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Let A′ be the Auslander algebra of a finite-dimensional basic connected Nakayama alge-
bra A with radical cube zero and n simple modules. Then the cardinality #tiltA′ of the
set consisting of isomorphism classes of basic tilting A′-modules is
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, if A is non-self-injective with n ≥ 4;
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2)2n]2 + 4, if A is self-injective with n ≥ 2.
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1. Introduction

Tilting theory is important in representation theory of Artin algebras and homo-
logical algebra. There are many related works which made the theory fruitful, see
[15, 4, 9] and references therein. In this theory, tilting modules play a central role. So
it is fundamental and important to classify tilting modules for a given algebra. An
effective method to construct tilting modules is given by mutation [18, 20]. However,
the mutation of tilting modules is not always possible. To improve the behavior of
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mutation of tilting modules, Adachi et al. [3] introduced support τ -tilting modules
as a generalization of tilting modules. They showed that the mutation of support
τ -tilting modules is always possible; in particular, τ -tilting modules share many
nice properties of tilting modules.

It is shown by Auslander that there is a bijection between classes of
representation-finite algebras and Auslander algebras [5]. There are many works
on Auslander algebras. Brüstle et al. [7] classified tilting modules over the Aus-
lander algebra of K[x]/〈xn〉 and showed that the number of tilting modules is n!.
Iyama and Zhang [17] classified τ -tilting modules over the Auslander algebra of
K[x]/〈xn〉. Recently, Zhang [21] gave a classification of tilting modules over Aus-
lander algebras of Nakayama algebras with radical square zero. On the other hand,
algebras with radical cube zero have gained a lot of attention. Hoshino [14] proved
the Tachikawa version of the Nakayama conjecture for algebras with radical cube
zero. Erdmann and Solberg [8] classified all the possible quivers of finite-dimensional
self-injective algebras with radical cube zero and finite complexity. Adachi and Aoki
[2] calculated the number of two-term tilting complexes over symmetric algebras
with radical cube zero.

In the literature, especially in mathematics and physics, there are a lot of integer
numbers, which are used in almost every field of modern sciences. Admittedly, Pell
numbers (sequence A000129 in OEIS) and Pell–Lucas numbers (sequence A002203
in OEIS) are very essential in the fields of combinatorics and number theory. The
Pell sequence {Pn} are defined by recurrence Pn = 2Pn−1 + Pn−2 for any n ≥ 2
with P0 = 0 and P1 = 1 and the Pell–Lucas sequence {Qn} by the same recurrence
but with initial conditions Q0 = Q1 = 2. Explicit Binet forms for {Pn} and {Qn}
are Pn = αn−βn

α−β and Qn = αn+βn, where α and β are the roots of the characteristic
equation x2 − 2x− 1 = 0. Then one gets 8P2

n = Q2
n − 4(−1)n. Further details about

Pell and Pell–Lucas sequences can be found in [6, 10–13].
In this paper, by virtual of Pell and Pell–Lucas sequences, we will determine the

number of isomorphism classes of basic tilting modules over Auslander algebras of
Nakayama algebras with radical cube zero. Let A be a finite-dimensional algebra
over an algebraically closed field. We use tiltA to denote the set consisting of
isomorphism classes of basic tilting modules. For a set X , and use #X to denote
the cardinality of X . The following is our main result.

Theorem 1.1 (Theorem 3.8). Let A be a Nakayama algebra with radical cube
zero and n simple modules, and let A′ be the Auslander algebra of A.

(1) If A is non-self-injective with n ≥ 4, then

#tilt A′ =
(1 +

√
2)2n−2 − (1 −√

2)2n−2

2
√

2
.

(2) If A is self-injective with n ≥ 2, then

#tilt A′ =
√

[(1 +
√

2)2n − (1 −
√

2)2n]2 + 4.

We also give two examples to illustrate this result.
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2. Preliminaries

Throughout this paper, A is a finite-dimensional algebra over an algebraically closed
field K and τ the Auslander–Reiten translation. We use mod A to denote the cat-
egory of finitely generated left A-modules and use gl.dim A to denote the global
dimension of A. For a module T ∈ mod A, we use add T to denote the subcategory
of mod A consisting of direct summands of finite direct sums of T .

Recall that a module T ∈ mod A is called (classical) tilting if the projective
dimension of T is at most one, Ext1A(T, T ) = 0 and there is an exact sequence
0 → A → T0 → T1 → 0 in modA with T0 and T1 in addT . Also recall that
A is called a Nakayama algebra if it is both right and left serial, that is, every
indecomposable projective module and every indecomposable injective module in
mod A are uniserial.

Proposition 2.1 ([4, Chap. V, Theorem 3.2]). A basic and connected algebra
A is a Nakayama algebra if and only if its ordinary quiver QA is one of the following
two quivers :

(1) 1 → 2 → 3 → · · · → n − 1 → n;
(2)

(with n ≥ 1 vertices).

We use |T | to denote the number of pairwise non-isomorphic indecomposable
direct summands of T .

Definition 2.2 ([3, 19]). Let T be in mod A.

(1) T is called τ-rigid if HomA(T, τT ) = 0 and T is called τ-tilting if T is τ -rigid
and |T | = |A|.

(2) T is called support τ-tilting if there exists an idempotent e of A such that T is
a τ -tilting A/〈e〉-module.
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We use projA to denote the full subcategory of modA consisting of projective
modules. Sometimes, it is convenient to view support τ -tilting modules and τ -rigid
modules as certain pairs of modules in mod A.

Definition 2.3. Let (T, P ) be a pair with T ∈ mod A and P ∈ projA.

(1) (T, P ) is called a τ-rigid pair if T is τ -rigid and HomA(P, T ) = 0.
(2) (T, P ) is called a support τ-tilting pair if (T, P ) is τ -rigid and |T | + |P | = |A|.

We use sτ -tiltA to denote the set of isomorphism classes of basic support τ -
tilting modules in modA. For a module M ∈ mod A, we use FacM to denote the
full subcategory of modA consisting of modules isomorphic to factor modules of
finite direct sums of copies of M .

Definition 2.4 ([3]). Let T, U ∈ sτ -tiltA. We call T a mutation of U if they have
the same indecomposable direct summands except one. Precisely speaking, there
are three cases:

(1) T = V ⊕ X and U = V ⊕ Y with X � Y indecomposable;
(2) T = U ⊕ X with X indecomposable;
(3) U = T ⊕ X with X indecomposable.

Moreover, we call T a left mutation (respectively, right mutation) of U if FacT �

FacU (respectively, FacT � FacU) and write T = μ−
X(U) (respectively, T =

μ+
X(U)).

The following result [3, Theorem 2.30] gives a method for computing left muta-
tions. For the convenience, we recall the definition of the Bongartz completion. For
a τ -rigid A-module U , we have that T := P(⊥(τU)) is a τ -tilting A-module which is
called a Bongartz completion of U satisfying U ∈ addT and ⊥(τT ) = FacT , where
P(⊥(τU)) is the direct sum of one copy of each of the indecomposable Ext-projective
objects in ⊥(τU) up to isomorphism.

Lemma 2.5. Let T = X ⊕ U be a basic τ-tilting module which is the Bongartz
completion of U with X indecomposable. Let

X
f−→ U ′ g−→ Y → 0

be an exact sequence with f the minimal left addU -approximation. Then we have

(1) If U is not sincere, then Y = 0. In this case, U = μ−
X(T ) holds and it is a basic

support τ-tilting A-module that is not τ-tilting.
(2) If U is sincere, then Y is a direct sum of finite copies of an indecomposable

A-module Y1 and is not in addT . In this case, Y1 ⊕ U = μ−
X(T ) holds and it is

a basic τ-tilting A-module.

We use Kb(projA) to denote the bounded homotopy category of projA.
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Definition 2.6 ([3]). Let P be a complex in Kb(projA).

(1) P is called presilting if HomKb(proj A)(P, P [n]) = 0 for any n ≥ 1.
(2) P is called silting if it is presilting and generates Kb(projA) by taking direct

sums, direct summands, shifts and mapping cones. In addition, it is called tilting
if it is also satisfies HomKb(proj A)(P, P [n]) = 0 for all nonzero integers n.

(3) P is called two-term silting if it isomorphic to a complex concentrated in degree
0 and −1 in Kb(projA).

We use 2-siltA to denote the set of isomorphism classes of basic two-term silting
complexes in Kb(projA).

Lemma 2.7 ([3, Theorem 3.2]). There exists a bijection

2-siltA ↔ sτ-tiltA

given by 2-siltA 
 P �→ H0(P ) ∈ sτ-tiltA and sτ-tiltA 
 (T, P ) �→ (P1 ⊕ P
(f 0)−−−→

P0) ∈ 2-siltA, where f : P1 → P0 is a minimal projective presentation of T .

3. Main Result

We begin with the following definition.

Definition 3.1 ([1, Definition 3.2]). Let Ω = (Ω,≥) be a poset and N a subposet
of Ω.

(1) We define a new poset ΩN = (ΩN,≥N) as follows, where N+ := {n+ | n ∈ N}
is a copy of N, and ω1, ω2 ∈ Ω\N and n1, n2 ∈ N are arbitrary elements:

ΩN := Ω
∐

N+,

ω1 ≥N ω2 :⇔ ω1 ≥ ω2, n1 ≥N n2 :⇔ n1 ≥ n2,

ω1 ≥N n1 :⇔ ω1 ≥ n1, n1 ≥N ω1 :⇔ n1 ≥ ω1,

n+
1 ≥N ω1 :⇔ n1 ≥ ω1, n

+
1 ≥N n2 :⇔ n1 ≥ n2,

ω1 ≥N n+
1 :⇔ ω1 ≥ n1, n

+
1 ≥N n+

2 :⇔ n1 ≥ n2.

In particular, n1 ≥N n+
2 never holds. It is easily to check that (ΩN,≥N) forms

a poset.
(2) Let H(Ω) := (Ω, Ha) be the Hasse quiver of Ω. We define a new quiver H(Ω)N :=

(ΩN, HN
a ) as follows, where ω1, ω2 are arbitrary elements in Ω\N and n1, n2 are

arbitrary elements in N:

HN
a = {ω1 → ω2 | ω1 → ω2 in Ha}

∐
{n2 → ω2 | n2 → ω2 in Ha}

∐
{n1 → n2, n

+
1 → n+

2 | n1 → n2 in Ha}
∐

{ω1 → n+
1 | ω1 → n1 in Ha}

∐
{n+

1 → n1 | n1 ∈ Ω}.
It is easy to check that H(ΩN) = H(Ω)N holds.
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Assume that A has an indecomposable projective-injective summand L as an
A-module. Moreover, let S := socL and A := A/S. Consider the functor

(−) := −⊗A A : mod A → mod A.

Then L = L/S. Note that, for every indecomposable A-module M �� L, so we have
an isomorphism M � M as A-modules.

Now let N := {N ∈ sτ -tiltA | L ∈ addN and HomA(N, L) = 0}. Applying
Definition 3.1, we have a poset (sτ -tiltA)N . For any A-module M , we denote by
α(M) a basic A-module satisfying addα(M) = addM .

Lemma 3.2 ([1, Theorem 3.3(1)]). Let L be an indecomposable projective-
injective summand of A as an A-module. Then there is an isomorphism of posets

sτ -tiltA → (sτ-tiltA)N

given by M �→ α(M). In particular, we have an isomorphism of Hasse quivers

H(A) � H(A)N .

By the definition of (sτ -tiltA)N , we have

#(sτ -tiltA)N = #sτ -tiltA + #N .

It follows from Lemma 3.2 that

#sτ -tiltA = #sτ -tiltA + #N .

This equality will be crucial in proving our main result.
For an algebra A, assume that

0 → A → I0(A) → I1(A) → · · · → Ii(A) → · · ·

is the minimal injective resolution of AA.

Lemma 3.3 ([16, Theorem 4.5]). Let I0(A) be projective and e an idempotent
of A such that addeA = addI0(A). Then the tensor functor − ⊗A A/〈e〉 induces a
bijection from tiltA to sτ-tilt A/〈e〉.

Recall that A is called an Auslander algebra if gl.dim A ≤ 2 and both I0(A) and
I1(A) are projective. Let A be representation-finite with M an additive generator
for modA. Then A′ := EndA(M) is an Auslander algebra [5]. In this case, A′ is
called the Auslander algebra of A.

In the rest of this section, A is a basic connected Nakayama algebra with radical
cube zero and n simple modules, A′ is the Auslander algebra of A and A′ := A′/〈e〉
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where addeA′ = addI0(A′) with e an idempotent of A′. The following result gives
the structure of A′, which is induced from Proposition 2.1 directly.

Proposition 3.4. (1) If A is non-self-injective with n ≥ 4, then A′ is given by the
following quiver Q′:

with relations

α4i+2α4i+4 = α4i+3α4i+5, α4i+1α4i+3 = 0

for any 0 ≤ i ≤ n − 3 and

α4n−7α4n−6 = 0.

(2) If A is self-injective with n ≥ 2, then A′ is given by the following quiver Q′:

with relations

α4i+3α4i+1 = α4i+4α4i+2, α4i+5α4i+3 = 0

for any i ≥ 0.

The following proposition is quite essential for the main result.

Proposition 3.5. (1) If A is non-self-injective with n ≥ 4, then A′ is given by the
following quiver Q′′ :

1 → 2 → 3 → · · · → 2n − 4 → 2n− 3

with rad2 KQ′′ = 0.



March 11, 2021 21:46 WSPC/S0218-1967 132-IJAC 2150016

310 Z. Xie, H. Gao & Z. Huang

(2) If A is self-injective with n ≥ 2, then A′ is given by the following quiver Q′′ :

with rad2 KQ′′ = 0.

The following proposition gives some properties of indecomposable direct sum-
mands of tilting A′-modules.

Proposition 3.6. Let T be a tilting module in mod A′. Then we have

(1) The number of indecomposable projective-injective direct summands of T is n.
(2) The simple direct summand of T is either projective or a simple socle of an

indecomposable projective A′-module.
(3) For any indecomposable non-projective-injective direct summand M of T, the

Loewy length of M ′ which is the mutation of T on M is at most three.

Proof. (1) By Proposition 3.4, we can easily get the number of indecomposable
projective-injective direct summands of T . Since T is faithful, we have an epi-
morphism T n � DA′, where D = HomK(−, K) is the ordinary dual. If P is an
indecomposable projective-injective module, then P is a direct summand of T .

If A is non-self-injective with n(≥ 4) simple modules, then A′ has 3n −
3 simple modules and the indecomposable projective-injective modules are
P (1), P (2), P (3), P (6), . . . , P (3n−6). If A is self-injective with n(≥ 2) simple mod-
ules, then A′ has 3n simple modules and the indecomposable projective-injective
modules are P (3), P (6), . . . , P (3n).

(2) If A is non-self-injective with n(≥ 4) simple modules, then for any inde-
composable projective module P ∈ mod A′, socP is either S(3n − 4) or S(3i − 3)
with 2 ≤ i ≤ n. Then by Lemma 2.5, we can verify directly that the simple direct
summand of T is either projective or a simple socle of an indecomposable projective
A′-module.

If A is self-injective with n(≥ 2) simple modules, then for any indecomposable
projective module P ∈ mod A′, socP = S(3i) with 1 ≤ i ≤ n. Then by Lemma 2.5,
we can verify directly that the simple direct summand of T is a simple socle of an
indecomposable projective A′-module.
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(3) If A is non-self-injective, then the quiver Q′ of A′ is as in Proposition 3.4(1).
The indecomposable projective modules in mod A′ are as follows:

P (1) =
1
2
3
, P (2) =

2
3 4

5
6

, P (3) =
3
5

6 7
8
9

, P (4) =
4
5
6
, P (5) =

5
6 7

8
9

,

P (6) =
6
8

9 10
11
12

, P (7) =
7
8
9
, . . . ,

P (3n − 7) =
3n−7

3n−6 3n−5
3n−4

, P (3n − 6) =
3n−6
3n−4
3n−3

, P (3n− 5) = 3n−5
3n−4 ,

P (3n − 4) = 3n−4
3n−3 , P (3n − 3) = 3n−3.

By Proposition 3.5(1), the quiver Q′′ of A′ is as follows:

with the relation rad2 KQ′′ = 0. The indecomposable projective modules in mod A′

are as follows:

P ′(4) = 4
5 , P ′(5) = 5

7 , P ′(7) = 7
8 , . . . , P ′(3n − 7) = 3n−7

3n−5 ,

P ′(3n − 5) = 3n−5
3n−4 , P ′(3n − 4) = 3n−4

3n−3 , P ′(3n − 3) = 3n−3 .

The maximal tilting A′-module is

T = P (1) ⊕ P (2) ⊕ P (3) ⊕ · · · ⊕ P (3n − 3).

By (1), the indecomposable projective-injective direct summands of T are

P (1), P (2), P (3), P (6), . . . , P (3n − 6).

The maximal support τ -tilting A′-module is

T ′ = P ′(4) ⊕ P ′(5) ⊕ P ′(7) ⊕ · · · ⊕ P ′(3n − 3).

For any i ∈ {3j−2, 3j−1, 3n−3 | 2 ≤ j ≤ n−1}, we have a correspondence between
P (i) and P ′(i) by Lemma 3.3. Let L be an indecomposable direct summand of T ′.
Then there exists a module L′ which is the mutation of T ′ on L by Lemma 2.5.
We have that the Lowey length of L is at most two and the Lowey length of L′

is at most one. Thus, if M is an indecomposable non-projective-injective direct
summand of T . Then there exists a module M ′ which is the mutation of T on M .
We have that the Lowey length of M is at most four and the Lowey length of M ′

is at most three.
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If A is self-injective, then the quiver Q′ of A′ is as in Proposition 3.4(2). The
indecomposable projective modules in mod A′ are as follows:

P (1) =
1

3n−1 3n
3n−2
3n−3

, P (2) =
2
1
3n

, P (3) =
3
1

3n−1 3n
3n−2
3n−3

, P (4) =
4

2 3
1
3n

,

P (5) =
5
4
3
, P (6) =

6
4

2 3
1
3n

, . . . ,

P (3n − 3) =
3n−3
3n−5

3n−7 3n−6
3n−8
3n−9

, P (3n− 2) =
3n−2

3n−4 3n−3
3n−5
3n−6

, P (3n − 1) =
3n−1
3n−2
3n−3

,

P (3n) =
3n

3n−2
3n−4 3n−3.

3n−5
3n−6

By Proposition 3.5(2), the quiver Q′′ of A′ is as follows:

with the relation rad2 KQ′′ = 0. The indecomposable projective modules in mod A′

are as follows:

P ′(1) = 1
3n−1 , P ′(2) = 2

1 , P ′(4) = 4
2 , . . . , P ′(3n − 2) = 3n−2

3n−4 ,

P ′(3n − 1) = 3n−1
3n−2 .

The maximal tilting A′-module is

T = P (1) ⊕ P (2) ⊕ P (3) ⊕ · · · ⊕ P (3n).

By (1), the indecomposable projective-injective direct summands of T are as follows:

P (3), P (6), . . . , P (3n).

The maximal support τ -tilting A′-module is

T ′ = P ′(1) ⊕ P ′(2) ⊕ P ′(4) ⊕ · · · ⊕ P ′(3n − 1).

For any i ∈ {3j − 2, 3j − 1 | 1 ≤ j ≤ n}, we have a correspondence between P (i)
and P ′(i) by Lemma 3.3. Let L be an indecomposable direct summand of T ′. Then
there exists a module L′ which is the mutation of T ′ on L by Lemma 2.5. We have
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that the Lowey length of L is two and the Lowey length of L′ is at most one. Thus,
if M is an indecomposable non-projective-injective direct summand of T and M ′

is the module which is the mutation of T on M , then the Lowey length of M is at
most four and the Lowey length of M ′ is at most three.

The following proposition calculates the number of support τ -tilting modules in
mod A′.

Proposition 3.7. (1) If A is non-self-injective with n ≥ 4, then

#sτ -tiltA′ =
(1 +

√
2)2n−2 − (1 −√

2)2n−2

2
√

2
.

(2) If A is self-injective with n ≥ 2, then

#sτ-tiltA′ =
√

[(1 +
√

2)2n − (1 −√
2)2n]2 + 4.

Proof. We only need to prove the case of radical square zero Nakayama algebra A

by Lemma 3.3 and Proposition 3.5. Set Pn := #sτ -tiltA.
(1) If A is non-self-injective, then the quiver Q of A is

1 → 2 → 3 → · · · → m − 1 → m

with the relation rad2 KQ = 0. Let L = 1
2 be an indecomposable projective-injective

summand of A. Then soc L = 2, L = 1 and A = A/ soc L is given by the following
quiver:

1, 2 → 3 → · · · → m − 1 → m.

Thus, #sτ -tiltA = 2Pm−1.
By calculating N := {N ∈ sτ -tiltA | L ∈ addN and HomA(N, L) = 0}, we

get that the set N contains the module 1 but does not contain modules 2, 1
2 and

2
3 . So we have #N = Pm−2 and hence Pm = 2Pm−1 + Pm−2 by Lemma 3.2. It is
a Pell-sequence (sequence A000129 in OEIS) and Pm = (1+

√
2)m+1−(1−√

2)m+1

2
√

2
. By

letting m = 2n − 3, we get the desired assertion.
(2) If A is self-injective, then the quiver Q of A is

with the relation rad2 KQ = 0. Let L = 1
2 be an indecomposable projective-injective

summand of A. Then socL = 2, L = 1 and A = A/soc L is given by the following
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quiver:

Thus, #sτ -tiltA = Pm.
Similar to (1), we have #N = Pm−2 and hence Qm = Pm + Pm−2. Applying

Pm = 2Pm−1 + Pm−2 from (1), we get Qm = 2Qm−1 + Qm−2. It is a Pell–Lucas
sequence (sequence A002203 in OEIS) and

Qm =
√

[(1 +
√

2)m − (1 −√
2)m]2 + 4(−1)m.

By letting m = 2n, we get the desired assertion.

We now are in a position to give the main result.

Theorem 3.8. (1) If A is non-self-injective with n ≥ 4, then

#tilt A′ =
(1 +

√
2)2n−2 − (1 −√

2)2n−2

2
√

2
.

(2) If A is self-injective with n ≥ 2, then

#tilt A′ =
√

[(1 +
√

2)2n − (1 −
√

2)2n]2 + 4.

Proof. Using the correspondence in Lemma 3.3, we can see that the number of
tilting modules in modA′ is equal to the number of support τ -tilting modules in
mod A′ which we have proved in Proposition 3.7.

As a consequence, we have the following corollary.

Corollary 3.9. (1) If A is non-self-injective with n ≥ 4, then

#2-siltA′ =
(1 +

√
2)2n−2 − (1 −√

2)2n−2

2
√

2
.

(2) If A is self-injective with n ≥ 2, then

#2-siltA′ =
√

[(1 +
√

2)2n − (1 −
√

2)2n]2 + 4.

Proof. This follows from Lemma 2.7 and Proposition 3.7.



March 11, 2021 21:46 WSPC/S0218-1967 132-IJAC 2150016

Tilting modules over Auslander algebras 315

4. Examples

In this section, we give two examples to illustrate the theorem in Sec. 3.

Example 4.1. Let A be an algebra given by the quiver Q: 1 → 2 → 3 → 4 with
rad3 KQ = 0. The corresponding Auslander algebra A′ is given by the quiver Q′:

with relations

α4i+2α4i+4 = α4i+3α4i+5, α4i+1α4i+3 = 0

for i = 0, 1 and

α9α10 = 0.

Putting n = 4 in Theorem 3.8(1), we get #tiltA′ = 70. The basic tilting A′-modules
are presented by the following quiver Q′′:
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where

T1 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 ,

T2 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 ,

T3 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 ,

T4 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 8
9 ⊕ 9 ,

T5 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 ,

T6 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 8 ,

T7 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 ,

T8 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 8
9 ⊕ 9 ,

T9 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 ,

T10 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 8 ,

T11 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 ,

T12 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 9 ,

T13 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 ,

T14 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 8 ,

T15 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 8
9 ⊕ 9 ,

T16 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6 ⊕ 9 ,

T17 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 8
9 ⊕ 8 ,

T18 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 9 ,
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T19 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 6

8 ,

T20 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 ,

T21 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 9 ,

T22 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 ,

T23 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 8
9 ⊕ 8 ,

T24 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 8
9 ⊕ 9 ,

T25 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6 ⊕ 9 ,

T26 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 8
9 ⊕ 8 ,

T27 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 9 ,

T28 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 6

8 ,

T29 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 ,

T30 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 9 ,

T31 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 ,

T32 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 8 ,

T33 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 9 ,

T34 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 8 ,

T35 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 9 ,

T36 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 6

8 ,
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T37 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 ,

T38 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 9 ,

T39 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 8
9 ⊕ 8 ,

T40 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T41 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 ,

T42 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 ,

T43 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 6 ⊕ 9 ,

T44 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 8 ,

T45 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 6 ⊕ 6 7

8 ⊕ 9 ,

T46 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 6

8 ,

T47 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 ,

T48 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 9 ,

T49 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 8
9 ⊕ 8 ,

T50 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T51 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 ,

T52 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 ,

T53 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 9 ,
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T54 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 8 ,

T55 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 9 ,

T56 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 6

8 ,

T57 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 ,

T58 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 6

8 ,

T59 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6

8 ⊕ 8 ,

T60 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 ,

T61 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T62 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 ,

T63 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 6 ⊕ 6

8 ,

T64 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 6

8 ⊕ 8 ,

T65 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 ,

T66 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T67 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 ,

T68 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 6

8 ,

T69 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6

8 ⊕ 8 ,

T70 =
1
2
3
⊕

2
3 4

5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 .
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Example 4.2. Let A be an algebra given by the quiver Q: 1 �� 2�� with
rad3 KQ = 0. The corresponding Auslander algebra A′ is given by the quiver Q′:

with relations

α4i+3α4i+1 = α4i+4α4i+2, α4i+5α4i+3 = 0

for any i ≥ 0. Putting n = 2 in Theorem 3.8(2), we get #tiltA′ = 34. The basic
tilting A′-modules are presented by the following quiver Q′′:

where

T1 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T2 =
2 3

1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,
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T3 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T4 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T5 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 1
6 ⊕

6
4

2 3
1
6

,

T6 =
2 3

1
6

⊕ 3 ⊕
3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T7 =
2 3

1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T8 =
2 3

1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 3
1
6
⊕

6
4

2 3
1
6

,

T9 = 3 ⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T10 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕ 6
4
3
⊕ 5

4
3
⊕

6
4

2 3
1
6

,

T11 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 1
6 ⊕

6
4

2 3
1
6

,

T12 =
1

5 6
4
3

⊕ 6
4
3
⊕

3
1

5 6
4
3

⊕ 5 6
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