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In this paper, we introduce and study (weak) pure-injective Gorenstein projective mod-
ules. Let R be an Artin algebra. We prove that the category of weak pure-injective
Gorenstein projective left R-modules coincides with the intersection of the category of
pure-injective left R-modules and that of Gorenstein projective left R-modules. Then,
we get an equivalent characterization of virtually Gorenstein algebras (being CM-finite).
Furthermore, we prove that the category of weak pure-injective Gorenstein projective
left R-modules is enveloping in the category of left R-modules; and if R is virtually
Gorenstein, then it is precovering in the category of pure-injective left R-modules.
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1. Introduction

As a nice generalization of finitely generated projective modules over commutative
Noetherian local rings, Auslander and Bridger introduced in [1] finitely generated
modules of Gorenstein dimension zero; and then Enochs and Jenda generalized it
in [13] to Gorenstein projective modules (not necessarily finitely generated) and
introduced the dual notion — Gorenstein injective modules over general rings.
Since then, Gorenstein projective and injective modules and related modules have
become very important research objects in Gorenstein homological algebra and
representation theory of algebras; see [2–4, 7–10, 13, 14, 19, 21, 26, 30] and references
therein.

†Corresponding author.
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The notion of pure-injective modules (also called algebraically compact modules
in [29]) was introduced by Cohn in [11] and found many important applications in
ring theory, homological algebra and representation theory of algebras. For instance,
the study of generic modules (a special kind of pure-injective modules), initiated
by Crawley–Boevey in [12], has proved to be essential in characterizing tameness
of finite-dimensional algebras [23] and phantom maps in group algebras [5]. The
geometrical and topological aspects of pure-injective modules (for instance, the
Ziegler spectrum and Krull–Gabriel dimension) were also widely studied in [17, 23,
27], and so on.

In particular, in the study of the Gorenstein symmetry conjecture, Beligannis
introduced in [2], the notion of virtually Gorenstein algebras as a nice generalization
of Gorenstein algebras. Various equivalent characterizations of virtually Gorenstein
algebras are supplied, among which the use of pure exact structures in the cat-
egory of Gorenstein projective modules attracts our interest. That is, there is a
natural purity theory on this locally finitely presented category with respect to its
subcategory consisting of finitely presented Gorenstein projective modules.

Let R be an Artin algebra. Then the category of Gorenstein projective modules
is definable by [2, Proposition 3.8]. It follows easily from [27, Theorem 3.4.8] that
the pure-injective envelope of a left R-module M is Gorenstein projective if and
only if M is Gorenstein projective. It indicates that the intersection of the category
of pure-injective modules and that of Gorenstein projective modules provides much
information on the original category.

Our aim in this paper is to study the pure-injectivity in the category of Goren-
stein projective modules. The paper is organized as follows.

In Sec. 2, we give some terminology and some preliminary results.
In Sec. 3, we introduce and study G-pure exact sequences, (weak) pure-injective,

pure-projective and absolutely pure Gorenstein projective modules. Let R be a ring.
We give some equivalent characterizations of absolutely pure Gorenstein projective
left R-modules in terms of the properties of G-pure exact sequences and the van-
ishing of Ext-functors in the category of contravariant functors from the category
of stable finitely presented Gorentein projective left R-modules to that of abelian
groups. Let R be an Artin algebra. We prove that the category of weak pure-injective
Gorenstein projective left R-modules coincides with the intersection of the category
of pure-injective left R-modules and that of Gorenstein projective left R-modules
(Theorem 3.7). As an application, we get that R is virtually Gorenstein if and only
if any weak pure-injective Gorenstein projective left R-module is a direct limit of a
family of finitely presented Gorenstein projective left R-modules (Theorem 3.12).
This extends a result in [4]. Moreover, we get that a virtually Gorenstein Artin
algebra R is CM-finite if and only if the category of pure-injective Gorenstein pro-
jective left R-modules coincides with that of Gorenstein projective left R-modules
(Theorem 3.14).

As further applications of Theorem 3.7, we study in Sec. 4, the covering and
enveloping properties of the category of weak pure-injective Gorenstein projective
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R-modules. Let R be an Artin algebra. We prove that this category is enveloping
in the category of left R-modules; and if R is virtually Gorenstein, then, it is
precovering in the category of pure-injective left R-modules.

2. Preliminaries

In this section, we give some terminology and some preliminary results.
Throughout this paper, R is an associative ring with identity, ModR is the

category of left R-modules and modR is the category of finitely presented left R-
modules. For a module M ∈ ModR, AddM (respectively ProdM) is the subcate-
gory of ModR consisting of direct summands of coproducts (respectively products)
of copies of M . For a subcategory C of ModR, we use C and C to denote the stable
categories of C modulo projectives and injectives, respectively.

Definition 2.1 [14]. Let C ⊆ D be subcategories of Mod R. The homomorphism
f : C → D in ModR with C ∈ C and D ∈ D is called a C-precover of D if for any
homomorphism g : C′ → D in ModR with C′ ∈ C, there exists a homomorphism
h : C′ → C such that the following diagram commutes:

C′

g

��

h

���
�

�
�

C
f �� D.

The morphism f : C → D is called right minimal, if a homomorphism h : C → C

is an automorphism, whenever f = fh. A C-precover f : C → D is called a C-cover
if f is right minimal. C is called (pre)covering in D if each module in D has a
C-(pre)cover. Dually, the notions of a C-preenvelope, a left minimal homomorphism,
a C-envelope and a (pre)enveloping subcategory are defined.

Let M ∈ ModR and N ∈ ModRop. Recall that a sequence in ModR is called
HomR(−, M)-exact (respectively N ⊗R −-exact), if it is exact after applying the
functor HomR(−, M) (respectively N ⊗R −); and for a subcategory C of ModR,
a sequence in Mod R is called HomR(−, C)-exact, if it is exact after applying the
functor HomR(−, M) for any M ∈ C. We use ProjR, InjR and FlatR to denote
the full subcategory of ModR consisting of projective, injective and flat modules
respectively.

Definition 2.2 [13, 14]. (1) A module G ∈ Mod R is called Gorenstein projective,
if there exists a HomR(−, ProjR)-exact exact sequence:

· · · → P1 → P0 → P 0 → P 1 → · · ·

in ModR with all Pi and P i in ProjR and G ∼= Im(P0 → P 0). Dually, the notion
of Gorenstein injective modules is defined.
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(2) A module H ∈ ModR is called Gorenstein flat, if there exists an InjRop ⊗R −-
exact exact sequence:

· · · → F1 → F0 → F 0 → F 1 → · · ·

in ModR with all Fi and F i in FlatR and H ∼= Im(F0 → F 0).

We use GProjR, GInj R and GFlat R to denote the full subcategory of ModR

consisting of Gorenstein projective, injective and flat modules respectively. By the
adjoint isomorphism theorem, it is easy to see that GProjR = GFlatR over an
Artin algebra R. We use GprojR and Ginj R to denote the full subcategory of
mod R consisting of Gorenstein projective and injective modules, respectively.

We write (−)+ := HomZ(−, Q/Z), where Z is the additive group of integers and
Q is the additive group of rational numbers.

Lemma 2.3 [16, Lemma 1.2.13]. Let

0 → A → B → C → 0 (2.1)

be an exact sequence in Mod R. Then the following statements are equivalent.

(1) 0 → M ⊗R A → M ⊗R B → M ⊗R C → 0 is exact for any M ∈ Mod Rop.
(2) 0 → M ⊗R A → M ⊗R B → M ⊗R C → 0 is exact for any M ∈ mod Rop.
(3) 0 → HomR(N, A) → HomR(N, B) → HomR(N, C) → 0 is exact for any N ∈

mod R.
(4) 0 → C+ → B+ → A+ → 0 splits.
(5) 0 → A → B → C → 0 is a direct limit of split short exact sequences.

The exact sequence (2.1) is called pure exact, if one of the above equivalent condi-
tions is satisfied.

Definition 2.4 [16]. A submodule A of B in ModR is called pure, if the exact
sequence

0 → A
λ−→ B → B/A → 0

in ModR with λ the embedding is pure exact; and a quotient module C of B in
Mod R is called pure, if the exact sequence

0 → Kerπ → B
π−→ C → 0

in ModR with π the natural epimorphism is pure exact.

Definition 2.5 [16]. (1) A module M ∈ Mod R is pure-projective, if it is projective
with respect to pure exact sequences, that is, any pure exact sequence

0 → A → B → M → 0

in ModR ending at M splits. Dually, the notion of pure-injective modules is defined.
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(2) A module M ∈ Mod R is absolutely pure, if any exact sequence

0 → M → B → C → 0

in ModR starting from M is pure exact.

We use PInjR and AbsR to denote the full subcategories of Mod R consisting
of pure-injective modules and absolutely pure modules, respectively. The following
two lemmas are used frequently in the sequel.

Lemma 2.6 [14, Propositions 5.3.7 and 5.3.9]. For any M ∈ Mod R, we have

(1) M+ ∈ PInjRop.
(2) σM : M → M++ via σM (m)(f) = f(m) for any m ∈ M and f ∈ M+ induces

a pure exact sequence

0 → M
σM−−→ M++ → CokerσM → 0.

Thus M is pure-injective if and only if σM is a section.

Lemma 2.7 Let R be an Artin algebra. Then M++ ∈ PInjR ∩ GProjR for any
M ∈ GProjR.

Proof. Let M ∈ GProjR. Then by Lemma 2.6(1), we have M++ ∈ PInjR. By
[19, Theorem 3.6] and [26, Theorem 2.3], we have M+ ∈ GInjRop and M++ ∈
GFlatR(= GProjR).

3. Pure-Injective Gorenstein Projective Modules

In this section, we introduce and study pure-projective, (weak) pure-injective and
absolutely pure Gorenstein projective modules. We begin with the following:

Definition 3.1. (1) An exact sequence

0 → G1 → G2 → G3 → 0 (3.1)

in ModR with all terms in GProjR is called G-pure exact in GProjR if

0 → HomR(G, G1) → HomR(G, G2) → HomR(G, G3) → 0

is exact for any finitely presented Gorenstein projective left R-module G.
(2) H ∈ GProjR is called pure-projective in GProjR if

0 → HomR(H, G1) → HomR(H, G2) → HomR(H, G3) → 0

is an exact sequence for any G-pure exact sequence (3.1).
(3) E ∈ GProjR is called pure-injective in GProjR if

0 → HomR(G3, E) → HomR(G2, E) → HomR(G1, E) → 0

is an exact sequence for any G-pure exact sequence (3.1).
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(4) A ∈ GProjR is called absolutely pure in GProjR if any exact sequence 0 →
A → G2 → G3 → 0 in GProjR is G-pure exact.

We use PP-GProjR, PI-GProjR and Abs-GProjR to denote the subcategories
of GProjR consisting of pure-projective, pure-injective and absolutely pure Goren-
stein projective modules, respectively.

For an additive category C, we use (Cop,Ab) to denote the category consisting
of contravariant functors from C to the category Ab of abelian groups. The fol-
lowing result gives some equivalent characterizations of absolutely pure Gorenstein
projective modules.

Proposition 3.2. The following statements are equivalent for any A ∈ GProjR.

(1) A ∈ Abs-GProjR.
(2) There exists a G-pure exact sequence

0 → A → P → G1 → 0

in Mod R with P projective.
(3) Ext1R(−, A) = 0 as an object of ((GprojR)op,Ab).

Proof. (1) ⇒ (2) It follows from the definition of Gorenstein projective modules.
(2) ⇒ (1) For any exact sequence

0 → A → G2 → G3 → 0

in GProjR, we can form the pushout of A → P and A → G2 to get the following
commutative diagram with exact columns and rows:

0

��

0

��
0 �� A ��

��

P ��

��

G1
�� 0

0 �� G2
��

��

G4
��

��

G1
�� 0

G3

��

G3

��
0 0.

Since Ext1R(G3, P ) = 0, the middle column in the diagram splits. Applying the
functor HomR(G,−) with G ∈ GprojR to this diagram, then the snake lemma
implies that the leftmost column is G-pure exact. Hence A ∈ Abs-GProjR.
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(2) ⇔ (3) For any G ∈ GprojR, the given G-pure exact sequence gives rise to a
long exact sequence:

0 → HomR(G, A) → HomR(G, P ) → HomR(G, G1)

→ Ext1R(G, A) → Ext1R(G, P ) → · · · .

Because Ext1R(G, P ) = 0, we get the equivalence between (2) and (3) easily.

A subcategory X of GProjR is called closed under G-pure submodules, if in a
G-pure exact sequence

0 → G1 → G2 → G3 → 0

G2 ∈ X implies G1 ∈ X . Recall from [8] that an Artin algebra R is called CM-free
if GprojR = projR.

Corollary 3.3. (1) Abs-GProjR is closed under extensions, direct sums and G-
pure submodules.

(2) For an Artin algebra R, we have GprojR ∩ Abs-GProjR = projR.
(3) If R is a CM-free Artin algebra, then GProjR = Abs-GProjR.

Proof. (1) It follows from Proposition 3.2 directly that Abs-GProjR is
closed under extensions and G-pure submodules. Note that Ext1R(M,⊕Ni) ∼=
⊕Ext1R(M, Ni) for finitely presented module M . So the subcategory Abs-GProjR
of GProjR is closed under direct sums by Proposition 3.2.

(2) Because R is an Artin algebra, for any G ∈ GprojR ∩ Abs-GProjR there
exists an exact sequence

0 → G → P → G1 → 0

with P ∈ projR and G1 ∈ GprojR, which splits by Proposition 3.2. Thus G ∈
projR.

(3) It is an immediate consequence of Proposition 3.2.

Recall from [2] that an Artin algebra R is called virtually Gorenstein if

(GProjR)⊥ = ⊥(GInjR),

where

(GProjR)⊥ := {Y ∈ Mod R | Ext≥1
R (G, Y ) = 0 for any G ∈ GProjR} and

⊥(GInj R) := {X ∈ Mod R | Ext≥1
R (X, G) = 0 for any G ∈ GInjR}.

The following result gives some properties of virtually Gorenstein Artin algebras.

Proposition 3.4. Let R be a virtually Gorenstein Artin algebra. Then, we have

(1) Any G-pure exact sequence is a direct limit of a system of split exact sequences
in GProjR.
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(2) PP-GProjR = Add GprojR.
(3) PInjR ∩ GProjR ⊆ PI-GProjR.
(4) Abs-GProjR = ProjR.

Proof. (1) Let

0 → G1
f−→ G2

g−→ G3 → 0

be a G-pure exact sequence. Since R is a virtually Gorenstein Artin algebra, G3 ∈
GProjR can be written as G3 = lim−→Gi

3 with all Gi
3 ∈ GprojR by [4, Theorem 5].

Then, we can form the pullback of G2
g−→ G3 and the canonical homomorphism

Gi
3

αi

−→ G3 to get the following commutative diagram with exact rows:

0 �� G1
�� Gi

2

gi

��

βi

��

Gi
3

��

αi

��
u

��

hi

�� 0

0 �� G1
f �� G2

g �� G3
�� 0.

By the definition of G-pure exact sequences, αi factors through g, that is, there
exits a homomorphism u : Gi

3 → G2 such that αi = gu. Then by the universal
property of pullbacks, there exists a unique homomorphism hi : Gi

3 → Gi
2 such that

βihi = u and gihi = 1Gi
3
. So the upper exact sequence splits and Gi

2 ∈ GProjR.
By the universal property of pullbacks again, there exists a unique homomorphism
γij : Gj

2 → Gi
2 for each i < j such that δijg

j = giγij and βj = βiγij .

0 �� G1
�� Gj

2

gj

��

γij

��
βj

��

Gj
3

��

δij

��
αj

��

0

0 �� G1
�� Gi

2

gi

��

βi

��

Gi
3

��

αi

��

0

0 �� G1
�� G2

g �� G3
�� 0.

Then clearly G2
∼= lim−→Gi

2 and the assertion follows.
(2) It is easy to see that Add GprojR ⊆ PP-GProjR. So, it suffices to show

PP-GProjR ⊆ Add GprojR. Let H ∈ PP-GProjR. Then, H can be written as
H = lim−→Hi with all Hi ∈ GprojR by [4, Theorem 5]. So the G-pure exact sequence

0 → Kerπ → ⊕Hi
π−→ lim−→Hi → 0

splits and H ∈ Add GProjR. It follows that PP-GProjR ⊆ Add GprojR.
(3) By (1) and Lemma 2.3, any G-pure exact sequence

0 → G1 → G2 → G3 → 0
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is pure exact. Then for any E ∈ PInjR ∩ GProjR, the sequence

0 → HomR(G3, E) → HomR(G2, E) → HomR(G1, E) → 0

is exact. So E ∈ PI-GProjR and PInjR ∩ GProjR ⊆ PI-GProjR.
(4) Note that for an Artin algebra R, Ext1R(−, A)|Gproj R = 0 implies

Ext≥1
R (−, A)|Gproj R = 0. Since (GprojR)⊥ = (GProjR)⊥ by [3, Remark 4.6], we

have Abs-GProjR = (GprojR)⊥ ∩ GProjR = (GProjR)⊥ ∩ GProjR = ProjR by
Proposition 3.2.

Chen conjectured in [8] that GProjR = ProjR if R is a CM-free Artin algebra.
We have the following:

Corollary 3.5. If R is a CM-free Artin algebra, then GProjR = ProjR if and
only if R is virtually Gorenstein.

Proof. By [3, Example 4.5.3], the necessity holds true. The sufficiency follows from
Corollary 3.3(3) and Proposition 3.4(4).

We introduce the notion of weak pure-injective Gorenstein projective modules
as follows.

Definition 3.6. A module E ∈ GProjR is called weak pure-injective in GProjR
if for any pure exact sequence

0 → G1 → G2 → G3 → 0

in GProjR, the sequence

0 → HomR(G3, E) → HomR(G2, E) → HomR(G1, E) → 0

is still exact.

We use wPI-GProjR to denote the subcategory of GProjR consisting of weak
pure-injective Gorenstein projective modules. Clearly, we have

PI-GProjR ⊆ wPI-GProjR.

For an Artin algebra R, we use D to denote the usual Matlis duality of R. All results
in the rest of this paper are based on the following theorem.

Theorem 3.7. If R is an Artin algebra, then

ProdGprojR ⊆ PInjR ∩ GProjR = wPI-GProjR.

Proof. By [16, Corollary 1.2.22] and [7, Proposition 2.2.12(a)], we have

ProdGprojR ⊆ PInjR ∩ GProjR.

Clearly, PInjR ∩ GProjR ⊆ wPI-GProjR. In the following, we prove the con-
verse inclusion. Note that PInjR = ProdmodR and R ∈ PInjR by [16, Corollary
1.2.22]. It follows from the fact ProjR = AddR = ProdR that ProjR ⊆ PInjR.
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Now, let M ∈ wPI- GProjR(⊆ GProjR = GFlatR). Then, we have a
HomR(−, R)-exact and DR ⊗R −-exact exact sequence

P := · · · → P1 → P0 → P 0 → P 1 → · · ·

in ModR with all Pi and P i in ProjR such that M = Im(P0 → P 0). It gives rise
to the following commutative diagram:

0

��

0

��

0

��

0

��
P := · · · �� P1

��

σP1

��

P0
��

σP0

��

P 0 ��

σP0

��

P 1 ��

σP1

��

· · ·

P++ := · · · �� P++
1

��

��

P++
0

��

��

(P 0)++ ��

��

(P 1)++ ��

��

· · ·

L =: · · · �� CokerσP1
��

��

CokerσP0
��

��

CokerσP 0 ��

��

CokerσP 1 ��

��

· · ·

0 0 0 0.

All columns split because they are pure exact by Lemma 2.6(2). By the adjoint
isomorphism theorem and [28, Lemma 3.55(ii)], we have that P+ is HomR(DR,−)-
exact exact and P++ is DR ⊗R −-exact exact sequence. So, L is also DR ⊗R −-
exact exact sequence in Mod R with all terms in ProjR. Then by [21, Lemma 1.7],
L is HomR(−, ProjR)-exact exact and CokerσM

∼= Im(CokerσP0 → CokerσP 0) ∈
GProjR. Because M ∈ wPI-GProjR, the pure exact sequence

0 → M
σM−−→ M++ → CokerσM → 0

in ModR with all terms in GProjR splits. By Lemma 2.7, we have M++ ∈ PInjR∩
GProjR. Thus, as a direct summand of M++, M ∈ PInjR by Lemma 2.6(2).
Therefore M ∈ PInjR ∩ GProjR and wPI- GProjR ⊆ PInjR ∩ GProjR.

As an application of Theorem 3.7, we give an equivalent characterization of
pure-projective Gorenstein projective modules as follows.

Corollary 3.8. Let R be an Artin algebra and H ∈ GProjR. Then the following
statements are equivalent.

(1) H ∈ PP-GProjR.
(2) H is projective relative to any G-pure exact sequence

0 → G1 → E → G3 → 0

in GProjR with E ∈ wPI-GProjR.
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Proof. (1) ⇒ (2) It is trivial.
(2) ⇒ (1) For any G-pure exact sequence

0 → G1
f1−→ G2

f2−→ G3 → 0

in GProjR, we can form the pushout of G2
f2−→ G3 and G2

σG2−−→ G++
2 to get the

following commutative diagram with exact columns and rows:

0

��

0

��
0 �� G1

f1 �� G2
f2 ��

σG2

��

G3
��

g

��

0

0 �� G1
�� G++

2
α ��

��

D ��

��

0

CokerσG2

��

CokerσG2

��
0 0.

By Lemma 2.6(2) and Theorem 3.7, we have that

0 → G2

σG2−−→ G++
2 → CokerσG2 → 0

is a pure exact sequence in Mod R with all terms in GProjR and G++
2 ∈ wPI-

GProjR. By [19, Theorem 2.5] and the exactness of

0 → G3
g−→ D → CokerσG2 → 0

we have D ∈ GProjR. Then, it is easy to see that

0 → G1 → G++
2

α−→ D → 0

is G-pure exact.
Let H ∈ GProjR and u ∈ HomR(H, G3). Then there exists v ∈ HomR(H, G++

2 )
such that gu = αv. Note that the above pushout diagram is also a pullback one. So
there exists w ∈ HomR(H, G2) such that u = f2w. Thus

0 → HomR(H, G1)
HomR(H,f1)−−−−−−−−→ HomR(H, G2)

HomR(H,f2)−−−−−−−−→ HomR(H, G3) → 0

is exact and H ∈ PP-GProjR.

It is easy to see that AbsR ∩ GProjR ⊆ Abs-GProjR. However, we do not
know, whether there exists an inclusion relation between PInjR ∩ GProjR and
PI-GProjR in general. The following result shows that these two categories coin-
cide over virtually Gorenstein Artin algebras.
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Corollary 3.9. If R is a virtually Gorenstein Artin algebra, then

PInjR ∩ GProjR = wPI-GProjR = PI-GProjR = Prod(Ginj Rop)+.

Proof. Let R be a virtually Gorenstein Artin algebra. Then G-pure exact sequences
and pure exact sequences coincide by Lemma 2.3 and Proposition 3.4. So PInjR ∩
GProjR = wPI-GProjR = PI-GProjR by Theorem 3.7.

Because Rop is also virtually Gorenstein by [2, Theorem 8.7], we have GInj Rop ⊆
lim−→GinjRop by [4, Theorem 5]. So

(GProjR)+ ⊆ GInj Rop ⊆ lim−→GinjRop and (Ginj Rop)+ ⊆ GProjR

by [19, Theorem 3.6]. In addition, GProjR is closed under direct summands and
products by [7, Proposition 2.2.12(a)]. Now it follows from [20, Corollary 5.3] that
PInjR ∩ GProjR = Prod(Ginj Rop)+.

Recall from [3], that an Artin algebra R is called CM-finite, if the number of
indecomposable modules in GprojR is finite up to isomorphism.

Corollary 3.10. Let R be a CM-finite Artin algebra. Then

lim−→GprojR ⊆ wPI-GProjR.

Proof. Let R be a CM-finite Artin algebra. Then GprojR = addG for some
G ∈ GprojR. So, by [24, Lemma 1.2] and Theorem 3.7, we have

lim−→GprojR = lim−→ add G = ProdaddG ⊆ wPI-GProjR.

In the following, we give an equivalent characterization of virtually Gorenstein
Artin algebras. We need the following:

Lemma 3.11. Let R be an Artin algebra. Then lim−→GprojR is closed under pure
submodules.

Proof. Let

0 → G1
f1−→ G2

f2−→ G3 → 0 (3.2)

be a pure exact sequence in Mod R with G2 ∈ lim−→GprojR. Then by [16, Lemma
1.2.9], we have that for any u : M → G1 with M ∈ mod R, f1u factors through
some G ∈ GprojR, that is, there exist s : M → G and w : G → G2 such that
f1u = ws. Consider the following commutative diagram with exact rows:

M
s ��

u

��

G
t ��

w

��

N ��

v

��

0

0 �� G1
f1 �� G2

f2 �� G3
�� 0,

where N = Coker s and v is an induced homomorphism. Since the bottom row in
this diagram (that is, (3.2)) is pure exact and N ∈ mod R, there exists h : N → G2
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such that v = f2h. Notice that f2(w − ht) = f2w − f2ht = f2w − vt = 0. So w − ht

factors through f1, that is, there exists k : G → G1 such that w−ht = f1k. Since f1

is monic and f1(ks−u) = f1ks−f1u = (w−ht)s−f1u = ws−hts−f1u = ws−f1u =
0, we have ks − u = 0 and ks = u, that is, u factors through G(∈ GprojR). Thus
G1 ∈ lim−→GprojR by [16, Lemma 1.2.9].

Beligiannis and Krause proved in [4, Theorem 5] that an Artin algebra R is
virtually Gorenstein if and only if GProjR ⊆ lim−→GprojR. The following theorem
extends this result.

Theorem 3.12. Let R be an Artin algebra. Then the following statements are
equivalent.

(1) R is virtually Gorenstein.
(2) wPI-GProjR ⊆ lim−→GprojR.

Proof. (1) ⇒ (2) By [4, Theorem 5].
(2) ⇒ (1) Let G ∈ GProjR. Consider the pure exact sequence:

0 → G
σG−−→ G++ → CokerσG → 0.

By Lemma 2.7 and Theorem 3.7, we have G++ ∈ PInjR∩GProjR = wPI-GProjR.
So G++ ∈ lim−→GprojR by (2), and hence G ∈ lim−→GprojR by Lemma 3.11. It follows
from [4, Theorem 5] that R is virtually Gorenstein.

By Corollary 3.10 and Theorem 3.12, we have the following:

Corollary 3.13. Let R be a virtually Gorenstein CM-finite Artin algebra. Then

wPI-GProjR = lim−→GprojR.

Recall from [23], that a subcategory of ModR is called definable, if it is closed
under direct limits, direct products and pure submodules in ModR. The following
result gives an equivalent characterization for virtually Gorenstein Artin algebras
being CM-finite. It induces that both PI-GProjR and wPI-GProjR are proper
subcategories of GProjR in general.

Theorem 3.14. Let R be a virtually Gorenstein Artin algebra. Then the following
statements are equivalent.

(1) R is CM-finite.
(2) PI-GProjR = GProjR.

Proof. Let R be a virtually Gorenstein Artin algebra. Then GProjR is definable
by [2, Proposition 3.8]. It follows from [3, Theorem 4.10] and [23, Corollary 2.7]
that R is CM-finite if and only if GProjR ⊆ PInjR. Now the assertion follows from
Corollary 3.9.
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By [2, Theorem 3.5], we have that GProjR is covering and enveloping in ModR.
For a module M ∈ ModR, we use

αM : GM → M and αM : M → GM

to denote the GProjR-cover and the GProjR-envelope of M , respectively. By The-
orem 3.7, we also have the following

Proposition 3.15. Let R be an Artin algebra. If PI-GProjR = wPI-GProjR,

then, we have

(1) Any G-pure exact sequence is pure exact.
(2) lim−→GprojR is closed under G-pure submodules.

Proof. (1) Let

0 → G1
f1−→ G2

f2−→ G3 → 0 (3.3)

be a G-pure exact sequence in Mod R with all terms in GProjR. Let M ∈ Mod R

be pure-injective. By [25, Lemma 2.2], both GM and KerαM are pure-injective.
So GM ∈ PInjR ∩ GProjR = wPI-GProjR = PI-GProjR by Theorem 3.7 and
assumption.

Consider the following commutative diagram with exact columns and rows:

0

��

0

��

0

��
0 �� HomR(G3, Ker αM ) ��

��

HomR(G2, Ker αM ) ��

��

HomR(G1, Ker αM )

��
0 �� HomR(G3, GM ) ��

��

HomR(G2, GM ) ��

��

HomR(G1, GM ) ��

��

0

0 �� HomR(G3, M)
HomR(f2,M) ��

��

HomR(G2, M)
HomR(f1,M)��

��

HomR(G1, M)

��
0 0 0.

Then

0 → HomR(G3, M)
HomR(f2,M)−−−−−−−−→ HomR(G2, M)

HomR(f1,M)−−−−−−−−→ HomR(G1, M) → 0

is exact.
Let N ∈ mod Rop. Then N+ ∈ PInjR by Lemma 2.6(1). Note that for any

1 ≤ i ≤ 3, we have

(N ⊗R Gi)+ ∼= HomR(Gi, N
+)

1750146-14

J.
 A

lg
eb

ra
 A

pp
l. 

20
17

.1
6.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
JI

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

06
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



May 22, 2017 8:15 WSPC/S0219-4988 171-JAA 1750146

Pure-injectivity in the category of Gorenstein projective modules

by the adjoint isomorphism theorem. By the above argument, we have an exact
sequence:

0 → HomR(G3, N
+)

HomR(f2,N+)−−−−−−−−−→ HomR(G2, N
+)

HomR(f1,N+)−−−−−−−−−→ HomR(G1, N
+) → 0

which induces the following exact sequence:

0 → N ⊗R G1
N⊗f1−−−−→ N ⊗R G2

N⊗f2−−−−→ N ⊗R G3 → 0.

Thus (3.3) is pure exact.
(2) By (1) and Lemma 3.11.

By Corollary 3.9, if R is a virtually Gorenstein Artin algebra, then the assump-
tion in Proposition 3.15 is satisfied.

For a subcategory C of ModR and an object M ∈ C, the stable objects of M in
C and C are denoted by M and M , respectively.

If R is an Artin algebra, then GProjR is a compactly generated triangulated
category by [6, Remark 4.8] and [2, Theorem 6.6]. Moreover, an Artin algebra R is
virtually Gorenstein if and only if GprojR coincides with the compact subcategory
of GProjR by [2, Theorem 8.2].

For a compactly generated triangulated category T , there is a theory of purity
which parallels that of module categories [22]. A triangle

A → B → C → A[1] (3.4)

in T is called pure, if for any compact object X in T ,

0 → T (X, A) → T (X, B) → T (X, C) → 0

is exact. An object E ∈ T is called pure-injective, if for any pure triangle as (3.4),

0 → T (C, E) → T (B, E) → T (A, E) → 0

is exact.
Let A be an abelian category. We use D+(A) to denote the bounded below

derived category of A. Let InjA be the full subcategory of A consisting of injective
objects. We use K+(InjA) to denote the category whose objects are bounded below
complexes of injective objects and whose morphisms are morphisms of complexes
modulo homotopic equivalence.

It was proved in [18, Theorem 23] that the functor

Ext1R(−, ?) : PInjR → ((modR)op,Ab) via N �→ Ext1R(−, N)

yields an equivalence between PInjR and the subcategory of injective objects
of ((modR)op,Ab). Then by [15, Theorem 3.5.21], there exists the following
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equivalence of triangulated categories:

K+(PInjR) � D+((modR)op,Ab).

Put

HomR(X, Y ) := HomR(X, Y )/{the morphism X → Y factoring through

some projective left R-module}.

We use PI-GProjR to denote the full subcategory of GProjR consisting of pure-
injective objects. We have the following comparable result for a virtually Gorenstein
Artin algebra R, which means that PI-GProjR plays a role in GProjR similar to
PInjR does in ModR.

Proposition 3.16. Let R be a virtually Gorenstein Artin algebra. Then the fol-
lowing statements are equivalent.

(1) M ∈ PI-GProjR.
(2) M is pure-injective in GProjR.
(3) HomR(−, M)(∼= Ext1R(−, ΩM)) is injective in ((GprojR)op,Ab), where ΩM is

the first syzygy of M .

Consequently, there exists the following equivalence of triangulated categories:

K+(PI-GProjR) � D+((GprojR)op,Ab).

Proof. (1) ⇔ (2) follows from Corollary 3.9 and [2, Lemma 6.4].
(2) ⇔ (3) follows from [22, Corollary 1.9].
Now, we have

PI-GProjR

= PI-GProjR (by the equivalence between (1) and (2))

� Inj((GprojR)op,Ab) (by [22, Corollary 1.9])

and hence, we have

K+(PI- GProjR)

= K+(PI-GProjR)

� K+(Inj((GprojR)op,Ab))

� D+((GprojR)op,Ab) (by [15, Theorem 3.5.21]).

4. Envelopes and Covers

As further applications of Theorem 3.7, we study in this section, the covering
and enveloping properties of wPI-GProjR. It should be remarked that all results
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obtained here rely on the fact that GProjR is covering and enveloping in Mod R

[2, Theorem 3.5].
We first prove the following:

Proposition 4.1. If R is an Artin algebra, then wPI-GProjR is enveloping in
Mod R.

Proof. Let M ∈ Mod R and v : M → X be in ModR with X ∈ wPI-GProjR(⊆
GProjR). We claim that σGM αM : M → (GM )++ is a wPI-GProjR-preenvelope
of M . Consider the following diagram:

0 �� GM
σ

GM�� (GM )++ �� CokerσGM �� 0

M

αM

��

v �� X.

Then there exists δ : GM → X such that v = δαM . Because X ∈ PInjR and the
upper row in the above diagram is pure exact by Theorem 3.7 and Lemma 2.6(2)
respectively, there exists γ : (GM )++ → X such that δ = γσGM . So v = δαM =
γ(σGM αM ) and σGM αM is a wPI-GProjR-preenvelope of M . The claim follows.

Moreover, note that wPI-GProjR is closed under direct summands. Then from
[23, Theorem 3.14], we conclude that wPI-GProjR is enveloping in ModR.

To give the covering property of wPI-GProjR, we need the following:

Lemma 4.2. If R is a virtually Gorenstein Artin algebra, then the GProjR-cover
of any finitely generated R-module is finitely generated.

Proof. By [2, Corollary 8.3], R is virtually Gorenstein if and only if the GProjR-
cover of R/r is finitely generated, where r is the Jacobson radical of R. Since R/r is
a semisimple R-module containing each simple R-module as a summand, it follows
that the GProjR-cover of any simple R-module is finitely generated by assumption.

Let M ∈ mod R and let

0 → K → GM
αM−−→ M → 0

be an exact sequence in ModR with αM the GProjR-cover of M . We will prove
that GM is finitely generated by using induction on the length l(M) of M . Let
l(M) = n. If n = 1, then the assertion holds true trivially. Now suppose n ≥ 2. Let
M1 be a maximal submodule of M . Then, we have an exact sequence

0 → M1 → M
π−→ S → 0

in mod R with S(= M/M1) simple. By the Wakamatsu lemma (c.f. [14, Corollary
7.2.3]), we have KerαM1 ∈ (GProjR)⊥. Then, it is easy to get

Ext1R(GS , GM1) ∼= Ext1R(GS , M1). (4.1)

Now, we construct the following commutative diagram with exact rows as follows.
First take the pullback of π and αS to get the lower commutative diagram, and
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then the isomorphism (4.1) gives rise to the upper commutative diagram.

0 �� GM1
��

αM1

��

G ��

g

��

GS
�� 0

0 �� M1
�� L ��

f

��

GS
��

αS

��

0

0 �� M1
�� M

π �� S �� 0.

Since both KerαM1 and KerαS are in (GProjR)⊥ by the Wakamatsu lemma again,
so is Ker fg. Then the epimorphism fg : G → M is a GProjR-precover of M .
Because both GM1 and GS are finitely generated by the induction hypothesis, so is
G. Therefore, the GProjR-cover of M , as a summand of G, is finitely generated.

Now, we are in a position to prove the following:

Proposition 4.3. If R is a virtually Gorenstein Artin algebra, then wPI-GProjR
is precovering in PInjR.

Proof. Because PInjR = ProdmodR, it suffices to show that any M =
∏

i∈I Mi

with Mi ∈ mod R has a wPI-GProjR-precover by [14, Exercise 3, p. 106]. Put
α :=

∏
i∈I αMi . Since R is virtually Gorenstein, each GMi is finitely generated by

Lemma 4.2. So
∏

i∈I GMi ∈ ProdGprojR ⊆ wPI-GProjR by Theorem 3.7.
We claim that α is a wPI-GProjR-precover of M . Let u : E → M in ModR

with E ∈ wPI-GProjR(⊆ GProjR). Consider the following commutative diagram:

E

u

��∏
i∈I GMi

α ��

pi

��

∏
i∈I Mi

πi

��
GMi

αMi �� Mi,

where for any i ∈ I, pi and πi are the ith projections of
∏

i∈I GMi and
∏

i∈I Mi,
respectively. Then there exists β : E → GMi such that πiu = αMiβ. By the universal
property of direct products, there exists γ : E →

∏
i∈I GMi such that β = piγ. So

we have πiu = αMiβ = αMipiγ = πiαγ for any i ∈ I. It induces that u = αγ and
the claim follows.
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