WEAK INJECTIVE AND WEAK FLAT COMPLEXES

ZENGHUI GAO
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China
College of Mathematics, Chengdu University of Information Technology, Chengdu 610225,
Sichuan Province, P.R. China
e-mail: gaozenghui@cuit.edu.cn

and ZHAOYONG HUANG
Department of Mathematics, Nanjing University, Nanjing 210093,
Jiangsu Province, P.R. China
e-mail: huangzy@nju.edu.cn

(Received 29 July 2014; revised 27 October 2014; accepted 17 December 2014; first published online 21 July 2015)

Abstract

Let R be an arbitrary ring. We introduce and study a generalization of injective and flat complexes of modules, called weak injective and weak flat complexes of modules respectively. We show that a complex C is weak injective (resp. weak flat) if and only if C is exact and all cycles of C are weak injective (resp. weak flat) as R-modules. In addition, we discuss the weak injective and weak flat dimensions of complexes of modules. Finally, we show that the category of weak injective (resp. weak flat) complexes is closed under pure subcomplexes, pure epimorphic images and direct limits. As a result, we then determine the existence of weak injective (resp. weak flat) covers and preenvelopes of complexes.

2010 Mathematics Subject Classification. 18G35, 18G15, 18G20.

1. Introduction. Throughout this paper, R denotes an associative ring with a unit, $\operatorname{Mod} R\left(\right.$ resp. $\left.\operatorname{Mod} R^{o p}\right)$ denotes the category of left (resp. right) R-modules and \mathscr{C} (resp. $\mathscr{C}^{o p}$) denotes the abelian category of complexes of left (resp. right) R-modules. A complex

$$
\cdots \longrightarrow C_{2} \xrightarrow{\delta_{c}^{C}} C_{1} \xrightarrow{\delta_{1}^{c}} C_{0} \xrightarrow{\delta_{0}^{c}} C_{-1} \xrightarrow{\delta_{-1}^{C}} \cdots
$$

in $\mathscr{C}\left(\right.$ or $\left.\mathscr{C}^{o p}\right)$ is denoted by (C, δ) or C. The nth cycle and boundary of C are denoted by $Z_{n}(C)=\operatorname{Ker} \delta_{n}^{C}$ and $B_{n}(C)=\operatorname{Im} \delta_{n+1}^{C}$ respectively; and C is exact if $Z_{n}(C)=B_{n}(C)$ for any $n \in \mathbb{Z}$, where \mathbb{Z} is the additive group of integers. General background materials are referred to $[\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 5}, \mathbf{2 2}]$.

As one of important abelian categories, the category of complexes of modules has been studied by many authors (see, for example $[\mathbf{1 , 4 , 9 - 1 1 , 1 5 , 2 3]}$), and many results of the category of modules have been generalized to the category of complexes of modules. As we know, injective and flat complexes play important roles in the study of the category of complexes of modules, and a complex C is injective (resp. flat) if and only if C is exact and $Z_{m}(C)$ is injective (resp. flat) as an R-module for any $m \in \mathbb{Z}$. In $[\mathbf{2 1}, \mathbf{2 3}]$, Liu et al. introduced the notion of FP-injective complexes. They obtained
many nice characterizations of them over coherent rings, and they showed that some properties of injective complexes have counterparts for FP-injective complexes. More recently, we introduced and investigated in $[\mathbf{1 2 , 1 4}]$ weak injective and weak flat modules, and generalized many results from coherent rings to arbitrary rings. In this process, finitely presented modules are replaced by super finitely presented modules. Following the above philosophy, it is natural to extend the notions of weak injective and weak flat modules to those of complexes, and then establish the relationship between the weak injectivity (resp. weak flatness) of a complex and that of its cycles.

In this paper, we introduce the notions of weak injective and weak flat complexes and show that some properties of injective and flat complexes have counterparts for weak injective and weak flat complexes respectively, and there exists a close link between the weak injective dimensions and weak flat dimensions of complexes. We also study the existence of weak injective and weak flat covers and preenvelopes of complexes. This paper is organized as follows.

In Section 2, we collect some notations and preliminary results.
In Section 3, we introduce the notions of weak injective and weak flat complexes. We show that a complex C is weak flat (resp. weak injective) if and only if C^{+}is weak injective (resp. weak flat), where C^{+}stands for the character complex of C. Then we get that a complex C in \mathscr{C} is weak injective if and only if C is exact and $Z_{m}(C)$ is weak injective in $\operatorname{Mod} R$ for any $m \in \mathbb{Z}$; a complex C in $\mathscr{C}^{o p}$ is weak flat if and only if C is exact and $Z_{m}(C)$ is weak flat in $\operatorname{Mod} R^{o p}$ for any $m \in \mathbb{Z}$.

In Section 4, we introduce and study the weak injective dimension wid C and the weak flat dimension wfd C of a complex C. For a complex C in \mathscr{C}, we prove that wid $C \leq$ n if and only if C is exact and wid $_{R} Z_{m}(C)$ (the weak injective dimension of $Z_{m}(C)$ in $\operatorname{Mod} R) \leq n$ for any $m \in \mathbb{Z}$. Dually, for a complex C in $\mathscr{C}^{o p}$, we have that wfd $C \leq n$ if and only if C is exact and $\operatorname{wfd}_{R^{o p}} Z_{m}(C)$ (the weak flat dimension of $Z_{m}(C)$ in $\operatorname{Mod} R^{o p}$) $\leq n$ for any $m \in \mathbb{Z}$. As a consequence, we get that if C is an exact complex in \mathscr{C} (resp. $\left.\mathscr{C}^{o p}\right)$, then $\operatorname{wid} C=\sup \left\{\operatorname{wid}_{R} Z_{m}(C) \mid m \in \mathbb{Z}\right\}\left(\right.$ resp. $\operatorname{wfd} C=\sup \left\{\operatorname{wfd}_{R^{o p}} Z_{m}(C) \mid m \in\right.$ $\mathbb{Z}\}$). Moreover, for a complex C, we prove that wid $C=\operatorname{wfd} C^{+}$and wfd $C=\operatorname{wid} C^{+}$.

In Section 5, we show that the category of weak injective complexes and the category of weak flat complexes are closed under pure subcomplexes, pure epimorphic images and direct limits. As a consequence, we get that any complex has a weak injective (resp. weak flat) cover and a weak injective (resp. weak flat) preenvelope.
2. Preliminaries. In this paper, we use the superscripts to distinguish complexes and the subscripts for a complex. For example, if $\left\{C^{i}\right\}_{i \in I}$ is a family of complexes in \mathscr{C}, then C_{n}^{i} denotes the degree- n term of the complex C^{i}. Given an R-module M, we use \bar{M} to denote the complex

$$
\cdots \longrightarrow 0 \longrightarrow M \xrightarrow{\mathrm{id}} M \longrightarrow 0 \longrightarrow \cdots
$$

with the M in the 1st and 0th positions; and we denote by $S^{n}(M)$ the complex with M in the nth place and 0 in the other places. Given a complex C in \mathscr{C} and an integer m, $C[m]$ denotes the complex such that $C[m]_{n}=C_{-m+n}$ and whose boundary operators are $(-1)^{m} \delta_{-m+n}^{C}$.

For complexes C and D in $\mathscr{C}, \operatorname{Hom}(C, D)$ is the abelian group of morphisms from C to D in the category of complexes, and $\operatorname{Ext}^{i}(C, D)$ for $i \geq 1$ will denote the groups we get from the right derived functor of Hom. Let $\mathscr{H} \mathrm{om}(C, D)$ be the complex of abelian
groups

$$
\cdots \xrightarrow{\delta_{n+1}} \prod_{i \in \mathbb{Z}} \operatorname{Hom}_{R}\left(C_{i}, D_{n+i}\right) \xrightarrow{\delta_{n}} \prod_{i \in \mathbb{Z}} \operatorname{Hom}_{R}\left(C_{i}, D_{n-1+i}\right) \xrightarrow{\delta_{n-1}} \cdots
$$

such that if $f \in \mathscr{H} \circ \mathrm{om}(C, D)_{n}$, then

$$
\left(\delta_{n} f\right)_{m}=\delta_{n+m}^{D} f_{m}-(-1)^{n} f_{m-1} \delta_{m}^{C}
$$

Let $\underline{\operatorname{Hom}}(C, D)=Z(\mathscr{H} \mathrm{om}(C, D))$. Then $\underline{\operatorname{Hom}(C, D) \text { can be made into a complex }}$ with $\underline{\operatorname{Hom}}(C, D)_{n}$ the abelian group of morphisms from C to $D[n]$ and with a boundary operator given by $\delta_{n}(f): C \rightarrow D[n-1]$, where $f \in \operatorname{Hom}(C, D)_{n}$ and $\left(\delta_{n} f\right)_{m}=(-1)^{n} \delta^{D} f_{m}$ for any $m \in \mathbb{Z}$. Note that the new functor Hom (C, D) will have right derived functors whose values will be complexes. These values are denoted by $\underline{\operatorname{Ext}^{i}}(C, D)$. One easily sees that $\underline{\operatorname{Ext}^{i}}(C, D)$ is the complex

$$
\cdots \rightarrow \operatorname{Ext}^{i}(C, D[n+1]) \rightarrow \operatorname{Ext}^{i}(C, D[n]) \rightarrow \operatorname{Ext}^{i}(C, D[n-1]) \rightarrow \cdots
$$

with boundary operator induced by the boundary operator of D. For any complex C, the character complex $C^{+}=\underline{\operatorname{Hom}}(C, \overline{\mathbb{Q} / \mathbb{Z}})$, where \mathbb{Q} is the additive group of rational numbers.

For any $D \in \mathscr{C}^{o p}$ and $C \in \mathscr{C}$, let $D \otimes C$ be the usual tensor product of the complexes. We define $D \otimes C$ to be $\frac{D \otimes C}{B(D \otimes C)}$ with the maps

$$
\frac{(D \otimes C)_{n}}{B_{n}(D \otimes C)} \rightarrow \frac{(D \otimes C)_{n-1}}{B_{n-1}(D \otimes \cdot C)}, \quad x \otimes y \mapsto \delta^{D}(x) \otimes y
$$

where $x \otimes y$ is used to denote the coset in $\frac{(D \otimes C)_{n}}{B_{n}(D \otimes \cdot C)}$. In this way, we get a complex of abelian groups. It is obvious that the new functor $-\otimes C$ is a right exact functor, so we can construct the corresponding left derived functor $\operatorname{Tor}_{i}(-, C)$.

Recall from [10] that a complex C is called finitely generated if, in case $C=$ $\sum_{i \in I} D_{i}$ with $D_{i} \in \mathscr{C}$ subcomplexes of C, there exists a finite subset $J \subseteq I$ such that $C=\sum_{i \in J} D_{i}$; and a complex C is called finitely presented if C is finitely generated and for any exact sequence of complexes

$$
0 \rightarrow K \rightarrow L \rightarrow C \rightarrow 0
$$

with L finitely generated, K is also finitely generated. A complex C is called bounded above (resp. bounded below, bounded) [4] if there exists an $n \in \mathbb{Z}$ such that $C_{i}=0$ for $i<n$ (resp. $i>n,|i| \geq n$). By [10, Lemma 2.2], a complex C in \mathscr{C} is finitely generated (resp. finitely presented) if and only if C is bounded and C_{n} is finitely generated (resp. finitely presented) in $\operatorname{Mod} R$ for any $n \in \mathbb{Z}$.

A complex P is called projective [11] if for any morphism $P \rightarrow D$ and any epimorphism $C \rightarrow D$, the diagram

can be completed to a commutative diagram by a morphism $P \rightarrow C$. Dually, the notion of injective complexes is defined. Also a complex C in \mathscr{C} is projective (resp. injective) if and only if C is exact and $Z_{m}(C)$ is projective (resp. injective) in $\operatorname{Mod} R$ for any $m \in \mathbb{Z}$.

Following [8], for any subcategory \mathscr{F} of an abelian category \mathscr{A}, a morphism $f: F \rightarrow M$ in \mathscr{A} with $F \in \mathscr{F}$ is called an \mathscr{F}-precover of M if for any morphism $g: F_{0} \rightarrow M$ in \mathscr{A} with $F_{0} \in \mathscr{F}$, there exists a morphism $h: F_{0} \rightarrow F$ such that the following diagram commutes:

The morphism $f: F \rightarrow M$ is called right minimal if an endomorphism $h: F \rightarrow F$ is an automorphism whenever $f=f h$. An \mathscr{F}-precover $f: F \rightarrow M$ is called an \mathscr{F}-cover if f is right minimal. The category \mathscr{F} is called a (pre) covering subcategory in \mathscr{A} if every object in \mathscr{A} has an \mathscr{F}-(pre)cover. Dually, the notions of \mathscr{F}-(pre)envelopes, left minimal morphisms and (pre)enveloping subcategories are defined.

Recall from [13] that a left R-module M is called super finitely presented if there exists an exact sequence:

$$
\cdots \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

in $\operatorname{Mod} R$ with each P_{i} finitely generated projective. Note that the super finitely presented modules are also called strongly finitely presented in [17], or $F P_{\infty}$ in $[\mathbf{3 , 5}, \mathbf{1 8}]$. A left R-module M (resp. right R-module N) is called weak injective (resp. weak flat) if $\operatorname{Ext}_{R}^{1}(F, M)=0$ (resp. $\operatorname{Tor}_{1}^{R}(N, F)=0$) for any super finitely presented left R-module F. The weak injective dimension of M, denoted by $\operatorname{wid}_{R} M$, is defined as $\inf \left\{n \mid \operatorname{Ext}_{R}^{n+1}(F, M)=0\right.$ for any super finitely presented left R-module $\left.F\right\}$. If no such n exists, set $\operatorname{wid}_{R} M=\infty$. The weak flat dimension $\operatorname{wfd}_{R^{o p}} N$ of N is defined dually.
3. Weak injective and weak flat complexes. In this section, we give a treatment of weak injective and weak flat complexes. It is showed that some properties of injective and flat complexes have counterparts for weak injective and weak flat complexes respectively.

Definition 3.1. A complex C is called super finitely presented if there exists an exact sequence of complexes of R-modules

$$
\cdots \rightarrow P^{n} \rightarrow \cdots \rightarrow P^{1} \rightarrow P^{0} \rightarrow C \rightarrow 0
$$

with each P^{i} finitely generated projective.
From the definition, it follows that every super finitely presented complex is finitely presented.

Proposition 3.2. The following statements are equivalent for a complex C in \mathscr{C}.
(1) C is super finitely presented.
(2) C is bounded and C_{m} is super finitely presented in $\operatorname{Mod} R$ for any $m \in \mathbb{Z}$.
(3) There exists an exact sequence

$$
0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0
$$

in \mathscr{C} with P finitely generated projective and K super finitely presented.
(4) For every exact sequence

$$
0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0
$$

in \mathscr{C} with P finitely generated projective (assume that the set of such sequences is not empty), K is super finitely presented.

Proof. (2) \Rightarrow (1) Let C be the complex

$$
C:=\cdots \rightarrow 0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{l} \rightarrow 0 \rightarrow \cdots
$$

in \mathscr{C} with each C_{i} a super finitely presented left R-module. For each m, there exists an exact sequence

$$
P_{m}^{0} \xrightarrow{\partial_{m}^{0}} C_{m} \rightarrow 0
$$

in $\operatorname{Mod} R$ with P_{m}^{0} finitely generated projective. Then we have the following commutative diagram:

in \mathscr{C}, where P^{0} is a finitely generated projective complex. Set $K^{1}=\operatorname{Ker}\left(P^{0} \rightarrow C\right)$. Then K^{1} is bounded and K_{m}^{1} is super finitely presented in $\operatorname{Mod} R$ for any $m \in \mathbb{Z}$ by $[\mathbf{1 8}$, Lemma 2.3]. By repeating this process, we obtain an exact sequence

$$
\cdots \rightarrow P^{n} \rightarrow P^{n-1} \rightarrow \cdots \rightarrow P^{0} \rightarrow C \rightarrow 0
$$

in \mathscr{C} with each P^{i} finitely generated projective. Thus C is super finitely presented.
(4) $\Rightarrow(3) \Rightarrow(1) \Rightarrow(2)$ are trivial. From the equivalence between (1) and (2), it is easy to get (2) \Rightarrow (4).

We now introduce the notions of weak injective and weak flat complexes as follows.
Definition 3.3. A complex C in \mathscr{C} is called weak injective if $\operatorname{Ext}^{1}(F, C)=0$ for any super finitely presented complex F in \mathscr{C}. A complex D in $\mathscr{C}^{o p}$ is called weak flat if $\operatorname{Tor}_{1}(D, F)=0$ for any super finitely presented complex F in \mathscr{C}.

Remark 3.4.
(1) Because every super finitely presented complex is finitely presented, every FP-injective (resp. flat) complex is weak injective (resp. weak flat). When R is left coherent, the category of super finitely presented complexes coincides with that of finitely presented complexes by Proposition 3.2, so a complex is weak injective (resp. weak flat) if and only if it is FP-injective (resp. flat).
(2) By definition, one easily checks that the category of weak injective complexes is closed under extensions, direct products and direct summands; and the category of weak flat complexes is closed under extensions, direct sums and direct summands.

Proposition 3.5. The category of weak injective complexes is closed under direct sums.

Proof. Let $\left\{C_{i}\right\}_{i \in I}$ be a family of weak injective complexes and F a super finitely presented complex in \mathscr{C}. Then there exists an exact sequence $0 \rightarrow K \rightarrow P \rightarrow F \rightarrow 0$ in \mathscr{C} with P finitely generated projective and K super finitely presented by Proposition 3.2. By [23, Lemma 2.8], we have the following commutative diagram with exact rows:

Because $\operatorname{Ext}^{1}\left(P, \bigoplus_{i \in I} C_{i}\right)=0$, we have that $\operatorname{Ext}^{1}\left(F, \bigoplus_{i \in I} C_{i}\right)=0$ and $\bigoplus_{i \in I} C_{i}$ is weak injective.

The following result shows that there exists a dual between weak injective complexes in \mathscr{C} and weak flat complexes in $\mathscr{C}^{o p}$.

Proposition 3.6.
(1) A complex C in \mathscr{C} is weak flat if and only if C^{+}is weak injective in $\mathscr{C}^{o p}$.
(2) A complex C in \mathscr{C} is weak injective if and only if C^{+}is weak flat in $\mathscr{C}^{o p}$.

Proof.
(1) By [15, Lemma 5.4.2], we have that $\operatorname{Ext}^{1}\left(G, C^{+}\right) \cong \operatorname{Tor}_{1}(G, C)^{+}$for any complex C in \mathscr{C} and any complex G in $\mathscr{C}^{o p}$. So the assertion follows.
(2) Let F be a super finitely presented complex in \mathscr{C}. Then there exists an exact sequence $0 \rightarrow K \rightarrow P \rightarrow F \rightarrow 0$ in \mathscr{C} with P finitely generated projective and K super finitely presented. Consider the commutative diagram with exact rows:

Since θ_{K} and θ_{P} are isomorphisms by [9, Lemma 2.3], we have Ext ${ }^{1}(F, C)^{+} \cong$ $\operatorname{Tor}_{1}\left(C^{+}, F\right)$. Thus the desired result follows.

Proposition 3.7.
(1) If C is a weak injective left R-module, then $\bar{C}[n]$ is a weak injective complex.
(2) If D is a weak flat right R-module, then $\bar{D}[n]$ is a weak flat complex.

Proof.

(1) We will show that $\underline{\operatorname{Ext}}^{1}(F, \bar{C}[n])=0$ for any super finitely presented complex F in \mathscr{C}. Let

$$
0 \longrightarrow C \longrightarrow X \xrightarrow{\beta} F_{n} \longrightarrow 0
$$

be an exact sequence in $\operatorname{Mod} R$ with F_{n} super finitely presented. By the factor theorem ([2, Theorem 3.6(2)]), we have the following commutative diagram:

where λ is the inclusion. Consider the pullback of $X \xrightarrow{\beta} F_{n}$ and $F_{n+1} \xrightarrow{\delta_{n+1}^{F}} F_{n}$:

Then we get the following commutative diagram

and a complex

$$
H:=\cdots \rightarrow F_{n+3} \rightarrow F_{n+2} \rightarrow D \rightarrow X \rightarrow F_{n-1} \rightarrow \cdots
$$

Thus we obtain an exact sequence

$$
\begin{equation*}
0 \longrightarrow \bar{C}[n] \xrightarrow{\alpha} H \longrightarrow F \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

in \mathscr{C}. By Proposition 3.2, F_{n} is a super finitely presented left R-module. Since C is weak injective, we have $\operatorname{Ext}_{R}^{1}\left(F_{n}, C\right)=0$. So the exact sequence

$$
0 \longrightarrow C \xrightarrow{\alpha_{n}} X \longrightarrow F_{n} \longrightarrow 0
$$

in $\operatorname{Mod} R$ splits, and there exists an R-homomorphism $f_{n}: X \rightarrow C$ such that $f_{n} \alpha_{n}=$ 1_{C}. Now define $f_{n+1}: D \rightarrow C$ by $f_{n+1}=f_{n} v$ and $f_{i}=0$ for $i \neq n, n+1$. Then we get a morphism of complexes $f: H \rightarrow \bar{C}[n]$ such that $f \alpha=1_{\bar{C}[n]}$, so the sequence (3.1) splits. It follows that $\underline{\operatorname{Ext}}^{1}(F, \bar{C}[n])=0$ for any super finitely presented complex F in \mathscr{C}, as desired.
(2) Let D be a weak flat right R-module. Then D^{+}is weak injective in $\operatorname{Mod} R$ by [14, Remark 2.2(2)], and so $\overline{D^{+}}[n]$ is a weak injective complex in \mathscr{C} by (1). One easily sees that $\overline{D^{+}}[n] \cong \bar{D}[n]^{+}$, and it follows that $\bar{D}[n]$ is weak flat in $\mathscr{C}^{o p}$ by Proposition 3.6(1). The desired assertion follows.

Lemma 3.8. The following statements are equivalent for a complex C in \mathscr{C}.
(1) C is a weak injective complex.
(2) C_{n} is weak injective in $\operatorname{Mod} R$ for any $n \in \mathbb{Z}$ and $\mathscr{H} \operatorname{Om}(F, C)$ is exact for any super finitely presented complex F in \mathscr{C}.
(3) For any exact sequence

$$
0 \rightarrow Q \rightarrow X \rightarrow F \rightarrow 0
$$

in \mathscr{C} with F super finitely presented, the functor $\underline{\operatorname{Hom}(-, C) \text { preserves the exactness. }}$
Proof. (1) \Rightarrow (2) Let G be a super finitely presented left R-module. Then there exists an exact sequence

$$
0 \rightarrow N \rightarrow P_{0} \rightarrow G \rightarrow 0
$$

in $\operatorname{Mod} R$ with P_{0} finitely generated projective and N super finitely presented. So

$$
0 \rightarrow \bar{N} \rightarrow \overline{P_{0}} \rightarrow \bar{G} \rightarrow 0
$$

is exact in \mathscr{C}, where \bar{G} is a super finitely presented complex. Let C be a weak injective complex in \mathscr{C}. Then, by [$\mathbf{9}$, Proposition 2.1], we have the following commutative diagram with the upper row exact:

So

$$
0 \rightarrow \operatorname{Hom}_{R}(G, C) \rightarrow \operatorname{Hom}_{R}\left(P_{0}, C\right) \rightarrow \operatorname{Hom}_{R}(N, C) \rightarrow 0
$$

is exact, which gives the exactness of

$$
0 \rightarrow \operatorname{Hom}_{R}\left(G, C_{n}\right) \rightarrow \operatorname{Hom}_{R}\left(P_{0}, C_{n}\right) \rightarrow \operatorname{Hom}_{R}\left(N, C_{n}\right) \rightarrow 0
$$

for any $n \in \mathbb{Z}$. Since $\operatorname{Ext}_{R}^{1}\left(P_{0}, C_{n}\right)=0$, we have that $\operatorname{Ext}_{R}^{1}\left(G, C_{n}\right)=0$ and C_{n} is weak injective.

Now let F be a super finitely presented complex and $f: F \rightarrow C[i]$ any morphism in \mathscr{C}. Then, for any $i \in \mathbb{Z}$, there exists a split exact sequence

$$
0 \rightarrow C[i] \rightarrow M(f) \rightarrow F[1] \rightarrow 0
$$

in \mathscr{C}, where $M(f)$ is the mapping cone of f. Thus f is homotopic to 0 by [15, Lemma 2.3.2]. It follows that $\mathscr{H} \mathrm{Om}(F, C)$ is exact, as desired.
(2) \Rightarrow (1) Let

$$
0 \rightarrow C \rightarrow H \rightarrow F \rightarrow 0
$$

be an exact sequence in \mathscr{C} with F super finitely presented. Since each C_{i} is weak injective by (2), this exact sequence splits at the module level and it is isomorphic to

$$
0 \rightarrow C \rightarrow M(f) \rightarrow F \rightarrow 0
$$

where $f: F[-1] \rightarrow C$ is a map of complexes. Since $\mathscr{H} \mathrm{om}(F, C)$ is exact by (2), f is homotopic to 0 . It follows that

$$
0 \rightarrow C \rightarrow M(f) \rightarrow F \rightarrow 0
$$

is a split exact sequence in \mathscr{C} by $\left[\mathbf{1 5}\right.$, Lemma 2.3.2]. Therefore $\underline{E x t}^{1}(F, C)=0$ and C is weak injective.
$(1) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (1) Let F be any super finitely presented complex in \mathscr{C}. Then there exists an exact sequence

$$
0 \rightarrow Q \rightarrow P \rightarrow F \rightarrow 0
$$

in \mathscr{C} with P finitely generated projective. Applying $\underline{\operatorname{Hom}(-, C) \text { to it we get the exactness }}$ of

$$
\underline{\operatorname{Hom}}(P, C) \rightarrow \underline{\operatorname{Hom}}(Q, C) \rightarrow \underline{\operatorname{Ext}}^{1}(F, C) \rightarrow 0
$$

But the sequence

$$
\underline{\operatorname{Hom}}(P, C) \rightarrow \underline{\operatorname{Hom}}(Q, C) \rightarrow 0
$$

is exact by (3). Consequently Ext ${ }^{1}(F, C)=0$ and C is weak injective.
We are now in the position to give our main result.

THEOREM 3.9. The following statements are equivalent for a complex C in \mathscr{C}.
(1) C is weak injective.
(2) C is exact and $Z_{m}(C)$ is weak injective in $\operatorname{Mod} R$ for any $m \in \mathbb{Z}$.

Proof. (1) \Rightarrow (2) Let C be a weak injective complex in \mathscr{C}. Then $\operatorname{Ext}^{1}\left(S^{n}(R), C\right)=$ 0 since $S^{n}(R)$ is super finitely presented for any $n \in \mathbb{Z}$. Because $H_{-n+1}(C)=$ $\operatorname{Ext}^{1}\left(S^{n}(R), C\right)$ for any $n \in \mathbb{Z}$ (see [15, p.33]), it follows that C is exact. Next we will show that $\operatorname{Ext}^{1}\left(F, Z_{m}(C)\right)=0$ for any super finitely presented left R-module F and $m \in \mathbb{Z}$.

Let F be a super finitely presented left R-module and

$$
\begin{equation*}
0 \rightarrow Q \rightarrow P \rightarrow F \rightarrow 0 \tag{3.2}
\end{equation*}
$$

be an exact sequence in $\operatorname{Mod} R$ with P finitely generated projective. It induces an exact sequence

$$
0 \rightarrow S^{n}(Q) \rightarrow S^{n}(P) \rightarrow S^{n}(F) \rightarrow 0
$$

in \mathscr{C}. Then $\underline{\operatorname{Ext}}^{1}\left(S^{n}(F), C\right)=0$ by assumption. So we have the exactness of

$$
\begin{equation*}
\underline{\operatorname{Hom}}\left(S^{n}(P), C\right) \rightarrow \underline{\operatorname{Hom}}\left(S^{n}(Q), C\right) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Now let $f: Q \rightarrow Z_{n}(C)$ be an R-module homomorphism. Consider the following diagram with exact row:

in $\operatorname{Mod} R$. Define $\alpha_{n}: Q \rightarrow C_{n}$ by $\alpha_{n}=$ if and $\alpha_{j}=0$ for $j \neq n$. Then we obtain a morphism $\alpha: S^{n}(Q) \rightarrow C$ in \mathscr{C}. Because the sequence (3.3) is exact, one easily gets the commutative diagram:

in $\operatorname{Mod} R$. It is clear that $\delta_{n}^{C} \beta_{n}=0$, and so $\operatorname{Im} \beta_{n} \subseteq \operatorname{Ker} \delta_{n}^{C}=Z_{n}(C)$. Thus we can define a morphism $g: P \rightarrow Z_{n}(C)$ by $g=\beta_{n}$. Consequently, the sequence

$$
\operatorname{Hom}_{R}\left(P, Z_{n}(C)\right) \rightarrow \operatorname{Hom}_{R}\left(Q, Z_{n}(C)\right) \rightarrow 0
$$

is exact. On the other hand, applying $\operatorname{Hom}_{R}\left(-, Z_{n}(C)\right)$ to the sequence (3.2), we have the exactness of

$$
\operatorname{Hom}_{R}\left(P, Z_{n}(C)\right) \rightarrow \operatorname{Hom}_{R}\left(Q, Z_{n}(C)\right) \rightarrow \operatorname{Ext}_{R}^{1}\left(F, Z_{n}(C)\right) \rightarrow 0
$$

It follows that $\operatorname{Ext}_{R}^{1}\left(F, Z_{n}(C)\right)=0$ and $Z_{n}(C)$ is weak injective.
(2) \Rightarrow (1) Because C is exact by (2), for any $n \in \mathbb{Z}$ we have an exact sequence

$$
0 \rightarrow Z_{n}(C) \rightarrow C_{n} \rightarrow Z_{n-1}(C) \rightarrow 0
$$

in $\operatorname{Mod} R$. Since both $Z_{n}(C)$ and $Z_{n-1}(C)$ are weak injective, C_{n} is weak injective. Now, by Lemma 3.8, it suffices to prove that $\mathscr{H} \operatorname{om}(G, C)$ is exact for any super finitely presented complex G in \mathscr{C}.

Let G be super finitely presented in \mathscr{C}. Then G is bounded by Proposition 3.2, and we may suppose

$$
G:=\cdots \longrightarrow 0 \longrightarrow G_{n} \xrightarrow{\delta_{n}^{G}} G_{n-1} \xrightarrow{\delta_{n-1}^{G}} \cdots \xrightarrow{\delta_{2}^{G}} G_{1} \xrightarrow{\delta_{1}^{G}} G_{0} \longrightarrow 0 \longrightarrow \cdots .
$$

Since $\mathscr{H} \mathrm{om}(G, C)$ is a complex of abelian groups with

$$
\mathscr{H} \operatorname{om}(G, C):=\cdots \xrightarrow{\delta_{n+1}} \prod_{t \in \mathbb{Z}} \operatorname{Hom}_{R}\left(G_{t}, C_{n+t}\right) \xrightarrow{\delta_{n}} \prod_{t \in \mathbb{Z}} \operatorname{Hom}_{R}\left(G_{t}, C_{n-1+t}\right) \xrightarrow{\delta_{n-1}} \cdots,
$$

it follows that $\operatorname{Im} \delta_{n} \subseteq \operatorname{Ker} \delta_{n-1}$ for any $n \in \mathbb{Z}$. So we only need to show that $\operatorname{Ker} \delta_{n-1} \subseteq$ $\operatorname{Im} \delta_{n}$.

Let $f \in \operatorname{Ker} \delta_{n-1}$. Then $\delta_{n-1}(f)=\left(\delta_{n-1+t}^{C} f_{t}-(-1)^{n-1} f_{t-1} \delta_{t}^{G}\right)_{t \in \mathbb{Z}}=0$. Next we will construct a morphism

$$
g \in \mathscr{H} \operatorname{om}_{\mathscr{C}}(G, C)_{n}=\prod_{t \in \mathbb{Z}} \operatorname{Hom}_{R}\left(G_{t}, C_{n+t}\right)
$$

such that $\delta_{n}(g)=\left(\delta_{n+t}^{C} g_{t}-(-1)^{n} g_{t-1} \delta_{t}^{G}\right)_{t \in \mathbb{Z}}=\left(f_{t}\right)_{t \in \mathbb{Z}}=f$.
Notice that $f_{t}=0$ for $t \leq-1$, so we take $g_{t}=0$ if $t \leq-1$.
If $t=0$, then $\delta_{n-1}^{C} f_{0}=0$. It follows that $\operatorname{Im} f_{0} \subseteq \operatorname{Ker} \delta_{n-1}^{C}=\operatorname{Im} \delta_{n}^{C}$. Since $Z_{n}(C)$ is weak injective and G_{0} is super finitely presented in $\operatorname{Mod} R$, there exists a homomorphism $g_{0}: G_{0} \rightarrow C_{n}$ in $\operatorname{Mod} R$ such that $f_{0}=\delta_{n}^{C} g_{0}$. If $t=1$, then we have

$$
\delta_{n}^{C}\left(f_{1}-(-1)^{n-1} g_{0} \delta_{1}^{G}\right)=\delta_{n}^{C} f_{1}-(-1)^{n-1} \delta_{n}^{C} g_{0} \delta_{1}^{G}=\delta_{n}^{C} f_{1}-(-1)^{n-1} f_{0} \delta_{1}^{G}=0
$$

and so

$$
\operatorname{Im}\left(f_{1}-(-1)^{n-1} g_{0} \delta_{1}^{G}\right) \subseteq \operatorname{Ker} \delta_{n}^{C}=\operatorname{Im} \delta_{n+1}^{C}
$$

Put $h_{1}=f_{1}-(-1)^{n-1} g_{0} \delta_{1}^{G}$. Since $Z_{n+1}(C)$ is weak injective and G_{1} is super finitely presented in $\operatorname{Mod} R$, there exists a homomorphism $g_{1}: G_{1} \rightarrow C_{n+1}$ in $\operatorname{Mod} R$ such that $h_{1}=\delta_{n+1}^{C} g_{1}$. Thus

$$
f_{1}=h_{1}-(-1)^{n} g_{0} \delta_{1}^{G}=\delta_{n+1}^{C} g_{1}-(-1)^{n} g_{0} \delta_{1}^{G}
$$

Continuing this process, one can easily deduce that

$$
f_{t}=\delta_{n+t}^{C} g_{t}-(-1)^{n} g_{t-1} \delta_{t}^{G} \quad \text { for } t=2,3, \ldots
$$

Therefore $f=\left(f_{t}\right)_{t \in \mathbb{Z}}=\delta_{n}(g) \in \operatorname{Im} \delta_{n}$. Consequently $\operatorname{Ker} \delta_{n-1} \subseteq \operatorname{Im} \delta_{n}$. The proof is finished.

Similar to the proof of [10, Theorem 2.4], we have the following

Theorem 3.10. The following statements are equivalent for a complex D in $\mathscr{C}^{o p}$.
(1) D is a weak flat complex.
(2) D is exact and $Z_{i}(D)$ is weak flat in $\operatorname{Mod} R^{o p}$ for any $i \in \mathbb{Z}$.
(3) D^{+}is a weak injective complex in \mathscr{C}, where

$$
D^{+}:=\cdots \rightarrow\left(D_{i-2}\right)^{+} \rightarrow\left(D_{i-1}\right)^{+} \rightarrow\left(D_{i}\right)^{+} \rightarrow \cdots
$$

4. Weak injective and weak flat dimensions of complexes . In this section, we introduce and investigate weak injective and weak flat dimensions of complexes. Some known results in [15] are generalized. We also show that there exists a close link between the weak injective dimensions and the weak flat dimensions of complexes.

Definition 4.1.

(1) The weak injective dimension of a complex C in \mathscr{C}, written as wid C, is defined as $\inf \{n \mid$ there exists an exact sequence

$$
0 \rightarrow C \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n} \rightarrow 0
$$

in \mathscr{C} with each E^{i} weak injective\}. If no such n exists, set wid $C=\infty$.
(2) The weak flat dimension of a complex D in $\mathscr{C}^{o p}$, written as $w f d$, is defined as $\inf \{n \mid$ there exists an exact sequence

$$
0 \rightarrow F^{n} \rightarrow \cdots \rightarrow F^{1} \rightarrow F^{0} \rightarrow D \rightarrow 0
$$

in $\mathscr{C}^{o p}$ with each F^{i} weak flat $\}$. If no such n exists, set wfd $C=\infty$.
García Rozas proved in [15, Theorem 3.1.3] that for any complex C in \mathscr{C}, the injective dimension of C in \mathscr{C} is at most n if and only if C is exact and the injective dimension of $Z_{m}(C)$ in $\operatorname{Mod} R$ is at most n for any $m \in \mathbb{Z}$. The following theorem generalizes this result.

Theorem 4.2. Let C be a complex in \mathscr{C}. Then the following statements are equivalent.
(1) wid $C \leq n$.
(2) C is exact and $\operatorname{wid}_{R} Z_{m}(C) \leq n$ for any $m \in \mathbb{Z}$.

Proof. (1) \Rightarrow (2) Assume that wid $C \leq n$ and

$$
0 \rightarrow C \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n} \rightarrow 0
$$

is a weak injective resolution of C in \mathscr{C}. By Theorem 3.9 , each E^{i} is an exact complex. Thus we easily deduce that C is exact by [19, Theorem 6.3]. On the other hand, for any $m \in \mathbb{Z}$, we have the following exact sequence

$$
0 \rightarrow Z_{m}(C) \rightarrow Z_{m}\left(E^{0}\right) \rightarrow Z_{m}\left(E^{1}\right) \rightarrow \cdots \rightarrow Z_{m}\left(E^{n}\right) \rightarrow 0
$$

in $\operatorname{Mod} R$. By Theorem 3.9, each $Z_{m}\left(E^{i}\right)$ is weak injective. Therefore $\operatorname{wid}_{R} Z_{m}(C) \leq n$ for any $m \in \mathbb{Z}$.
(2) \Rightarrow (1) Let

$$
0 \rightarrow C \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{n-1} \rightarrow L^{n} \rightarrow 0
$$

be an exact sequence in \mathscr{C} with each E^{i} weak injective. We only need to show that L^{n} is weak injective. Consider the following exact sequence:

$$
0 \rightarrow Z_{m}(C) \rightarrow Z_{m}\left(E^{0}\right) \rightarrow \cdots \rightarrow Z_{m}\left(E^{n-1}\right) \rightarrow Z_{m}\left(L^{n}\right) \rightarrow 0
$$

in $\operatorname{Mod} R$. Because $\operatorname{wid}_{R} Z_{m}(C) \leq n$ and each $Z_{m}\left(E^{i}\right)$ is weak injective by Theorem 3.9, we have $Z_{m}\left(L^{n}\right)$ is weak injective. Because C and all E^{i} are exact, one easily gets that L^{n} is exact by [19, Theorem 6.3]. Consequently, L^{n} is a weak injective complex by Theorem 3.9 again, and the assertion follows.

For any complex D in $\mathscr{C}^{o p}$, it is known that the flat dimension of D in $\mathscr{C}^{o p}$ is at most n if and only if D is exact and the flat dimension of $Z_{m}(D)$ in $\operatorname{Mod} R^{o p}$ is at most n for any $m \in \mathbb{Z}$ (see [15, Lemma 5.4.1]). By a dual argument to that in Theorem 4.2, we get the following

Theorem 4.3. Let D be a complex in $\mathscr{C}^{o p}$. Then the following statements are equivalent.
(1) $\operatorname{wfd} D \leq n$.
(2) D is exact and $\operatorname{wfd}_{R^{p p}} Z_{m}(D) \leq n$ for any $m \in \mathbb{Z}$.

As an application of Theorems 4.2 and 4.3, we have the following
Corollary 4.4. Let C (resp. D) be an exact complex in \mathscr{C} (resp. $\mathscr{C}^{\text {op }}$). Then we have
(1) $\operatorname{wid} C=\sup \left\{\operatorname{wid}_{R} Z_{m}(C) \mid m \in \mathbb{Z}\right\}$.
(2) $\operatorname{wfd} D=\sup \left\{\operatorname{wfd}_{R^{o p}} Z_{m}(D) \mid m \in \mathbb{Z}\right\}$.

Proof. The assertions follows from Theorems 4.2 and 4.3 respectively with standard arguments.

Similar to the proofs of [14, Propositions 3.1, 3.3 and 3.4], we get the following two results.

Proposition 4.5. For a complex C in \mathscr{C}, the following conditions are equivalent.
(1) wid $C \leq n$.
(2) $\operatorname{Ext}^{n+1}(F, C)=0$ for any super finitely presented complex F in \mathscr{C}.
(3) ${\underline{\mathrm{Ext}^{n+i}}}^{n}(F, C)=0$ for any super finitely presented complex F in \mathscr{C} and $i \geq 1$.

Proposition 4.6. For a complex D in $\mathscr{C}^{o p}$, the following conditions are equivalent.
(1) $\operatorname{wfd} D \leq n$.
(2) $\operatorname{Tor}_{n+1}(D, F)=0$ for any super finitely presented complex F in \mathscr{C}.
(3) $\operatorname{Tor}_{n+i}(D, F)=0$ for any super finitely presented complex F in \mathscr{C} and $i \geq 1$.

We finish this section with the following theorem, which illustrates that there exists a close link between the weak injective and the weak flat dimension of complexes.

Theorem 4.7. For a complex C in \mathscr{C} (or $\mathscr{C}^{\text {op }}$), we have
(1) $\operatorname{wid} C=\operatorname{wfd} C^{+}$.
(2) $\operatorname{wfd} C=\operatorname{wid} C^{+}$.

Proof.
(1) Let F be a super finitely presented complex in \mathscr{C}. There exists an exact sequence

$$
0 \rightarrow K \rightarrow P^{0} \rightarrow F \rightarrow 0
$$

in \mathscr{C} with P^{0} finitely generated projective and K super finitely presented by Proposition 3.2. For any $i \geq 1$, we have the following commutative diagram with exact rows:

By Proposition 3.6(2), θ_{K} is an isomorphism for $i=1$. Thus $\operatorname{Ext}^{2}(F, C)^{+} \cong$ $\operatorname{Tor}_{2}\left(C^{+}, F\right)$ by the five lemma. By using induction, we get that Ext ${ }^{i+1}(F, C)^{+} \cong$ $\operatorname{Tor}_{i+1}\left(C^{+}, F\right)$ for any super finitely presented complex F in \mathscr{C}, and so (1) holds true.
(2) It is dual to (1).
5. Weak injective covers and preenvelopes of complexes. In this section, we show that any complex has a weak injective (resp. weak flat) cover and preenvelope.

Recall from [15] that an exact sequence

$$
0 \rightarrow S \rightarrow C \rightarrow C / S \rightarrow 0
$$

in \mathscr{C} is called pure if

$$
\underline{\operatorname{Hom}}(P, C) \rightarrow \underline{\operatorname{Hom}}(P, C / S) \rightarrow 0
$$

is exact for any finitely presented complex P in \mathscr{C}, or equivalently, if

$$
0 \rightarrow D \otimes S \rightarrow D \otimes C
$$

is exact for any (finitely presented) complex D in \mathscr{C}. In this case, S and C / S are called a pure subcomplex and a pure epimorphic image of C respectively.

Proposition 5.1. The category of weak injective complexes and the category of weak flat complexes are closed under pure subcomplexes, pure epimorphic images and direct limits.

Proof. Let B be a pure subcomplex of a weak injective complex C and

$$
0 \rightarrow B \rightarrow C \rightarrow C / B \rightarrow 0
$$

a pure exact sequence in \mathscr{C}. Then for any super finitely presented complex F in \mathscr{C}, we get the exactness of

$$
0 \rightarrow \underline{\operatorname{Hom}}(F, B) \rightarrow \underline{\operatorname{Hom}}(F, C) \rightarrow \underline{\operatorname{Hom}}(F, C / B) \rightarrow 0 .
$$

It follows that $\operatorname{Ext}^{1}(F, B)=0$ since $\operatorname{Ext}^{1}(F, C)=0$. Therefore B is weak injective. On the other hand, one can easily conclude that C / B is also weak injective by Proposition 4.5 , and hence the category of weak injective complexes is closed under pure epimorphic images.

Let $\left\{C_{i}\right\}_{i \in I}$ be a direct system of weak injective complexes and let F be a super finitely presented complex in \mathscr{C}. Then there exists an exact sequence

$$
0 \rightarrow K \rightarrow P \rightarrow F \rightarrow 0
$$

in \mathscr{C} with P finitely generated projective and K super finitely presented. Consider the following commutative diagram with exact rows:

Because \mathscr{C} is locally finitely generated in the sense of [20], we have that $\underline{\operatorname{Hom}}\left(P, \underset{\longrightarrow}{\lim } C_{i}\right) \cong \underline{\lim } \operatorname{Hom}\left(P, C_{i}\right)$ and $\underline{\operatorname{Hom}}\left(K, \underline{\lim } C_{i}\right) \cong \underline{\lim } \operatorname{Hom}\left(K, C_{i}\right)$ by [20, Chapter V, Proposition 3.4]. Consequently we have that $\underline{\text { Ext }^{1}}\left(F, \underset{\longrightarrow}{\lim } C_{i}\right) \cong$ $\underset{\longrightarrow}{\lim }{\underset{\operatorname{Ext}}{ }}^{1}\left(F, C_{i}\right)=0$ and $\underset{\longrightarrow}{\lim } C_{i}$ is weak injective.
 there exists a pure exact sequence

$$
0 \rightarrow A \rightarrow C \rightarrow C / A \rightarrow 0
$$

in $\mathscr{C}^{\text {op }}$, which induces a split exact sequence

$$
\begin{equation*}
0 \rightarrow(C / A)^{+} \rightarrow C^{+} \rightarrow A^{+} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

in \mathscr{C}. By Proposition 3.6(1), C^{+}is weak injective. Because the sequence (5.1) splits, $(C / A)^{+}$is a direct summand of C^{+}, and so it is weak injective. Thus C / A is weak flat by Theorem 3.10. Therefore the category of weak flat complexes is closed under pure epimorphic images.

Let $\left\{D_{i}\right\}_{i \in I}$ be a direct system of weak flat complexes in $\mathscr{C}^{o p}$ and F a super finitely presented complex in \mathscr{C}. Then there exists an exact sequence

$$
0 \rightarrow L \rightarrow P \rightarrow F \rightarrow 0
$$

in \mathscr{C} with P finitely generated projective and L super finitely presented. By [15, Proposition 4.2.1], we obtain the commutative diagram with exact rows:

It follows that $\operatorname{Tor}_{1}\left(\underset{\longrightarrow}{\lim } D_{i}, F\right) \cong \underline{\longrightarrow} \operatorname{lor}_{1}\left(D_{i}, F\right)=0$, and so $\underset{\longrightarrow}{\lim } D_{i}$ is weak flat.
Recall from [7] that a category \mathscr{D} is called finitely accessible (or locally finitely presented in [6]) if it has direct limits, the class of finitely presented objects is skeletally
small, and every object is a direct limit of finitely presented objects. It was showed in [7] that if \mathscr{D} is a finitely accessible category and \mathscr{B} is a class of objects of \mathscr{D} closed under direct limits and pure epimorphic images, then \mathscr{B} is a covering; if \mathscr{D} is a finitely accessible additive category with products and \mathscr{B} is a class of objects of \mathscr{D} closed under products and pure subobjects, then \mathscr{B} is a preenveloping class.

We now are in a position to prove the following

Theorem 5.2.

(1) Any complex in \mathscr{C} has a weak injective cover.
(2) Any complex in $\mathscr{C}^{o p}$ has a weak flat cover.

Proof.
(1) By [9, Lemma 2.2], any complex is a direct limit of finitely presented complexes. It is easy to see that \mathscr{C} is finitely accessible. Because the category of weak injective complexes is closed under direct limits and pure epimorphic images by Proposition 5.1, it follows from [7, Theorem 2.6] that any complex in \mathscr{C} has a weak injective cover.
(2) It is dual to (1).

For a complex C, its cardinality is defined to be $\left|\coprod_{n \in \mathbb{Z}} C_{n}\right|$ in [16].
Theorem 5.3.
(1) Any complex in $\mathscr{C}^{o p}$ has a weak flat preenvelope.
(2) Any complex in \mathscr{C} has a weak injective preenvelope.

Proof.
(1) The proof is modelled on that of [15, Theorem 5.2.2].

Because any direct product of weak flat modules is weak flat by $[\mathbf{1 4}$, Theorem 2.13], it follows that a direct product of weak flat complexes is also a weak flat complex since it is exact and the kernels of the boundary operators are weak flat.
Let C be a complex in $\mathscr{C}^{o p}$ and \mathcal{N}_{β} be an infinite cardinal number such that $\operatorname{Card}(C) \cdot \operatorname{Card}(R) \leq \mathcal{N}_{\beta}$. Set $Y=$ $\left\{D \mid D\right.$ is a weak flat complex in $\mathscr{C}^{o p}$ and $\left.\operatorname{Card}(D) \leq \mathcal{N}_{\beta}\right\}$. Let $\left\{D_{i}\right\}_{i \in I}$ be a family of representatives of this class with the index set I. Let $H_{i}=\operatorname{Hom}\left(C, D_{i}\right)$ for any $i \in I$, and let $F=\prod D_{i}^{H_{i}}$. Then F is a weak flat complex in $\mathscr{C}^{o p}$. Define $\varphi: C \rightarrow F$ such that the composition of φ with the projective map $F \rightarrow D_{i}^{H_{i}}$ maps $x \in F^{k}$ to $\left(h^{k}(x)\right)_{h \in H_{i}}$. Then it is easy to see that $\varphi: C \rightarrow F$ is a map of complexes. We claim that $\varphi: C \rightarrow F$ is a weak flat preenvelope. Now let $\varphi^{\prime}: C \rightarrow G$ with G a weak flat complex. By [15, Lemma 5.2.1], the subcomplex $\varphi^{\prime}(C)$ can be enlarged to a pure subcomplex $G^{\prime} \subseteq G$ with $\operatorname{Card}\left(G^{\prime}\right) \leq \mathcal{N}_{\beta}$. Note that G^{\prime} is weak flat by Proposition 5.1. So G^{\prime} is isomorphic to one of the D_{i}. By the construction of the map φ, one easily sees that φ^{\prime} can be factored through φ. Consequently, the first assertion follows.
(2) It is dual to (1).

Remark 5.4. From the proof of Theorem 5.3, it follows that the category of weak flat complexes is closed under direct products. Note that the category of weak injective complexes is closed under direct products by Remark 3.4(2). We can also obtain Theorem 5.3 directly from [7, Theorem 4.1] because the category of weak injective complexes and the category of weak flat complexes are closed under pure subcomplexes by Proposition 5.1.

Proposition 5.5. Let C be a complex in \mathscr{C}.
(1) If $f: G \rightarrow C$ is a weak injective precover in \mathscr{C}, then $f_{n}: G_{n} \rightarrow C_{n}$ is a weak injective precover in $\operatorname{Mod} R$ for any $n \in \mathbb{Z}$.
(2) If $g: C \rightarrow D$ is a weak injective preenvelope in \mathscr{C}, then $g_{n}: C_{n} \rightarrow D_{n}$ is a weak injective preenvelope in $\operatorname{Mod} R$ for any $n \in \mathbb{Z}$.

Proof.
(1) Let E be a weak injective left R-module and $h: E \rightarrow C_{n}$ be an R-module homomorphism. Define a morphism $\bar{h}: \bar{E}[n-1] \rightarrow C$ in \mathscr{C} as follows:

Since $\bar{E}[n-1]$ is a weak injective complex by Proposition 3.7, and since $f: G \rightarrow C$ is a weak injective precover of C in \mathscr{C} by assumption, there exists a morphism α : $\bar{E}[n-1] \rightarrow G$ in \mathscr{C} such that $f \alpha=\bar{h}$. So we have a commutative diagram:

in $\operatorname{Mod} R$. This means that $f_{n}: G_{n} \rightarrow C_{n}$ is a weak injective precover of C_{n} in $\operatorname{Mod} R$.
(2) Let F be a weak injective left R-module and $\beta: C_{n} \rightarrow F$ an R-homomorphism. Define a morphism $\bar{\beta}: C \rightarrow \bar{F}[n]$ in \mathscr{C} as follows:

Because $\bar{F}[n]$ is a weak injective complex by Proposition 3.7, and since $g: C \rightarrow D$ is a weak injective preenvelope of C in \mathscr{C} by assumption, there exists a morphism γ : $D \rightarrow \bar{F}[n]$ in \mathscr{C} such that $\gamma g=\bar{\beta}$. So we have a commutative diagram:

in $\operatorname{Mod} R$. This shows that $g_{n}: C_{n} \rightarrow D_{n}$ is a weak injective preenvelope of C_{n} in $\operatorname{Mod} R$.

Dually, we have the following
Proposition 5.6. Let C be a complex in $\mathscr{C}^{o p}$.
(1) Iff : $G \rightarrow C$ is a weak flat precover in $\mathscr{C}^{\text {op }}$, then $f_{n}: G_{n} \rightarrow C_{n}$ is a weak flat precover in $\operatorname{Mod} R^{\text {op }}$ for any $n \in \mathbb{Z}$.
(2) If $g: C \rightarrow D$ is a weak flat preenvelope in $\mathscr{C}^{o p}$, then $g_{n}: C_{n} \rightarrow D_{n}$ is a weak flat preenvelope in $\operatorname{Mod} R^{o p}$ for any $n \in \mathbb{Z}$.

In the following result, we give some equivalent characterizations for ${ }_{R} R$ being weak injective in terms of the properties of weak injective and weak flat complexes.

THEOREM 5.7. The following statements are equivalent.
(1) ${ }_{R} R$ is weak injective.
(2) Every injective complex in $\mathscr{C}^{\text {op }}$ is weak flat.
(3) Every flat complex in \mathscr{C} is weak injective.
(4) Every complex in $\mathscr{C}^{o p}$ has a monic weak flat preenvelope.
(5) Every complex in \mathscr{C} has an epic weak injective cover.

Proof. (1) \Rightarrow (2) Let C be an injective complex in $\mathscr{C}^{o p}$. Then C is exact and $Z_{m}(C)$ is an injective right R-module for any $m \in \mathbb{Z}$. Since ${ }_{R} R$ is weak injective, $Z_{m}(C)$ is a weak flat right R-module by [14, Proposition 2.17]. Thus C is weak flat by Theorem 3.10 .
(2) \Rightarrow (1) Let M be an injective right R-module. Then \bar{M} is an injective complex in $\mathscr{C}^{o p}$, and hence \bar{M} is a weak flat complex by (2). It follows that M is a weak flat right R-module. Then ${ }_{R} R$ is weak injective by [14, Proposition 2.17].
(1) $\Leftrightarrow(3)$ It is dual to (1) \Leftrightarrow (2).
(1) \Rightarrow (4) Since ${ }_{R} R$ is weak injective, every injective right R-module is weak flat by [14, Proposition 2.17]. Thus every injective complex in $\mathscr{C}^{o p}$ is weak flat, and so (4) follows.
$(4) \Rightarrow(2)$ Let I be an injective complex in $\mathscr{C}^{o p}$. By (4), there exists an exact sequence

$$
0 \rightarrow I \rightarrow F \rightarrow N \rightarrow 0
$$

in $\mathscr{C}^{o p}$ with $I \rightarrow F$ a weak flat preenvelope of I. The sequence is split since I is injective. Thus I is weak flat as a direct summand of F by Remark 3.4(2).
$(1) \Rightarrow(5)$ Let C be a complex in \mathscr{C}. Then, by Theorem 5.2, C has a weak injective $\operatorname{cover} f: E \rightarrow C$ in \mathscr{C}. On the other hand, there exists an exact sequence

$$
F \rightarrow C \rightarrow 0
$$

in \mathscr{C} with F free. Then $F \cong \bigoplus_{n \in \mathbb{Z}} \bar{R}^{\left(X_{n}\right)}[n]$. Since ${ }_{R} R$ is weak injective by (1), we have that $\bar{R}^{\left(X_{n}\right)}[n]$ is weak injective, and so f is an epimorphism.
(5) \Rightarrow (1) Let $E \rightarrow \bar{R}$ be an epic weak injective cover of \bar{R} in \mathscr{C}. Then ${ }_{R} R$ is isomorphic to a direct summand of a weak injective left R-module E_{0}, and so ${ }_{R} R$ is weak injective by [14, Proposition 2.3].

Acknowledgements. This research was partially supported by National Natural Science Foundation of China (11301042 and 11171142), China Postdoctoral Science Foundation (2014M550279), the Scientific Research Foundation of CUIT (J201217), and a Project Funded by the Priority Academic Program Development of Jiangsu

Higher Education Institutions. The first author would like to thank Prof. Jan Trlifaj and Xiaoyan Yang for their help in writing this paper. The authors thank the referee for the useful suggestions.

REFERENCES

1. S. T. Aldrich, E. E. Enochs, J. R. García Rozas and L. Oyonarte, Covers and envelopes in Grothendieck categories: Flat covers of complexes with applications, J. Algebra 243 (2001), 615-630.
2. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd edition, Graduate Texts in Mathematics, vol. 13 (Springer-Verlag, New York, 1992).
3. L. Angeleri Hügel, D. Herbera and J. Trlifaj, Tilting modules and Gorenstein rings, Forum Math. 18 (2006), 211-229.
4. L. L. Avramov and H. B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71(1991), 129-155.
5. K. S. Brown, Cohomology of groups (Springer-Verlag, New York, 1982).
6. W. Crawley-Boevey, Locally finitely presented additive categories, Comm. Algebra 22 (1994), 1641-1674.
7. S. Crivei, M. Prest and B. Torrecillas, Covers in finitely accessible categories, Proc. Amer. Math. Soc. 138 (2010), 1213-1221.
8. E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209.
9. E. E. Enochs and J. R. García Rozas, Tensor products of complexes, Math. J. Okayama Univ. 39 (1997), 17-39.
10. E. E. Enochs and J. R. García Rozas, Flat covers of complexes, J. Algebra 210 (1998), 86-102.
11. E. E. Enochs and O. M. G. Jenda, Relative homological algebra, vol. 2, de Gruyter Expositions in Mathematics, vol. 54 (Walter de Gruyter GmbH \& Co. KG, Berlin, 2011).
12. Z. H. Gao and Z. Y. Huang, Weak injective covers and dimension of modules, Acta Math. Hungar. (to appear).
13. Z. H. Gao and F. G. Wang, All Gorenstein hereditary rings are coherent, J. Algebra Appl. 13 (2014), 5 pages (1350140).
14. Z. H. Gao and F. G. Wang, Weak injective and weak flat modules, Comm. Algebra 43 (2015), 3857-3868.
15. J. R. García Rozas, Covers and envelopes in the category of complexes of modules (Chapman \& Hall/CRC, Boca Raton, London, 1999).
16. J. Gillespie, The flat model structure on $\mathrm{Ch}(R)$, Trans. Amer. Math. Soc. 356 (2004), 3369-3390.
17. R. Göbel and J. Trlifaj, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics, vol. 41, 2nd revised and extended edition (Walter de Gruyter GmbH \& Co. KG, Berlin-Boston, 2012).
18. L. Hummel and T. Marley, The Auslander-Bridger formula and the Gorenstein property for coherent rings, J. Commut. Algebra 1 (2009), 283-314.
19. J. J. Rotman, An Introduction to Homological Algebra (Academic Press, New York, 1979).
20. B. Stenström, Rings of quotients (Springer-Verlag, New York, 1975).
21. Z. P. Wang and Z. K. Liu, FP-injective complexes and FP-injective dimension of complexes, J. Aust. Math. Soc. 91 (2011), 163-187.
22. C. Weibel, An introduction to homological algebra, CSAM, vol. 38 (Cambridge University Press, Cambridge, 1994).
23. X. Y. Yang and Z. K. Liu, FP-injective complexes, Comm. Algebra 38 (2010), 131-142.
