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Let Λ be a finite dimensional string algebra over a field with the quiver Q such that the
underlying graph of Q is a tree, and let |Det(Λ)| be the number of the minimal right
determiners of all irreducible morphisms between indecomposable left Λ-modules. Then
we have

|Det(Λ)| = 2n − p − q − 1,

where n is the number of vertices in Q, p = |{i | i is a source in Q with two neighbors}|
and q is the number of vertices such that the associated vertex ideals are not zero.

Keywords: Minimal right determiners; (tree) string algebras; vertex ideals; irreducible
morphisms; algebras of Dynkin type.

Mathematics Subject Classification 2010: 16G10, 16G70

1. Introduction

In the seminal Philadelphia notes [2], Auslander introduced the notion of morphisms
determined by objects, which generalized that of almost split morphisms. However,
because “the basic definition may look quite technical and unattractive, at least at
first sight” [12, p. 409] such that it is not easy to grasp it, this useful notion and
related results in [2] gained the deserved attention until recently, see [7, 9–13].

The (minimal) right determiners of morphisms were introduced in [4]. Krause [9],
Chen and Le [7] established a close relation between right determiners of morphisms
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and dualizing varieties as well as the Serre duality. Let Λ be an artin algebra and
mod Λ the category of finitely generated left Λ-modules. We have the following
facts:

(1) Obviously, an indecomposable right determiner is the minimal one if it exists.
(2) The minimal right determiner of a morphism in mod Λ is a direct summand of

any of its right determiners [4, Proposition XI.2.4].
(3) A morphism in mod Λ is right C-determined, then f is right (C ⊕B)-

determined for any B ∈ mod Λ [2, Proposition 2.6].

Thus, among all right determiners of a morphism, the minimal one is the most essen-
tial one. Moreover, notice that any morphism in mod Λ admits a right determiner
[2, Theorem I.3.17] and [11, Theorem 1], so one expects concrete computations
leading to a better understanding of the above notions and a classification of the
minimal right determines of a certain class of (irreducible) morphisms. It is very
difficult in general and few related results have been known.

Ringel corrected in [11, Theorem 1] a formula in [3, Theorem 2.6] for calculating
a right determiner of a morphism in mod Λ; and then he reproved in [12, Theo-
rem 3.4] a formula originally in [4] for calculating the minimal right determiner
of a morphism in mod Λ. Based on these formulas, we determined in [13, The-
orems 3.13 and 3.15] the minimal right determiners of all irreducible morphisms
between indecomposable modules over a finite dimensional algebra of type An. We
use Det(Λ) to denote the set of the minimal right determiners of all irreducible
morphisms between indecomposable modules in mod Λ, and use |Det(Λ)| to denote
the cardinality of Det(Λ).

In this paper, we continue the previous work mentioned above. For a finite
dimensional string algebra Λ over a field K with the quiver Q such that the under-
lying graph of Q is a tree, we will determine the set Det(Λ) completely. The key
point is to introduce the so-called vertex ideals. Roughly speaking, the definition of
a vertex ideal depends on the restriction of the admissible ideal of KQ to certain
full subquiver around that vertex, see Definition 3.3 for details. In particular, if Λ
is of type An, then vertex ideals are exactly sink ideals, which played a crucial role
in [13]. Our main result is the following.

Theorem 1.1. Let Λ be a finite dimensional string algebra over a field with the
quiver Q such that the underlying graph of Q is a tree. Then we have

|Det(Λ)| = 2n− p − q − 1,

where n is the number of vertices in Q, p = |{i | i is a source in Q with two
neighbors}| and q is the number of vertices such that the associated vertex ideals
are not zero.

We prove it in Sec. 3. Note that the proof of Theorem 1.1 is constructive, from
which we can determine the set Det(Λ). In fact, it provides explicit computations
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and a complete classification of minimal right determiners of all irreducible mor-
phisms between indecomposable modules in our setting. In Sec. 4, we apply Theo-
rem 1.1 to the case of algebras whose quiver is Dynkin type; and in particular, we
obtain a unified version of [13, Theorems 3.13 and 3.15]. Finally, we give in Sec. 5
an example of non-Dynkin type to illustrate this theorem.

2. Preliminaries

Throughout this paper, Λ is a finite dimensional algebra over a field K with the
quiver Q, mod Λ is the category of finitely generated left Λ-modules and τ is the
Auslander–Reiten translation. For an arrow α in Q, s(α) and e(α) are the starting
and end points of α, respectively. We use P (i) and S(i) to denote the indecompos-
able projective and simple modules corresponding to the vertex i, respectively. For
a module M in mod Λ, we use Soc(M) and addΛ M to denote the socle of M and
the full subcategory of mod Λ consisting of direct summands of finite direct sums
of copies of M , respectively. For a set S, we use |S| to denote the cardinality of S.

The original definition of morphisms determined by objects in [2] is based on
the notion of subfunctors determined by objects. However, in the relevant papers,
one prefers the following definition since it is easier to understand.

Definition 2.1 ([11, 12]). For a module C ∈ mod Λ, a morphism f ∈ HomΛ

(X, Y ) is said to be right determined by C (simply C-right determined) if
the following condition is satisfied: given for any f ′ ∈ HomΛ(X ′, Y ) such that f ′φ
factors through f for all φ ∈ HomΛ(C, X ′), then f ′ factors through f ; that is, in
the following diagram, if there exists φ′ ∈ HomΛ(C, X) such that f ′φ = fφ′, then
there exists h ∈ HomΛ(X ′, X) such that f ′ = fh.

C
φ �� X ′ f ′

��

h

���
�
� Y

C
φ′

����� X
f �� Y.

In this case, C is called a right determiner of f .

Definition 2.2 ([11, p. 984]). Given a morphism f ∈ HomΛ(B, C) with B =
B1 ⊕B2 such that B1 ⊆ Ker f and f |B2 is right minimal, then we call Kerf |B2 the
intrinsic kernel of f .

Definition 2.3 ([12, p. 418]). An indecomposable projective module P ∈ mod Λ
is said to almost factor through f ∈ HomΛ(M, N) provided that there exists a
commutative diagram of the following form

radP

��

i �� P

h

��
M

f �� N,
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where i is the inclusion map and radP is the radical of P , such that Im h is not
contained in Im f .

The following is the determiner formula.

Theorem 2.4. Let f be a morphism in mod Λ. Let C(f) be the direct sum of the
indecomposable modules of the form τ−1K, where K is an indecomposable direct
summand of the intrinsic kernel of f and of the indecomposable projective modules
which almost factor through f , one from each isomorphism class. Then we have

(1) [12, Theorem 3.4; 11, Theorem 2] and [4, Corollary XI.2.3] f is right
C-determined if and only if C(f) ∈ addΛ C.

(2) [13, Theorem 2.4(2)] If f is irreducible, then C(f) = τ−1 Ker f ⊕ (⊕Pi), where
all Pi are pairwise nonisomorphic indecomposable projective modules almost
factoring through f .

The first assertion in this theorem suggests to call C(f) the minimal right
determiner of f [11, 12]. We use Det(Λ) to denote the set of (representative of the
isomorphism classes of) the minimal right determiners of all irreducible morphisms
between indecomposable modules in mod Λ.

We use Q0 := {1, . . . , n} and Q1 to denote the set of vertices and the set of
arrows in Q, respectively.

Definition 2.5. [5, p. 534] and [6, p. 157] Let Λ = KQ/I with I an ideal of KQ.
Then Λ is called a special biserial algebra provided the following conditions are
satisfied.

(1) For each i ∈ Q0, we have |{α ∈ Q1 | s(α) = i}| ≤ 2 and |{α ∈ Q1 | e(α) = i}|≤ 2.
(2) For α, β, γ ∈ Q1 with e(α) = e(β) = s(γ) and α �= β, we have γα ∈ I or γβ ∈ I.
(3) For α, β, γ ∈ Q1 with s(α) = s(β) = e(γ) and α �= β, we have αγ ∈ I or βγ ∈ I.

A special biserial algebra is called a string algebra if the following condition is
satisfied.

(4) The ideal I can be generated by zero relations.

3. Tree String Algebras

In this section, Λ is a string algebra with the quiver Q such that the underlying
graph of Q is a tree. Then either Λ = KQ or Λ = KQ/I with I an admissible ideal
of KQ. By the definition of string algebras, the former case occurs only if Λ is of
type An. In either case, Λ is of finite representation type [6, p. 161, Theorem] or
[8, Theorem 1.2(2)], and we may assume that there are n vertices and n− 1 arrows
in Q. All morphisms considered are irreducible morphisms between indecomposable
modules in mod Λ.
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By [6, p. 147], there are only two types of almost split sequences in mod Λ, that
is, the middle term in an almost split sequence is indecomposable or is a direct sum
of two indecomposable modules:

0 → L → M → N → 0 (3.1)

and

0 → L → M1 ⊕ M2 → N → 0. (3.2)

Proposition 3.1 ([6, p. 174, Corollary]). (1) The only almost split sequences
in mod Λ of type (3.1) are those of the form

0 → U(β) → N(β) → V (β) → 0

with β an arrow in Q.

(2) The number of almost split sequences of type (3.1) in mod Λ is n − 1.

In the following, we describe the modules in Eq. (3.1) briefly. Let β be an arrow of
Q. We denote by β−1 a formal inverse of β with s(β−1) = e(β) and e(β−1) = s(β),
and write (β−1)−1 = β. We form ‘paths’ c1 · · · cn of length n ≥ 1, where all the ci

are of the form β or β−1 and s(ci) = e(ci+1). Define (c1 · · · cn)−1 = c−1
n · · · c−1

1 and
s(c1 · · · cn) = s(cn), e(c1 · · · cn) = e(c1). A path c1 · · · cn of length n ≥ 1 is called a
string if ci+1 �= c−1

i for any 1 ≤ i ≤ n − 1, and neither subpath cici+1 · · · ci+t nor
its inverse belong to the ideal I. Also, the two strings of length 0 is defined just as
the trivial path εi at each vertex i and its inverse.

Let S be the set of all strings. We say that a string ω starts (respectively
ends) on a peak if there exists no arrow α such that ωα ∈ S (respectively
α−1ω ∈ S); similarly, a string starts (respectively ends) in a deep if there
exists no arrow β such that ωβ−1 ∈ S (respectively βω ∈ S). A string ω = α1 · · ·αn

is called direct if all αi are arrows, and called inverse if its inverse is direct.
For every arrow α in Q, let Nα = UααVα be the unique string with Uα and Vα

both inverse and Nα starts in a deep and ends on a peak. By [5, Remarks 3.2(1)],
there exists an almost split sequence with an indecomposable middle term:

0 �� M(Uα) �� M(Nα) �� M(Vα) �� 0

for every arrow α, and all almost split sequences of this type are constructed in this
way. Here, M(ω) denotes the indecomposable module corresponding to the string
ω. Note that M(ω) and M(ω−1) are always isomorphic (c.f. [5, 6]).

We give the following useful remark.

Remark 3.2. In [13], the algebra Λ is assumed to be of type An. We point out
that all results from 3.1 to 3.8 in [13] hold true in the setting of this paper even
without changing the proofs there. To avoid repeating, we will not list these results
in details here, but cite them directly when needed.
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Note that an irreducible morphism is either a proper monomorphism or a proper
epimorphism. By [13, Corollary 3.7], we have

{C(f) | f is an epic irreducible morphism in mod Λ}
= {the last terms in almost split sequences of type (3.1)

as in Proposition 3.1},
and its cardinality is n − 1. So, in the following, we only need to determine the
minimal right determiners of all irreducible monomorphisms.

For α ∈ Q1, recall from [1, p. 43] that s(α) and e(α) are called the neighbors
of e(α) and s(α), respectively. By the definition of string algebras, we can give a
complete classification of the vertices in Q as follows.

(v1) The vertex i1 with a unique neighbor:

i1 �� · · · (v1.1)

and

i1 · · · .�� (v1.2)

(v2) The vertex i2 with two neighbors:

· · · i2�� �� · · · , (v2.1)

· · · �� i2 · · ·�� (v2.2)

and

· · · �� i2 �� · · · . (v2.3)

(v3) The vertex i3 with three neighbors:

· · ·

j1
α1

���
��

��
��

i3
α3 �� · · · (v3.1)

j2

α2

���������

· · ·
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such that at least one in {α3α1, α3α2} is in I; and

· · ·

j1

i3

α1

���������

α2
����

��
��

�
· · ·

α3
�� (v3.2)

j2

· · ·

such that at least one in {α1α3, α2α3} is in I.
(v4) The vertex i4 with four neighbors:

· · · · · ·

j1
α1

���
��

��
��

j3

i4

α3

���������

α4 ���
��

��
��

j2

α2

���������
j4

· · · · · ·

such that at least one of the two sets {α3α1, α4α2} and {α4α1, α3α2}
is in I.

For convenience sake, we denote the subquivers in (v3) with 4 vertices including
the vertex i3 and its 3 neighbors by Xi3 , and denote the subquivers in (v4) with 5
vertices including the vertex i4 and its 4 neighbors by Xi4 . A full subquiver of Q

between two vertices i and j is denoted by 〈i, j〉. For a subquiver Q′ of Q, we write
I|Q′ := I ∩ KQ′. The following definition is crucial in the sequel.
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Definition 3.3. For the vertex i in Q, we define the vertex ideal Ji of Λ according
to the above classification of vertices as follows:

(1) For the sink i1 of type (v1.2), define

Ji1 =




0, if there exists j ∈ Q0 such that |{α ∈ Q1 | s(α) = j}| = 2,

〈j, i1〉 is linear and I|〈j,i1〉 = 0;

Λ, if Λ is a path algebra with a unique sink i1;

I, otherwise.

(2) For the sink i2 of type (v2.2), define

Ji2 =




0, if there exists j ∈ Q0 such that |{α ∈ Q1 | s(α) = j}| = 2,

〈j, i2〉 is linear and I|〈j,i2〉 = 0;

Λ, if Λ is a path algebra with a unique sink i2;

I, otherwise.

(3) For the vertex i3 of type (v3), define

Ji3 =




0,




(a) if i3 is of type (v3.1); or

(b) if i3 is of type (v3.2) and there exists j ∈ Q0 such that

|{α ∈ Q1 | s(α) = j}| = 2, 〈j, i3〉 is linear, I|〈j,i3〉 = 0,

I|〈j,j1〉 �= 0 and I|〈j,j2〉 �= 0;
I|Xi3

, otherwise.

(4) For the vertex i4 of type (v4), define

Ji4 =




0, if there exists j ∈ Q0 such that |{α ∈ Q1 | s(α) = j}| = 2,

〈j, i4〉 is linear, I|〈j,i4〉 = 0, I|〈j,j3〉 �= 0 and I|〈j,j4〉 �= 0;

I|Xi4
, otherwise.

By [13, Corollary 3.2], we have that the minimal right determiner of any irre-
ducible monomorphism is indecomposable projective. The following lemma gives
some criteria for determining when an indecomposable projective module is the
minimal right determiner of an irreducible monomorphism.

Lemma 3.4. For an irreducible monomorphism f in mod Λ, the following state-
ments are equivalent.

(1) P (i) = C(f).
(2) There exists an irreducible monomorphism f1 : X → P (j) with X indecompos-

able such that C(f1) = P (i) = C(f).
(3) P (i) almost factors through f .
(4) S(i) = Soc(Coker f).
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If one of the above equivalent conditions is satisfied and j is as in (2), then the
subquiver 〈j, i〉 is linear and I|〈j,i〉 = 0.

Proof. By [13, Theorem 3.5(1)], we have (1) ⇔ (2). By Theorem 2.4(2) and [13,
Remark 3.3], we have (1) ⇔ (3). By [13, Corollary 3.4(1)], we have (1) ⇔ (4).

If one of the above equivalent conditions is satisfied and j is as in (2), then P (i)
almost factors through f1 and HomΛ(P (i), P (j)) �= 0, which indicates that there
exists a nonzero path from j to i in Q, that is, 〈j, i〉 is linear and I|〈j,i〉 = 0.

We need some further preparation.

Lemma 3.5. For a vertex i ∈ Q0, we have

(1) |{α ∈ Q1 | s(α) = i}| = 1 if and only if radP (i) is indecomposable. In this case,
for any irreducible monomorphism X → P (i) with X indecomposable, we have
X ∼= radP (i).

(2) |{α ∈ Q1 | s(α) = i}| = 2 if and only if radP (i) = Mi ⊕ Ni with Mi and
Ni indecomposable. In this case, for any irreducible monomorphism X → P (i)
with X indecomposable, there exists an indecomposable module Y ∈ mod Λ,

such that radP (i) ∼= X ⊕ Y .

Proof. The first assertions in (1) and (2) are well known. If X → P (i) is an
irreducible monomorphism, then X is isomorphic to a submodule of the unique
maximal submodule radP (i) of P (i), and hence isomorphic to a direct summand
of radP (i) by [4, Lemma V.5.1(b)].

The following three lemmas are useful.

Lemma 3.6. Let i ∈ Q0 with |{α ∈ Q1 | s(α) = i}| = 1. Then P (i) =
C(radP (i) ↪→ P (i)).

Proof. It follows from Lemmas 3.5(1) and 3.4.

Lemma 3.7. Let i ∈ Q0 with |{α ∈ Q1 | s(α) = i}| �= 1 and P (i) ∈ Det(Λ).

(1) If j is as in Lemma 3.4(2), then |{α ∈ Q1 | s(α) = j}| = 2.
(2) If the vertex i is a sink i1 of type (v1.2) (respectively a sink i2 of type (v 2.2)),

then Ji1 = 0 (respectively Ji2 = 0).

Proof. (1) Let i ∈ Q0 with |{α ∈ Q1 | s(α) = j}| �= 1 and P (i) ∈ Det(Λ). If j is as
in Lemma 3.4(2), then the subquiver 〈j, i〉 is linear and I|〈j,i〉 = 0 by Lemma 3.4. If
|{α ∈ Q1 | s(α) = j}| = 0 (that is, j is a sink), then radP (j) = 0, and hence f1 = 0
by Lemma 3.5(1), a contradiction. If |{α ∈ Q1 | s(α) = j}| = 1, then C(f1) = P (j)
by Lemmas 3.5(1) and 3.6. It is clear that i �= j, so we have C(f1) �= P (i), also a
contradiction. Consequently we conclude that |{α ∈ Q1 | s(α) = j}| = 2.
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(2) If the vertex i is a sink i1 of type (v1.2) (respectively a sink i2 of type (v2.2)),
then Ji1 = 0 (respectively Ji2 = 0) by (1) and the definition of vertex ideals.

Lemma 3.8. Let i ∈ Q0 with |{α ∈ Q1 | s(α) = i}| = 2. Then P (i) �= C(f) for any
irreducible monomorphism f :X → P (i).

Proof. Let i ∈ Q0 with |{α ∈ Q1 | s(α) = i}| = 2. Suppose P (i) = C(f) for some
irreducible monomorphism f : X → P (i). It is clear that f can be assumed to be
an inclusion. By Lemma 3.5(2), we have that radP (i) = Mi ⊕ Ni with Mi and
Ni indecomposable and that either X = Mi or X = Ni. Consider the following
diagram:

· · · 0

��

i

K
�� ��

1K��

0

��

· · ·

· · · K K
1K�� �� 0 · · ·

or

· · · 0

��

i

K
�� ��

1K��

0

��

· · ·

· · · 0 K�� 1K �� K · · · .
In either diagram, the above is part of the representation of S(i) around i and

the below is part of the representation of Cokerf around i. Notice that neither
the left square in the first diagram nor the right square in the second diagram is
commutative, so S(i) is not a submodule of Cokerf . It implies S(i) �= Soc(Coker f),
which contradicts Lemma 3.4. The assertion follows.

The following is a key step toward proving the main result.

Theorem 3.9. For a vertex ik in Q, P (ik) ∈ Det(Λ) if and only if ik is one of the
following types.

(1) (1.1) a source i1 of type (v1.1);
(1.2) a sink i1 of type (v1.2) and Ji1 = 0.

(2) (2.1) a sink i2 of type (v2.2) and Ji2 = 0;
(2.2) i2 of type (v2.3).

(3) (3.1) i3 of type (v3.1);
(3.2) i3 of type (v3.2) and Ji3 = 0.

(4) i4 of type (v4) and Ji4 = 0.

Proof. (1) If i1 is a source of type (v1.1), then P (i1) = C(radP (i1) ↪→ P (i1)) by
Lemma 3.6.

Let i1 be a sink of type (v1.2). If Ji1 = 0, then there exists j ∈ Q0 such that
|{α ∈ Q1 | s(α) = j}| = 2, 〈j, i1〉 is linear and I|〈j,i1〉 = 0. By Lemma 3.5(2), we have
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radP (j) = Mj ⊕ Nj with Mj and Nj indecomposable. So there exists a subquiver
of the Auslander–Reiten quiver of mod Λ as follows:

P (i1)
���� · · ·

		��

Mj
				

P (j)
		��

�

Nj

f 




· · ·

����
�

Coker f.

It is straightforward to calculate that Soc(Coker f) = S(i1). So P (i1) = C(f)
by Lemma 3.4. Conversely, if P (i1) ∈ Det(Λ), then Ji1 = 0 by Lemma 3.7(2).

(2) Let i2 be a source of type (v2.1). If P (i2) ∈ Det(Λ), then by Lemmas 3.4
and 3.7(1), there exists an irreducible monomorphism f1 : X → P (j) with X

indecomposable such that P (i2) = C(f1), |{α ∈ Q1 | s(α) = j}| = 2, the subquiver
〈j, i2〉 is linear and I|〈j,i2〉 = 0, and hence j = i2. It contradicts Lemma 3.8. Thus,
we have P (i2) /∈ Det(Λ).

Let i2 be a sink of type (v2.2). If Ji2 = 0, then there exists j ∈ Q0 such that
|{α ∈ Q1 | s(α) = j}| = 2, 〈j, i2〉 is linear and I|〈j,i2〉 = 0. By Lemma 3.5(2), we have
radP (j) = Mj ⊕ Nj with Mj and Nj indecomposable. So there exists a subquiver
of the Auslander–Reiten quiver of mod Λ as follows:

· · ·
P (i2)

����

����

· · ·
		��

Mj
				

P (j)
		��

�

Nj

f 




· · ·

����
�

Coker f.

It is straightforward to calculate that Soc(Coker f) = S(i2). So P (i2) = C(f)
by Lemma 3.4. Conversely, if P (i2) ∈ Det(Λ), then Ji2 = 0 by Lemma 3.7(2).

If i2 is of type (v2.3), then P (i2) = C(rad P (i2) ↪→ P (i2)) by Lemma 3.6.
(3) If i3 is of type (v3.1), then P (i3) = C(rad P (i3) ↪→ P (i3)) by Lemma 3.6

again.
Let i3 be of type (v3.2). If Ji3 = 0, then there exists j ∈ Q0 such that

|{α ∈ Q1 | s(α) = j}| = 2, 〈j, i3〉 is linear, I|〈j,i3〉 = 0, I|〈j,j3〉 �= 0 and I|〈j,k3〉 �= 0.
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By Lemma 3.5(2), we have radP (j) = Mj ⊕ Nj with Mj and Nj indecompos-
able. So there exists a subquiver of the Auslander–Reiten quiver of mod Λ as
follows.

Mi3 g1��



P (i3)


		

	

Ni3

g2 ����
· · ·

���
�

Mj
				

P (j)
		��

�

Nj

f 




· · ·

����
�

Coker f.

It is straightforward to calculate that Soc(Coker f) = S(i3). So P (i3) = C(f)
by Lemma 3.4.

Conversely, if P (i3) ∈ Det(Λ), then by Lemma 3.4, there exists an irreducible
monomorphism f1 : X → P (j) with X indecomposable such that C(f1) = P (i3),
the subquiver 〈j, i3〉 is linear and I|〈j,i3〉 = 0. By Lemmas 3.8 and 3.7(1), we have
j �= i3 and |{α ∈ Q1 | s(α) = j}| = 2. Parts of the representations of S(i3) and
Coker f around i3 are shown as below.

j1
0

��

i3
K

��������

����
��

��

1K

��

0��

��

· · ·�� 0��

��

j

0
�� ��

��

· · ·

j2
0

��

Mj1

K

�������

�����
��

K�� · · ·�� K�� 0�� �� · · · .

Mj2

Because S(i3) = Soc(Coker f) by Lemma 3.4, the above diagram is commutative.
It implies Mj1 = 0 = Mj2 . So I|〈j,j1〉 �= 0 and I|〈j,j2〉 �= 0. Thus, we have Ji3 = 0
by the definition of vertex ideals.

(4) Let i4 be of type (v4). If Ji4 = 0, then there exists j ∈ Q0 such that
|{α ∈ Q1 | s(α) = j}| = 2, 〈j, i4〉 is linear, I|〈j,i4〉 = 0, I|〈j,j3〉 �= 0 and I|〈j,j4〉 �= 0.
By Lemma 3.5(2), we have radP (j) = Mj ⊕ Nj with Mj and Nj indecomposable.
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So there exists a subquiver of the Auslander–Reiten quiver of mod Λ as follows.

Mi4
��



· · ·
P (i4)



		
	

��




Ni4

����
· · ·

���
�

Mj
				

P (j)
		��

�

Nj

f 




· · ·

�����

Coker f.

It is straightforward to calculate that Soc(Coker f) = S(i4). So P (i4) = C(f)
by Lemma 3.4.

Conversely, if P (i4) ∈ Det(Λ), then by Lemma 3.4, there exists an irreducible
monomorphism f1 : X → P (j) with X indecomposable such that C(f1) = P (i4),
the subquiver 〈j, i4〉 is linear and I|〈j,i4〉 = 0. By Lemmas 3.8 and 3.7(1), we have
j �= i4 and |{α ∈ Q1 | s(α) = j}| = 2. Parts of the representations of S(i4) and
Coker f around i4 are shown as below.

0

j

0

��

�����

���
��

0

��

���
��

· · ·
����

�

j1(j2)

0

��

���
��

j3
0

��

i4
K

1K

��

������

���
��

�

j2(j1)

0

��

�����
j4
0

��

0

0

�����

���
��

K
����

�

· · ·


��

��

K
		��

��
Mj3

K



���

		��
�

0



����
Mj4 .
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Because S(i4) = Soc(Coker f) by Lemma 3.4, the above diagram is commuta-
tive. It implies Mj3 = 0 = Mj4 . So I|〈j,j3〉 �= 0 and I|〈j,j4〉 �= 0. Thus, we have
Ji4 = 0 by the definition of vertex ideals.

We are now in a position to give the main result in this paper.

Theorem 3.10. Set

p := |{i | i is a source of type (v2.1)}|,
q := |{Jij �= 0 | 1 ≤ j ≤ 4}|.

Then we have

|Det(Λ)| = 2n− p − q − 1.

Proof. By [13, Corollary 3.7], we have that the number of the (nonprojective)
minimal right determiners of all irreducible epimorphisms is n − 1. By Theorem
3.9, we have that the number of the (projective) minimal right determiners of all
irreducible monomorphisms is n − p − q. So we have

|Det(Λ)| = (n − 1) + (n − p − q) = 2n − p − q − 1.

The following two results show that the distribution of the projective minimal
right determiners can determine the orientation of a quiver in some cases. The first
one is a generalization of [13, Corollary 3.12].

Proposition 3.11. Assume that there are no vertices of type (v4) in Q and j ∈ Q0

is a sink of type (v1.2). Then the following statements are equivalent.

(1) The projective minimal right determiners are {P (i) | 1 ≤ i ≤ n but i �= j}.
(2) j is the unique sink in Q.

Proof. (2) ⇒ (1) Assume that j is the unique sink in Q. Let i ∈ Q0 with i �= j.
Then i is one of the following types: (v1.1), (v2.3), (v3.1). Now the assertion follows
from Theorem 3.9.

(1) ⇒ (2) Assume that the projective minimal right determiners are {P (i) | 1 ≤
i ≤ n but i �= j}. Let i ∈ Q0 with i �= j. Because P (i) ∈ Det(Λ) by (1), we have
that i is not of type (v2.1) by Theorem 3.9. So, to show that i is not a sink, it
suffices to show that i is not of any one of the following types: (v1.2), (v2.2), (v3.2).
Assume that i is of one of these three types. It follows from Lemmas 3.4 and 3.8
that there exists k1 ∈ Q0 with k1 �= i such that |{α ∈ Q1 | s(α) = k1}| = 2 and
〈k1, i〉 is linear. It is clear that k1 �= j. So P (k1) ∈ Det(Λ) and k1 is of type either
(v2.1) or (v3.2).

If k1 is of type (v2.1), then by Theorem 3.9, we have P (k1) /∈ Det(Λ), a con-
tradiction. If k1 is of type (v3.2), then by Lemmas 3.4 and 3.8 again, there exists
k2 ∈ Q0 with k2 �= k1 such that |{α ∈ Q1 | s(α) = k2}| = 2 and 〈k1, k2〉 is linear. It
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is clear that k2 �= j. So P (k2) ∈ Det(Λ) and k2 is of type either (v2.1) or (v3.2). By
the same reason as above, we have that k2 is of type (v3.2) but not of type (v2.1).
Note that the quiver Q is acyclic. So, continuing this process, we have that there
are infinitely many vertices of type (v3.2). It contradicts the fact that Q is finite.

Consequently, we conclude that j is the unique sink in Q.

Similarly, we have the following.

Proposition 3.12. Assume that there are no vertices of type (v4) in Q and j ∈ Q0

is a sink of type (v2.2). Then the following statements are equivalent.

(1) The projective minimal right determiners are {P (i) | 1 ≤ i ≤ n but i �= j}.
(2) j is the unique sink in Q.

The following example illustrates that the assumption “there are no vertices of
type (v4) in Q” is necessary for Propositions 3.11 and 3.12.

Example 3.13. Let Q be the quiver

1
α1

���
��

��
��

4

3

α3

���������

α4
���

��
��

��

2

α2

���������
5

6,

α5

���������

and let Λ = KQ/I such that at least one of the two sets {α3α1, α4α2} and {α4α1,

α3α2} is in the admissible ideal I of KQ (that is, Λ is a string algebra). Then the
projective minimal right determiners in mod Λ are {P (1), P (2), P (4), P (5), P (6)}
by Theorem 3.9. But the vertex 4 is the unique sink of type (v1.2) and the vertex
5 is the unique sink of type (v2.2) in Q.

The following example illustrates that the assumption “j ∈ Q0 is a sink of type
(v1.2)” in Proposition 3.11 and the assumption “j ∈ Q0 is a sink of type (v2.2)” in
Proposition 3.12 are necessary, and that neither of the source counterparts of these
two propositions holds true.

Example 3.14.

(1) Let Q be the quiver

1 �� 2 3�� �� 4

and Λ = KQ. Then the projective minimal right determiners in mod Λ are
{P (1), P (2), P (4)} by Theorem 3.9.
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(2) Let Q be the quiver

1

3

α1

����������

α2
����

��
��

��
4

α3�� α4 �� 5,

2

and Λ = KQ/I a bound quiver algebra. If I is generated by {α1α3, α2α3},
then by Theorem 3.9, the projective minimal right determiners are
{P (1), P (2), P (3), P (5)}. If I is generated by {α1α3}, then by Theorem 3.9
again, the projective minimal right determiners are {P (1), P (2), P (5)}.

4. Algebra Whose Quiver is Dynkin Type

In this section, the quiver Q is of Dynkin type and Ji1 , Ji2 , Ji3 are as in Defini-
tion 3.3. Note that there are no vertex ideals of type Ji4 in this case.

It is trivial that if Λ is of type An, that is, the underlying graph of Q is of the
form

1
α1 2

α2 3
α3 · · · αn−2

n − 1
αn−1

n,

then Λ is string. So by Theorem 3.10, we immediately have the following.

Corollary 4.1. If Λ of type An, then we have

|Det(Λ)| = 2n− p − q − 1,

where p = |{i | i is a source in Q with 2 ≤ i ≤ n− 1}| and q = |{Jij �= 0 | j = 1, 2}|.
Let Λ be of type An. Then there are no vertex ideals of type Ji3 or Ji4 .

(1) If there is a unique sink in Q, then we have the following facts.

(1.1) There are no sources i with 2 ≤ i ≤ n − 1.
(1.2) Either Ji1 �= 0 or Ji2 �= 0.

So p = 0 and q = 1, and hence |Det(Λ)| = 2n − 2 by Corollary 4.1.
(2) If Λ is a path algebra with at least two sinks in Q, then |{Ji1 �= 0}| = 0 = |{Ji2 �=

0}|. By Corollary 4.1, we have |Det(Λ)| = 2n− p− 1. Thus [13, Theorem 3.13]
follows.

(3) If Λ is a bound quiver algebra with at least two sinks in Q, then it is straight-
forward to check that the notion of vertex ideals is exactly that of sink ideals
in [13, Definition 3.14]. By Corollary 4.1, we have |Det(Λ)| = 2n − p − q − 1.
Thus [13, Theorem 3.15] follows.

In conclusion, Corollary 4.1 is a unified version of [13, Theorems 3.13 and 3.15].
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If Λ is of type Dn, then the underlying graph of Q is of the form

1
α1

��
��

��
�

3
α3

4
α4 · · · αn−1

n.

2

α2

�������

If Λ is of type En with 6 ≤ n ≤ 8, then the underlying graph of Q is of the form

6

α5

1
α1

2
α2

3
α3

4
α4 5,

7

α6

1
α1

2
α2

3
α3

4
α4

5
α5 6,

or

8

α7

1
α1

2
α2

3
α3

4
α4

5
α5

6
α6

7.

In the above four cases, we denote the subquivers in Q with 4 vertices including
the vertex 3 and its 3 neighbors by X3. By the definition of string algebras, we
have.

Proposition 4.2. Let Λ be of type Dn, E6, E7 or E8. Then Λ is a string algebra
if and only if Λ is a bound quiver algebra and I|X3 �= 0.

By Proposition 4.2 and Theorem 3.10, we have the following two corollaries.

Corollary 4.3. Let Λ be a bound quiver algebra of type Dn with I|X3 �= 0. Then
we have

|Det(Λ)| = 2n − p − q − 1,

where p = |{i | i is a source in Q with 4 ≤ i ≤ n−1}| and q = |{Jij �= 0 | j = 1, 2, 3}|.
Corollary 4.4. Let Λ be a bound quiver algebra of type En with 6 ≤ n ≤ 8 and
I|X3 �= 0. Then we have

|Det(Λ)| = 2n − p − q − 1,

where p = |{i | i is a source in Q with i �= 1, 3, n− 1, n}| and q = |{Jij �= 0 | j =
1, 2, 3}|.
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5. An Example of Non-Dynkin Type

In this section, we give an example of non-Dynkin type to illustrate Theorem 3.10.

Example 5.1. Let Q(0) be the quiver with a unique vertex but no arrows: ◦. Let
Q(1) be the quiver

◦

���
��

��
��

◦

◦

���������

���
��

��
��

◦

���������� ◦,

and Q(2) the quiver:

◦

���
��

��
��

◦ ◦

���
��

��
��

◦

◦

���������

���
��

��
��

��
��

��
��

��
◦

���������

  �
��

��
��

◦

��������� ◦

◦

�������������������

���
��

��
��

��
��

��
��

��

◦

���
��

��
��

◦

◦

�������������������

���
��

��
��

◦

���������

  �
��

��
��

◦

��������� ◦ ◦

��������� ◦.
We call the following the first step: Q(1) is a quiver of type Xi4 , which is obtained
by adding 4 vertices of type (v1.1) around the unique vertex in Q(0); and call the
following the second step: Q(2) is obtained by adding 3 vertices of type (v1.1)
around each vertex of type (v1.1) in Q(1) such that all the 4 new branches in Q(2)

are of type Xi4 . Inductively, in the nth step, Q(n) is obtained from Q(n−1) by
adding 3 new vertices of type (v1.1) around each of all 4 × 3n−2 vertices of type
(v1.1) in Q(n−1) such that all the 4 × 3n−2 new branches are of type Xi4 . In Q(n),
the number of vertices is 2 × 3n − 1.

For any n ≥ 1, let Λ(n) = KQ(n)/I with I the admissible ideal of KQ(n)

generated by all the paths of length 2. Notice that there are no vertices of type (v2)
or (v3), so |{Ji2 �= 0}| = 0 = |{Ji3 �= 0}|. It is easy to see that |{Ji1 �= 0}| = 0.
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If n ≥ 2, then we have that some Ji4 �= 0 if and only if it is the vertex ideal of
a vertex of type (v4) in the outermost ring of Q(n). So |{Ji4 �= 0}| = 4× 3n−2, and
hence by Theorem 3.10, for any n ≥ 2, we have

|Det(Λ(n))| = 2(2 × 3n − 1) − 0 − 4 × 3n−2 − 1 = 32 × 3n−2 − 3,

where the number of the projective minimal right determiners is 14× 3n−2 − 1 and
the number of the nonprojective ones is 2 × 3n − 2. Moreover, by Theorem 3.9, we
have that P (i) /∈ Det(Λ(n)) if and only if i is one of the 4 × 3n−2 vertices added in
the (n − 1)th step.

If n = 1, then |{Ji4 �= 0}| = 1. So by Theorem 3.10, we have

|Det(Λ(1))| = 2 × 5 − 0 − 1 − 1 = 8,

where both the number of the projective minimal right determiners and the number
of the no-projective ones are 4. By Theorem 3.9, we have that P (i) ∈ Det(Λ(1)) if
and only if i is one of the four vertices added in the first step.
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