in C . Then the following statements are equivalent.

(1) wid C ≤ n.
(2) C is exact and widR Zm(C) ≤ n for any m ∈ �.

Proof. (1) ⇒ (2) Assume that wid C ≤ n and

0 → C → E0 → E1 → · · · → En → 0

is a weak injective resolution of C in C . By Theorem 3.9, each Ei is an exact complex.
Thus we easily deduce that C is exact by [19, Theorem 6.3]. On the other hand, for any
m ∈ �, we have the following exact sequence

0 → Zm(C) → Zm(E0) → Zm(E1) → · · · → Zm(En) → 0

in Mod R. By Theorem 3.9, each Zm(Ei) is weak injective. Therefore widR Zm(C) ≤ n
for any m ∈ �.

(2) ⇒ (1) Let

0 → C → E0 → E1 → · · · → En−1 → Ln → 0
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be an exact sequence in C with each Ei weak injective. We only need to show that Ln

is weak injective. Consider the following exact sequence:

0 → Zm(C) → Zm(E0) → · · · → Zm(En−1) → Zm(Ln) → 0

in Mod R. Because widR Zm(C) ≤ n and each Zm(Ei) is weak injective by Theorem 3.9,
we have Zm(Ln) is weak injective. Because C and all Ei are exact, one easily gets that
Ln is exact by [19, Theorem 6.3]. Consequently, Ln is a weak injective complex by
Theorem 3.9 again, and the assertion follows. �

For any complex D in C op, it is known that the flat dimension of D in C op is at
most n if and only if D is exact and the flat dimension of Zm(D) in Mod Rop is at most
n for any m ∈ � (see [15, Lemma 5.4.1]). By a dual argument to that in Theorem 4.2,
we get the following

THEOREM 4.3. Let D be a complex in C op. Then the following statements are
equivalent.

(1) wfd D ≤ n.
(2) D is exact and wfdRop Zm(D) ≤ n for any m ∈ �.

As an application of Theorems 4.2 and 4.3, we have the following

COROLLARY 4.4. Let C (resp. D) be an exact complex in C (resp. C op). Then we
have

(1) wid C = sup{widR Zm(C) | m ∈ �}.
(2) wfd D = sup{wfdRop Zm(D) | m ∈ �}.

Proof. The assertions follows from Theorems 4.2 and 4.3 respectively with standard
arguments. �

Similar to the proofs of [14, Propositions 3.1, 3.3 and 3.4], we get the following
two results.

PROPOSITION 4.5. For a complex C in C , the following conditions are equivalent.

(1) wid C ≤ n.
(2) Extn+1(F, C) = 0 for any super finitely presented complex F in C .
(3) Extn+i(F, C) = 0 for any super finitely presented complex F in C and i ≥ 1.

PROPOSITION 4.6. For a complex D in C op, the following conditions are equivalent.

(1) wfd D ≤ n.
(2) Torn+1(D, F) = 0 for any super finitely presented complex F in C .
(3) Torn+i(D, F) = 0 for any super finitely presented complex F in C and i ≥ 1.
We finish this section with the following theorem, which illustrates that there exists a close
link between the weak injective and the weak flat dimension of complexes.

THEOREM 4.7. For a complex C in C (or C op), we have

(1) wid C = wfd C+.
(2) wfd C = wid C+.
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Proof.

(1) Let F be a super finitely presented complex in C . There exists an exact
sequence

0 → K → P0 → F → 0

in C with P0 finitely generated projective and K super finitely presented by
Proposition 3.2. For any i ≥ 1, we have the following commutative diagram with
exact rows:

0 �� Exti+1(F, C)+ ��

��

Exti(K, C)+ ��

θK��

Exti(P0, C)+ = 0

0 �� Tori+1(C+, F) �� Tori(C+, K) �� Tori(C+, P0) = 0

By Proposition 3.6(2), θK is an isomorphism for i = 1. Thus Ext2(F, C)+ ∼=
Tor2(C+, F) by the five lemma. By using induction, we get that Exti+1(F, C)+ ∼=
Tori+1(C+, F) for any super finitely presented complex F in C , and so (1) holds
true.

(2) It is dual to (1).
�

5. Weak injective covers and preenvelopes of complexes. In this section, we show
that any complex has a weak injective (resp. weak flat) cover and preenvelope.

Recall from [15] that an exact sequence

0 → S → C → C/S → 0

in C is called pure if

Hom(P, C) → Hom(P, C/S) → 0

is exact for any finitely presented complex P in C , or equivalently, if

0 → D ⊗ S → D ⊗ C

is exact for any (finitely presented) complex D in C . In this case, S and C/S are called
a pure subcomplex and a pure epimorphic image of C respectively.

PROPOSITION 5.1. The category of weak injective complexes and the category of weak
flat complexes are closed under pure subcomplexes, pure epimorphic images and direct
limits.

Proof. Let B be a pure subcomplex of a weak injective complex C and

0 → B → C → C/B → 0

a pure exact sequence in C . Then for any super finitely presented complex F in C , we
get the exactness of

0 → Hom(F, B) → Hom(F, C) → Hom(F, C/B) → 0.
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It follows that Ext1(F, B) = 0 since Ext1(F, C) = 0. Therefore B is weak injective. On
the other hand, one can easily conclude that C/B is also weak injective by Proposition
4.5, and hence the category of weak injective complexes is closed under pure epimorphic
images.

Let {Ci}i∈I be a direct system of weak injective complexes and let F be a super
finitely presented complex in C . Then there exists an exact sequence

0 → K → P → F → 0

in C with P finitely generated projective and K super finitely presented. Consider the
following commutative diagram with exact rows:

Hom(P, lim−→ Ci) ��

∼=
��

Hom(K, lim−→ Ci) ��

∼=
��

Ext1(F, lim−→ Ci)

��

�� 0

lim−→ Hom(P, Ci) �� lim−→ Hom(K, Ci) �� lim−→ Ext1(F, Ci) �� 0.

Because C is locally finitely generated in the sense of [20], we have that
Hom(P, lim−→ Ci) ∼= lim−→ Hom(P, Ci) and Hom(K, lim−→ Ci) ∼= lim−→ Hom(K, Ci) by [20,

Chapter V, Proposition 3.4]. Consequently we have that Ext1(F, lim−→ Ci) ∼=
lim−→ Ext1(F, Ci) = 0 and lim−→ Ci is weak injective.

Now suppose that A is a pure subcomplex of a weak flat complex C in C op. Then
there exists a pure exact sequence

0 → A → C → C/A → 0

in C op, which induces a split exact sequence

0 → (C/A)+ → C+ → A+ → 0 (5.1)

in C . By Proposition 3.6(1), C+ is weak injective. Because the sequence (5.1) splits,
(C/A)+ is a direct summand of C+, and so it is weak injective. Thus C/A is weak flat
by Theorem 3.10. Therefore the category of weak flat complexes is closed under pure
epimorphic images.

Let {Di}i∈I be a direct system of weak flat complexes in C op and F a super finitely
presented complex in C . Then there exists an exact sequence

0 → L → P → F → 0

in C with P finitely generated projective and L super finitely presented. By [15,
Proposition 4.2.1], we obtain the commutative diagram with exact rows:

0 �� Tor1(lim−→ Di, F) ��

��

(lim−→ Di) ⊗ L ��

∼=��

(lim−→ Di) ⊗ P

∼=��
0 �� lim−→ Tor1(Di, F) �� lim−→(Di ⊗ L) �� lim−→(Di ⊗ P)

It follows that Tor1(lim−→ Di, F) ∼= lim−→ Tor1(Di, F) = 0, and so lim−→ Di is weak flat. �
Recall from [7] that a category D is called finitely accessible (or locally finitely

presented in [6]) if it has direct limits, the class of finitely presented objects is skeletally
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small, and every object is a direct limit of finitely presented objects. It was showed in
[7] that if D is a finitely accessible category and B is a class of objects of D closed
under direct limits and pure epimorphic images, then B is a covering; if D is a finitely
accessible additive category with products and B is a class of objects of D closed under
products and pure subobjects, then B is a preenveloping class.

We now are in a position to prove the following

THEOREM 5.2.

(1) Any complex in C has a weak injective cover.
(2) Any complex in C op has a weak flat cover.

Proof.

(1) By [9, Lemma 2.2], any complex is a direct limit of finitely presented
complexes. It is easy to see that C is finitely accessible. Because the category
of weak injective complexes is closed under direct limits and pure epimorphic
images by Proposition 5.1, it follows from [7, Theorem 2.6] that any complex
in C has a weak injective cover.

(2) It is dual to (1).
�

For a complex C, its cardinality is defined to be |∐n∈� Cn| in [16].

THEOREM 5.3.

(1) Any complex in C op has a weak flat preenvelope.
(2) Any complex in C has a weak injective preenvelope.

Proof.

(1) The proof is modelled on that of [15, Theorem 5.2.2].
Because any direct product of weak flat modules is weak flat by [14, Theorem
2.13], it follows that a direct product of weak flat complexes is also a weak
flat complex since it is exact and the kernels of the boundary operators are
weak flat.
Let C be a complex in C op and Nβ be an infinite
cardinal number such that Card(C) · Card(R) ≤ Nβ . Set Y =
{D | D is a weak flat complex in C op and Card(D) ≤ Nβ}. Let {Di}i∈I

be a family of representatives of this class with the index set I . Let
Hi = Hom(C, Di) for any i ∈ I , and let F = ∏

DHi
i . Then F is a weak flat

complex in C op. Define ϕ : C → F such that the composition of ϕ with the
projective map F → DHi

i maps x ∈ Fk to (hk(x))h∈Hi . Then it is easy to see
that ϕ : C → F is a map of complexes. We claim that ϕ : C → F is a weak
flat preenvelope. Now let ϕ

′
: C → G with G a weak flat complex. By [15,

Lemma 5.2.1], the subcomplex ϕ
′
(C) can be enlarged to a pure subcomplex

G
′ ⊆ G with Card(G

′
) ≤ Nβ . Note that G

′
is weak flat by Proposition 5.1.

So G
′

is isomorphic to one of the Di. By the construction of the map ϕ,
one easily sees that ϕ

′
can be factored through ϕ. Consequently, the first

assertion follows.
(2) It is dual to (1).

�
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REMARK 5.4. From the proof of Theorem 5.3, it follows that the category of
weak flat complexes is closed under direct products. Note that the category of weak
injective complexes is closed under direct products by Remark 3.4(2). We can also
obtain Theorem 5.3 directly from [7, Theorem 4.1] because the category of weak
injective complexes and the category of weak flat complexes are closed under pure
subcomplexes by Proposition 5.1.

PROPOSITION 5.5. Let C be a complex in C .

(1) If f : G → C is a weak injective precover in C , then fn: Gn → Cn is a weak injective
precover in Mod R for any n ∈ �.

(2) If g: C → D is a weak injective preenvelope in C , then gn : Cn → Dn is a weak
injective preenvelope in Mod R for any n ∈ �.

Proof.

(1) Let E be a weak injective left R-module and h : E → Cn be an R-module
homomorphism. Define a morphism h : E[n − 1] → C in C as follows:

0 �� 0 ��

��

E
id ��

h
��

E ��

δC
n h

��

0 ��

��

· · ·

0 �� Cn+1 �� Cn �� Cn−1 �� Cn−2 �� · · · .

Since E[n − 1] is a weak injective complex by Proposition 3.7, and since f : G → C
is a weak injective precover of C in C by assumption, there exists a morphism α :
E[n − 1] → G in C such that f α = h. So we have a commutative diagram:

E
αn

���
�

�
�

h
��

Gn fn

�� Cn

in Mod R. This means that fn: Gn → Cn is a weak injective precover of Cn in Mod R.
(2) Let F be a weak injective left R-module and β: Cn → F an R-homomorphism. Define

a morphism β: C → F [n] in C as follows:

0 �� Cn+2 ��

��

Cn+1 ��

βδC
n+1

��

Cn ��

β

��

Cn−1 ��

��

· · ·

0 �� 0 �� F
id �� F �� 0 �� · · · .

Because F [n] is a weak injective complex by Proposition 3.7, and since g: C → D is
a weak injective preenvelope of C in C by assumption, there exists a morphism γ :
D → F [n] in C such that γg = β. So we have a commutative diagram:

Cn

β

��

gn �� Dn

γn���
�

�
�

F

in Mod R. This shows that gn: Cn → Dn is a weak injective preenvelope of Cn

in Mod R. �
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Dually, we have the following

PROPOSITION 5.6. Let C be a complex in C op.

(1) If f : G → C is a weak flat precover in C op, then fn : Gn → Cn is a weak flat precover
in ModRop for any n ∈ �.

(2) If g : C → D is a weak flat preenvelope in C op, then gn : Cn → Dn is a weak flat
preenvelope in ModRop for any n ∈ �.

In the following result, we give some equivalent characterizations for RR being
weak injective in terms of the properties of weak injective and weak flat complexes.

THEOREM 5.7. The following statements are equivalent.

(1) RR is weak injective.
(2) Every injective complex in C op is weak flat.
(3) Every flat complex in C is weak injective.
(4) Every complex in C op has a monic weak flat preenvelope.
(5) Every complex in C has an epic weak injective cover.

Proof. (1) ⇒ (2) Let C be an injective complex in C op. Then C is exact and Zm(C)
is an injective right R-module for any m ∈ �. Since RR is weak injective, Zm(C) is a
weak flat right R-module by [14, Proposition 2.17]. Thus C is weak flat by Theorem
3.10.

(2) ⇒ (1) Let M be an injective right R-module. Then M is an injective complex
in C op, and hence M is a weak flat complex by (2). It follows that M is a weak flat right
R-module. Then RR is weak injective by [14, Proposition 2.17].

(1) ⇔ (3) It is dual to (1) ⇔ (2).
(1) ⇒ (4) Since RR is weak injective, every injective right R-module is weak flat

by [14, Proposition 2.17]. Thus every injective complex in C op is weak flat, and so (4)
follows.

(4) ⇒ (2) Let I be an injective complex in C op. By (4), there exists an exact sequence

0 → I → F → N → 0

in C op with I → F a weak flat preenvelope of I . The sequence is split since I is injective.
Thus I is weak flat as a direct summand of F by Remark 3.4(2).

(1) ⇒ (5) Let C be a complex in C . Then, by Theorem 5.2, C has a weak injective
cover f : E → C in C . On the other hand, there exists an exact sequence

F → C → 0

in C with F free. Then F ∼= ⊕
n∈� R

(Xn)
[n]. Since RR is weak injective by (1), we have

that R
(Xn)

[n] is weak injective, and so f is an epimorphism.
(5) ⇒ (1) Let E → R be an epic weak injective cover of R in C . Then RR is

isomorphic to a direct summand of a weak injective left R-module E0, and so RR is
weak injective by [14, Proposition 2.3]. �
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17. R. Göbel and J. Trlifaj, Approximations and endomorphism algebras of modules, de

Gruyter Expositions in Mathematics, vol. 41, 2nd revised and extended edition (Walter de
Gruyter GmbH & Co. KG, Berlin–Boston, 2012).

18. L. Hummel and T. Marley, The Auslander-Bridger formula and the Gorenstein property
for coherent rings, J. Commut. Algebra 1 (2009), 283–314.

19. J. J. Rotman, An Introduction to Homological Algebra (Academic Press, New York,
1979).

20. B. Stenström, Rings of quotients (Springer-Verlag, New York, 1975).
21. Z. P. Wang and Z. K. Liu, FP-injective complexes and FP-injective dimension of

complexes, J. Aust. Math. Soc. 91 (2011), 163–187.
22. C. Weibel, An introduction to homological algebra, CSAM, vol. 38 (Cambridge

University Press, Cambridge, 1994).
23. X. Y. Yang and Z. K. Liu, FP-injective complexes, Comm. Algebra 38 (2010), 131–142.


