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1. Introduction

The Auslander-Reiten theory, initiated in [4,5], plays a crucial role in the repre-
sentation theory of algebras and related topics. As a simultaneous generalization and 
enhancement of Auslander-Reiten theory in exact categories and triangulated categories, 
Iyama, Nakaoka and Palu [21] investigated Auslander-Reiten theory in extriangulated 
categories. In their work, one of important research objects is Auslander-Reiten-Serre du-
ality. On the other hand, the theory of morphisms determined by objects was introduced 
by Auslander [1,2], and this theory is closely related to many aspects of representation 
theory of algebras, especially Auslander-Reiten theory [6]. What Auslander has achieved 
is a clear description of the poset structure of the category of modules as well as a 
blueprint for interrelating individual modules and families of modules. In [33], Ringel 
outlined the general setting for Auslander’s ideas and gave the Auslander bijection using 
more clear language. The advantage of Auslander bijection is to reduce the study of mor-
phisms to submodules, and the latter has a geometric feature via the Grassmannians of 
submodules. In [13,24], it was shown that the Auslander bijection holds true in dualizing 
varieties over a commutative artin ring and in the category of finitely generated modules 
over an artin algebra respectively. However, Chen [12] showed that the Auslander bijec-
tion may fail in abelian categories with Auslander-Reiten duality, and further one has to 
consider the restricted Auslander bijection which restricts morphisms to epimorphisms. 
Inspired by this, one may naturally ask how the (restricted) Auslander bijection acts on 
the following categories:

• exact categories,
• extension-closed subcategories of triangulated categories,
• some categories which are neither exact categories nor extension-closed subcategories 

of triangulated categories.

There are many important examples in the related research for the second and the third 
types of categories, and it is meaningful to explore some topics in this setting. For exam-
ple, let A be an artin algebra and K [−1,0](A-proj) the category of complexes of finitely 
generated projective A-modules concentrated in degrees −1 and 0, with morphisms con-
sidered up to homotopy. Then K [−1,0](A-proj) is an extension-closed subcategory of the 
bounded homotopy category Kb(A-proj) which is not triangulated (e.g. see [21, Exam-
ple 6.2]). Let C be a triangulated category. Beligiannis introduced the notion of proper 
classes of triangles in [10], see also [19] for a more general theory in the relative case. 
As a particular case, let C be a compactly generated triangulated category. Beligiannis 
[10] and independently, Krause [23] studied the class ξ of pure triangles; in this case, 
(C, Eξ, sξ) is neither exact nor triangulated, where
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Eξ(C,A) := {δ ∈ HomC(C,A[1]) | there is a pure triangle

A B C
δ

A[1] in C}

for any A, C ∈ C, and

sξ(δ) := [ A
f

B
g

C ]

for any δ ∈ Eξ(C, A) with a pure triangle A
f

B
g

C
δ

A[1] , see [20, Remark 

3.3].
The notion of extriangulated categories was introduced by Nakaoka and Palu in [29], 

which is a simultaneous generalization of exact categories and extension-closed subcat-
egories of triangulated categories. After that, the study of extriangulated categories has 
become an active topic, and many results on exact categories and triangulated categories 
have gotten realization in the setting of extriangulated categories, see [11,21], [26–31], 
[36–38], and so on. Recently, as one of important implications, Nakaoka and Palu [30]
showed that the homotopy category of any exact quasi-category can be equipped with 
a natural extriangulated structure. As examples, K [−1,0](A-proj) and (C, Eξ, sξ) above 
are extriangulated categories. For more examples of extriangulated categories, see [21, 
Section 6], [29, Example 2.13], [34, Example 2.8] and [36, Corollary 4.12 and Remark 
4.13]. Following the philosophy of Chen [12], we expect to give the (restricted) Auslander 
bijection in extriangulated categories.

The paper is organized as follows.
In Section 2, we recall some terminologies and some preliminary results needed in 

this paper. In particular, we give the definition of the restricted Auslander bijection in 
extriangulated categories. In Section 3, we introduce the notions of Serre duality and 
right deflation-classified objects in extriangulated categories. Then we give a necessary 
and sufficient condition for ensuring the existence of Serre duality in terms of right (left) 
deflation-classified objects (Theorem 3.5). As a consequence, we show that Serre dual-
ity is a special type of Auslander-Reiten-Serre duality (Corollary 3.6). In Section 4, in 
an extriangulated category C, we establish a bijection which relates the poset of right 
equivalence classes of morphisms ending at an object Y with a certain condition on X
to the poset of finitely generated EndC(X)-submodules of E(Y, X) (Theorems 4.1 and 
4.3), which is a key step for obtaining the (restricted) Auslander bijection. In Section 5, 
we exploit a bijection triangle in a Hom-finite R-linear Krull-Schmidt extriangulated 
category having Auslander-Reiten-Serre duality (where R is a commutative artin ring), 
which shows that the restricted Auslander bijection holds true (Theorem 5.4). In Sec-
tion 6, we give a realization in terms of elements of stable Hom-set for a map relating the 
restricted Auslander bijection and Auslander-Reiten-Serre duality, and as a corollary we 
show that a conjecture given in [33, Section 10] holds true in this setting. In particular, 
we show that if C is a Hom-finite R-linear Krull-Schmidt extriangulated category having 
Serre duality, then the Auslander bijection holds true. Some examples are discussed.
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2. Preliminaries

Throughout this paper, R is a commutative artinian ring, and unless otherwise stated 
we always assume that C is an additive category which is skeletally small.

2.1. Extriangulated categories

In [29], Nakaoka and Palu introduced the notion of extriangulated categories by a 
careful looking what is necessary in the definition of cotorsion pairs in exact and trian-
gulated cases. Under this notion, both exact categories with a suitable assumption and 
extension-closed subcategories of triangulated categories are extriangulated ([29]), and 
hence, in some levels, it gives a natural framework in the study of some topics of exact 
categories and extension-closed subcategories of triangulated categories. Now we briefly 
recall some notions and some needed properties of extriangulated categories from [29].

In this subsection, C is an additive category and E : Cop × C → Ab is a biadditive 
functor, where Ab is the category of abelian groups.

Let A, C ∈ C. An element δ ∈ E(C, A) is called an E-extension. Two sequences of 
morphisms

A
x

B
y

C and A
x′

B′ y′

C

are said to be equivalent if there exists an isomorphism b ∈ HomC(B, B′) such that 

x′ = bx and y = y′b. We denote by [ A x
B

y
C ] the equivalence class of 

A
x

B
y

C . In particular, we write 0 := [ A
(IdA

0
)
A⊕ C

(0 IdC)
C ].

For an E-extension δ ∈ E(C, A), we briefly write

a�δ := E(C, a)(δ) and c�δ := E(c, A)(δ).

For two E-extensions δ ∈ E(C, A) and δ′ ∈ E(C ′, A′), a morphism from δ to δ′ is a pair 
(a, c) of morphisms with a ∈ HomC(A, A′) and c ∈ HomC(C, C ′) such that a�δ = c�δ′.

Definition 2.1. ([29, Definition 2.9]) Let s be a correspondence which associates an equiv-

alence class s(δ) = [ A x
B

y
C ] to each E-extension δ ∈ E(C, A). Such s is called 

a realization of E provided that it satisfies the following condition.

(R) Let δ ∈ E(C, A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions with

s(δ) = [ A x
B

y
C ] and s(δ′) = [ A′ x′

B′ y′

C ′ ].

Then for any morphism (a, c) : δ → δ′, there exists b ∈ HomC(B, B′) such that the 
following diagram
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A
x

a

B
y

b

C

c

A′ x′

B′ y′

C ′

commutes.

Let s be a realization of E. If s(δ) = [ A x
B

y
C ] for some E-extension δ ∈ E(C, A), 

then we say that the sequence A
x

B
y

C realizes δ; and in the condition (R), we 
say that the triple (a, b, c) realizes the morphism (a, c).

For any two equivalence classes [ A x
B

y
C ] and [ A′ x′

B′ y′

C ′ ], we define

[ A x
B

y
C ] ⊕ [ A′ x′

B′ y′

C ′ ] := [ A⊕A′ x⊕x′

B ⊕B′ y⊕y′

C ⊕ C ′ ].

Definition 2.2. ([29, Definition 2.10]) A realization s of E is called additive if it satisfies 
the following conditions.

(1) For any A, C ∈ C, the split E-extension 0 ∈ E(C, A) satisfies s(0) = 0.
(2) For any pair of E-extensions δ ∈ E(C, A) and δ′ ∈ E(C ′, A′), we have s(δ ⊕ δ′) =

s(δ) ⊕ s(δ′).

Definition 2.3. ([29, Definition 2.12]) The triple (C, E, s) is called an externally triangu-
lated (or extriangulated for short) category if it satisfies the following conditions.

(ET1) E : Cop × C → Ab is a biadditive functor.
(ET2) s is an additive realization of E.
(ET3) Let δ ∈ E(C, A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions with

s(δ) = [ A x
B

y
C ] and s(δ′) = [ A′ x′

B′ y′

C ′ ].

For any commutative diagram

A
x

a

B
y

b

C

A′ x′

B′ y′

C ′

in C, there exists a morphism (a, c) : δ → δ′ which is realized by the triple (a, b, c).
(ET3)op Dual of (ET3).
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(ET4) Let δ ∈ E(C, A) and ρ ∈ E(F, B) be any pair of E-extensions with

s(δ) = [ A x
B

y
C ] and s(ρ) = [ B u

D
v

F ].

Then there exist an object E ∈ C, an E-extension ξ with s(ξ) = [ A z
D

w
E ], 

and a commutative diagram

A
x

B
y

u

C

s

A
z

D
w

v

E

t

F F

in C, which satisfy the following compatibilities.

(i) s(y�ρ) = [ C s
E

t
F ].

(ii) s�ξ = δ.
(iii) x�ξ = t�ρ.

(ET4)op Dual of (ET4).

Let C be an extriangulated category. For any X, Y ∈ C, it is easy to see that E(Y, X) is 
an EndC(X)-module with the module structure f ·δ := f�δ. Any E-extension δ ∈ E(Y, Z)
induces a natural transformation (see [29, Definition 3.1])

δ� : HomC(Z,−) −→ E(Y,−),

such that for any X ∈ C, there is a map

δ�X : HomC(Z,X) −→ E(Y,X),

f �→ f�δ

which is a morphism of EndC(X)-modules. Thus Im δ�X is an EndC(X)-submodule of 
E(Y, X).

Dually, one has the definition of δ� : HomC(−, Y ) −→ E(−, Z).
In [31], Ogawa introduced the notion of defects over extriangulated categories, that 

is, given an s-triangle A
x

B
y

C
δ , there is an exact sequence

HomC(−, A)
HomC(−,x)

HomC(−, B)
HomC(−,y)

HomC(−, C) δ̃ 0.
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The functor δ̃ is called a defect of δ (see [31, Definition 2.4]). In fact, by [31, Lemma 
1.17], δ̃ ∼= Im δ�. Similarly, one can define δ̂ := Coker HomC(x, −) and then δ̂ ∼= Im δ�. 
See [7,15] for more study on defects.

Definition 2.4. ([21, Definition 1.16]) Let (C, E, s) be a triple satisfying (ET1) and (ET2).

(1) If a sequence A
x

B
y

C realizes an E-extension δ ∈ E(C, A), then the pair 

( A
x

B
y

C , δ) is called an s-triangle, and write it in the following way

A
x

B
y

C
δ

.

In this case, x is called an s-inflation, and y is called an s-deflation.

(2) Let A
x

B
y

C
δ and A′ x′

B′ y′

C ′ δ′ be any pair of s-triangles. 
If a triple (a, b, c) realizes (a, c) : δ → δ′ as in the condition (R), then we write it as

A
x

a

B
y

b

C

c

δ

A′ x′

B′ y′

C ′ δ′

,

and call the triple (a, b, c) a morphism of s-triangles.

The following lemma is used frequently in this paper.

Lemma 2.5. ([29, Corollary 3.5]) Assume that (C, E, s) satisfies (ET1), (ET2), (ET3) 
and (ET3)op. Let

A
x

a

B
y

b

C

c

δ

A′ x′

B′ y′

C ′ δ′

,

be any morphism of s-triangles. Then the following statements are equivalent.

(1) a factors through x.
(2) a�δ = c�δ′ = 0.
(3) c factors through y′.

In particular, in the case δ = δ′ and (a, b, c) = (IdA, IdB , IdC), we have

x is a section ⇔ δ is split ⇔ y is a retraction.
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Definition 2.6. Assume that the pair (C, E) satisfies (ET1).

(1) Let f ∈ HomC(C ′, C) be a morphism. We call f a projective morphism if E(f, A) = 0, 
and an injective morphism if E(A, f) = 0 for any A ∈ C.

(2) Let C ∈ C. We call C a projective object if the identity morphism IdC is projective, 
and an injective object if the identity morphism IdC is injective.

We denote by P (respectively, I) the ideal of C consisting of all projective (respectively, 
injective) morphisms. Define

HomC(C, Y ) := HomC(C, Y )/P(C, Y ) (respectively, HomC(C, Y )

:= HomC(C, Y )/I(C, Y )),

and

C := C/P (respectively, C := C/I).

In [21], Iyama, Nakaoka and Palu introduced almost split E-extensions and s-triangles 
as follows.

Definition 2.7. ([21, Definition 2.1]) Assume that the pair (C, E) satisfies (ET1). A non-
split (i.e. non-zero) E-extension δ ∈ E(C, A) is said to be almost split if it satisfies the 
following conditions.

(AS1) a�δ = 0 for any non-section a ∈ HomC(A, A′).
(AS2) c�δ = 0 for any non-retraction c ∈ HomC(C ′, C).

Definition 2.8. ([21, Definition 2.7]) Assume that the triple (C, E, s) satisfies (ET1) and 
(ET2). An s-triangle

A
x

B
y

C
δ

in C is called almost split if δ is an almost split E-extension.

2.2. Auslander-Reiten-Serre duality

In this subsection, C is a Hom-finite R-linear Krull-Schmidt extriangulated category. 
We denote by D = HomR(−, E), where E is the minimal injective cogenerator for R.

Recently, Iyama, Nakaoka and Palu [21] introduced the notion of Auslander-Reiten-
Serre duality in order to study the existence of almost split extensions. More precisely, 
the category C is said to have Auslander-Reiten-Serre duality provided that there exists 
an R-linear equivalence τ : C → C with an R-linear natural isomorphism



T. Zhao et al. / Journal of Algebra 574 (2021) 117–153 125
ΦX,Y : DE(X,Y ) −→ HomC(Y, τX)

for any X, Y ∈ C. The equivalence τ is called the Auslander-Reiten translation of C.

Example 2.9. Let A be a finite-dimensional algebra over a field k and A-mod the category 
of finitely generated left A-modules. We use A-proj to denote the subcategory of A-mod
consisting of projective modules, and use A-Gproj to denote the subcategory of A-mod
consisting of Gorenstein projective modules (e.g. see [14,16] for the definition).

(1) It is well known that A-mod has Auslander-Reiten-Serre duality. Moreover, if A is 
self-injective, then the stable category A-mod has Auslander-Reiten-Serre duality 
([18]).

(2) The category of finitely presented functors on a dualizing k-variety has Auslander-
Reiten-Serre duality ([3, Proposition 3.2]).

(3) If X is an extension-closed functorially finite subcategory of the bounded homotopy 
category Kb(A-proj), then X has Auslander-Reiten-Serre duality ([21, Proposition 
6.1]).

(4) If the global dimension of A is finite, then the bounded derived category Db(A) has 
Auslander-Reiten-Serre duality ([18]).

(5) If A is Gorenstein (that is, the left and right self-injective dimensions of A are finite), 
then the stable category A-Gproj has Auslander-Reiten-Serre duality. In fact, since 
A-Gproj is an extension-closed functorially finite subcategory of A-mod, A-Gproj has 
almost split sequences, and they induce almost split triangles in A-Gproj. Moreover, 
if A is Gorenstein and A-Gproj is of finite type, then the bounded Gorenstein derived 
category Db

gp(A) has Auslander-Reiten-Serre duality ([16]).
(6) Let Q be a connected locally finite interval-finite quiver. Then the category repQ

of finitely presented representations of Q has Auslander-Reiten-Serre duality if and 
only if either Q has neither left infinite paths nor right infinite paths, or Q itself is 
a left infinite path ([9, Theorem 3.7] and [22, Corollary 4.5]).

(7) Let A be a Hom-finite k-linear abelian category. Then A has Auslander-Reiten-Serre 
duality if and only if it has almost split sequences ([25, Theorem 1.1]).

(8) Let C be an Ext-finite k-linear Krull-Schmidt extriangulated category. Then C has 
Auslander-Reiten-Serre duality if and only if it has almost split extensions ([21, 
Theorem 3.4]).

For the equivalence τ , we denote by τ− a quasi-inverse of τ . Then it is well known 
that the pair (τ−, τ) is an adjoint pair. We denote by the counit θ : τ−τ → IdC and the 
unit ε : IdC → ττ−. There is an isomorphism

ϑX,Y : HomC(Y, τX) −→ HomC(τ−Y,X).

f �→ θXτ−(f)
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for any X, Y ∈ C. Following this isomorphism, there is also a natural isomorphism

ΨX,Y : DE(X,Y ) −→ HomC(τ−Y,X).

f �→ ϑτ−X,Y (Φτ−X,Y (f))

for any X, Y ∈ C.

2.3. Morphisms determined by objects

We now recall the concept of morphisms determined by objects, which was introduced 
by Auslander in [1,2] and closely related to the Auslander-Reiten theory [6] and the 
Auslander bijections [33].

Definition 2.10. ([1]) Let f ∈ HomC(X, Y ) and C ∈ C. Then f is called right C-
determined (or right determined by C) if the following condition is satisfied: given any 
morphism f ′ ∈ HomC(X ′, Y ) such that f ′φ factors through f for each φ ∈ HomC(C, X ′), 
then f ′ itself factors through f . This can be described by the following commutative di-
agrams:

C
∀φ

∃φ′

X ′

f ′

X
f

Y

⇒ X ′

∃g
f ′

X
f

Y.

For an object C ∈ C, we denote by addC the subcategory consisting of direct sum-
mands of finite direct sums of C. If C is a Hom-finite R-linear additive category, then 
morphisms determined by objects have some functorial characterization as follows, see 
[24,13] for more details.

Lemma 2.11. ([24, Proposition 5.2] and [13, Lemma 2.3]) Assume that C is a Hom-finite 
R-linear additive category. Let α ∈ HomC(X, Y ). Define Fα = Coker HomC(−, α). Then 
α is right C-determined if and only if there is a monomorphism Fα → DHomC(C ′, −)
for some C ′ ∈ addC.

Let Y ∈ C. For any C ∈ C and any EndC(C)op-submodule H of HomC(C, Y ), since 
DHomC(C, C) is an injective cogenerator, there is an embedding

HomC(C, Y )/H ↪→ DHomC(C ′, C)

with C ′ ∈ addC. This gives a morphism � : HomC(−, Y ) → DHomC(C ′, −). Define 
F (C,H) = Im�.
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Lemma 2.12. ([13, Lemma 2.4]) Assume that C is a Hom-finite R-linear additive cat-
egory. Let H be an EndC(C)op-submodule of HomC(C, Y ). Then α : X → Y is right 
C-determined and Im HomC(C, α) = H if and only if the functor F (C,H) is finitely pre-
sented.

2.4. The Auslander bijection

Definition 2.13. ([33]) Let α1 ∈ HomC(X1, Y ) and α2 ∈ HomC(X2, Y ). Then α1 and α2
are called right equivalent if α1 factors through α2, and α2 factors through α1.

Remark 2.14.

(1) This relation is an equivalence relation on the set of all morphisms ending in some 
object Y ∈ C.

(2) If α1 and α2 are right equivalent, then α1 is right C-determined if and only if α2 is 
right C-determined.

(3) If α1 and α2 are right equivalent, then Im HomC(C, α1) = Im HomC(C, α2).
(4) If α1 and α2 are right C-determined, then α1 and α2 are right equivalent if and only 

if Im HomC(C, α1) = Im HomC(C, α2).

We denote by [α〉 the right equivalence class of a morphism α ∈ HomC(X, Y ).

Definition 2.15. ([33]) Let α1 ∈ HomC(X1, Y ) and α2 ∈ HomC(X2, Y ). Define

[α1〉 ≤ [α2〉 provided that α1 factors through α2.

We denote by [→ Y 〉 the set of right equivalence classes of morphisms ending in Y . 
Then ≤ induces a poset relation on [→ Y 〉.

By Remark 2.14(2), we say that [α〉 is right C-determined if a representative element 
α is right C-determined. We denote by C [→ Y 〉 the subset of [→ Y 〉 consisting of all 
right equivalence classes that are right C-determined.

We denote by SubEndC(C)op HomC(C, Y ) the poset formed by EndC(C)op-submodules 
of HomC(C, Y ). Then by Remark 2.14(3), we have a well-defined map

ηC,Y : [→ Y 〉 −→ SubEndC(C)op HomC(C, Y ).

[α〉 �→ Im HomC(C,α)

Remark 2.16. The restriction of ηC,Y on C [→ Y 〉 is injective and reflects the orders, 
that is, for [α1〉, [α2〉 ∈ C [→ Y 〉, we have that [α1〉 ≤ [α2〉 if and only if ηC,Y ([α1〉) ⊆
ηC,Y ([α2〉).

If the map ηC,Y : C [→ Y 〉 −→ SubEndC(C)op HomC(C, Y ) above is surjective, then we 
say that the Auslander bijection at Y relative to C holds, see [12,33] for more details.
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2.5. The restricted Auslander bijection

Let C be an extriangulated category.
Since each EndC(C)op-submodule of HomC(C, Y ) corresponds to a unique EndC(C)op-

submodule of HomC(C, Y ) containing P(C, Y ), the poset SubEndC(C)op HomC(C, Y ) is 
viewed as a subset of SubEndC(C)op HomC(C, Y ).

In the rest of this paper, we assume that C satisfies the following weak idempotent 
completeness (WIC for short) given originally in [29, Condition 5.8].

WIC Condition:

(1) Let f ∈ HomC(A, B), g ∈ HomC(B, C) be any composable pair of morphisms. If gf
is an s-inflation, then so is f .

(2) Let f ∈ HomC(A, B), g ∈ HomC(B, C) be any composable pair of morphisms. If gf
is an s-deflation, then so is g.

Under this condition, we know that if α1 ∈ HomC(X1, Y ) and α2 ∈ HomC(X2, Y ) are 
right equivalent, then α1 is an s-deflation if and only if so is α2, and we can define

[→ Y 〉def := {[α〉 ∈ [→ Y 〉 | α is an s-deflation}.

Clearly, P(C, Y ) ⊆ Im HomC(C, α) for any [α〉 ∈ [→ Y 〉def . This implies the following 
map

ηC,Y : [→ Y 〉def −→ SubEndC(C)op HomC(C, Y ).

[α〉 �→ Im HomC(C,α)/P(C, Y )

Set C [→ Y 〉def := [→ Y 〉def ∩ C [→ Y 〉. Then we have a map

ηC,Y : C [→ Y 〉def −→ SubEndC(C)op HomC(C, Y ),

[α〉 �→ Im HomC(C,α)/P(C, Y )

which is injective by Remark 2.16. Inspired by [12], we introduce the following

Definition 2.17. If the map ηC,Y : C [→ Y 〉def −→ SubEndC(C)op HomC(C, Y ) above is 
surjective, then we say that the restricted Auslander bijection at Y relative to C holds.

3. Extriangulated categories having Serre duality

In this section, C is a Hom-finite R-linear Krull-Schmidt extriangulated category.

Definition 3.1. We say that C has Serre duality if there exists an R-linear auto-equivalence 
τ : C → C with a natural isomorphism
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ϕX,Y : DE(X,Y ) −→ HomC(Y, τX) (3.1)

for any X, Y ∈ C.

If C has Serre duality as above, then for any projective object P , we have

HomC(τP, τP ) ∼= DE(P, τP ) = 0,

which implies τP = 0. Thus τ induces a functor τ : C → C. Similarly, τ− induces a 
functor τ− : C → C.

In [13], Chen and Le introduced the notion of right epimorphism-classified objects in 
abelian categories in order to describe the existence of Serre duality. Inspired by this, 
we give the following definition. We will show that s-deflations satisfying the following 
assumptions are essential in this process.

Definition 3.2. An object Y ∈ C is called right deflation-classified if the following condi-
tions are satisfied.

(RDC1) Each s-deflation α : X → Y is right C-determined for some C ∈ C.
(RDC2) For any C ∈ C and H ∈ SubEndC(C)op HomC(C, Y ), there exists an s-deflation 

α : X → Y such that α is right C-determined and Im HomC(C, α) = H.

The category C is said to have right determined deflations if each object in C is right 
deflation-classified. Dually, left inflation-classified objects and the category having left 
determined inflations are defined.

Let T be a triangulated category with E := HomT (−, −[1]). Then T is an extriangu-
lated category in the sense of [29, Proposition 3.22]. In this case, each morphism in T is 
an s-deflation, thus each morphism α : X → Y in T with Y right deflation-classified is 
right C-determined by some C ∈ T .

The following result shows that if C has right determined deflations, then all mor-
phisms determined by some objects are exactly all s-deflations.

Proposition 3.3. Assume that Y ∈ C is right deflation-classified. Then for any α ∈
HomC(X, Y ), α is right C-determined for some C ∈ C if and only if α is an s-deflation.

Proof. The sufficiency follows from (RDC1). For the necessity, set H := Im HomC(C, α). 
By (RDC2), there exists an s-deflation α′ : X ′ → Y such that α′ is right C-determined 
and Im HomC(C, α′) = H. By Remark 2.16(4), α and α′ are right equivalent, which 
shows that α is an s-deflation. �

In [13, Proposition 3.3], it was proved that each indecomposable non-projective right 
epimorphism-classified object can be viewed as the ending term for some almost split 
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sequence in abelian categories. Now we can show the existence of almost split s-triangles 
ending at right deflation-classified objects in the setting of extriangulated categories.

Proposition 3.4. Assume that Y ∈ C is right deflation-classified. If Y is indecomposable 
and non-projective, then there exists an almost split s-triangle

K
ι

X
α

Y .

Proof. Set H := radEndC(Y ). By (RDC2), there exists an s-deflation α : X → Y

such that α is right Y -determined and Im HomC(Y, α) = rad EndC(Y ). Without loss of 
generality, we may assume that α is right minimal. Take an s-triangle

K
ι

X
α

Y .

We claim that it is almost split. Indeed, we have

• α is minimal right almost split: For any non-retraction f ∈ HomC(X ′, Y ), clearly 
fg is non-retraction for any g ∈ HomC(Y, X ′), that is, fg ∈ radEndC(Y ) since Y
is indecomposable. But Im HomC(Y, α) = rad EndC(Y ), so fg factors through α. 
Moreover, since α is right Y -determined, we have that f factors through α.

• K is non-injective: Since IdY /∈ rad EndC(Y ).
• K is indecomposable: Suppose K =

⊕n
i=1Ki with all Ki indecomposable. Since ι is 

not a section, there exists some Ki with 1 ≤ i ≤ n such that the projection K → Ki

does not factor through ι. Consider the following morphism of s-triangles

K
ι

ιi

X
α

t

Y

Ki Z
β

Y .

Then β is not a retraction by Lemma 2.5. Now for any non-retraction s ∈
HomC(L, Y ), s factors through α, and thus s factors through β, which shows that β
is right almost split. Moreover, Ki is indecomposable implies that β is right minimal. 
Thus β is also minimal right almost split. It follows that t is an isomorphism, and 
hence ιi is an isomorphism, that is, K is indecomposable.

Therefore, the s-triangle

K
ι

X
α

Y

is almost split by [21, Proposition 2.5]. �
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Now assume that Y ∈ C is right deflation-classified. For any Z ∈ C, setting H = 0, 
then by (RDC2) there exists an s-deflation α : X → Y such that α is right Z-determined 
and Im HomC(Z, α) = 0. Moreover, for any projective morphism f : Z → Y , f factors 
through α, that is, f ∈ Im HomC(Z, α), which implies f = 0. Thus, if C has right 
determined deflations, then P = {0} and C = C. Similarly, if C has left determined 
inflations, then I = {0} and C = C.

In the following result, we give an equivalent characterization for extriangulated cat-
egories having Serre duality, which is an extriangulated version of [13, Theorem 3.4].

Theorem 3.5. The category C has Serre duality if and only if C has right determined 
deflations and left determined inflations.

Proof. Assume that C has Serre duality as in (3.1). Let Y ∈ C. For any s-deflation 
α ∈ HomC(X, Y ), take an s-triangle

K X
α

Y .

By [29, Proposition 3.3], there is an exact sequence

HomC(−, X)
HomC(−,α)

HomC(−, Y ) E(−,K) .

By assumption, E(−, K) ∼= DHomC(τ−K, −). Thus there is a monomorphism

Coker HomC(−, α) → DHomC(τ−K,−).

By Lemma 2.11, α is right τ−K-determined and (RDC1) holds.
Now let C ∈ C and H an EndC(C)op-submodule of HomC(C, Y ). Consider the mor-

phism � : HomC(−, Y ) → DHomC(C ′, −) defined just before Lemma 2.12, where C ′ ∈
addC and F (C,H) = Im�. By assumption, DHomC(C ′, −) ∼= E(−, τC ′), and by combin-
ing � we have a morphism �′ : HomC(−, Y ) → E(−, τC ′) with Im�′ ∼= Im� = F (C,H). 
Let �′

Y (IdY ) = δ ∈ E(Y, τC ′) with an s-triangle τC ′ X
α

Y . By [29, 
Proposition 3.3], there is an exact sequence

HomC(−, X)
HomC(−,α)

HomC(−, Y )
δ�

E(−, τC ′) .

We have (δ�)Y (IdY ) = δ = �′
Y (IdY ). Thus by the Yoneda lemma, we have δ� = �′, 

and hence Im δ� = Im�′ ∼= F (C,H), which shows that F (C,H) is finitely presented. 
By Lemma 2.12, (RDC2) holds. This shows that Y is right deflation-classified. By the 
arbitrariness of Y , C has right determined deflations. Dually, we have that C has left 
determined inflations.
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Conversely, assume that C has right determined deflations and left determined infla-
tions. Then we have C = C = C. For any indecomposable non-projective object Y , there 
exists an almost split s-triangle ending at Y by Proposition 3.4. Dually, for any inde-
composable non-injective object X, there exists an almost split s-triangle starting from 
X. It follows that C has almost split s-triangles. By [21, Theorem 3.4], C has Auslander-
Reiten-Serre duality (τ, ϕ). In particular, since C = C = C, we have that (τ, ϕ) is a Serre 
duality. �

By the proof of Theorem 3.5, we know that if C has Serre duality, then C has Auslander-
Reiten-Serre duality. In fact, we can get the following corollary.

Corollary 3.6. C has Serre duality if and only if C has Auslander-Reiten-Serre duality 
and P = {0} = I.

Example 3.7.

(1) Let coh(C) be the category of coherent sheaves for a weighted projective line C. 
Then coh(C) has Serre duality ([17, 2.2]).

(2) Let A be a finite-dimensional algebra over a field k. Then A-mod has no Serre duality.
(3) The category repQ appeared in Example 2.9(6) has no Serre duality.
(4) For any triangulated category, it has Auslander-Reiten-Serre duality if and only if 

it has Serre duality. Thus all the categories A-mod, Db(A), A-Gproj and Db
gp(A)

appeared in Example 2.9 have Serre duality under the corresponding assumptions.

4. A map from τ
−1X [→ Y 〉def to subEndC(X) E(Y, X)

In this section, C is an extriangulated category. Let X, Y ∈ C and

Z W
α

Y
δα

be an s-triangle. From the argument below Definition 2.3, we know that Im δα
�
X is an 

EndC(X)-submodule of E(Y, X). Following this, we define

ξX,Y : [→ Y 〉def −→ SubEndC(X) E(Y,X).

[α〉 �→ Im δα
�
X

Claim 1. ξX,Y is well defined.

Indeed, if [α1〉 = [α2〉, then

Im δ1
�
X = Coker HomC(α1, X) = Coker HomC(α2, X) = Im δ2

�
X .
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It is well known that there is an equivalence

HomC(−, X) : addX −→ EndC(X)-proj,

where EndC(X)-proj is the subcategory of finitely generated projective EndC(X)-
modules.

By the Yoneda lemma, there are natural isomorphisms

E(Y,Z) −→ HomEndC(X)(HomC(Z,X),E(Y,X))

δ �→ δ�X
(4.1)

and

HomC(Y,Z) −→ HomEndC(X)(HomC(Z,X),HomC(Y,X))

f �→ HomC(f,X)
(4.2)

for any Z ∈ addX.
We denote by X [→ Y 〉def the subset of [→ Y 〉def consisting of those classes [α〉 that 

have a representative element α such that there exists an s-triangle

X1 W
α

Y
δα

with X1 ∈ addX. In this case, HomC(X1, X) is a finitely generated projective EndC(X)-
module, and hence ξX,Y ([α〉) = Im δα

�
X is a finitely generated EndC(X)-module.

We denote by subEndC(X) E(Y, X) the subset of SubEndC(X) E(Y, X) consisting of 
finitely generated EndC(X)-modules. The above ξX,Y induces a well-defined map

ξX,Y : X [→ Y 〉def −→ subEndC(X) E(Y,X).

[α〉 �→ Im δα
�
X

Claim 2. ξX,Y is bijective.

Proof. Let

X1 W1
α1

Y
δ1 and X2 W2

α2
Y

δ2

be two s-triangles satisfying Im δ1
�
X = Im δ2

�
X . Suppose X2 ∈ addX. Consider the 

following diagram of exact rows
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HomC(X1, X)
δ1

�
X Im δ1

�
X 0

HomC(X2, X)
δ2

�
X Im δ2

�
X 0.

Since X2 ∈ addX, HomC(X2, X) ∈ EndC(X)-proj, which induces the following commu-
tative diagram

HomC(X1, X)
δ1

�
X Im δ1

�
X 0

HomC(X2, X)
δ2

�
X

w

Im δ2
�
X 0.

By (4.2), there exists u ∈ HomC(X1, X2) such that HomC(u, X) = w, and hence

δ2
�
X = δ1

�
X HomC(u,X).

Thus for any f ∈ HomC(X2, X), we have

f�δ2 = δ2
�
X(f) = (δ1�X HomC(u,X))(f) = δ1

�
X(fu) = (fu)�δ1 = f�u�δ1.

Furthermore, since X2 ∈ addX, we may assume that there exists ι : X2 → X and 
p : X → X2 such that IdX2 = pι. Thus we have

δ2 =IdX2�δ2 = (pι)�δ2 = p�(ι�δ2) = p�(ι�u�δ1)

= (pι)�(u�δ1) = IdX2�u�δ1 = u�δ1,

which means that (u, IdY ) is a morphism from δ1 to δ2. By (ET2), there exists v ∈
HomC(W1, W2) such that the following diagram

X1

u

W1
α1

v

Y
δ1

X2 W2
α2

Y
δ2

commutes. In particular, α1 factors through α2. Similarly, if X1 ∈ addX, then α2 factors 
through α1. Consequently, we conclude that [α1〉 = [α2〉 if Im δ1

�
X = Im δ2

�
X and X1, X2 ∈

addX. Thus ξX,Y is injective.
Now, let F be any finitely generated EndC(X)-submodule of E(Y, X). Then there is a 

morphism f : HomC(X1, X) → E(Y, X) with X1 ∈ addX and Im f = F . By (4.1), there 
exists an E-extension δ ∈ E(Y, X1) such that Im δ�X = f . Thus ξX,Y is surjective. �
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By Claims 1 and 2, we have the following theorem, which extends [12, Proposition 
2.4].

Theorem 4.1. The map

ξX,Y : X [→ Y 〉def −→ subEndC(X) E(Y,X).

[α〉 �→ Im δα
�
X

is an anti-isomorphism of posets.

In what follows, let C be a Hom-finite R-linear Krull-Schmidt extriangulated category 
having Auslander-Reiten-Serre duality. The following proposition is an extriangulated 
version of [12, Proposition 4.5].

Proposition 4.2. Let

X
α

Z
β

Y
δ

be an s-triangle. Then

(1) β is right τ−X-determined.
(2) If β is right minimal, then β is right C-determined for some C ∈ C if and only if 

τ−X ∈ addC.

Consequently, X [→ Y 〉def = τ−X [→ Y 〉def .

Proof. (1) It follows from [35, Lemma 4.6].
(2) The sufficiency follows from (1). It suffices to prove the necessity. We will prove 

that each indecomposable direct summand X ′ of X satisfies τ−X ′ ∈ addC. First of all, 
the composition of s-inflations X ′ i→ X

α→ Z is not a section, where i is the inclusion. 
Otherwise, assume that αi is a section and let X ∼= X ′ ⊕X ′′. Then

X
α

Z
β

Y
δ

is isomorphic to

X ′ ⊕X ′′
( Id

X′
∗
)

X ′ ⊕ Z ′ β
Y

δ
.

Thus β(X ′) = 0, which contradicts with the assumption that β is right minimal. Hence 
X ′ is not an injective object. Then by [21, Theorem 3.4], there is an almost split s-triangle



136 T. Zhao et al. / Journal of Algebra 574 (2021) 117–153
X ′ α′

W
β′

τ−X ′ σ
.

We have the following commutative diagram

X ′ α′

i

W
β′

s

τ−X ′ σ

t

X
α

Z
β

Y
δ

.

In particular, i�σ = t�δ.
Suppose τ−X ′ /∈ addC. Then any f ∈ HomC(C, τ−X ′) is not a retraction, and hence 

factors through β′, that is, f = β′g for some g ∈ HomC(C, W ). Thus tf = t(β′g) = β(sg). 
Moreover, since β is right C-determined, there exists h ∈ HomC(τ−X ′, Z) such that 
t = βh. Consider the following commutative diagram

X
w

W ′ τ−X ′ t�δ

t

X
α

Z
β

Y
δ

.

By Lemma 2.5, we have that IdX factors through w and w is a section, and moreover 
i�σ = t�δ = 0. Consider the following commutative diagram

X ′ α′

i

W τ−X ′ σ

X W ′′ β
τ−X ′ i�σ

.

By Lemma 2.5 again, the condition i�σ = 0 implies that there exists w′ ∈ HomC(W, X)
such that i = w′α′. Finally, since i is a section, α′ is also a section, which is a contradic-
tion. Thus we have τ−X ′ ∈ addC. �

By Theorem 4.1 and Proposition 4.2, we get the following

Theorem 4.3. The map

ξX,Y : τ−X [→ Y 〉def −→ subEndC(X) E(Y,X).

[α〉 �→ Im δα
�
X

is an anti-isomorphism of posets.
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5. The restricted Auslander bijection induced by ARS-duality

In this section, C is a Hom-finite R-linear Krull-Schmidt extriangulated category hav-
ing Auslander-Reiten-Serre duality. In this case, any EndC(X)-submodule of E(Y, X) is 
finitely generated. In [12, Lemma 4.2], it was shown that there is a bijection between 
subEndA(X) Ext1A(Y, X) and subEndA(X)op HomA(τ−X, Y ) over an abelian category A ad-
mitting Auslander-Reiten duality. We now show that the Auslander-Reiten-Serre duality 
in the extriangulated category C still induces the following bijection of two posets.

Lemma 5.1. There is a bijection

ΥX,Y : subEndC(X) E(Y,X) −→ subEndC(X)op HomC(τ−X,Y )

such that for any EndC(X)-submodule F of E(Y, X), ΥX,Y (F ) = H is defined by an 
exact sequence

0 H HomC(τ−X,Y )
D(i)Ψ−1

Y,X

DF 0

where i : F → E(Y, X) is the inclusion.
The bijection ΥX,Y is an anti-isomorphism of posets.

Proof. Let 0 → F
i→ E(Y, X) be the inclusion. Then DE(Y, X) D(i)→ DF → 0 is exact. 

We have the following commutative diagram

0 H HomC(τ−X,Y )
D(i)Ψ−1

Y,X

∼= Ψ−1
Y,X

DF 0

DE(Y,X)
D(i)

DF 0

with exact rows. The bijection follows from the well-known fact that for a finitely gen-
erated module M over an artin algebra Λ, there is a bijection between subΛ(M) and 
subΛop(DM), sending L ∈ subΛ(M) to the kernel of the projection DM → DL. Note 
that the previous process is just given by this map. �

Given an s-triangle

X ′ α
Z

β
Y

δ
.

Let f ∈ HomC(X ′, X) be an injective morphism. Then we have a commutative diagram
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X ′ α

f

Z
β

Y
δ

X
α′

Z ′ β′

Y
f�δ

.

Moreover, δ�X(f) = f�δ = 0 by Definition 2.6. This shows that the map

δ�X : HomC(X ′, X) −→ E(Y,X)

f �→ f�δ

vanishes on I(X ′, X). Therefore, we have a map

δ�X : HomC(X ′, X) −→ E(Y,X).

f �→ f�δ

Dually, the map

(δ�)X : HomC(X,Y ) −→ E(X,X ′)

f �→ f�δ

vanishes on P(X, Y ), and hence induces a map

(δ�)X : HomC(X,Y ) −→ E(X,X ′).

f �→ f�δ

For any X ∈ C, there are natural isomorphisms

Φ−1
X,− : HomC(−, τX) −→ DE(X,−)

and

Ψ−1
−,X : HomC(τ−X,−) −→ DE(−, X).

Set

λX := Φ−1
X,τX(IdτX) ∈ DE(X, τX), μX := ΨX,τX(λX) ∈ HomC(τ−τX,X),

κX := Ψ−1
τ−X,X(Idτ−X) ∈ DE(τ−X,X), νX := Φτ−X,X(κX) ∈ HomC(X, ττ−X).

Then we have the following commutative diagrams
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E(X, τX)
E(μX ,τX)

λX

E(τ−τX, τX)

κτX

E

, E(τ−X,X)
E(τ−X,νX)

κX

E(τ−X, ττ−X)

λτ−X

E

,

that is,

λX = κτXE(μX , τX),

κX = λτ−XE(τ−X, νX).
(5.1)

Indeed, by definition λX = Ψ−1
X,τX(μX). Consider the following commutative diagram

HomC(τ−τX, τ−τX)
Ψ−1

τ−τX,τX

HomC(τ−τX,μX)

DE(τ−τX, τX)

DE(μX ,τX)

HomC(τ−τX,X)
Ψ−1

X,τX

DE(X, τX).

Then we have

λX = Ψ−1
X,τX(μX)

= Ψ−1
X,τXHomC(τ−τX, μX)(Idτ−τX)

= DE(μX , τX)Ψ−1
τ−τX,τX(Idτ−τX)

= DE(μX , τX)(κτX)

= κτXE(μX , τX).

Similarly, we have κX = λτ−XE(τ−X, νX).
Now given an s-triangle

X ′ Z Y
δ

.

Then for any X ∈ C, there are the following commutative diagrams

DE(X,X ′)
D(δ�)X

DHomC(X,Y )

HomC(X ′, τX)
δ�τX

Φ−1
X,X′

E(Y, τX)

D(Ψ−1
Y,τXHomC(μX ,Y )) (5.2)

and
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DE(Y,X)
Dδ�X

DHomC(X ′, X)

HomC(τ−X,Y )
(δ�)τ−X

Ψ−1
Y,X

E(τ−X,X ′).

D(Φ−1
τ−X,X′HomC(X′,νX)) (5.3)

Indeed, let Ω := Ψ−1
Y,τXHomC(μX , Y ) : HomC(τ−τX, Y ) → DE(Y, τX). For any g ∈

HomC(X ′, τX) and h ∈ HomC(X, Y ), we have

((DΩ)δ�τX)(g)(h) = (δ�τX(g)Ω)(h)

= (g�δ)(Ω(h))

= (Ω(h))(g�δ)

= Ψ−1
Y,τX(hμX)(g�δ),

where the third equality follows from the canonical isomorphism E(Y, τX) ∼=
DDE(Y, τX). By the naturality of Ψ−1, we have

Ψ−1
Y,τX(hμX)(g�δ) = κτY (μ�

Xh�g�δ).

On the other hand,

(D(δ�)XΦ−1
X,X′)(g)(h) = (Φ−1

X,X′(g(δ�)X)(h)

= Φ−1
X,X′(g(h�δ).

By the naturality of Φ−1, we have

Φ−1
X,X′(g(h�δ) = λX(h�g�δ).

By (5.1), λX = κτXE(μX , τX), and hence

λX(h�g�δ) = (κτXE(μX , τX))(h�g�δ)

= κτX(μ�
Xh�g�δ).

Thus ((DΩ)δ�τX)(g)(h) = (D(δ�)XΦ−1
X,X′)(g)(h), and therefore (DΩ)δ�τX = D(δ�)XΦ−1

X,X′ , 
that is, the diagram (5.2) is commutative. Similarly, we can prove that the diagram (5.3)
is commutative.

Remark 5.2. According to the commutative diagrams (5.2) and (5.3), it is easy to see 
that there are exact sequences

0 Ker(δ�)τX HomC(X ′, τX)
D(i1)Φ−1

X,X′
D Im(δ�)X 0, (5.4)
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and

0 Ker(δ�)τ−X HomC(τ−X,Y )
D(i2)Ψ−1

Y,X

D Im δ�X 0, (5.5)

where i1 : Im(δ�)X → E(X, X ′) and i2 : Im δ�X → E(Y, X) are the corresponding inclu-
sions.

Given an s-triangle

X
α

Z
β

Y
δ

.

For any C ∈ C, by [29, Proposition 3.3] there are the following exact sequences

HomC(C,X)
HomC(C,α)

HomC(C,Z)
HomC(C,β)

HomC(C, Y )
(δ�)C

E(C,X)
E(C,α)

E(C,Z)

and

HomC(C,Z)
HomC(C,β)

HomC(C, Y )
(δ�)C

E(C,X)
E(C,α)

E(C,Z).

We claim that Im HomC(C, β) = Im HomC(C, β)/P(C, Y ). First of all, we have a 
commutative diagram

HomC(C,X)
HomC(C,α)

HomC(C,Z) Im HomC(C, β)

p

0

HomC(C,Z) Im HomC(C, β) 0.

0 0

Moreover, we have a commutative diagram
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0 0

P(C, Y ) P(C, Y )

0 Im HomC(C, β) HomC(C, Y ) E(C,X)
E(C,α)

E(C,Z)

0 Im HomC(C, β) HomC(C, Y ) E(C,X)
E(C,α)

E(C,Z).

0 0

In particular, we have Im HomC(C, β) = Im HomC(C, β)/P(C, Y ).
Now we have a well-defined map

ηC,Y : [→ Y 〉def −→ subEndC(C)op HomC(C, Y ).

[β〉 �→ Im HomC(C, β)

For any X ∈ C, since τ− is an equivalence, we can identity via τ− the EndC(τ−X)op-
module structure on HomC(τ−X, Y ) with the corresponding EndC(X)op-module struc-
ture. Thus we can identity the poset subEndC(τ−X)op HomC(τ−X, Y ) with
subEndC(X)op HomC(τ−X, Y ). Under this identification, we have the bijection

ΥX,Y : subEndC(X) E(Y,X) −→ subEndC(τ−X)op HomC(τ−X,Y ).

Now we can obtain the following commutative triangle, which extends [12, Proposition 
4.4].

Proposition 5.3. For any X, Y ∈ C, we have the following commutative triangle

subEndC(τ−X)op HomC(τ−X,Y )

[→ Y 〉def

ητ−X,Y

ξX,Y

subEndC(X) E(Y,X).

ΥX,Y

Proof. For any [β〉 ∈ [→ Y 〉def , there is an s-triangle

X ′ α
Z

β
Y

δ
.

We have an exact sequence
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HomC(τ−X,Z)
HomC(τ−X,β)

HomC(τ−X,Y )
(δ�)τ−X

E(τ−X,X ′).

By definition, we have

ητ−X,Y ([β〉) = Im HomC(τ−X,β) = Ker (δ�)τ−X ,

ξX,Y ([β〉) = Im δ�X .

It follows from Lemma 5.1 and Remark 5.2 that ΥX,Y (Im δ�X) = Ker (δ�)τ−X . Thus 
ητ−X,Y = ΥX,Y ξX,Y . �

We are now in a position to give the following commutative bijection triangle, which 
shows that the restricted Auslander bijection holds true under the assumption that C
has Auslander-Reiten-Serre duality. It is an extriangulated version of [12, Theorem 4.6].

Theorem 5.4. For any X, Y ∈ C, the following bijection triangle

subEndC(τ−X)op HomC(τ−X,Y )

X [→ Y 〉def = τ−X [→ Y 〉def

ητ−X,Y

ξX,Y

subEndC(X) E(Y,X)

ΥX,Y

is commutative. In particular, we get the restricted Auslander bijection at Y relative to 
τ−X

ητ−X,Y : τ−X [→ Y 〉def −→ subEndC(τ−X)op HomC(τ−X,Y ),

which is an isomorphism of posets.

Proof. It follows from Theorem 4.3, Lemma 5.1 and Proposition 5.3. �
6. Applications

6.1. A realization from DHomC(τ−X, Y ) to subEndC(τ−X)op HomC(τ−X, Y )

In this subsection, C is an extriangulated category. In order to establish a desired map 
from DHomC(τ−X, Y ) to subEndC(τ−X)op HomC(τ−X, Y ), we first give some equivalent 
descriptions for s-deflations being right minimal, and then obtain some conditions for 
ensuring that any s-deflation is right equivalent to a right minimal s-deflation.

Lemma 6.1. For an s-triangle

X Z
α

Y
δ

,
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the following statements are equivalent.

(1) α is right minimal.
(2) Any u ∈ HomC(X, X) satisfying u�δ = δ is an automorphism.
(3) The map δ�X : HomC(X, X) → E(Y, X) of EndC(X)-modules is right minimal.

Proof. (1) ⇒ (2) Assume that u ∈ HomC(X, X) satisfies u�δ = δ. Then u�δ = Id�
Y δ, 

and hence we have the following commutative diagram

X

u

Z
α

v

Y
δ

X Z
α

Y
δ

.

Thus α = αv. Since α is right minimal by (1), v is an automorphism. Thus u is an 
automorphism by [29, Corollary 3.6].

(2) ⇒ (1) For any v ∈ HomC(Z, Z), if αv = α, then we have the following commutative 
diagram

X

u

Z
α

v

Y
δ

X Z
α

Y
δ

.

This means that u�δ = δ, hence u is an automorphism by (2). It follows from [29, 
Corollary 3.6] that v is an automorphism and α is right minimal.

(2) ⇒ (3) Assume that there is a commutative diagram

HomC(X,X)
w

δ�X

HomC(X,X)
δ�X

E(Y,X).

By (4.2), there exists u ∈ HomC(X, X) such that w = HomC(u, X). Thus δ�X HomC(u, X)
= δ�X , which yields

u�δ = δ�X(u) = (δ�X HomC(u,X))(IdX) = δ�X(IdX) = IdX�δ = δ.

By (2), u is an automorphism, and hence w = HomC(u, X) is an automorphism, which 
shows that δ�X is right minimal.

(3) ⇒ (2) Assume that u ∈ HomC(X, X) satisfies u�δ = δ. Then for any f ∈
HomC(X, X), we have
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(δ�X HomC(u,X))(f) = δ�X(HomC(u,X)(f)) = δ�X(fu) = (fu)�δ = f�u�δ = f�δ = δ�X(f)

and thus δ�X HomC(u, X) = δ�X . Since δ�X is right minimal by (3), HomC(u, X) is an 
automorphism, and hence u is also an automorphism. �

Now we give some equivalent condition for s-deflations being (right equivalent to) a 
right minimal morphism, which extends [12, Proposition 3.2 and Corollary 3.3].

Proposition 6.2. For an s-triangle

X ′ Z
α

Y
δ

with X ′ ∈ addX, the following statements are equivalent.

(1) α is right minimal.
(2) The map δ�X : HomC(X ′, X) → E(Y, X) of EndC(X)-modules is right minimal.

Proof. (1) ⇒ (2) Assume that there is a commutative diagram

HomC(X ′, X)
w

δ�X

HomC(X ′, X)
δ�X

E(Y,X).

Since X ′ ∈ addX, there exists u ∈ HomC(X ′, X ′) such that w = HomC(u, X) by (4.2). 
Thus for any f ∈ HomC(X ′, X), we have

f�u�δ = (fu)�δ = δ�X(fu) = δ�X HomC(u,X)(f) = (δ�Xw)(f) = δ�X(f) = f�δ.

Moreover, since X ′ ∈ addX, we may assume that there exists ι : X ′ → X and p : X →
X ′ such that IdX′ = pι. Then

δ = IdX′�δ = (pι)�δ = p�(ι�δ) = p�(ι�u�δ)

= (pι)�u�δ = IdX′�u�δ = u�δ.

Since α is right minimal by (1), u is an automorphism by Lemma 6.1. It follows that w
is an automorphism, which implies that δ�X is right minimal.

(2) ⇒ (1) Let u ∈ HomC(X ′, X ′) satisfying δ = u�δ. Then for any f ∈ HomC(X ′, X), 
we have

(δ�X HomC(u,X))(f) = δ�X(HomC(u,X)(f)) = δ�X(fu) = (fu)�δ = f�u�δ = f�δ = δ�X(f)
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and thus δ�X HomC(u, X) = δ�X . Since δ�X is right minimal by (2), HomC(u, X) is an 
automorphism, and hence u is also an automorphism. By Lemma 6.1, we have that α is 
right minimal. �
Corollary 6.3. For an s-triangle

X ′ Z
α

Y
δ

with X ′ ∈ addX, the following statements are equivalent.

(1) α is right equivalent to a right minimal morphism.
(2) The EndC(X)-module Im δ�X has a projective cover.

Proof. (1) ⇒ (2) Assume that α is right equivalent to a right minimal morphism α′ ∈
HomC(Z ′, Y ). Then α′ is an s-deflation and there is an s-triangle

X ′′ Z ′ α′

Y
δ′

.

By Definition 2.13, there are v ∈ HomC(Z, Z ′) and v′ ∈ HomC(Z ′, Z) such that α =
α′v and α′ = αv′. Thus α′ = α′(vv′). Since α′ is right minimal, we have that vv′
is an automorphism. Moreover, by (ET3)op there exist u ∈ HomC(X ′, X ′′) and u′ ∈
HomC(X ′′, X ′) such that we have the following morphisms of s-triangles

X ′′

u′

Z ′ α′

v′

Y
δ′

X ′

u

Z
α

v

Y
δ

X ′′ Z ′ α′

Y
δ′

.

By [29, Corollary 3.6], uu′ is also an automorphism. This implies that X ′′ is a direct 
summand of X ′ and X ′′ ∈ addX, and hence HomC(X ′′, X) ∈ EndC(X)- proj. By Propo-
sition 6.2, δ′�X : HomC(X ′′, X) → Im δ′�X is a projective cover of Im δ′�X . Since Im δ�X =
Im δ′�X by Claim 1 of Section 4, we get a projective cover δ′�X : HomC(X ′′, X) → Im δ�X .

(2) ⇒ (1) By (2), there exists a projective cover w : HomC(X ′′′, X) � Im δ�X with 
X ′′′ ∈ addX. Then the morphism w : HomC(X ′′′, X) → E(Y, X) is right minimal. By 
(4.1), there exists an E-extension δ′′ ∈ E(Y, X ′′′) such that w = δ′′�X and Im δ�X =
Imw = Im δ′′�X . Let

X ′′′ Z ′′ α′′

Y
δ′′
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be an s-triangle. By Proposition 6.2, α′′ is right minimal. By using an argument similar 
to that of Claim 2 in Section 4, we get that α is right equivalent to α′′, which completes 
the proof. �

In what follows, let C be a Hom-finite R-linear Krull-Schmidt extriangulated category 
having Auslander-Reiten-Serre duality. Under this assumption, the ring EndC(X) is an 
artin algebra for any X ∈ C, and hence any EndC(X)-module has a projective cover. Thus 
for any [α〉 ∈ [→ Y 〉def , there exists a right minimal s-deflation α′ such that [α〉 = [α′〉
in [→ Y 〉def . Following this, we only need to consider right minimal s-deflations.

Let X ∈ C and X ′ ∈ addX. For any s-triangle

X ′ Z
α

Y
δ

with α right minimal, by Proposition 4.2 there exists a map


 : E(Y,X ′) −→ τ−X [→ Y 〉def .

δ �→ [α〉

Now we define a map

Ξ : DHomC(τ−X ′, Y ) −→ subEndC(τ−X)op HomC(τ−X,Y )

to be the following composition

DHomC(τ−X ′, Y )
DΨY,X′−→ E(Y,X ′) �−→ τ−X [→ Y 〉def

ητ−X,Y−→ subEndC(τ−X)op HomC(τ−X,Y ).

Now we give a realization for the image of the functor Ξ, which extends [12, Proposi-
tion 5.3].

Proposition 6.4. For any R-linear map θ ∈ DHomC(τ−X ′, Y ), we have

Ξ(θ) = {f ∈ HomC(τ−X,Y ) | θ(fg) = 0 for any g ∈ HomC(τ−X ′, τ−X)}.

Proof. Let δ := DΨY,X′(θ) and let

X ′ Z
α

Y
δ

be an s-triangle with α right minimal. Consider the following diagram



148 T. Zhao et al. / Journal of Algebra 574 (2021) 117–153
subEndC(τ−X)op HomC(τ−X,Y )

E(Y,X ′) � τ−X [→ Y 〉def

ητ−X,Y

ξX,Y

subEndC(X) E(Y,X).

ΥX,Y

We have

Ξ(θ) = ητ−X,Y 
(δ) = ητ−X,Y ([α〉) = ΥX,Y ξX,Y ([α〉) = ΥX,Y (Im δ�X) = H,

where H is defined by the following exact sequence

0 H HomC(τ−X,Y )
D(i)Ψ−1

Y,X

D Im δ�X 0

with i : Im δ�X → E(Y, X) an inclusion.
Consider the following R-module

S =
{
θ′ ∈ DHomC(τ−X,Y ) | there is g ∈ HomC(τ−X ′, τ−X) with θ′(f) = θ(fg)

for each f ∈ HomC(τ−X,Y )
}

and let i′ : S → DHomC(τ−X, Y ) be an inclusion. Note that Im δ�X = {u�δ ∈ E(Y, X) |
u ∈ HomC(X ′, X)}. We apply the naturality of Ψ on the second variable and the equiv-
alence τ−. Then DΨY,X identifies S with Im δ�X . Thus we have a commutative diagram

HomC(τ−X,Y )
D(i′)

Ψ−1
Y,X

DS

Ψ−1
X,Y

DE(Y,X)
D(i)

D Im δ�X .

It follows that there is an exact sequence

0 H HomC(τ−X,Y )
D(i′)

DS 0.

Note that

D(i′) : HomC(τ−X,Y ) → DS

f �→ (D(i′))(f) : S → E

θ′ �→ θ′(f).

Thus f ∈ H if and only if θ′(f) = 0 for each θ′ ∈ S, and if and only if θ(fg) = 0 for each 
g ∈ HomC(τ−X ′, τ−X). Therefore we have
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Ξ(θ) = {f ∈ HomC(τ−X,Y ) | θ(fg) = 0 for any g ∈ HomC(τ−X ′, τ−X)}. �
In [33, Section 10], Ringel conjectured that one attaches to a linear map α ∈

DHomA(τ−X, Y ) the largest EndC(τ−X)op-submodule of HomA(τ−X, Y ) contained in 
Kerα, where A is an artin algebra.

By Proposition 6.4, we have the following result, which shows that Ringel’s conjecture 
holds true in the setting of extriangulated categories.

Corollary 6.5. For any R-linear map θ ∈ DHomC(τ−X, Y ), we have

Ξ(θ) = {f ∈ HomC(τ−X,Y ) | θ(fg) = 0 for any g ∈ EndC(τ−X)},

which is the largest EndC(τ−X)op-submodule of HomC(τ−X, Y ) contained in Ker θ.

As some particular cases, we have that Ringel’s conjecture holds true in the following 
categories:

• Hom-finite R-linear Krull-Schmidt exact categories having Auslander-Reiten-Serre 
duality.

• Hom-finite R-linear Krull-Schmidt triangulated categories having Auslander-Reiten-
Serre duality.

• Hom-finite R-linear abelian categories having Auslander-Reiten duality ([12, Corol-
lary 5.4]).

6.2. The Auslander bijection over extriangulated category having Serre duality

By Proposition 3.3 and Theorem 3.5, if C has Serre duality, then C [→ Y 〉def = C [→ Y 〉
for any C ∈ C. Moreover, in this case, C has Auslander-Reiten-Serre duality by Corol-
lary 3.6. It follows from Theorem 5.4 that the Auslander bijection holds true in extrian-
gulated category having Serre duality, that is, we have

Corollary 6.6. Let C be a Hom-finite R-linear Krull-Schmidt extriangulated category hav-
ing Serre duality. For any X, Y ∈ C, the following bijection triangle

subEndC(τ−X)op HomC(τ−X,Y )

τ−X [→ Y 〉

ητ−X,Y

ξX,Y

subEndC(X) E(Y,X)

ΥX,Y

is commutative. In particular, we get the Auslander bijection at Y relative to τ−X

ητ−X,Y : τ−X [→ Y 〉 −→ subEndC(τ−X)op HomC(τ−X,Y ),
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which is an isomorphism of posets.

At the end of the paper, we see some examples as follows.
1. Let T be a triangulated category. Then by [29, Proposition 3.22], we have that 

T is an extriangulated category with E = HomT (−, −[1]), and for any δ ∈ E(Y, X) =
HomT (Y, X[1]), take a distinguished triangle

X
x

Z
y

Y
δ

X[1],

and define

s(δ) = [ X x
Z

y
Y ].

In this case, each morphism in T is an s-deflation, and hence τ
−X [→ Y 〉def = τ−X [→ Y 〉. 

Moreover, P = I = {0} in T . It follows from Corollary 3.6 that T has Serre duality if 
and only if it has Auslander-Reiten-Serre duality. By Corollary 6.6, we have the following

Corollary 6.7. Let T be a Hom-finite R-linear Krull-Schmidt triangulated category having 
Auslander-Reiten-Serre duality. Then the Auslander bijection at Y relative to τ−X

ητ−X,Y : τ−X [→ Y 〉 −→ subEndC(τ−X)op HomT (τ−X,Y )

holds, which is an isomorphism of posets.

2. Let T be a compactly generated triangulated category and ξ the class of pure 
triangles. Then (T , Eξ, sξ) is an extriangulated category which is neither exact nor tri-
angulated in general, where

Eξ(C,A) := {δ ∈ HomT (C,A[1]) | there is a pure triangle

A B C
δ

A[1] in T }

for any A, C ∈ T and

sξ(δ) = [ A
f

B
g

C ]

for any δ ∈ Eξ(C, A) with a pure triangle

A
f

B
g

C
δ
A[1].

Note that the morphism δ is called a phantom map in [23].
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Condition (�): For any non-zero object X ∈ T , there is a non-zero phantom map 
ending at X, and a non-zero phantom map starting from X.

In fact, if (T , Eξ, sξ) satisfies Condition (�), then P = {0} = I (see [23, Lemma 1.4]). 
By Theorem 5.4 and Corollary 6.6, we have the following

Corollary 6.8. Let (T , Eξ, sξ) be a Hom-finite R-linear Krull-Schmidt extriangulated cat-
egory having Auslander-Reiten-Serre duality. Then the restricted Auslander bijection at 
Y relative to τ−X

ητ−X,Y : τ−X [→ Y 〉def −→ subEndC(τ−X)op HomT (τ−X,Y )

holds, which is an isomorphism of posets. Moreover, if (T , Eξ, sξ) satisfies Condition (�), 
then the Auslander bijection at Y relative to τ−X

ητ−X,Y : τ−X [→ Y 〉 −→ subEndC(τ−X)op HomT (τ−X,Y )

holds, which is an isomorphism of posets.

3. Let A be an artin algebra and C [−1,0](A-proj) the category of complexes of finitely 
generated projective A-modules concentrated in degrees −1 and 0. Let K [−1,0](A-proj)
be the category whose objects are the same of C [−1,0](A-proj), but morphisms are con-
sidered up to homotopy. Then C [−1,0](A-proj) is an Ext-finite R-linear Krull-Schmidt 
exact sequence which is not abelian, and K [−1,0](A-proj) is an Ext-finite R-linear Krull-
Schmidt extriangulated category which is not a triangulated category. It follows from [8, 
Proposition 5.4] and [21, Proposition 6.1] that both C [−1,0](A-proj) and K [−1,0](A-proj)
have Auslander-Reiten-Serre duality. By Corollary 3.6, C [−1,0](A-proj) has no Serre 
duality. Moreover, it is easy to check that (0 → A) is a non-zero projective object 
in K [−1,0](A-proj) (e.g. see [32, Proposition 4.39]). It follows from Corollary 3.6 that 
K [−1,0](A-proj) also has no Serre duality. By Theorem 5.4, we have the following

Corollary 6.9. The restricted Auslander bijection at Y relative to τ−X in C [−1,0](A-proj)
or K [−1,0](A-proj) holds.

However, we do not know whether the Auslander bijection in C [−1,0](A-proj) or 
K [−1,0](A-proj) holds true.

Now we take Q = (Q−1
q→ Q0) ∈ K [−1,0](A-proj) with q epic. For any P = (P−1

p→
P0) ∈ K [−1,0](A-proj) and f : P → Q[1], we have the following commutative diagram

P−1
p

f−1
s

P0

0

Q−1
q

Q0,
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which shows that f = 0. Thus HomK[−1,0](A-proj)(P, Q[1]) = 0. Using the Auslander 
bijection triangle in this case, we have ητ−Q,P = 0, which implies

τ−Q[→ P 〉def = subEndC(τ−Q)op HomK[−1,0](A-proj)(τ−Q,P ) = {0}.

For example, let A be the path algebra given by the quiver

a
α→ b

β→ c
γ→ d

modulo the relation γβα = 0. Then the Auslander-Reiten quiver of the extriangulated 
category K [−1,0](A-proj) is as follows (see [32, Example 4.61]):

(0 → Pd) [Pb → 0]

(0 → Pc) [Pa → 0]

(0 → Pb) (Pa → Pc) [Pb → Pd] [Pc → 0]

(0 → Pa) (Pa → Pb) [Pb → Pc] [Pc → Pd] [Pd → 0].

Here the symbol [· q→ ·] denotes the morphism q to be epic.
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