Relative FP-gr-injective and gr-flat modules

Tiwei Zhao*,, Zenghui Gao ${ }^{\dagger}$, ${ }^{\boldsymbol{\pi}}$ and Zhaoyong Huang ${ }^{\ddagger, \|}$
*School of Mathematical Sciences, Qufu Normal University Qufu, Shandong 273165, P. R. China
${ }^{\dagger}$ College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, P. R. China
\ddagger Department of Mathematics, Nanjing University
Nanjing 210093, P. R. China
§tiweizhao@hotmail.com
『gaozenghui@cuit.edu.cn
\|huangzy@nju.edu.cn

Received 6 March 2017
Accepted 23 May 2018
Published 6 July 2018
Communicated by J. Bell

Abstract

Let $n \geq 1$ be an integer. We introduce the notions of n-FP-gr-injective and n-gr-flat modules. Then we investigate the properties of these modules by using the properties of special finitely presented graded modules and obtain some equivalent characterizations of n-gr-coherent rings in terms of n-FP-gr-injective and n-gr-flat modules. Moreover, we prove that the pairs $\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}, \operatorname{gr}-\mathcal{F}_{n}\right)$ and $\left(\operatorname{gr}-\mathcal{F}_{n}, \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ are duality pairs over left n-coherent rings, where $\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}$ and $\operatorname{gr}-\mathcal{F}_{n}$ denote the subcategories of n-FP-grinjective left R-modules and n-gr-flat right R-modules respectively. As applications, we obtain that any graded left (respectively, right) R-module admits an n-FP-gr-injective (respectively, n-gr-flat) cover and preenvelope.

Keywords: n-presented graded modules; n-FP-gr-injective modules; n-gr-flat modules; n-gr-coherent rings; covers, (pre)envelopes.

Mathematics Subject Classification 2010: 16E30, 16W50, 18G25

1. Introduction

Graded rings and modules are a classical topic in algebra, and the homological theory of graded rings has very important applications in algebraic geometry 14. In recent years, relative homological theory for graded rings has been studied by many authors and has become a vigorously active area of research (cf. [2, 3, [11, 12, 19, 20]). In particular, García Rozas et al. in [12] proved the existence of flat covers in the category of graded modules over a graded ring. In [2] 22], the homological
properties of FP-gr-injective modules were investigated and the results were applied to characterize the gr-coherent rings.

As we know, coherent rings have been characterized in various ways, and many nice properties were obtained for such rings in [4, 10, 13, 18, 21 and so on. For a nonnegative integer n, Costa in [8] introduced the notion of n-coherent rings. Following [8], a left R-module M is said to be n-presented if it has a finite n-presentation, that is, there exists an exact sequence $F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ with each F_{i} finitely generated projective; and a ring R is called left n-coherent if every n-presented left R-module is $(n+1)$-presented. In [7], Chen and Ding introduced the notions of n-FP-injective and n-flat modules, and they showed that there are many similarities between coherent rings and n-coherent rings. Along the same lines, it seems to be natural to extend the ideas of [7, 8] and studied the relative homological theory associated to the notions of n-gr-coherent rings and n-presented graded modules. The aim of this paper is to introduce and study n-FP-gr-injective and n-gr-flat modules and show that these modules share many nice properties of FP-gr-injective and gr-flat modules in [2] 22].

This paper is organized as follows. In Sec. 2, we give some terminology and some preliminary results. In Sec. 33, we introduce and study n-FP-gr-injective and n-gr-flat modules for an integer $n \geq 1$. In our study, the properties of special finitely presented graded modules, defined via projective resolutions of n-presented graded modules, play a crucial role. Then we obtain some equivalent characterizations of n-gr-coherent rings in terms of n-FP-gr-injective and n-gr-flat modules. Section 4 is devoted to investigating duality pairs relative to n-FP-gr-injective and n-gr-flat modules. It is shown that the pairs ($\mathrm{gr}-\mathcal{F} \mathcal{I}_{n}$, gr- \mathcal{F}_{n}) and ($\left.\mathrm{gr}-\mathcal{F}_{n}, \mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ are duality pairs over left n-coherent rings, where gr- $\mathcal{F} \mathcal{I}_{n}$ and gr- \mathcal{F}_{n} denote the subcategories of n-FP-gr-injective left R-modules and n-gr-flat right R-modules respectively. As applications, we get that any graded left (respectively, right) R-module admits an n-FP-gr-injective (respectively, n-gr-flat) cover and preenvelope. In addition, cotorsion pairs associated to n-FP-gr-injective and n-gr-flat modules are considered.

2. Preliminaries

Throughout this paper, all rings considered are associative with identity element and the R-modules are unital. By R-Mod we will denote the Grothendieck category of all left R-modules. Let G be a multiplicative group with neutral element e. A graded ring R is a ring with identity 1 together with a direct decomposition $R=\bigoplus_{\sigma \in G} R_{\sigma}$ (as additive subgroups) such that $R_{\sigma} R_{\tau} \subseteq R_{\sigma \tau}$ for all $\sigma, \tau \in G$. Thus, R_{e} is a subring of $R, 1 \in R_{e}$ and R_{σ} is an R_{e}-bimodule for every $\sigma \in G$. A graded left R-module is a left R-module M endowed with an internal direct sum decomposition $M=\bigoplus_{\sigma \in G} M_{\sigma}$, where each M_{σ} is a subgroup of the additive group of M such that $R_{\sigma} M_{\tau} \subseteq M_{\sigma \tau}$ for all $\sigma, \tau \in G$. For any graded left R-modules M and N, set
$\operatorname{Hom}_{R \text { - } \operatorname{gr}}(M, N):=\left\{f: M \rightarrow N \mid f\right.$ is R-linear and $f\left(M_{\sigma}\right) \subseteq N_{\sigma}$ for any $\left.\sigma \in G\right\}$
which is the group of all morphisms from M to N in the category R-gr of all graded left R-modules (gr- R will denote the category of all graded right R-modules). It is well known that R-gr is a Grothendieck category. An R-linear map $f: M \rightarrow N$ is said to be a graded morphism of degree τ with $\tau \in G$ if $f\left(M_{\sigma}\right) \subseteq M_{\sigma \tau}$ for all $\sigma \in G$. Graded morphisms of degree σ build an additive subgroup $\operatorname{HOM}_{R}(M, N)_{\sigma}$ of $\operatorname{Hom}_{R}(M, N)$. Then $\operatorname{HOM}_{R}(M, N)=\bigoplus_{\sigma \in G} \operatorname{HOM}_{R}(M, N)_{\sigma}$ is a graded abelian group of type G. We will denote $\operatorname{Ext}_{R \text {-gr }}^{i}$ and EXT_{R}^{i} as the right derived functors of $\operatorname{Hom}_{R \text {-gr }}$ and HOM_{R}, respectively. Given a graded left R-module M, the graded character module of M is defined as $M^{+}:=\operatorname{HOM}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$, where \mathbb{Q} is the rational numbers field and \mathbb{Z} is the integers ring. It is easy to see that $M^{+}=\bigoplus_{\sigma \in G} \operatorname{Hom}_{\mathbb{Z}}\left(M_{\sigma^{-1}}, \mathbb{Q} / \mathbb{Z}\right)$.

Let M be a graded right R-module and N a graded left R-module. The abelian group $M \otimes_{R} N$ may be graded by putting $\left(M \otimes_{R} N\right)_{\sigma}$ with $\sigma \in G$ to be the additive subgroup generated by elements $x \otimes y$ with $x \in M_{\alpha}$ and $y \in N_{\beta}$ such that $\alpha \beta=\sigma$. The object of \mathbb{Z}-gr thus defined will be called the graded tensor product of M and N.

If M is a graded left R-module and $\sigma \in G$, then $M(\sigma)$ is the graded left R module obtained by putting $M(\sigma)_{\tau}=M_{\tau \sigma}$ for any $\tau \in G$. The graded module $M(\sigma)$ is called the σ-suspension of M. We may regard the σ-suspension as an isomorphism of categories $T_{\sigma}: R$-gr $\rightarrow R$-gr, given on objects as $T_{\sigma}(M)=M(\sigma)$ for any $M \in R$-gr.

For any element $m=\sum_{\sigma \in G} m_{\sigma}$ of R, set $\operatorname{Supp}(m):=\left\{\sigma \in G \mid m_{\sigma} \neq 0\right\}$. Consider a set $\left\{M_{i} \mid i \in I\right\}$ of graded left R-modules and let $\left\{\prod_{i \in I} M_{i}, \pi_{i}\right\}$ be the direct product in R-Mod of the underlying left R-modules M_{i}, where π_{j} : $\prod_{i \in I} M_{i} \rightarrow M_{j}$ denotes the j th canonical projection for each $j \in I$. Given $m \in$ $\prod_{i \in I} M_{i}$, define $\operatorname{SUPP}(m):=\bigcup_{i \in I} \operatorname{Supp}\left(\pi_{i}(m)\right) \subset G$; and define $\prod_{i \in I}^{R-\mathrm{gr}} M_{i}:=$ $\left\{m \in \prod_{i \in I} M_{i} \mid \operatorname{SUPP}(m)\right.$ is finite $\}$. Then $\left\{\prod_{i \in I}^{R \text {-gr }} M_{i}, \pi_{i}\right\}$ is the direct product of the graded left R-modules $\left\{M_{i} \mid i \in I\right\}$. It is a graded left R-module, where $\left(\prod_{i \in I}^{R-\mathrm{gr}} M_{i}\right)_{\sigma}=\left\{m \in \prod_{i \in I}^{R-\mathrm{gr}} M_{i} \mid \operatorname{SUPP}(m) \subset\{\sigma\}\right\}$. Observe that, as R_{e}-modules, $\left(\prod_{i \in I}^{R-\mathrm{gr}} M_{i}\right)_{\sigma} \cong \prod_{i \in I}\left(M_{i}\right)_{\sigma}$ for any $\sigma \in G$.

The injective objects of R-gr will be called gr-injective modules. Projective (respectively, flat) objects of R-gr will be called projective (respectively, flat) graded modules because M is gr-projective (respectively, gr-flat) if and only if it is a projective (respectively, flat) graded module. By gr-id ${ }_{R} M, \operatorname{pd}_{R} M$ and $\mathrm{fd}_{R} M$ we will denote the gr-injective, projective and flat dimension of a graded module M, respectively. The gr-injective envelope of M is denoted by $E^{g}(M)$. A graded R-module M is called $F P$-gr-injective if $\operatorname{EXT}_{R}^{1}(N, M)=0$ for any finitely presented graded R-module N. It can be proved that if R is gr-noetherian, then M is gr-injective if and only if M is FP-gr-injective, and that if R is gr-coherent (that is, a graded ring R such that given a family of graded flat R-modules $\left\{F_{i}\right\}_{i \in I}$, the graded R-module $\prod_{i \in I}^{R-\mathrm{gr}} F_{i}$ is flat), then M is FP-gr-injective if and only if M^{+}is flat.

The forgetful functor $U: R$-gr $\rightarrow R$-Mod associates M to the underlying ungraded R-module. This functor has a right adjoint F which associates M in
R-Mod to the graded R-module $F(M)=\bigoplus_{\sigma \in G}\left({ }^{\sigma} M\right)$, where each ${ }^{\sigma} M$ is a copy of M written $\left\{{ }^{\sigma} x \mid x \in M\right\}$ with R-module structure defined by $r *^{\tau} x={ }^{\sigma \tau}(r x)$ for any $r \in R_{\sigma}$. If $f: M \rightarrow N$ is R-linear, then $F(f): F(M) \rightarrow F(N)$ is a graded morphism given by $F(f)\left({ }^{\sigma} x\right)={ }^{\sigma} f(x)$.

For a graded ring R, let \mathcal{F} be a class of graded left R-modules and M a graded left R-module. Following [3], we say that a graded morphism $f: F \rightarrow M$ is an \mathcal{F}-precover of M if $F \in \mathcal{F}$ and $\operatorname{Hom}_{R \text {-gr }}\left(F^{\prime}, F\right) \rightarrow \operatorname{Hom}_{R-\mathrm{gr}}\left(F^{\prime}, M\right) \rightarrow 0$ is exact for all $F^{\prime} \in \mathcal{F}$. Moreover, if whenever a graded morphism $g: F \rightarrow F$ such that $f \circ g=f$ is an automorphism of F, then $f: F \rightarrow M$ is called an \mathcal{F}-cover of M. The class \mathcal{F} is called (pre)covering if each object in R-gr has an \mathcal{F}-(pre)cover. Dually, the notions of \mathcal{F}-preenvelopes, \mathcal{F}-envelopes and (pre)enveloping are defined.

3. n-FP-gr-Injective and n-gr-Flat Modules

In this section, we give a treatment of n-FP-gr-injective and n-gr-flat modules. Some general properties of these modules are discussed.

Definition 3.1. Let $n \geq 0$ be an integer. A graded left R-module F is called n-presented if there exists an exact sequence

$$
P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow F \rightarrow 0
$$

in R-gr with each P_{i} finitely generated projective.
A graded ring R is called left n-gr-coherent if each n-presented graded left R modules is $(n+1)$-presented.

If F is an n-presented graded left R-module, then there exists an exact sequence

$$
P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow F \rightarrow 0
$$

in R-gr with each P_{i} finitely generated projective. Set $K_{n}:=\operatorname{Im}\left(P_{n} \rightarrow P_{n-1}\right)$ and $K_{n-1}:=\operatorname{Im}\left(P_{n-1} \rightarrow P_{n-2}\right)$. Then we get a short exact sequence

$$
(\Delta): 0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0
$$

in R-gr with P_{n-1} finitely generated projective. It follows that $\operatorname{EXT}_{R}^{n}(F, A) \cong$ $\operatorname{EXT}_{R}^{1}\left(K_{n-1}, A\right)$ for any graded left R-module A.

Note that K_{n-1} and K_{n} obtained as above are finitely presented and finitely generated in R-gr respectively. We call the objects K_{n-1} and K_{n} special finitely presented and special finitely generated graded left R-modules, respectively, and we shall say the sequence $(\Delta): 0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0$ in R-gr is a special short exact sequence. Moreover, a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in R-gr is called special gr-pure if the induced sequence

$$
0 \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, A\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, B\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, C\right) \rightarrow 0
$$

is exact for all special finitely presented graded left R-modules K_{n-1}. In this case, A is said to be special gr-pure in B.

Remark 3.2. (1) Obviously, 0 -presented (respectively, 1-presented) graded left R modules are exactly finitely generated (respectively, finitely presented) graded left R-modules. If $m \geq n$, then m-presented graded left R-modules are n presented. Also, left 0-gr-coherent (respectively, 1-gr-coherent) rings are just left gr-Noetherian (respectively, gr-coherent) rings.
(2) One checks readily that every finitely presented graded left R-module is n presented $(n \geq 2)$ if and only if R is a left gr-coherent ring. Moreover, a graded ring R is left n-gr-coherent if and only if each special finitely generated graded left R-module is finitely presented, and if and only if each special finitely presented graded left R-module is 2 -presented.

The following lemma is the graded version of [17, Lemma 2.3].
Lemma 3.3. Let $0 \rightarrow F_{1} \rightarrow F_{2} \rightarrow F_{3} \rightarrow 0$ be an exact sequence in R-gr. Then the following statements hold for any $n \geq 0$.
(1) If F_{1}, F_{3} are n-presented, then so is F_{2}.
(2) If F_{1} is n-presented and F_{2} is $(n+1)$-presented, then F_{3} is $(n+1)$-presented.
(3) If F_{2}, F_{3} is $(n+1)$-presented, then F_{1} is n-presented.

Ungraded n-presented modules have been investigated by many authors. For example, Bravo, Gillespie and Hovey in [5] introduced and investigated $\mathrm{FP}_{\infty^{-}}$ injective modules in terms of modules of type FP_{∞}, and Bravo and Pérez in [6] introduced and investigated the FP_{n}-injective modules in terms of n-presented modules for any $n \geq 0$. More precisely, let R be an associative ring and M a left R module. Then M is called $F P_{n}$-injective if $\operatorname{Ext}_{R}^{1}(L, M)=0$ for all n-presented left R-modules L.

We claim that if we similarly use the derived functor EXT^{1} to define the FP_{n}-grinjective and FP_{∞}-gr-injective modules, then they are just the FP_{n}-injective and FP_{∞}-injective objects in the category of graded modules respectively. In fact, if $M \in R$-gr and L is an n-presented graded left R-module with $n \geq 2$, then there is an exact sequence

$$
P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow L \rightarrow 0
$$

in R-gr with each P_{i} finitely generated projective. By [20, Corollary 2.4.4], we have the following commutative diagram with the rows being complexes

which shows that $\operatorname{EXT}_{R}^{1}(L, M) \cong \operatorname{Ext}_{R}^{1}(L, M)$.
Based on the above observation, we introduce the following.
Definition 3.4. Let $n \geq 1$ be an integer. A module M in R-gr is called n - $F P$ -gr-injective if $\operatorname{EXT}_{R}^{n}(F, M)=0$ for any n-presented graded left R-module F. A
module N in gr- R is called n-gr-flat if $\operatorname{Tor}_{n}^{R}(N, F)=0$ for any n-presented graded left R-module F.

We denote by gr- $\mathcal{F} \mathcal{I}_{n}$ (respectively, gr- \mathcal{F}_{n}) the subcategory of all n-FP-grinjective (respectively, n-gr-flat) graded left (respectively, right) R-modules.

Remark 3.5. (1) By definition, we have that a module $M \in R$-gr is 1-FP-grinjective if and only if M is FP-gr-injective; and a module $N \in \mathrm{gr}-R$ is 1 -gr-flat if and only if N is a flat graded right R-module.
(2) In general, whenever $1 \leq m \leq n$, every m-FP-gr-injective left R-module is n -FP-gr-injective, and every m-gr-flat right R-module is n-gr-flat. Indeed, there are the following implications:

$$
\begin{aligned}
\text { gr- } \mathcal{F} \mathcal{I} & =\text { gr- } \mathcal{F} \mathcal{I}_{1} \subseteq \text { gr- } \mathcal{F} \mathcal{I}_{2} \subseteq \cdots \subseteq \text { gr- } \mathcal{F} \mathcal{I}_{m} \subseteq \text { gr- } \mathcal{F} \mathcal{I}_{m+1} \subseteq \cdots \\
\text { gr- } \mathcal{F} & =\text { gr- } \mathcal{F}_{1} \subseteq \text { gr- } \mathcal{F}_{2} \subseteq \cdots \subseteq \text { gr- } \mathcal{F}_{m} \subseteq \text { gr- } \mathcal{F}_{m+1} \subseteq \cdots
\end{aligned}
$$

To see it, it suffices to show that every m-FP-gr-injective left R-module is $(m+1)$-FP-gr-injective. If M is an m-FP-gr-injective module and F is an ($m+1$)-presented graded left R-module, then there exists an exact sequence $0 \rightarrow K \rightarrow Q \rightarrow F \rightarrow 0$ in R-gr, where Q is finitely generated projective and K is m-presented by Lemma 3.3 So we get the exactness of $0 \rightarrow \operatorname{EXT}_{R}^{m}(K, M) \rightarrow \operatorname{EXT}_{R}^{m+1}(F, M) \rightarrow 0$. Note that $\operatorname{EXT}_{R}^{m}(K, M)=0$ since M is m-FP-gr-injective, it follows that $\operatorname{EXT}_{R}^{m+1}(F, M)=0$ for any $(m+1)$ presented graded left R-module F. Thus M is $(m+1)$-FP-gr-injective. Similarly, we can deduce that every m-gr-flat right R-module is n-gr-flat.
(3) If N is an n-presented graded left R-module and $0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0$ is a special short exact sequence in R-gr with respect to N, then from the isomorphism $\operatorname{EXT}_{R}^{n}(N, A) \cong \operatorname{EXT}_{R}^{1}\left(K_{n-1}, A\right)$ for any graded left R-module A, we conclude that a module $M \in R$-gr is n-FP-gr-injective if and only if $\operatorname{EXT}_{R}^{1}\left(K_{n-1}, M\right)=0$ for any special finitely presented graded left R-module K_{n-1}.

The following example illustrates that, in general, n-FP-gr-injective (respectively, n-gr-flat) modules need not be m-FP-gr-injective (respectively, m-gr-flat) whenever $m<n$. Before that, recall that the $F P$-gr-injective dimension of a graded left R-module M, denoted by FP-gr-id ${ }_{R} M$, is defined to be the least integer n such that $\operatorname{EXT}_{R}^{n+1}(N, M)=0$ for any finitely presented graded left R-module N, and l. FP-gr- $\operatorname{dim} R=\sup \left\{\right.$ FP-gr-id ${ }_{R} M \mid M$ is a graded left R-module $\}$.

Example 3.6. Let R be a graded ring with l.FP-gr- $\operatorname{dim} R \leq 1$ but not gr-regular, for example, let $R=k[X]$ where k is a field. Then there exists a graded left R module which is not FP-gr-injective by [22, Proposition 3.11]. We claim that every graded left R-module is 2 -FP-gr-injective. In fact, let M be a graded left R-module and F a 2-presented graded left R-module. Then there exists an exact sequence
$0 \rightarrow M \rightarrow E \rightarrow L \rightarrow 0$ in R-gr with E gr-injective. It follows from [22, Lemma 3.7] that L is FP-gr-injective and $0 \rightarrow \operatorname{EXT}_{R}^{1}(F, L) \rightarrow \operatorname{EXT}_{R}^{2}(F, M) \rightarrow 0$ is exact. Notice that F is finitely presented, so we have $\operatorname{EXT}_{R}^{1}(F, L)=0$. Thus, $\operatorname{EXT}_{R}^{2}(F, M)=0$ for any 2 -presented graded left R-modules F. Further, one can deduce that there exists a 2 -gr-flat module, but not gr-flat by Theorem 3.17

We have the following easy observations.
Proposition 3.7. (1) Let $\left\{M_{i}\right\}_{i \in I}$ be a family of graded left R-modules. Then $\prod_{i \in I}^{R-g r} M_{i}$ is n-FP-gr-injective if and only if each M_{i} is n-FP-gr-injective.
(2) Let $\left\{N_{i}\right\}_{i \in I}$ be a family of graded right R-modules. Then $\bigoplus_{i \in I} N_{i}$ is n-gr-flat if and only if each N_{i} is n-gr-flat.

Proposition 3.8. Let M be a graded right R-module. Then M is n-gr-flat if and only if M^{+}is n-FP-gr-injective.

Proof. By [12, Lemma 2.1], we have $\operatorname{EXT}_{R}^{1}\left(N, M^{+}\right) \cong \operatorname{Tor}_{1}^{R}(M, N)^{+}$for any graded left R-module N. Let F be any graded left R-module. Then there exists an exact sequence $0 \rightarrow K \rightarrow P \rightarrow F \rightarrow 0$ in R-gr with P projective. Consider the following commutative diagram with exact rows:

It follows that $\operatorname{EXT}_{R}^{2}\left(F, M^{+}\right) \cong \operatorname{Tor}_{2}^{R}(M, F)^{+}$for any graded left R-module F. By using induction on n, one easily gets that $\operatorname{EXT}_{R}^{n}\left(N, M^{+}\right) \cong \operatorname{Tor}_{n}^{R}(M, N)^{+}$for any graded left R-module N, and so the assertion follows.

Proposition 3.9. The category of n-gr-flat right R-modules is closed under gr-pure submodules and gr-pure quotients.

Proof. Let B be an n-gr-flat right R-module and A a gr-pure submodule of B. Then there exists a gr-pure exact sequence $0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0$ in gr- R, which gives rise to a split exact sequence $0 \rightarrow(B / A)^{+} \rightarrow B^{+} \rightarrow A^{+} \rightarrow 0$ in R-gr. By Proposition 3.8, B^{+}is n-FP-gr-injective, and hence A^{+}and $(B / A)^{+}$is n-FP-grinjective as a direct summand of B^{+}by Proposition 3.7. Therefore, A and B / A is n-gr-flat by Proposition 3.8.

Proposition 3.10. Let R be a ring graded by a group G and $n \geq 1$ an integer. Then the following statements are equivalent for a graded left R-module M.
(1) M is n-FP-gr-injective.
(2) M is gr-injective with respect to all special short exact sequences in R-gr.
(3) $M(\sigma)$ is n-FP-gr-injective for any $\sigma \in G$.
(4) M is special gr-pure in any graded left R-module containing it.
(5) M is special gr-pure in any gr-injective left R-module containing it.
(6) M is special gr-pure in $E^{g}(M)$.
(7) $M(\sigma)$ is gr-injective with respect to all special short exact sequences in R-gr for any $\sigma \in G$.

Proof. $(1) \Rightarrow(2)$ is trivial by Remark 3.5 (3).
$(2) \Rightarrow(1)$ Let N be an n-presented graded left R-module. Taking a special short exact sequence $0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0$ in R-gr with P_{n-1} finitely generated projective, which induces an exact sequence

$$
\operatorname{HOM}_{R}\left(P_{n-1}, M\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n}, M\right) \rightarrow \operatorname{EXT}_{R}^{1}\left(K_{n-1}, M\right) \rightarrow 0
$$

Note that $\operatorname{HOM}_{R}\left(P_{n-1}, M\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n}, M\right) \rightarrow 0$ is exact by assumption, it follows that $\operatorname{EXT}_{R}^{n}(N, M) \cong \operatorname{EXT}_{R}^{1}\left(K_{n-1}, M\right)=0$. Thus M is n-FP-gr-injective, as desired.
$(3) \Rightarrow(1)$ and $(4) \Rightarrow(5) \Rightarrow(6)$ are clear.
(2) \Rightarrow (3) Assume that N is an n-presented graded left R-module and $0 \rightarrow$ $K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0$ is a special short exact sequence in R-gr with P_{n-1} finitely generated projective. Then we get the exactness of

$$
0 \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, M\right)_{\sigma} \rightarrow \operatorname{HOM}_{R}\left(P_{n-1}, M\right)_{\sigma} \rightarrow \operatorname{HOM}_{R}\left(K_{n}, M\right)_{\sigma} \rightarrow 0
$$

for any $\sigma \in G$. Now consider the following commutative diagram:

with the upper row exact for any $\tau \in G$. It follows that
$0 \rightarrow \mathrm{HOM}_{R}\left(K_{n-1}, M(\sigma)\right)_{\tau} \rightarrow \operatorname{HOM}_{R}\left(P_{n-1}, M(\sigma)\right)_{\tau} \rightarrow \mathrm{HOM}_{R}\left(K_{n}, M(\sigma)\right)_{\tau} \rightarrow 0$
is exact, which gives rise to the exactness of

$$
0 \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, M(\sigma)\right) \rightarrow \operatorname{HOM}_{R}\left(P_{n-1}, M(\sigma)\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n}, M(\sigma)\right) \rightarrow 0
$$

It follows that $\operatorname{EXT}_{R}^{n}(N, M(\sigma)) \cong \operatorname{EXT}_{R}^{1}\left(K_{n-1}, M(\sigma)\right)=0$ and $M(\sigma)$ is n-FP-grinjective for any $\sigma \in G$.
(1) \Rightarrow (4) Let N be an n-presented graded left R-module and K_{n-1} a special finitely presented graded left R-module. Then $\operatorname{EXT}_{R}^{1}\left(K_{n-1}, M\right) \cong \operatorname{EXT}_{R}^{n}(N, M)=$ 0 by assumption. Now suppose $(\dagger): 0 \rightarrow M \rightarrow Q \rightarrow Q / M \rightarrow 0$ is an exact sequence in R-gr. Applying the functor $\operatorname{HOM}_{R}\left(K_{n-1},-\right)$ to the sequence (\dagger), one gets the following exact sequence

$$
0 \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, M\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, Q\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, Q / M\right) \rightarrow 0
$$

Thus M is special gr-pure in Q and (4) follows.
(6) \Rightarrow (1) Let N be an n-presented grade left R-module and K_{n-1} a special finitely presented graded left R-module. Then
$0 \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, M\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, E^{g}(M)\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, E^{g}(M) / M\right) \rightarrow 0$
 injective.
(2) \Leftrightarrow (7) It follows directly from the isomorphism: $\operatorname{HOM}_{R}(-, M)_{\sigma} \cong$ $\operatorname{Hom}_{R-\mathrm{gr}}(-, M(\sigma))$ for any $\sigma \in G$.

Proposition 3.11. The category of n-FP-gr-injective left R-modules is closed under gr-pure submodules.

Proof. Let A be an n-FP-gr-injective module and A_{1} a gr-pure submodule of A. Then we have a gr-pure short exact sequence $0 \rightarrow A_{1} \rightarrow A \rightarrow A / A_{1} \rightarrow 0$. Moreover, for any n-presented graded left R-module N, take a special short exact sequence

$$
0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0
$$

in R-gr with P_{n-1} finitely generated projective. Consider the following commutative diagram with rows and columns exact:

Here, the upper row is exact since K_{n-1} is finitely presented, and the middle column is exact since A is an n-FP-gr-injective module. By the snake lemma, we have that the sequence

$$
0 \rightarrow \operatorname{HOM}_{R}\left(K_{n-1}, A_{1}\right) \rightarrow \operatorname{HOM}_{R}\left(P_{n-1}, A_{1}\right) \rightarrow \operatorname{HOM}_{R}\left(K_{n}, A_{1}\right) \rightarrow 0
$$

is exact. It follows that $\operatorname{EXT}_{R}^{1}\left(K_{n-1}, A_{1}\right)=0$. Thus A_{1} is an n-FP-gr-injective module by Remark 3.5(3).

Let R and S be graded rings of type G. If $A \in R$-gr, $B \in R$-gr- S and $C \in \operatorname{gr}-S$ with A finitely presented and C gr-injective, then there exists a natural isomorphism ([1] Lemma 2.3]):

$$
\begin{equation*}
\operatorname{HOM}_{S}(B, C) \otimes_{R} A \cong \operatorname{HOM}_{S}\left(\operatorname{HOM}_{R}(A, B), C\right) \tag{3.1}
\end{equation*}
$$

Thus, if A is an n-presented graded left R-module and taking an exact sequence

$$
P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

in R-gr with each P_{i} finitely generated projective, then we get the following commutative diagram:

Moreover, if C is gr-injective, then the functor $\operatorname{HOM}_{S}(-, C)$ is exact, and hence we get the isomorphism

$$
\begin{equation*}
\operatorname{Tor}_{i}^{R}\left(\operatorname{HOM}_{S}(B, C), A\right) \cong \operatorname{HOM}_{S}\left(\operatorname{EXT}_{R}^{i}(A, B), C\right) \tag{3.2}
\end{equation*}
$$

for any $0 \leq i \leq n-1$, and an exact sequence

$$
\operatorname{Tor}_{n}^{R}\left(\operatorname{HOM}_{S}(B, C), A\right) \rightarrow \operatorname{HOM}_{S}\left(\operatorname{EXT}_{R}^{n}(A, B), C\right) \rightarrow 0
$$

Proposition 3.12. Let $M \in R$-gr. If M^{+}is n-gr-flat, then M is n-FP-gr-injective.
Proof. Let N be an n-presented graded left R-module. By the above argument, one gets the exact sequence $\operatorname{Tor}_{n}^{R}\left(M^{+}, N\right) \rightarrow \operatorname{EXT}_{R}^{n}(N, M)^{+} \rightarrow 0$. Since M^{+}is n-gr-flat, we have $\operatorname{Tor}_{n}^{R}\left(M^{+}, N\right)=0$, and so $\operatorname{EXT}_{R}^{n}(N, M)=0$, which shows that M is n-FP-gr-injective.

Proposition 3.13. Let F be an n-present graded left R-module and $n \geq 1$ an integer, and let $\left\{M_{i}\right\}_{i \in I}$ be a direct system of graded left R-modules with I directed. Then we have
(1) There is the isomorphism $\xrightarrow{\lim } \operatorname{EXT}_{R}^{j}\left(F, M_{i}\right) \cong \operatorname{EXT}_{R}^{j}\left(F, \underline{\longrightarrow} M_{i}\right)$ for any $0 \leq$ $j \leq n-1$.
(2) There is an exact sequence $0 \rightarrow \underset{\longrightarrow}{\lim } \operatorname{EXT}_{R}^{n}\left(F, M_{i}\right) \rightarrow \operatorname{EXT}_{R}^{n}\left(F, \underline{\longrightarrow} M_{i}\right)$.

Proof. If F is an n-presented graded left R-module, then there exists an exact sequence

$$
P_{n} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow F \rightarrow 0
$$

in R-gr with each P_{i} finitely generated projective. Thus, we get the following commutative diagram:

Note that $\left\{M_{i}\right\}_{i \in I}$ is a direct system of graded left R-modules with I directed and the functor $\xrightarrow{\lim }$ is exact. So the assertion follows.

Similarly, we have the following.
Proposition 3.14. Let F be an n-present graded left R-module and $n \geq 1$ an integer, and let $\left\{M_{i}\right\}_{i \in I}$ be a family of graded right R-modules. Then we have
(1) There is the isomorphism $\operatorname{Tor}_{j}^{R}\left(\prod_{i \in I}^{\mathrm{gr}-R} M_{i}, F\right) \cong \prod_{i \in I} \operatorname{Tor}_{j}^{R}\left(M_{i}, F\right)$ for any $0 \leq$ $j \leq n-1$.
(2) There is an exact sequence $\operatorname{Tor}_{n}^{R}\left(\prod_{i \in I}^{\mathrm{gr}-R} M_{i}, F\right) \rightarrow \prod_{i \in I} \operatorname{Tor}_{n}^{R}\left(M_{i}, F\right) \rightarrow 0$.

By using an argument similar to the ungraded case, we have
Lemma 3.15. The following statements are equivalent for a finitely generated graded left R-module A.
(1) A is finitely presented.
(2) $\left(\prod_{i \in I}^{R-g r} L_{i}\right) \otimes_{R} A \cong \prod_{i \in I}\left(L_{i} \otimes_{R} A\right)$ for any class of graded right R-modules $\left\{L_{i}\right\}_{i \in I}$.
(3) $\left(\prod_{i \in I}^{R-g r} R\right) \otimes_{R} A \cong A^{I}$ for any set I.

Proposition 3.16. Let R be left n-gr-coherent. Then the category of n-FP-grinjective left R-modules is closed under direct sums.

Proof. Let $\left\{M_{i}\right\}_{i \in I}$ be a family of n-FP-gr-injective left R-modules and F an n-presented graded left R-module. Then there exists a special short exact sequence

$$
0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0
$$

in R-gr. Since R is left n-gr-coherent, we have that F is $(n+1)$-presented and K_{n} is also special finitely presented. Consider the following commutative diagram:

with the lower row exact. So the upper row exact, and hence $\operatorname{EXT}_{R}^{1}\left(K_{n-1}\right.$, $\left.\bigoplus_{i \in I} M_{i}\right)=0$. It follows that $\bigoplus_{i \in I} M_{i}$ is n-FP-gr-injective by Remark 3.5)(3).

We now are in a position to give the main result in this section.
Theorem 3.17. Let $n \geq 1$ be an integer. Then the following statements are equivalent for a graded ring R.
(1) R is left n-gr-coherent.
(2) Any graded direct product of R is an n-gr-flat right R-module.
(3) Any graded direct product of n-gr-flat right R-modules is n-gr-flat.
(4) Any direct limit of n-FP-gr-injective left R-modules is n - $F P$-gr-injective.
(5) $\operatorname{Tor}_{n}^{R}\left(\operatorname{HOM}_{S}(B, C), A\right) \rightarrow \operatorname{HOM}_{S}\left(\operatorname{EXT}_{R}^{n}(A, B), C\right)$ is an isomorphism for any graded ring S with $A \in R$-gr n-presented, $B \in R$-gr- S and $C \in \operatorname{gr}-S$ grinjective.
(6) $\xrightarrow{\lim } \operatorname{EXT}_{R}^{n}\left(F, M_{i}\right) \rightarrow \operatorname{EXT}_{R}^{n}\left(F, \underset{\longrightarrow}{\left.\lim M_{i}\right) \text { is an isomorphism for any n-present }}\right.$ graded left R-module F and any direct system $\left\{M_{i}\right\}_{i \in I}$ of graded left R-modules with I directed.
(7) $\operatorname{Tor}_{n}^{R}\left(\prod_{i \in I}^{\mathrm{gr}-R} M_{i}, F\right) \rightarrow \prod_{i \in I} \operatorname{Tor}_{n}^{R}\left(M_{i}, F\right)$ is an isomorphism for any n-present graded left R-module F and any family of graded right R-modules $\left\{M_{i}\right\}_{i \in I}$.
(8) $M \in R$-gr is n-FP-gr-injective if and only if M^{+}is n-gr-flat.
(9) $M \in R$-gr is n - $F P$-gr-injective if and only if M^{++}is n-FP-gr-injective.
(10) $M \in \operatorname{gr}-R$ is n-gr-flat if and only if M^{++}is n-gr-flat.

Proof. (1) \Rightarrow (5) Let $A \in R$-gr be n-presented. Then A is $(n+1)$ presented since R is left n-gr-coherent. It follows that $\operatorname{Tor}_{n}^{R}\left(\operatorname{HOM}_{S}(B, C), A\right) \cong$ $\operatorname{HOM}_{S}\left(\mathrm{EXT}_{R}^{n}(A, B), C\right)$ by (3.2).
(5) \Rightarrow (8) If M^{+}is n-gr-flat in gr- R, then M is n-FP-gr-injective by Proposition 3.12. Conversely, let $S=\mathbb{Z}, C=\mathbb{Q} / \mathbb{Z}$ and $B=M$. Then by assumption, we have $\operatorname{Tor}_{n}^{R}\left(M^{+}, A\right) \cong \operatorname{EXT}_{R}^{n}(A, M)^{+}$for any n-present graded left R-module A. Thus, if M is n-FP-gr-injective, then $\operatorname{EXT}_{R}^{n}(A, M)=0$. ${\operatorname{So~} \operatorname{Tor}_{n}^{R}}^{2}\left(M^{+}, A\right)=0$ and M^{+}is n-gr-flat, as desired.
(8) \Rightarrow (9) If $M \in R$-gr is n-FP-gr-injective, then M^{+}is n-gr-flat by assumption, and so M^{++}is n-FP-gr-injective by Proposition 3.8 Conversely, if M^{++}is n-FP-grinjective, then we have a gr-pure exact sequence $0 \rightarrow M \rightarrow M^{++} \rightarrow M^{++} / M \rightarrow 0$ by [2, Lemma 2.3]. Thus M is n-FP-gr-injective by Proposition 3.11
$(9) \Rightarrow(10)$ Let $M \in$ gr- R be n-gr-flat. Then M^{+}is n-FP-gr-injective by Proposition 3.8. So M^{+++}is n-FP-gr-injective by assumption. By Proposition 3.8 again, we get that M^{++}is n-gr-flat. Conversely, if M^{++}is n-gr-flat, then M, as a gr-pure submodule of M^{++}, is n-gr-flat by Proposition 3.9 ,
(10) \Rightarrow (3) Let $\left\{M_{i}\right\}_{i \in I}$ be a family of n-gr-flat right R-modules. By Proposition 3.7(2), we have that $\bigoplus_{i \in I} M_{i}$ is n-gr-flat. Then $\left(\bigoplus_{i \in I} M_{i}\right)^{++}$is n-grflat by assumption. Now by the isomorphism $\left(\bigoplus_{i \in I} M_{i}\right)^{+} \cong \prod_{i \in I}^{R-g r} M_{i}^{+}$, we have that $\left(\prod_{i \in I}^{R \text {-gr }} M_{i}^{+}\right)^{+} \cong\left(\bigoplus_{i \in I} M_{i}\right)^{++}$is n-gr-flat. On the other hand, since $\bigoplus_{i \in I} M_{i}{ }^{+}$is gr-pure in $\prod_{i \in I}^{R \text {-gr }} M_{i}{ }^{+}$, it follows that $\left(\bigoplus_{i \in I} M_{i}{ }^{+}\right)^{+}$is a graded direct summand of $\left(\prod_{i \in I}^{R-g r} M_{i}^{+}\right)^{+}$, and so $\left(\bigoplus_{i \in I} M_{i}^{+}\right)^{+}$is n-gr-flat. From the isomorphism $\prod_{i \in I}^{\mathrm{gr}-R} M_{i}^{++} \cong\left(\bigoplus_{i \in I} M_{i}^{+}\right)^{+}$, we have that $\prod_{i \in I}^{\mathrm{gr}-R} M_{i}^{++}$is n-gr-flat. By [2. Lemma 2.3], we have that M_{i} is gr-pure in M_{i}^{++}and $\prod_{i \in I}^{\mathrm{gr}-R} M_{i}$ is gr-pure in $\prod_{i \in I}^{\mathrm{gr}-R} M_{i}^{++}$. Therefore $\prod_{i \in I}^{\mathrm{gr}-R} M_{i}$ is n-gr-flat by Proposition 3.9. The assertion follows.
$(3) \Rightarrow(2)$ is trivial.
(2) \Rightarrow (1) We will show that any n-presented graded left R-module is $(n+1)$ presented. Let F be an n-presented graded left R-module and $0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow$
$K_{n-1} \rightarrow 0$ a special short exact sequence in R-gr. Then $\operatorname{Tor}_{1}^{R}\left(\prod_{i \in I}^{R \text {-gr }} R, K_{n-1}\right) \cong$ $\operatorname{Tor}_{n}^{R}\left(\prod_{i \in I}^{R-g r} R, F\right)=0$ by the dimension shifting. Note that $\prod_{i \in I}^{R \text {-gr }} R$ is an n-gr-flat right R-module by assumption. So, we obtain the following commutative diagram with exact rows:

Because K_{n-1} and P_{n-1} are both finitely presented, we have that g and h are isomorphisms by Lemma 3.15. So f is an isomorphism by the five lemma. By Lemma 3.15 again, we get that K_{n} is finitely presented. The assertion follows:
(1) $\Rightarrow(6)$ Let $A \in R$-gr be n-presented. Since R is left n-gr-coherent, we have that A is $(n+1)$-presented. Now the assertion follows from Proposition 3.13(1).
$(6) \Rightarrow(4)$ is trivial.
(4) \Rightarrow (1) Let F be an n-presented left R-module and $0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow$ $K_{n-1} \rightarrow 0$ a special short exact sequence. It suffices to show that the special finitely generated graded left R-module K_{n} is finitely presented. Suppose that $\left\{E_{i}\right\}_{i \in I}$ is a direct system of gr-injective left R-modules. Then each E_{i} is n-FP-grinjective, and hence $\xrightarrow{\lim } E_{i}$ is n-FP-gr-injective by (4). Thus $\operatorname{EXT}_{R}^{1}\left(K_{n-1}, \underline{\longrightarrow} E_{i}\right) \cong$ $\operatorname{EXT}_{R}^{n}\left(F, \underset{\longrightarrow}{\lim } E_{i}\right)=0$ and we get a commutative diagram as follows:

where all columns are exact. Since K_{n-1} and P_{n-1} are both finitely presented and each E_{i} is gr-injective, we have that f and g are isomorphisms by [22, Lemma 3.1]. Thus h is an isomorphism, and therefore K_{n} is finitely presented by [22, Lemma 3.1] again.
$(1) \Rightarrow(7)$ Since any n-presented graded left R-module is $(n+1)$-presented over a left n-gr-coherent ring R, the assertion follows directly from Proposition 3.14(1). $(7) \Rightarrow(3)$ is trivial.

4. Covers and Preenvelopes by n-FP-gr-Injective and n-gr-Flat Modules

In this section, all rings are assumed to be left n-gr-coherent rings. Holm and Jørgensen [15] introduced the notion of duality pairs for the category of ungraded modules, and the duality pairs play an important role in the aspect of showing the existence of covers and preenvelopes. Now we generalize this notion to the category of graded modules as follows.

Definition 4.1. A duality pair over a graded $\operatorname{ring} R$ is a pair $(\mathcal{M}, \mathcal{C})$, where \mathcal{M} is a class of graded left (respectively, right) R-modules and \mathcal{C} is a class of graded right (respectively, left) R-modules, subject to the following conditions:
(1) For any graded module M, one has $M \in \mathcal{M}$ if and only if $M^{+} \in \mathcal{C}$.
(2) \mathcal{C} is closed under direct summands and finite direct sums.

A duality pair $(\mathcal{M}, \mathcal{C})$ is called (co)product-closed if the class of \mathcal{M} is closed under graded direct (co)products; and a duality pair $(\mathcal{M}, \mathcal{C})$ is called perfect if it is coproduct-closed, \mathcal{M} is closed under extensions and R belongs to \mathcal{M}.

The following theorem is the graded version of [15. Theorem 3.1].
Theorem 4.2. Let $(\mathcal{M}, \mathcal{C})$ be a duality pair. Then \mathcal{M} is closed under gr-pure submodules, gr-pure quotients and gr-pure extensions. Furthermore, the following hold:
(1) If $(\mathcal{M}, \mathcal{C})$ is product-closed, then \mathcal{M} is preenveloping.
(2) If $(\mathcal{M}, \mathcal{C})$ is coproduct-closed, then \mathcal{M} is covering.
(3) If $(\mathcal{M}, \mathcal{C})$ is perfect, then $\left(\mathcal{M}, \mathcal{M}^{+}\right)$is a perfect cotorsion pair.

Proof. First we will prove that \mathcal{M} is closed under gr-pure submodules, gr-pure quotients and gr-pure extensions, that is, given a gr-pure exact sequence $0 \rightarrow M^{\prime} \rightarrow$ $M \rightarrow M^{\prime \prime} \rightarrow 0$ of graded R-modules, then $M \in \mathcal{M}$ if and only if $M^{\prime}, M^{\prime \prime} \in \mathcal{M}$. Applying the functor $\operatorname{HOM}_{\mathbb{Z}}(-, \mathbb{Q} / \mathbb{Z})$ to the above sequence, we get a split exact sequence $0 \rightarrow M^{\prime \prime+} \rightarrow M^{+} \rightarrow M^{\prime+} \rightarrow 0$ by [2, Proposition 2.2]. By Definition 4.1(2), it follows that $M^{+} \in \mathcal{C}$ if and only if $M^{\prime+}, M^{\prime \prime+} \in \mathcal{C}$. So $M \in \mathcal{M}$ if and only if $M^{\prime}, M^{\prime \prime} \in \mathcal{M}$ by Definition 4.1(1).

Similar to the proofs of the parts (1), (2) and (3) in [15, Theorem 3.1], we obtain easily the rest of the desired results.

Proposition 4.3. The pair $\left(\operatorname{gr}-\mathcal{F}_{n}, \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ is a duality pair.
Proof. For any $M \in \operatorname{gr}-R$, we have that $M \in \operatorname{gr}-\mathcal{F}_{n}$ if and only if $M^{+} \in \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}$ by Proposition [3.8, Also, the category gr- $\mathcal{F} \mathcal{I}_{n}$ is closed under direct summands by Proposition 3.7(1), and is closed under direct sums by Proposition 3.16 So the assertion follows.

Theorem 4.4. The category gr- \mathcal{F}_{n} is covering and preenveloping.

Proof. Since the category gr- \mathcal{F}_{n} of all n-gr-flat right R-modules is closed under direct sums by Proposition $3.7(2)$, the duality pair (gr- \mathcal{F}_{n}, gr- $\mathcal{F} \mathcal{I}_{n}$) is coproductclosed. By Theorem 4.2(2), we have that gr- \mathcal{F}_{n} is covering.

Since any graded direct product of n-gr-flat modules is n-gr-flat by Theorem [3.17] it follows that the duality pair ($\operatorname{gr}-\mathcal{F}_{n}$, gr- $\left.\mathcal{F} \mathcal{I}_{n}\right)$ is product-closed. Thus, the category gr- \mathcal{F}_{n} is preenveloping by Theorem4.2(1).

Now we turn to discuss the pair (gr- $\left.\mathcal{F} \mathcal{I}_{n}, \operatorname{gr}-\mathcal{F}_{n}\right)$.
Proposition 4.5. The pair $\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}, \operatorname{gr}-\mathcal{F}_{n}\right)$ is a duality pair.
Proof. By Theorem 3.17 we have that $M \in \operatorname{gr-\mathcal {F}} \mathcal{I}_{n}$ if and only if $M^{+} \in$ gr\mathcal{F}_{n} for any $M \in R$-gr. Also, the category gr- \mathcal{F}_{n} is closed under direct summands and direct sums by Proposition 3.7(2). Thus, the pair (gr- $\mathcal{F} \mathcal{I}_{n}$, gr- \mathcal{F}_{n}) is a duality pair.

Theorem 4.6. The category gr- $\mathcal{F} \mathcal{I}_{n}$ is covering and preenveloping.
Proof. By Proposition [3.16, the category gr- $\mathcal{F} \mathcal{I}_{n}$ of all n-FP-gr-injective left R modules is closed under direct sums. It follows that the duality pair (gr- $\mathcal{F} \mathcal{I}_{n}, \mathrm{gr}-\mathcal{F}_{n}$) is coproduct-closed. So gr- $\mathcal{F} \mathcal{I}_{n}$ is covering by Theorem 4.2(2).

Since any graded direct product of n-FP-gr-injective left R-modules is n-FP-grinjective, the duality pair (gr- $\left.\mathcal{F} \mathcal{I}_{n}, \operatorname{gr}-\mathcal{F}_{n}\right)$ is product-closed. By Theorem4.2(1), we have that gr- $\mathcal{F} \mathcal{I}_{n}$ is preenveloping.

Remark 4.7. By Propositions 3.9 and 3.11 we have that gr- \mathcal{F}_{n} is closed under gr-pure submodules and gr-pure quotients and gr- $\mathcal{F} \mathcal{I}_{n}$ is closed under gr-pure submodules. We point out that if R is a left n-gr-coherent ring, then we may directly obtain the same results by Propositions 4.3,4.5and Theorem4.2 moreover, gr- $\mathcal{F} \mathcal{I}_{n}$ is also closed under gr-pure quotients.

Now we give some equivalent characterizations for ${ }_{R} R$ being n-FP-gr-injective in terms of the properties of n-FP-gr-injective and n-gr-flat modules.

Theorem 4.8. The following statements are equivalent:
(1) ${ }_{R} R$ is n-FP-gr-injective.
(2) Every graded module in gr- R has a monic n-gr-flat preenvelope.
(3) Every gr-injective module in gr- R is n-gr-flat.
(4) Every graded flat module in R-gr is n - $F P$-gr-injective.
(5) Every graded projective module in R-gr is n - $F P$-gr-injective.
(6) Every graded module in R-gr has an epic n-FP-gr-injective cover.

Proof. $(4) \Rightarrow(5) \Rightarrow(1)$ and $(6) \Rightarrow(1)$ are trivial.
$(1) \Rightarrow(2)$ Let M be a graded right R-module. Then M has an n-gr-flat preenvelope $g: M \rightarrow Q$ by Theorem4.4. Since $\left({ }_{R} R\right)^{+}$is a cogenerator in gr- R, there exists
an exact sequence $0 \rightarrow M \rightarrow \prod_{i \in I}^{\mathrm{gr}-R}\left({ }_{R} R\right)^{+}$. Since ${ }_{R} R$ is n-FP-gr-injective in R-gr by assumption, we have that $\left({ }_{R} R\right)^{+}$is n-gr-flat in gr- R by Theorem 3.17 since R is left n-gr-coherent. It follows that $\prod_{i \in I}^{\mathrm{gr}-R}\left({ }_{R} R\right)^{+}$is n-gr-flat. Consider the following commutative diagram:

One gets that the n-gr-flat preenvelope $g: M \rightarrow Q$ is monic.
$(2) \Rightarrow(3)$ If E is a gr-injective right R-module, then E has a monic n-gr-flat preenvelope $0 \rightarrow E \rightarrow Q$ by assumption. Since E is gr-injective, we have that E, as a direct summand of Q, is n-gr-flat by Proposition 3.7(2).
$(3) \Rightarrow(4)$ Let M be a flat graded left R-module. Then M^{+}is gr-injective, and hence M^{+}is n-gr-flat by assumption. It follows that M is n-FP-gr-injective by Proposition 3.12, as desired.
$(1) \Rightarrow(6)$ Let M be a graded left R-module. Then M has an n-FP-gr-injective cover $f: E \rightarrow M$ by Theorem 4.4. On the other hand, there exists an exact sequence $\bigoplus_{\sigma \in S} R(\sigma) \rightarrow M \rightarrow 0$ for some $S \subseteq G$. Since $R(\sigma)$ is n-FP-gr-injective by assumption, we have that $\bigoplus_{\sigma \in S} R(\sigma)$ is n-FP-gr-injective by Proposition 3.16 Thus f is epic.

In the following, we consider cotorsion pairs associated to n-FP-gr-injective and n-gr-flat modules.

Definition 4.9 ([12]). A pair $(\mathcal{F}, \mathcal{C})$ of classes of graded left R-modules is called a cotorsion pair in R-gr if the following properties are satisfied.
(1) $\operatorname{Ext}_{R-\mathrm{gr}}^{1}(F, C)=0$ for every $F \in \mathcal{F}, C \in \mathcal{C}$.
(2) $\operatorname{Ext}_{R \text {-gr }}^{1}(F, C)=0$ for every $F \in \mathcal{F}$, implies $C \in \mathcal{C}$.
(3) $\operatorname{Ext}_{R \text {-gr }}^{1}(F, C)=0$ for every $C \in \mathcal{C}$, implies $F \in \mathcal{F}$.

A cotorsion pair $(\mathcal{F}, \mathcal{C})$ is said to be perfect if any graded left R-module has an \mathcal{F}-cover and a \mathcal{C}-envelope; a cotorsion pair $(\mathcal{F}, \mathcal{C})$ is called hereditary if whenever $0 \rightarrow F^{\prime} \rightarrow F \rightarrow F^{\prime \prime} \rightarrow 0$ is exact in R-gr with $F, F^{\prime \prime} \in \mathcal{F}$, then F^{\prime} is also in \mathcal{F}; and a cotorsion pair $(\mathcal{F}, \mathcal{C})$ is called complete provided that for any graded R-module M, there exist exact sequences $0 \rightarrow M \rightarrow C \rightarrow D \rightarrow 0$ and $0 \rightarrow C^{\prime} \rightarrow D^{\prime} \rightarrow M \rightarrow 0$ of graded R-modules with $C, C^{\prime} \in \mathcal{C}$ and $D, D^{\prime} \in \mathcal{F}$.

In [9, Eklof and Trlifaj proved that a cotorsion pair $(\mathcal{A}, \mathcal{B})$ in R-Mod is complete when it is cogenerated by a set. This result actually holds in any Grothendieck category with enough projectives, as Hovey proved in [16].

Proposition 4.10. (1) If R is a self n-FP-gr-injective ring, then the pair (gr $\left.-\mathcal{F} \mathcal{I}_{n},\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)^{+}\right)$is a perfect cotorsion pair.

Proof. (1) By Proposition 4.5, we have that (gr- $\left.\mathcal{F} \mathcal{I}_{n}, \operatorname{gr}-\mathcal{F}_{n}\right)$ is a duality pair. Note that R belongs to gr- $\mathcal{F} \mathcal{I}_{n}$ by assumption. Since the category $\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}$ is closed under extensions by definition, and is closed under direct sums by Proposition 3.16. we have that $\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}, \operatorname{gr}-\mathcal{F}_{n}\right)$ is a perfect duality pair. So $\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{n},\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)^{+}\right)$is a perfect cotorsion pair by Theorem 4.2(3).
(2) For any $X \in{ }^{\perp}\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right)$, we have $X(\sigma) \in{ }^{\perp}\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ for any $\sigma \in G$. Suppose that $M \in\left({ }^{\perp}\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)\right)^{\perp}$ and $0 \rightarrow K_{n} \rightarrow P_{n-1} \rightarrow K_{n-1} \rightarrow 0$ is a special short exact sequence in R-gr with respect to an n-presented graded left R-module N. Then $K_{n-1} \in{ }^{\perp}\left(\operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ and $M(\sigma) \in\left(\perp\left(\text { gr- } \mathcal{F} \mathcal{I}_{n}\right)\right)^{\perp}$ for any $\sigma \in G$. It follows that

$$
\operatorname{EXT}_{R}^{1}\left(K_{n-1}, M\right)_{\sigma} \cong \operatorname{Ext}_{R-g r}^{1}\left(K_{n-1}, M(\sigma)\right)=0
$$

So $\operatorname{EXT}_{R}^{1}\left(K_{n-1}, M\right)=0$, and hence $M \in \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}$ by Remark 3.2 3).
Now suppose that $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is a short exact sequence in R-gr with $M, M^{\prime} \in \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}$ and F is an n-presented graded left R-module. Then F is $(n+1)$-presented since R is left n-gr-coherent. So we have the following exact sequence:

$$
\operatorname{EXT}_{R}^{n}(F, M) \rightarrow \operatorname{EXT}_{R}^{n}\left(F, M^{\prime \prime}\right) \rightarrow \operatorname{EXT}_{R}^{n+1}\left(F, M^{\prime}\right)
$$

It is clear that $\operatorname{EXT}_{R}^{n}(F, M)=0$, and $\operatorname{EXT}_{R}^{n+1}\left(F, M^{\prime}\right)=0$ since M^{\prime} is $(n+1)$ -FP-gr-injective by Remark 3.5(2). So we have that $\operatorname{EXT}_{R}^{n}\left(F, M^{\prime \prime}\right)=0$ for any n-presented graded left R-module F and $M^{\prime \prime}$ is n-FP-gr-injective. Consequently,

Proposition 4.11. The pair $\left(g r-\mathcal{F}_{n},\left(g r-\mathcal{F}_{n}\right)^{\perp}\right)$ is a hereditary perfect cotorsion pair.

Proof. By Proposition 4.3 we have that $\left(\operatorname{gr}-\mathcal{F}_{n}, \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ is a duality pair. Note that the category gr- \mathcal{F}_{n} is closed under extensions and direct sums and R belongs to gr- \mathcal{F}_{n}. So (gr- $\left.\mathcal{F}_{n}, \operatorname{gr}-\mathcal{F} \mathcal{I}_{n}\right)$ is a perfect duality pair, and hence (gr- $\left.\mathcal{F}_{n},\left(\mathrm{gr}-\mathcal{F}_{n}\right)^{\perp}\right)$ is a perfect cotorsion pair by Theorem 4.2(3).

On the other hand, one checks readily that if there exists an exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ in gr- R with $B, C n$-gr-flat, then A is also n-gr-flat. Thus, the pair $\left(\operatorname{gr}-\mathcal{F}_{n},\left(\operatorname{gr}-\mathcal{F}_{n}\right)^{\perp}\right)$ is a hereditary cotorsion pair.

Remark 4.12. (1) Proposition 4.10(2) shows that the pair ($\perp\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right)$, gr- $\left.\mathcal{F} \mathcal{I}_{n}\right)$ is a hereditary cotorsion pair. By $\mathcal{S \mathcal { F }}{ }^{g}$ we denote the subcategory of all the special finitely presented graded left R-modules. We point out that the pair ${ }^{\perp}\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right)$, gr- $\left.\mathcal{F} \mathcal{I}_{n}\right)$ is also a complete cotorsion pair since it is cogenerated by a set of representatives for $\mathcal{S F} \mathcal{P}^{g}$ in R-gr.
(2) Let $1 \leq n \leq m$ be integers. If we denote by gr- $^{-}$Pres $_{n}$ the class of all n-presented graded left R-modules, then clearly

$$
\operatorname{gr-Pres}_{n} \subseteq \text { gr-Pres }_{n+1} \Rightarrow \text { gr-Pres }_{m} \subseteq \text { gr-Pres }_{m+1}
$$

that is, each left n-gr-coherent ring is left m-gr-coherent. In addition, given two cotorsion pairs $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{C}, \mathcal{D})$, we write $(\mathcal{A}, \mathcal{B}) \preceq(\mathcal{C}, \mathcal{D})$ if $\mathcal{B} \subseteq \mathcal{D}$. Therefore, in our setting, we get a series of cotorsion pairs as follows:
(i) there are the following hereditary complete cotorsion pairs:

$$
\begin{aligned}
\left(^{\perp}\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right), \mathrm{gr}-\mathcal{F} \mathcal{I}_{n}\right) & \preceq \cdots \preceq\left({ }^{\perp}\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{m}\right), \mathrm{gr}-\mathcal{F} \mathcal{I}_{m}\right) \\
& \preceq\left({ }^{\perp}\left(\mathrm{gr}-\mathcal{F} \mathcal{I}_{m+1}\right), \operatorname{gr}-\mathcal{F} \mathcal{I}_{m+1}\right) \preceq \cdots
\end{aligned}
$$

(ii) there are the following hereditary perfect cotorsion pairs:

$$
\begin{aligned}
\left(\mathrm{gr}-\mathcal{F}_{n},\left(\mathrm{gr}-\mathcal{F}_{n}\right)^{\perp}\right) & \succeq \cdots \succeq\left(\mathrm{gr}-\mathcal{F}_{m},\left(\mathrm{gr}-\mathcal{F}_{m}\right)^{\perp}\right) \\
& \succeq\left(\mathrm{gr}-\mathcal{F}_{m+1},\left(\mathrm{gr}-\mathcal{F}_{m+1}\right)^{\perp}\right) \succeq \cdots .
\end{aligned}
$$

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Nos. 11571164 and 11671283), Science and Technology Foundation of Sichuan Province (No. 2017JY0131), Major Project of Education Department of Sichuan Province (No. 17ZA0058), Postgraduate Research and Innovation Program of Jiangsu Province (No. KYZZ16_0034), Nanjing University Innovation and Creative Program for PhD candidate (No. 2016011) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

[1] M. J. Asensio, J. A. López-Ramos and B. Torrecillas, Gorenstein gr-injective and gr-projective modules, Comm. Algebra 26 (1998) 225-240.
[2] M. J. Asensio, J. A. López-Ramos and B. Torrecillas, FP-gr-injective modules and gr-FC rings, Algebra and Number Theory (Fez), Lecture Notes in Pure and Appl. Math. Vol. 208 (Dekker, New York, 2000), pp. 1-11.
[3] M. J. Asensio, J. A. López-Ramos and B. Torrecillas, Covers and envelopes over gr-Gorenstein rings, J. Algebra 215 (1999) 437-459.
[4] D. Bennis and N. Mahdou, First, second, and third change of rings theorems for Gorenstein homological dimensions, Comm. Algebra 38(10) (2010) 3837-3850.
[5] D. Bravo, J. Gillespie and M. Hovey, The stable module category of a general ring, arXiv:1405.5768v1, 2014.
[6] D. Bravo and M. A. Pérez, Finiteness conditions and cotorsion pairs, J. Pure Appl. Algebra 221(6) (2017) 1249-1267.
[7] J. L. Chen and N. Q. Ding, On n-coherent rings, Comm. Algebra 24 (1996) 32113216.
[8] D. L. Costa, Parameterizing families of non-noetherian rings, Comm. Algebra 22 (1994) 3997-4011.
[9] P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001) 41-51.
[10] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981) 189-209.
[11] E. E. Enochs and J. A. López-Ramos, Graded matlis duality and applications to covers, Quaest. Math. 24(4) (2001) 555-564.
[12] J. R. García Rozas, J. A. López-Ramos and B. Torrecillas, On the existence of flat covers in R-gr, Comm. Algebra 29 (2001) 3341-3349.
[13] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. Vol. 1371 (SpringerVerlag, Berlin, 1989).
[14] M. Hermann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing Up (Springer, New York, 1988).
[15] H. Holm and P. Jørgensen, Cotorsion pairs induced by duality pairs, J. Commut. Algebra 1 (2009) 621-633.
[16] M. Hovey, Cotorsion theories, model category structures and representation theory, Math. Z. 241 (2002) 553-592.
[17] L. Hummel and T. Marley, The Auslander-Bridger formula and the Gorenstein property for coherent rings, J. Commut. Algebra 1 (2009) 283-314.
[18] L. X. Mao, Relative homological groups over coherent rings, Quaest. Math. 35 (2012) 331-352.
[19] L. X. Mao, Strongly Gorenstein graded modules, Front. Math. China 12 (2017) 157176.
[20] C. Nǎstǎsescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. Vol. 1836 (Springer-Verlag, Berlin, 2004).
[21] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970) 323-329.
[22] X. Y. Yang and Z. K. Liu, FP-gr-injective modules, Math. J. Okayama Univ. 53 (2011) 83-100.

