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Let Λ be an artin algebra. We give an upper bound for the 
dimension of the bounded derived category of the category 
modΛ of finitely generated right Λ-modules in terms of the 
projective and injective dimensions of certain class of simple 
right Λ-modules as well as the radical layer length of Λ. In 
addition, we give an upper bound for the dimension of the 
singularity category of mod Λ in terms of the radical layer 
length of Λ.
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1. Introduction

Given a triangulated category T , Rouquier introduced in [19] the dimension dim T of 
T under the idea of Bondal and van den Bergh in [6]. This dimension and the infimum 
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of the Orlov spectrum of T coincide, see [3,16]. Roughly speaking, it is an invariant that 
measures how quickly the category can be built from one object. Many authors have 
studied the upper bound of dim T , see [3,5,7,9,13,15,18,19] and so on. There are a lot of 
triangulated categories having infinite dimension, for instance, Oppermann and Št’ovíček 
proved in [15] that all proper thick subcategories of the bounded derived category of 
finitely generated modules over a Noetherian algebra containing perfect complexes have 
infinite dimension.

Let Λ be an artin algebra. Let mod Λ be the category of finitely generated right 
Λ-modules and let Db(mod Λ) and Db

sg(mod Λ) be the bounded derived category and 
singularity category of mod Λ respectively. The upper bounds for the dimensions of 
these two categories can be given in terms of the Loewy length LL(Λ) and the global 
dimension gl.dim Λ of Λ.

Theorem 1.1. Let Λ be an artin algebra. Then we have

(1) ([19, Proposition 7.37]) dimDb(mod Λ) � LL(Λ) − 1;
(2) ([19, Proposition 7.4] and [13, Proposition 2.6]) dimDb(mod Λ) � gl.dim Λ;
(3) ([5, Lemma 4.5]) dimDb

sg(mod Λ) � LL(Λ) − 2.

By Theorem 1.1(1)(3), we have that both dimDb(mod Λ) and dimDb
sg(mod Λ) are 

finite; however, Theorem 1.1(2) does not provide any information when gl.dimΛ is infi-
nite.

For a length-category C, generalizing the Loewy length, Huard, Lanzilotta and Hernán-
dez introduced in [10,11] the (radical) layer length associated with a torsion pair, which 
is a new measure for objects of C. Let Λ be an artin algebra and V a set of some simple 
modules in modΛ. Let tV be the torsion radical of a torsion pair associated with V (see 
Section 3 for details). We use ��tV (Λ) to denote the tV -radical layer length of Λ. For 
a module M in mod Λ, we use pdM and idM to denote the projective and injective 
dimensions of M respectively; in particular, set pdM = −1 = idM if M = 0. For a 
subclass B of mod Λ, the projective dimension pdB of B is defined as

pdB =
{

sup{pdM | M ∈ B}, if B �= ∅;
−1, if B = ∅.

Dually, the injective dimension idB of B is defined. Note that V is a finite set. So, if each 
simple module in V has finite projective (resp. injective) dimension, then pdV (resp. 
idV) attains its (finite) maximum.

The aim of this paper is to prove the following

Theorem 1.2. (Theorems 3.12 and 3.14) Let Λ be an artin algebra and V a set of some 
simple modules in mod Λ with ��tV (Λ) = n. Then we have

(1) if d = min{pdV, idV}, then dimDb(mod Λ) � (d + 2)(n + 1) − 2;
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(2) dimDb
sg(mod Λ) � max{0, n − 2}.

In Section 3, we give the proof of Theorem 1.2. In fact, Theorem 1.1 is some special 
cases of Theorem 1.2 (see Remark 3.16). Moreover, by choosing some suitable V and 
applying Theorem 1.2, we may obtain more precise upper bounds for dimDb(mod Λ) and 
dimDb

sg(mod Λ) than that in Theorem 1.1. We give in Section 4 two examples to illustrate 
this and that the difference between the upper bounds obtained from Theorems 1.1 and 
1.2 may be arbitrarily large.

2. Preliminaries

2.1. The dimension of a triangulated category

We recall some notions from [14,18,19]. Let T be a triangulated category and I ⊆
ObT . Let 〈I〉 be the full subcategory consisting of T of all direct summands of finite 
direct sums of shifts of objects in I. Given two subclasses I1, I2 ⊆ ObT , we denote 
I1 ∗ I2 by the full subcategory of all extensions between them, that is,

I1 ∗ I2 = {X | X1 −→ X −→ X2 −→ X1[1] with X1 ∈ I1 and X2 ∈ I2}.

Write I1 	 I2 := 〈I1 ∗ I2〉. Then (I1 	 I2) 	 I3 = I1 	 (I2 	 I3) for any subclasses I1, I2
and I3 of T by the octahedral axiom. Write

〈I〉0 := 0, 〈I〉1 := 〈I〉 and 〈I〉n+1 := 〈I〉n 	 〈I〉1 for any n � 1.

Definition 2.1. ([19, Definiton 3.2]) The dimension dim T of a triangulated category T
is the minimal d such that there exists an object M ∈ T with T = 〈M〉d+1. If no such 
M exists for any d, then we set dim T = ∞.

Lemma 2.2. ([17, Lemma 7.3]) Let T be a triangulated category and let X, Y be two 
objects of T . Then

〈X〉m 	 〈Y 〉n ⊆ 〈X ⊕ Y 〉m+n

for any m, n � 0.

Lemma 2.3. ([1, Proposition 3.2]) Let A be an abelian category admitting enough pro-
jective objects. Let X = (Xi, di) be a bounded complex in A such that the homology 
Hi(X) has projective dimension at most n for all i. Then X ∈ 〈P〉n+1 ⊆ Db(A) for the 
subcategory P ⊆ A of projective objects.

Dually, we have
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Lemma 2.4. Let A be an abelian category admitting enough injective objects. Let X =
(Xi, di) be a bounded complex in A such that the homology Hi(X) has injective dimension 
at most n for all i. Then X ∈ 〈E〉n+1 ⊆ Db(A) for the subcategory E ⊆ A of injective 
objects.

2.2. Radical layer lengths and torsion pairs

We recall some notions from [11]. Let C be a length-category, that is, C is an abelian, 
skeletally small category and every object of C has a finite composition series. We use 
EndZ(C) to denote the category of all additive functors from C to C, and use rad to 
denote the Jacobson radical lying in EndZ(C). For any α ∈ EndZ(C), set the α-radical 
functor Fα := rad ◦α.

Definition 2.5. ([11, Definition 3.1]) For any α, β ∈ EndZ(C), we define the (α, β)-layer 
length ��βα : C −→ N ∪ {∞} via ��βα(M) = inf{i � 0 | α ◦ βi(M) = 0}; and the α-radical 
layer length ��α := ��Fα

α .

Lemma 2.6. Let α, β ∈ EndZ(C). For any M ∈ C, if ��βα(M) = n, then ��βα(M) =
��βα(βj(M)) + j for any 0 � j � n; in particular, if ��α(M) = n, then ��α(Fn

α (M)) = 0.

Proof. If ��βα(M) = n, then n = inf{i � 0 | αβi(M) = 0}. By Definition 2.5, for any 
0 � j � n, we have

��βα(βj(M)) = inf{i � 0 |αβi+j(M) = 0} = n− j,

that is, ��βα(M) = ��βα(βj(M)) + j. In particular, if ��α(M) = n, then putting β = Fα

we have ��α(Fn
α (M)) = ��α(M) − n = n − n = 0. �

Recall that a torsion pair (or torsion theory) for C is a pair of classes (T , F) of objects 
in C satisfying the following conditions.

(1) HomC(M, N) = 0 for any M ∈ T and N ∈ F ;
(2) an object X ∈ C is in T if HomC(X, −)|F = 0;
(3) an object Y ∈ C is in F if HomC(−, Y )|T = 0.

For a subfunctor α of the identity functor 1C, we write qα := 1C/α. Let (T , F) be a 
torsion pair for C. Recall that the torsion radical t is a functor in EndZ(C) such that

0 −→ t(M) −→ M −→ qt(M) −→ 0

is a short exact sequence and qt(M) = M/t(M) ∈ F .
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3. Main results

In this section, Λ is an artin algebra. Then modΛ is a length-category. For a module 
M in mod Λ, we use radM , socM and topM to denote the radical, socle and top of 
M respectively. For a subclass W of mod Λ, we use addW to denote the subcategory 
of mod Λ consisting of direct summands of finite direct sums of modules in W, and if 
W = {M} for some M ∈ mod Λ, we write addM := addW.

Let S be the set of all simple modules in mod Λ, and let V be a subset of S and 
V ′ the set of all the others simple modules in mod Λ, that is, V ′ = S\V. We write 
F (V) := {M ∈ mod Λ | there exists a finite chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M

of submodules of M such that each quotient Mi/Mi−1 is isomorphic to some module in 
V}. By [11, Lemma 5.7 and Proposition 5.9], we have that (TV , F(V)) is a torsion pair, 
where

TV = {M ∈ mod Λ | topM ∈ addV ′}.

We use tV to denote the torsion radical of the torsion pair (TV , F(V)). Then tV(M) ∈ TV
and q

tV
(M) ∈ F(V) for any M ∈ mod Λ. By [11, Propositions 5.3 and 5.9(a)], we have

Proposition 3.1.

(1) F(V) = {M ∈ mod Λ | tV(M) = 0};
(2) TV = {M ∈ mod Λ | tV(M) = M};
(3) topM ∈ addV ′ if and only if tV(M) = M .

As a consequence, we get the following

Proposition 3.2. If V = ∅, then ��tV (M) = LL(M) for any M ∈ mod Λ.

Proof. If V = ∅, then the torsion pair (TV , F(V)) = (mod Λ, 0). By Proposition 3.1(3), 
for any M ∈ mod Λ we have tV(M) = M and ��tV (M) = LL(M). �
Lemma 3.3.

(1) F(V) is closed under extensions, submodules and quotient modules.
(2) The functor tV preserves monomorphisms and epimorphisms.

Proof. (1) It is [11, Lemma 5.7].
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(2) By [11, Lemma 3.6(a)], we have that tV preserves monomorphisms. Since F(V) is 
closed under quotient modules by (1), we have that tV preserves epimorphisms by [4, 
Proposition 1.3]. �

We use D to denote the usual duality between modΛ and mod Λop.

Proposition 3.4. Let G be a generator and E a cogenerator for modΛ. Then ��tV (G) =
��tV (E). In particular, for any M ∈ mod Λ, we have

��tV (M) � ��tV (Λ) = ��tV (D(Λ)).

Proof. By Lemma 3.3(2) and [11, Lemma 3.4(b)(c)]. �
The following lemma is essentially contained in [14, Lemma 2.2.4]. A similar result also 

holds true for objects in the bounded derived category of a hereditary abelian category 
(see [12, 1.6] for details).

Lemma 3.5. Let

X : · · · di−2

Xi−1 di−1

Xi di

Xi+1 di+1

· · ·

be a bounded complex in mod Λ with all Xi seimisimple. Then X ∼= ⊕iH
i(X)[i] and 

X ∈ 〈Λ/ radΛ〉 in Db(mod Λ).

Proof. By assumption, there exist two integers r and t such that Xi ∈ add(Λ/ radΛ), 
where Xi = 0 for any i /∈ [r, t], where [r, t] is the integer interval with endpoints r and t. 
By [2, Theorem 9.6], the exact sequence

0 −→ Ker dt−1 −→ Xt−1 −→ Im dt−1 −→ 0

splits. So the following complex

0 Xr dr

Xr+1 dr+1

Xr+2 dr+2

· · · dt−2

Xt−1 dt−1

Xt 0

is the direct sum of the following two complexes

0 Xr dr

Xr+1 dr+1

Xr+2 dr+2

· · · dt−2

Kerdt−1 0 0

and

0 0 0 0 · · · Imdt−1 Xt 0. (∗)

Note that the complex (∗) is isomorphic to the stalk complex Ht(X)[t] in Db(mod Λ). 
By induction, we have X ∼= ⊕t

i=rH
i(X)[i] in Db(mod Λ). �
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3.1. An upper bound for dimDb(mod Λ)

We use S<∞ to denote the set of the simple modules in modΛ with finite projective 
dimension, and use S∞ to denote the set of the simple modules in modΛ with infinite 
projective dimension. Thus S<∞ ∪ S∞ = S. For a subset V of S, it is easy to see that 
pdF(V) � pdV and idF(V) � idV. We will use this observation in the sequel freely.

Lemma 3.6. Let V be a subset of S<∞ and pdV = a. Then the following complex

X : · · · di−2

Xi−1 di−1

Xi di

Xi+1 di+1

· · ·

with all Xi in mod Λ induces a complex

qtV (X) : · · ·
qtV (di−2)

qtV (Xi−1)
qtV (di−1)

qtV (Xi)
qtV (di)

qtV (Xi+1)
qtV (di+1)

· · ·

such that pdHi(qtV (X)) � a for all i.

Proof. Since qtV is a covariant functor, we can obtain the complex qtV (X). For any i, 
since qtV (Xi) ∈ F(V), it follows from Lemma 3.3(1) that all Ker qtV (di), Im qtV (di−1)
and Hi(qtV (X)) are in F(V). Thus we have pdHi(qtV (X)) � a. �
Lemma 3.7. Let V be a subset of S<∞ and pdV = a. For a bounded complex X = (Xi, di)
in mod Λ, if ��tV (Λ) = n, then Fn

tV (X) ∈ 〈Λ〉a+1.

Proof. By Proposition 3.4, we have ��tV (Xi) � ��tV (Λ) = n for all i. Then by Lemma 2.6
and Proposition 3.1(1), we have ��tV (Fn

tV (Xi)) = 0 and Fn
tV (Xi) ∈ F(V), which implies 

Hi(Fn
tV (X)) ∈ F(V) by Lemma 3.3(1), and hence pdHi(Fn

tV (X)) � a for all i. It follows 
from Lemma 2.3 that Fn

tV (X) ∈ 〈Λ〉a+1. �
We now are in a position to prove the following

Theorem 3.8. Let V be a subset of S<∞ and pdV = a. If ��tV (Λ) = n, then

dimDb(mod Λ) � (a + 2)(n + 1) − 2.

Proof. If V = ∅, then ��tV (Λ) = LL(Λ) by Proposition 3.2. Now the assertion follows 
from Theorem 1.1(1).

If n = 0, that is, tV(Λ) = 0, then Λ ∈ F(V) by Proposition 3.1(1). Since V contains 
every simple module by the definition of F(V) and since the composition series of Λ does, 
we have V = S and gl.dim Λ = a. It follows from Theorem 1.1(2) that dimDb(mod Λ) �
a.

Let X ∈ Db(mod Λ) and n � 1. Since both qtV and tV are covariant functors, we have 
that
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0 −→ tV(X) −→ X −→ qtV (X) −→ 0

is a short exact sequence of complexes. For any Y ∈ Db(mod Λ), we have the following 
short exact sequence of complexes

0 −→ radY −→ Y −→ topY −→ 0.

Now by letting Y = tV(X), we have

〈X〉 ⊆ 〈tV(X)〉 	 〈qtV (X)〉
⊆ 〈tV(X)〉 	 〈Λ〉a+1 (by Lemmas 3.6 and 2.3)

⊆ 〈rad tV(X)〉 	 〈top tV(X)〉 	 〈Λ〉a+1

= 〈FtV (X)〉 	 〈top tV(X)〉 	 〈Λ〉a+1

⊆ 〈FtV (X)〉 	 〈Λ/ radΛ〉 	 〈Λ〉a+1 (by Lemma 3.5)

⊆ 〈FtV (X)〉 	 〈Λ ⊕ (Λ/ radΛ)〉a+2. (by Lemma 2.2)

By replacing X with F i
tV (X) for any 1 � i � n − 1, we get

〈X〉 ⊆ 〈Fn
tV (X)〉 	 〈Λ ⊕ (Λ/ radΛ)〉n(a+2).

By Lemma 3.7, we have Fn
tV (X) ∈ 〈Λ〉a+1. Thus

〈X〉 ⊆ 〈Λ ⊕ (Λ/ radΛ)〉(n+1)(a+2)−1.

It follows that Db(mod Λ) = 〈Λ ⊕ (Λ/ radΛ)〉(a+2)(n+1)−1 and

dimDb(mod Λ) � (a + 2)(n + 1) − 2. �
We use S<∞

inj to denote the set of the simple modules in modΛ with finite injective 
dimension. The following two lemmas are dual to Lemmas 3.6 and 3.7 respectively, we 
omit their proofs.

Lemma 3.9. Let V be a subset of S<∞
inj and idV = c. Then the following complex

X : · · · di−2

Xi−1 di−1

Xi di

Xi+1 di+1

· · ·

with all Xi in mod Λ induces a complex

qtV (X) : · · ·
qtV (di−2)

qtV (Xi−1)
qtV (di−1)

qtV (Xi)
qtV (di)

qtV (Xi+1)
qtV (di+1)

· · ·

such that idHi(qtV (X)) � c for all i.
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Lemma 3.10. Let V be a subset of S<∞
inj and idV = c. For a bounded complex X = (Xi, di)

in mod Λ, if ��tV (D(Λ)) = n, then Fn
tV (X) ∈ 〈D(Λ)〉c+1.

The following result is dual to Theorem 3.8.

Theorem 3.11. Let V be a subset of S<∞
inj and idV = c. If ��tV (D(Λ)) = n, then

dimDb(mod Λ) � (c + 2)(n + 1) − 2.

Proof. Though the proof is similar to that of Theorem 3.8, we still give it here for the 
readers’ convenience.

If V = ∅, then ��tV (D(Λ)) = LL(D(Λ)) = LL(Λ) by Proposition 3.2. Now the assertion 
follows from Theorem 1.1(1).

If n = 0, that is, tV(D(Λ)) = 0, then D(Λ) ∈ F(V) by Proposition 3.1(1). Since V
contains every simple module by the definition of F(V) and since the composition series 
of D(Λ) does, we have V = S and gl.dim Λ = c. It follows from Theorem 1.1(2) that 
dimDb(mod Λ) � c.

Let X, Y ∈ Db(mod Λ) and n � 1. Just like the argument in Theorem 3.8, we have 
the following two short exact sequence of complexes

0 −→ tV(X) −→ X −→ qtV (X) −→ 0,

0 −→ radY −→ Y −→ topY −→ 0.

Now by letting Y = tV(X), we have

〈X〉 ⊆ 〈tV(X)〉 	 〈qtV (X)〉

⊆ 〈tV(X)〉 	 〈D(Λ)〉c+1 (by Lemmas 3.9 and 2.4)

⊆ 〈rad tV(X)〉 	 〈top tV(X)〉 	 〈D(Λ)〉c+1

= 〈FtV (X)〉 	 〈top tV(X)〉 	 〈D(Λ)〉c+1

⊆ 〈FtV (X)〉 	 〈Λ/ radΛ〉 	 〈D(Λ)〉c+1 (by Lemma 3.5)

⊆ 〈FtV (X)〉 	 〈D(Λ) ⊕ (Λ/ radΛ)〉c+2. (by Lemma 2.2)

By replacing X with F i
tV (X) for any 1 � i � n − 1, we get

〈X〉 ⊆ 〈Fn
tV (X)〉 	 〈D(Λ) ⊕ (Λ/ radΛ)〉n(c+2).

By Lemma 3.10, we have Fn
tV (X) ∈ 〈D(Λ)〉c+1. Thus

〈X〉 ⊆ 〈D(Λ) ⊕ (Λ/ radΛ)〉(n+1)(c+2)−1.
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It follows that Db(mod Λ) = 〈D(Λ) ⊕ (Λ/ radΛ)〉(c+2)(n+1)−1 and

dimDb(mod Λ) � (c + 2)(n + 1) − 2. �
Combining Theorems 3.8 and 3.11, we get the following

Theorem 3.12. Let V be a subset of S and min{pdV, idV} = d. If ��tV (Λ) = n, then

dimDb(mod Λ) � (d + 2)(n + 1) − 2.

Proof. The case for d = ∞ is trivial. Since ��tV (Λ) = ��tV (D(Λ)) by Proposition 3.4, the 
case for d < ∞ follows from Theorems 3.8 and 3.11. �
3.2. An upper bound for dimDb

sg(mod Λ)

Recall that the singularity category Db
sg(mod Λ) of modΛ is defined as Db(mod Λ)/

Kb(proj Λ), where Kb(proj Λ) is the bounded homotopy category of the subcategory 
proj Λ of modΛ consisting of projective modules. For any M ∈ mod Λ and m � 1, we 
use Ωm(M) to denote the m-th syzygy of M ; in particular, Ω0(M) = M .

Lemma 3.13.

(1) ��tS<∞ (Λ) = 0 if and only if gl.dim Λ < ∞;
(2) ��tS<∞ (Λ) �= 1.

Proof. (1) If ��tS<∞ (Λ) = 0, then tS<∞(Λ) = 0. So Λ ∈ F(S<∞) by Proposition 3.1(1), 
which implies S<∞ = S. Thus gl.dim Λ = pdS = pdS<∞ < ∞. Conversely, if 
gl.dim Λ < ∞, then S<∞ = S and the torsion pair (TS<∞ , F(S<∞)) = (TS , F(S)) =
(0, mod Λ). By Proposition 3.1(2), for any M ∈ mod Λ we have tS<∞(M) = 0 and 
��tS<∞ (Λ) = 0.

(2) Suppose ��tS<∞ (Λ) = 1. Then by (1), we have gl.dim Λ = ∞ and there exists a 
simple module S in mod Λ such that pdS = ∞. Consider the following exact sequence

0 −→ Ω1(S) −→ P −→ S −→ 0,

in mod Λ with P the projective cover of S. Because topS = S ∈ addS∞, we have 
tS<∞(S) = S by Proposition 3.1(3). It follows from [11, Lemma 6.3] that

��tS<∞ (Ω1(S)) = ��tS<∞ (Ω1(tS<∞(S))) � ��tS<∞ (Λ) − 1 = 0,

that is, ��tS<∞ (Ω1(S)) = 0, and Ω1(S) ∈ F(S<∞), which induces pd Ω1(S) < ∞, a 
contradiction. �
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In the following result, we give an upper bound for dimDb
sg(mod Λ).

Theorem 3.14. Let V be a subset of S<∞ with ��tV (Λ) = n. Then we have

dimDb
sg(mod Λ) � max{0, n− 2}.

Proof. If V = ∅, then ��tV (Λ) = LL(Λ) by Proposition 3.2. Now the assertion follows 
from Theorem 1.1(3).

Now suppose V �= ∅. If n � 1, then ��tS<∞ (Λ) � 1 by [11, Proposition 5.10]. So 
��tS<∞ (Λ) = 0 and gl.dim Λ < ∞ by Lemma 3.13, which implies dimDb

sg(mod Λ) = 0.
Let n � 2 and set a := pdV. From [8, Lemma 2.4(2)(a)], we know that every object 

in Db
sg(mod Λ) is isomorphic to a stalk complex for some module. Let X ∈ mod Λ. If 

��tV (X) = 0, then pdX < ∞ and X = 0 in Db
sg(mod Λ). If ��tV (X) > 0, then by [11, 

Lemma 6.3], we have ��tV (Ω1(tV(X))) � ��tV (Λ) − 1 = n − 1. By Lemma 2.6, we have 
��tV (Fn−1

tV (Ω1(tV(X)))) = 0. By Proposition 3.1(1), we have Fn−1
tV (Ω1(tV(X))) ∈ F(V)

and pdFn−1
tV (Ω1(tV(X))) � a.

For any Y ∈ mod Λ, we have the following two exact sequences

0 −→ tV(Y ) −→ Y −→ qtV (Y ) −→ 0,

0 −→ FtV (Y ) −→ tV(Y ) −→ top tV(Y ) −→ 0.

Since qtV (Y ) ∈ F(V), we have pd qtV (Y ) � a. By the horseshoe lemma, we have

Ωa+1(Y ) ∼= Ωa+1(tV(Y )),

0 → Ωa+1(FtV (Y )) → Ωa+1(tV(Y )) ⊕ P1 → Ωa+1(top tV(Y )) → 0,

where P1 is projective in mod Λ. Thus we have

〈Ωa+1(Y )〉 = 〈Ωa+1(tV(Y ))〉 ⊆ 〈Ωa+1(FtV (Y ))〉 	 〈Ωa+1(top tV(Y ))〉
⊆ 〈Ωa+1(FtV (Y ))〉 	 〈Ωa+1(Λ/ radΛ)〉.

By replacing Y with F i
tV (Y ) for any 1 � i � n − 2, we get

〈Ωa+1(Y )〉 ⊆ 〈Ωa+1(Fn−1
tV (Y ))〉 	 〈Ωa+1(Λ/ radΛ)〉n−1.

Let Y = Ω1(tV(X)). Since pdFn−1
tV (Ω1(tV(X))) � a, we have

Ωa+1(Fn−1
tV (Ω1(tV(X)))) = 0,

and so

〈Ωa+2(tV(X))〉 ⊆ 〈Ωa+1(Λ/ radΛ)〉n−1.
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By [8, Lemma 2.4(2)(b)], we have X ∼= Ωa+2(X)[a + 2] in Db
sg(mod Λ). Thus

X ∼= Ωa+2(X)[a + 2] ∼= Ωa+2(tV(X))[a + 2] ∈ 〈Ωa+1(Λ/ radΛ)〉n−1.

It follows that Db
sg(mod Λ) = 〈Ωa+1(Λ/ radΛ)〉n−1 and dimDb

sg(mod Λ) � n − 2. �
The following corollary is an immediate consequence of Theorem 3.14. It is trivial 

that ��tS<∞ (Λ) � LL(Λ), so this corollary improves Theorem 1.1(3).

Corollary 3.15. If ��tS<∞ (Λ) = n, then we have

dimDb
sg(mod Λ) � max{0, n− 2}.

Now we explain why Theorem 1.1 is a special case of our results.

Remark 3.16. (1) If V = ∅, then ��tV (Λ) = LL(Λ) by Proposition 3.2. Since c =
min{pdV, idV} = −1, by Theorem 3.12 we have

dimDb(mod Λ) � (c + 2)(n + 1) − 2 = (−1 + 2)(LL(Λ) + 1) − 2 = LL(Λ) − 1.

This is Theorem 1.1(1).
By Theorem 3.14, we have

dimDb
sg(mod Λ) � max{0,LL(Λ) − 2}.

This is Theorem 1.1(3).
(2) If V = S<∞ = S, then the torsion pair (TV , F(V)) = (0, mod Λ). By Propo-

sition 3.1(2), for any M ∈ mod Λ we have tV(M) = 0 and ��tV (Λ) = 0. Because 
c = min{pdV, idV} = gl.dim Λ < ∞, by Theorem 3.12 we have

dimDb(mod Λ) � (c + 2)(��tV (Λ) + 1) − 2 = (gl.dim Λ + 2)(0 + 1) − 2 = gl.dim Λ.

This is Theorem 1.1(2). In addition, since gl.dim Λ < ∞, we have dimDb
sg(mod Λ) = 0.

4. Examples

By choosing some suitable V and applying Theorems 3.12 and 3.14, we may obtain 
more precise upper bounds for dimDb(mod Λ) and dimDb

sg(mod Λ) than that in Theo-
rem 1.1. We give two examples to illustrate this. The global dimension of the algebra in 
the first example is infinite and that in the second one is finite.

Example 4.1. Consider the bound quiver algebra Λ = kQ/I, where k is an algebraically 
closed field and Q is given by
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1

α1

α2

αm+1 αm+2

2
α3 3

α4 4
α5 · · ·

αm

m

m + 1 m + 2

and I is generated by {α2
1, α1αm+1, α1αm+2, α1α2, α2α3 · · ·αm} with m � 10. Then the 

indecomposable projective Λ-modules are

1 2

1 m + 1 m + 2 2 3 3

P (1) = 3 P (2) = 4 P (3) = 4 P (m + 1) = m + 1, P (m + 2) = m + 2

...
...

...

m − 1, m, m,

and P (i + 1) = radP (i) for any 2 � i � m − 1; and the indecomposable injective 
Λ-modules are

2 1

3 2 1 1 1

I(m) =
... I(m − 1) =

... I(1) = 1, I(m + 1) = m + 1, I(m + 2) = m + 2

m, 9,

and I(i) = I(i + 1)/ soc I(i + 1) for any 2 � i � m − 2.
We have

pdS(i) =

⎧⎪⎪⎨
⎪⎪⎩
∞, if i = 1;
1, if 2 � i � m− 1;
0, if m � i � m + 2.

So S∞ = {S(1)} and S<∞ = {S(i) | 2 � i � m + 2}. We also have
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idS(i) =
{
∞, if i = 1, 2,m,m + 1,m + 2;
1, if 3 � i � m− 1.

Let V := {S(i) | 3 � i � m − 1} ⊆ S<∞. Then

a := pdS = 1, c := idS = 1 and d := min{a, c} = 1.

Let V ′ be all the others simple modules in modΛ, that is, V ′ = {S(1), S(2), S(m), S(m +
1), S(m + 2)}. By [11, Lemma 3.4(a)] and Λ = ⊕m+2

i=1 P (i), we have

��tV (Λ) = max{��tV (P (i)) | 1 � i � m + 2}.

In order to compute ��tV (P (1)), we need to find the least non-negative integer i such 
that tVF i

tV (P (1)) = 0. Since topP (1) = S(1) ∈ addV ′, we have tV(P (1)) = P (1) by 
Proposition 3.1(3). Thus

FtV (P (1)) = rad tV(P (1)) = rad(P (1)) = S(1) ⊕ S(m + 1) ⊕ S(m + 2) ⊕ T,

2

where T = 3

...

m− 1.
Since topS(1) = S(1) ∈ addV ′, we have tV(S(1)) = S(1) by Proposition 3.1(3). 

Similarly, tV(S(m + 1)) = S(m + 1), tV(S(m + 2)) = S(m + 2) and tV(T ) = T . So

tVFtV (P (1)) = tV(S(1)⊕ S(m+ 1)⊕ S(m+ 2)⊕ T ) = S(1)⊕ S(m+ 1)⊕ S(m+ 2)⊕ T,

and hence

F 2
tV (P (1)) = rad tVFtV (P (1)) = rad(S(1) ⊕ S(m + 1) ⊕ S(m + 2) ⊕ T ) = radT.

It is easy to see that radT ∈ F(V), so tV(radT ) = 0 by Proposition 3.1(1). Moreover, 
tVF

2
tV (P (1)) = 0. It follows that ��tV (P (1)) = 2. Similarly, we have

��tV (P (i)) =
{

2, if i = 2;
1, if 3 � i � m + 2.

Thus n := ��tV (Λ) = max{��tV (P (i)) | 1 � i � m + 2} = 2.
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(1) Because LL(Λ) = m − 1, we have

dimDb(mod Λ) � LL(Λ) − 1 = m− 2

by Theorem 1.1(1). In particular, from Theorem 1.1(2), we can not get an upper bound 
for dimDb(mod Λ). By Theorem 1.1(3), we have

dimDb
sg(mod Λ) � LL(Λ) − 2 = m− 3.

(2) By Theorem 3.12, we have

dimDb(mod Λ) � (d + 2)(n + 1) − 2 = 7.

By Theorem 3.14, we have

dimDb
sg(mod Λ) = 0.

Example 4.2. Consider the bound quiver algebra Λ = kQ/I, where k is an algebraically 
closed field and Q is given by

1
α1

αm+1

2
α2 3

α3 · · ·
αm−1

m

m + 1
αm+2

m + 2
αm+3

m + 3
αm+4 · · ·

α2m−1
2m− 1

and I is generated by {αiαi+1 | m + 1 � i � 2m − 2} with m � 9. Then the indecom-
posable projective Λ-modules are

1 2

m + 1 2 3 3 j

P (1) = 3 P (2) = 4 P (3) = 4 P (j) = j + 1, P (2m− 1) = 2m− 1,

...
...

...

m, m, m,

where m + 1 � j � 2m − 2 and P (i + 1) = radP (i) for any 2 � i � m − 1; and the 
indecomposable injective Λ-modules are
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1 1

2 2 1 j − 1

I(m) =
... I(m− 1) =

... I(m + 1) = m + 1, I(j) = j,

m, m− 1,

where m + 2 � j � 2m − 1 and I(i) = I(i + 1)/ soc I(i + 1) for any 1 � i � m − 1.
We have

pdS(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m− 1, if i = 1;
1, if 2 � i � m− 1;
0, if i = m;
2m− 1 − i, if m + 1 � i � 2m− 1,

and S<∞ = S. We also have

idS(i) =

⎧⎪⎪⎨
⎪⎪⎩

0, if i = 1;
1, if 2 � i � m;
i−m, if m + 1 � i � 2m− 1.

Let V := {S(i) | 2 � i � m} ⊆ S<∞. Then

a := pdV = 1, c := idV = 1 and d := min{a, c} = 1.

Let V ′ be all the others simple modules in mod Λ, that is, V ′ = {S(i) | i = 1 or m + 1 �
i � 2m − 1}. Similar to the computation in Example 4.1, we have n := ��tV (Λ) = 2.

(1) Because LL(Λ) = m, we have

dimDb(mod Λ) � LL(Λ) − 1 = m− 1

by Theorem 1.1(1). Because gl.dim Λ = m − 1, we also have

dimDb(mod Λ) � gl.dim Λ = m− 1

by Theorem 1.1(2). In addition, we have

dimDb
sg(mod Λ) � LL(Λ) − 2 = m− 2

by Theorem 1.1(3).
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(2) By Theorem 3.12, we have

dimDb(mod Λ) � (d + 2)(n + 1) − 2 = 7.

By Theorem 3.14, we have

dimDb
sg(mod Λ) = 0.

In the above two examples, the upper bounds in (2) are smaller than that in (1) and 
the difference between them may be arbitrarily large.

Acknowledgments

This research was partially supported by National Natural Science Foundation of 
China (Grant Nos. 11971225, 11571164) and a Project Funded by the Priority Academic 
Program Development of Jiangsu Higher Education Institutions. The authors would like 
to thank Dong Yang for his helpful discussions, and thank the referees for very useful 
and detailed suggestions.

References

[1] T. Aihara, R. Takahashi, Generators and dimensions of derived categories of modules, Commun. 
Algebra 43 (2015) 5003–5029.

[2] F.W. Anderson, K.R. Fuller, Rings and Categories of Mmodules, second edition, Grad. Texts in 
Math., vol. 13, Springer-Verlag, New York, 1992.

[3] M. Ballard, D. Favero, L. Katzarkov, Orlov spectra: bounds and gaps, Invent. Math. 189 (2012) 
359–430.

[4] J.A. Beachy, Cotorsion radicals and projective modules, Bull. Aust. Math. Soc. 5 (1971) 241–253.
[5] P.A. Bergh, S. Oppermann, D.A. Jorgensen, The Gorenstein defect category, Q. J. Math. 66 (2015) 

459–471.
[6] A. Bondal, M. van den Bergh, Generators and representability of functors in commutative and 

noncommutative geometry, Mosc. Math. J. 3 (2003) 1–36.
[7] X.W. Chen, Y. Ye, P. Zhang, Algebras of derived dimension zero, Commun. Algebra 36 (2008) 1–10.
[8] H. Dao, R. Takahashi, Upper bounds for dimensions of singularity categories, C. R. Math. Acad. 

Sci. Paris 353 (2015) 297–301.
[9] Y. Han, Derived dimensions of representation-finite algebras, Preprint is, available at arXiv :0909 .

0330.
[10] F. Huard, M. Lanzilotta, O. Mendoza, Finitistic dimension through infinite projective dimension, 

Bull. Lond. Math. Soc. 41 (2009) 367–376.
[11] F. Huard, M. Lanzilotta, O. Mendoza Hernández, Layer lengths, torsion theories and the finitistic 

dimension, Appl. Categ. Struct. 21 (2013) 379–392.
[12] H. Krause, Derived Categories, Resolutions, and Brown Representability, Interactions Between Ho-

motopy Theory and Algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, 
pp. 101–139.

[13] H. Krause, D. Kussin, Rouquier’s theorem on representation dimension, in: Trends in Representation 
Theory of Algebras and Related Topics, in: Contemp. Math., vol. 406, Amer. Math. Soc., Providence, 
RI, 2006, pp. 95–103.

[14] S. Oppermann, Lower Bounds for Auslander’s Representation Dimension, Dissertation Universität 
Köln, 2007.

[15] S. Oppermann, J. Št’ovíček, Generating the bounded derived category and perfect ghosts, Bull. 
Lond. Math. Soc. 44 (2012) 285–298.

http://refhub.elsevier.com/S0021-8693(20)30189-7/bib62E3F2B9F9919EAED8BE027552C9CD99s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib62E3F2B9F9919EAED8BE027552C9CD99s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibDDAFA5E1CB5EA4A4913758E84C9876D8s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibDDAFA5E1CB5EA4A4913758E84C9876D8s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib5C64AAD62468B3489818315F2D29B411s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib5C64AAD62468B3489818315F2D29B411s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib1088A10D026EAE0AC20F59F5249DB2EAs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibBF20A5089E39A70D879D4036DFE48DF6s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibBF20A5089E39A70D879D4036DFE48DF6s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib68B6C6E27CE765ADE03D7C0F3E20B7E4s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib68B6C6E27CE765ADE03D7C0F3E20B7E4s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibD309C7091A13C5926829B3B96AFA2F53s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibAE2A97412816C524686E078B1F042F46s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibAE2A97412816C524686E078B1F042F46s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibC1D9F50F86825A1A2302EC2449C17196s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibC1D9F50F86825A1A2302EC2449C17196s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibB961D71A264300574159AE1017AD937Fs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibB961D71A264300574159AE1017AD937Fs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib8463755C4D70FA5DF58B7AAC2DF2659Fs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib8463755C4D70FA5DF58B7AAC2DF2659Fs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib556D3324187FB853CEFACD8EAABE9F2Bs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib556D3324187FB853CEFACD8EAABE9F2Bs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib556D3324187FB853CEFACD8EAABE9F2Bs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib8BE108A90AB822FA47EBA5C238687349s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib8BE108A90AB822FA47EBA5C238687349s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib8BE108A90AB822FA47EBA5C238687349s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib9746DDBF849561B50833AE034F239C70s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib9746DDBF849561B50833AE034F239C70s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib75598522FCE8B7B6EF95E3DD661FE370s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib75598522FCE8B7B6EF95E3DD661FE370s1


1228 J. Zheng, Z. Huang / Journal of Algebra 556 (2020) 1211–1228
[16] D. Orlov, Remarks on generators and dimensions of triangulated categories, Mosc. Math. J. 9 (2009) 
153–159, back matter.

[17] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398 (2014) 
63–110.

[18] R. Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006) 357–367.
[19] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008) 193–256.

http://refhub.elsevier.com/S0021-8693(20)30189-7/bib558C2FCFC2FBD81009CEE06C6DBD503Ds1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib558C2FCFC2FBD81009CEE06C6DBD503Ds1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibAEFAF631D229B5ED545EB7663DC3E248s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibAEFAF631D229B5ED545EB7663DC3E248s1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bib4FBDED7DBBBB4C8D85D1915415A0F43Fs1
http://refhub.elsevier.com/S0021-8693(20)30189-7/bibC774B944CD6A11BBCED6D49F111533C5s1

	An upper bound for the dimension of bounded derived categories
	1 Introduction
	2 Preliminaries
	2.1 The dimension of a triangulated category
	2.2 Radical layer lengths and torsion pairs

	3 Main results
	3.1 An upper bound for dimDb(modΛ)
	3.2 An upper bound for dimDbsg(modΛ)

	4 Examples
	Acknowledgments
	References


