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In this paper, we prove that Λ is an (n − 1)-Auslander Artinian
algebra with gl.dimΛ = n (� 2) admitting a trivial maximal
(n − 1)-orthogonal subcategory of mod Λ if and only if it is Morita

equivalent to a finite product of F and

⎛
⎜⎜⎜⎝

F F 0 ··· 0 0
0 F F ··· 0 0
0 0 F ··· 0 0

··· ··· ···
0 0 0 ··· F F

0 0 0 ··· 0 F

⎞
⎟⎟⎟⎠

(n+1)×(n+1)

,

where F is a division algebra. In addition, we obtain a necessary
condition for an Auslander Artinian algebra admitting a non-trivial
maximal 1-orthogonal subcategory.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the notion of maximal n-orthogonal subcategories introduced by Iyama
in [Iy3] played a crucial role in developing the higher-dimensional Auslander–Reiten theory (see [Iy3]
and [Iy4]). This notion coincides with that of (n + 1)-cluster tilting subcategories introduced by Keller
and Reiten in [KR]. In general, maximal n-orthogonal subcategories rarely exist. So it would be inter-
esting to investigate when maximal n-orthogonal subcategories exist and the properties of algebras
admitting such subcategories. Several authors have worked on this topic (see [EH,GLS,HuZ,Iy3,Iy4,Iy5,
Iy6,L], and so on). As a generalization of the notion of the classical Auslander algebras, Iyama in-
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troduced the notion of n-Auslander algebras in [Iy6]. Then he proved that for an (n − 1)-Auslander
Artinian algebra Λ with global dimension n (� 2), Λ has maximal (n − 1)-orthogonal modules in
mod Λ if and only if Λ is Morita equivalent to T (n)

m (F ) for some m � 1, where F is a division algebra,
T (1)

m (F ) is an m × m upper triangular matrix algebra and T (n)
m (F ) is the endomorphism algebra of a

maximal (n − 2)-orthogonal module in mod T (n−1)
m (F ). Moreover, he gave some examples of the quiv-

ers of these algebras inductively. In [HuZ] we proved that an (n − 1)-Auslander Artinian algebra Λ

with global dimension n (� 2) admits a trivial maximal (n − 1)-orthogonal subcategory of mod Λ if
and only if any simple module S ∈ mod Λ with projective dimension n is injective. In [HuZ] we also
proved that for an almost hereditary Artinian algebra Λ with global dimension 2, if Λ admits a max-
imal 1-orthogonal subcategory C of mod Λ, then C is trivial. In this paper, we continue to study the
structure of an (n − 1)-Auslander Artinian algebra Λ admitting a trivial maximal (n − 1)-orthogonal
subcategory of mod Λ. This paper is organized as follows.

In Section 2, we give some notions and notations and collect some preliminary results about min-
imal morphisms. In Section 3, we give some homological properties of indecomposable modules (in
particular, simple modules) over higher Auslander Artinian algebras (admitting a trivial maximal or-
thogonal subcategory of mod Λ).

Let Λ be an (n − 1)-Auslander Artinian algebra with global dimension n (� 2) admitting a trivial
maximal (n − 1)-orthogonal subcategory of mod Λ. In Section 4, we first prove the following results:
(1) For any indecomposable non-projective–injective module M ∈ mod Λ with projective dimension
n − i and 0 � i � n, there exists a simple module S ∈ mod Λ with projective dimension n such that
M is isomorphic to the ith syzygy of S . (2) For any simple module S ∈ mod Λ with projective dimen-
sion n, the ith syzygy of S is simple for any 1 � i � n and all terms in a minimal projective resolution
of S are indecomposable. By using these results, we then prove that Λ is Morita equivalent to a finite
product of F and Tn+1(F )/ J 2(Tn+1(F )), where F is a division algebra, Tn+1(F ) is an (n + 1) × (n + 1)

upper triangular matrix algebra over F and J (Tn+1(F )) is the Jacobson radical of Tn+1(F ). We remark
that this algebra is T (n)

2 (F ) in Iyama’s result mentioned above.
By [Iy6], there exists an Auslander Artinian algebra with global dimension 2 admitting a non-trivial

maximal 1-orthogonal subcategory. On the other hand, by [HuZ, Corollary 3.12] we have that if Λ is
an Auslander Artinian algebra with global dimension 2 admitting a non-trivial maximal 1-orthogonal
subcategory of mod Λ, then there exists a simple module S ∈ mod Λ such that both the projec-
tive and injective dimensions of S are equal to 2. In Section 5, we further give some necessary
condition for an Auslander Artinian algebra with global dimension 2 admitting a non-trivial maxi-
mal 1-orthogonal subcategory in terms of the homological properties of simple modules. We prove
that if Λ is an Auslander Artinian algebra with global dimension 2 admitting a non-trivial maximal
1-orthogonal subcategory of mod Λ, then there exist at least two non-injective simple modules in
mod Λ with projective dimension 2. Some examples are given to illustrate this result.

2. The properties of minimal morphisms

In this section, we give some notions and notations in our terminology and collect some prelimi-
nary results about minimal morphisms for later use.

Throughout this paper, Λ is an Artinian algebra with the center R , mod Λ is the category of
finitely generated left Λ-modules and gl.dimΛ denotes the global dimension of Λ. We denote by D
the ordinary duality between mod Λ and mod Λop , that is, D(−) = HomR(−, I(R/ J (R))), where J (R)

is the Jacobson radical of R and I(R/ J (R)) is the injective envelope of R/ J (R).
Let M be in mod Λ. We use

· · · → Pi(M) → ·· · → P1(M) → P0(M) → M → 0

and

0 → M → I0(M) → I1(M) → ·· · → I i(M) → ·· ·
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to denote a minimal projective resolution and a minimal injective resolution of M , respectively. In
particular, P0(M) and I0(M) are the projective cover and the injective envelope of M , respectively.
Denote by Ω i M and Ω−i M the ith syzygy and ith cosyzygy of M , respectively.

The following easy observations are well known.

Lemma 2.1. Let M ∈ mod Λ and M ∼= M1 ⊕ M2 . Then

· · · → P1
(
M ′) ⊕ P1

(
M ′′) → P0

(
M ′) ⊕ P0

(
M ′′) → M(∼= M1 ⊕ M2) → 0

and

0 → M(∼= M1 ⊕ M2) → I0(M ′) ⊕ I0(M ′′) → I1(M ′) ⊕ I1(M ′′) → ·· ·

are a minimal projective resolution and a minimal injective resolution of M, respectively, and Ω i M ∼= Ω i M1 ⊕
Ω i M2 and Ω−i M ∼= Ω−i M1 ⊕ Ω−i M2 for any i � 1.

Lemma 2.2. Let M and S be in mod Λ with S simple. Then Exti
Λ(S, M) ∼= HomΛ(S,Ω−i M) for any i � 0.

Recall from [AuR] that a morphism f : M → N in mod Λ is said to be left minimal if an endomor-
phism g : N → N is an automorphism whenever f = g f . Dually, the notion of right minimal morphisms
is defined.

Lemma 2.3. (See [Au, Chapter II, Lemma 4.3].) Let 0 → A
g−→ B

f−→ C → 0 be a non-split exact sequence in
mod Λ.

(1) If A is indecomposable, then f : B → C is right minimal.
(2) If C is indecomposable, then g : A → B is left minimal.

By Lemma 2.3, we immediately have the following result.

Corollary 2.4. Let M ∈ mod Λ be an indecomposable non-injective module and I0(M) projective. Then

· · · → Pi(M) → ·· · → P1(M) → P0(M) → I0(M)
π−→ I0(M)/M → 0

is a minimal projective resolution of I0(M)/M, where π is the natural epimorphism.

The following properties of minimal morphisms are useful in the rest of the paper.

Lemma 2.5. Let 0 → A
g−→ B

f−→ C → 0 be a non-split exact sequence in mod Λ.

(1) If g is left minimal, then Ext1
Λ(C ′, A) �= 0 for any non-zero direct summand C ′ of C .

(2) If f is right minimal, then Ext1
Λ(C, A′) �= 0 for any non-zero direct summand A′ of A.

Proof. (1) If Ext1
Λ(C ′, A) = 0 holds true for some non-zero direct summand C ′ of C , then we have the

following commutative diagram:

0 A C ′ ⊕ A

i1

π3
C ′

i2

i3

0

0 A
g

B
f

C

π2

0
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such that π3i3 = 1C ′ = π2i2 and i2π3 = f i1. Then 1C ′ = (π2i2)(π3i3) = (π2 f )(i1i3), and hence C ′ is a
direct summand of B and (π2 f )g = 0. By [AuRS, Chapter I, Theorem 2.4], g is not left minimal, which
is a contradiction.

Dually, we get (2). �
The following lemma establishes a connection between left minimal morphisms and right minimal

morphisms.

Lemma 2.6. Let

0 → A
g−→ B

f−→ C → 0 (1)

be a non-split exact sequence in mod Λ with B projective–injective. Then the following statements are equiv-
alent.

(1) A is indecomposable and g is left minimal.
(2) C is indecomposable and f is right minimal.

Proof. (1) ⇒ (2) Since A is indecomposable, f is right minimal by Lemma 2.3. Notice that B is
projective by assumption, so the exact sequence (1) is part of a minimal projective resolution of C .
If C = C1 ⊕ C2 with C1 and C2 non-zero, then neither C1 nor C2 is projective by Lemma 2.5. So
both Ω1C1 and Ω1C2 are non-zero and A ∼= Ω1C1 ⊕ Ω1C2, which contradicts the fact that A is
indecomposable.

Similarly, we get (2) ⇒ (1). �
3. Higher Auslander algebras and maximal orthogonal subcategories

In this section, we give the definitions of higher Auslander algebras and maximal orthogonal
subcategories, which were introduced by Iyama in [Iy6] and [Iy3], respectively. Then we study the
homological behavior of indecomposable modules (in particular, simple modules) over higher Auslan-
der algebras (admitting a trivial maximal orthogonal subcategory of mod Λ).

As a generalization of the notion of classical Auslander algebras, Iyama introduced in [Iy6] the
notion of n-Auslander algebras as follows.

Definition 3.1. (See [Iy6].) For a positive integer n, Λ is called an n-Auslander algebra if gl.dimΛ � n+1
and I0(Λ), I1(Λ), . . . , In(Λ) are projective.

The notion of n-Auslander algebras is left–right symmetric by [Iy6, Theorem 1.10]. It is trivial that
n-Auslander algebras with global dimension at most n are semisimple. In particular, the notion of 1-
Auslander algebras is just that of classical Auslander algebras. In the following, we assume that n � 2
when an (n − 1)-Auslander algebra is concerned.

Denote by PI n(Λ) (resp. I Pn(Λ)) the subcategory of mod Λ consisting of indecomposable
projective modules with injective dimension n (resp. indecomposable injective modules with projec-
tive dimension n). By applying Lemma 2.6 to (n − 1)-Auslander algebras, we get the following result.

Lemma 3.2. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n. Then we have the following:

(1) For any P ∈ PI n(Λ), the minimal injective resolution of P

0 → P → I0(P ) → I1(P ) → ·· · → In(P ) → 0 (2)

is a minimal projective resolution of In(P ) and In(P ) is indecomposable.
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(2) For any module I ∈ I Pn(Λ), the minimal projective resolution of I

0 → Pn(I) → ·· · → P1(I) → P0(I) → I → 0

is a minimal injective resolution of Pn(I) and Pn(I) is indecomposable.

Proof. (1) Since Λ is an (n − 1)-Auslander algebra, by Lemma 2.1 it is easy to see that I i(P ) is
projective for any 0 � i � n − 1. So the exact sequence (2) is a projective resolution of In(P ), and then
the assertion follows from Lemma 2.6.

Dually, we get (2). �
By Lemma 3.2, we get immediately the following result.

Lemma 3.3. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n. Then Ωn gives a one–one correspon-
dence between I Pn(Λ) and PI n(Λ) with the inverse Ω−n.

For a module M ∈ mod Λ, we use pdΛ M and idΛ M to denote the projective dimension and the
injective dimension of M , respectively.

Lemma 3.4. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n and let S ∈ mod Λ be a simple module
with pdΛ S = n. Then Pn(S) is indecomposable.

Proof. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n and let S ∈ mod Λ be a simple mod-
ule with pdΛ S = n. By [Iy2, Proposition 6.3(2)], Extn

Λ(S,Λ) ∈ mod Λop is simple. By [HuZ, Lemma 2.4],
S � I0(Λ) ⊕ · · · ⊕ In−1(Λ). So Exti

Λ(S,Λ) ∼= HomΛ(S, I i(Λ)) = 0 for any 0 � i � n − 1 by Lemma 2.2.
Then from the minimal projective resolution of S , we get the exact sequence:

0 → P0(S)∗ → · · · → Pn−1(S)∗ → Pn(S)∗ → Extn
Λ(S,Λ) → 0

which is a minimal projective resolution of Extn
Λ(S,Λ) by [M, Proposition 4.2], where (−)∗ =

HomΛ(−,Λ). So Pn(S)∗ ∼= P0(Extn
Λ(S,Λ)) is indecomposable and hence Pn(S) is also indecompos-

able. �
Denote by Pn(S) and I n(S) the subcategory of mod Λ consisting of simple modules with pro-

jective dimension n and injective dimension n, respectively. Since D is a duality between simple
Λ-modules and simple Λop-modules, we get easily the following result from [Iy2, Proposition 6.3].

Lemma 3.5. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n. Then the functor D Extn
Λ(−,Λ) gives

a bijection from Pn(S) to I n(S) with the inverse Extn
Λ(−,Λ)D.

Let C be a full subcategory of mod Λ and let n be a positive integer. Recall from [AuR] that C
is said to be contravariantly finite in mod Λ if for any M ∈ mod Λ, there exists a morphism CM → M
with CM ∈ C such that HomΛ(C, CM) → HomΛ(C, M) → 0 is exact for any C ∈ C . Dually, the notion
of covariantly finite subcategories of mod Λ is defined. A full subcategory of mod Λ is said to be
functorially finite in mod Λ if it is both contravariantly finite and covariantly finite in mod Λ. We
denote by ⊥n C = {X ∈ mod Λ | Exti

Λ(X, C) = 0 for any C ∈ C and 1 � i � n}, and C ⊥n = {X ∈ mod Λ |
Exti

Λ(C, X) = 0 for any C ∈ C and 1 � i � n}.

Definition 3.6. (See [Iy3].) Let C be a functorially finite subcategory of mod Λ. For a positive inte-
ger n, C is called a maximal n-orthogonal subcategory of mod Λ if C = ⊥n C = C ⊥n .
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For a module M ∈ mod Λ, we use addΛ M to denote the subcategory of mod Λ consisting of all
modules isomorphic to direct summands of finite direct sums of copies of ΛM . From the definition
above, we get easily that both Λ and DΛop are in any maximal n-orthogonal subcategory of mod Λ.
So addΛ(Λ ⊕ DΛop) is contained in any maximal n-orthogonal subcategory of mod Λ. On the other
hand, it is easy to see that if addΛ(Λ⊕DΛop) is a maximal n-orthogonal subcategory of mod Λ, then
addΛ(Λ⊕DΛop) is the unique maximal n-orthogonal subcategory of mod Λ. In this case, we say that
Λ admits a trivial maximal n-orthogonal subcategory of mod Λ (see [HuZ]).

For a positive integer n, we proved in [HuZ, Proposition 3.2] that Λ admits no maximal
j-orthogonal subcategories of mod Λ for any j � n if idΛ Λ = n (especially, if gl.dimΛ = n). Further-
more, in [HuZ] we obtained an equivalent characterization for the existence of the trivial maximal
(n − 1)-orthogonal subcategory of mod Λ over an (n − 1)-Auslander algebra Λ with gl.dimΛ = n as
follows.

Lemma 3.7. (See [HuZ, Corollary 3.10].) Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n. Then the
following statements are equivalent.

(1) Λ admits a trivial maximal (n − 1)-orthogonal subcategory addΛ(Λ ⊕ DΛop) of mod Λ.
(2) A simple module S ∈ mod Λ is injective if pdΛ S = n.

For a positive integer n, recall from [FGR] that Λ is called n-Gorenstein if pdΛ I i(Λ) � i for any
0 � i � n − 1. By [FGR, Theorem 3.7], the notion of n-Gorenstein algebras is left–right symmetric.
Recall from [B] that Λ is called Auslander–Gorenstein if Λ is n-Gorenstein for all n and both idΛ Λ and
idΛop Λ are finite.

Lemma 3.8. Assume that idΛ Λ = idΛop Λ = n (< ∞). Then we have the following:

(1) ([IS, Proposition 1(1)]) pdΛ X = n or ∞ for any non-zero submodule X of In(Λ).
(2) ([IS, Corollary 7(2)]) If Λ is Auslander–Gorenstein and I ∈ I Pn(Λ), then I ∼= I0(S) for some simple

module S ∈ mod Λ with pdΛ S = n or ∞.

For a module M ∈ mod Λ, the grade of M , denoted by grade M , is defined as inf{n � 0 |
Extn

Λ(M,Λ) �= 0} (see [AuB]).

Lemma 3.9. (See [Iy1, Proposition 2.4].) Let Λ be an n-Gorenstein algebra. Then the subcategory {X ∈ mod Λ |
grade X � n} of mod Λ is closed under submodules and factor modules.

Lemma 3.10. (See [HuZ, Lemma 3.4].) If gl.dimΛ = n � 2 and C is a subcategory of mod Λ such that Λ ∈ C

and Ext j
Λ(C ,C ) = 0 for any 1 � j � n − 1, then grade M = n for any M ∈ C without projective direct

summands.

4. The existence of trivial maximal orthogonal subcategories

In this section, by studying the properties of the syzygies and the terms in a minimal projective
resolution of a simple module, we will give a complete classification of (n − 1)-Auslander algebras
with gl.dim Λ = n admitting a trivial maximal (n − 1)-subcategory. The main result has a strong rela-
tionship with Iyama’s classification of (n − 1)-Auslander algebras admitting n-cluster tilting modules
in [Iy6].

We begin with the following

Lemma 4.1. Let Λ be an (n − 1)-Auslander algebra with gl.dim Λ = n and let S ∈ mod Λ be a simple module.
Then we have:
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(1) If pdΛ S � n − 1, then I0(S) is projective.
(2) If pdΛ S = n, then pdΛ I0(S) = n.

Proof. For any 0 � i � n, if pdΛ S = i, then HomΛ(S, I i(Λ)) ∼= Exti
Λ(S,Λ) �= 0. It follows that I0(S)

is isomorphic to a direct summand of I i(Λ). Because Λ is an (n − 1)-Auslander algebra, (1) follows
trivially, and (2) follows from Lemma 3.8(1). �

For a module M ∈ mod Λ, we use Ł(M) to denote the length of M .

Lemma 4.2. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n admitting a trivial maximal (n − 1)-
orthogonal subcategory of mod Λ and let M ∈ mod Λ be indecomposable. If Ł(M) � 2 or M is not injective,
then the following equivalent conditions hold true.

(1) pdΛ S � n − 1 for any simple submodule S of M.
(2) I0(M) is projective.

Proof. By Lemma 3.7, a simple module S ∈ mod Λ is injective if pdΛ S = n. Because M ∈ mod Λ is
indecomposable, we have that pdΛ S � n − 1 for any simple submodule S of M and the assertion (1)
holds true. Otherwise, we have M ∼= S , which contradicts the assumption that Ł(M) � 2 or M is not
injective.

It suffices to prove (1) ⇒ (2). By Lemma 4.1(1), it is easy to get the desired conclusion. �
The following proposition plays a crucial role in the proof of the main result in this paper.

Proposition 4.3. Let Λ be an (n −1)-Auslander algebra with gl.dimΛ = n and 0 � i � n. If Λ admits a trivial
maximal (n − 1)-orthogonal subcategory of mod Λ, then for any indecomposable non-projective–injective
module M ∈ mod Λ with pdΛ M = n − i, there exists a simple module S ∈ mod Λ such that pdΛ S = n and
M ∼= Ω i S .

Proof. For the case i = 0, it suffices to prove that Ł(M) = 1. Then M is simple and it is injective by
Lemma 3.7. Thus the assertion follows.

Assume that Ł(M) � 2. By Lemma 4.2, pdΛ S � n − 1 for any simple submodule S of M and I0(M)

is projective.
If M is injective, then M ∼= I0(S) for some simple Λ-module S with pdΛ S = n by Lemma 3.8(2),

which is a contradiction. Now assume that idΛ M � 1. By Corollary 2.4,

0 → Pn(M) → ·· · → P1(M) → P0(M) → I0(M)
π−→ I0(M)/M → 0

is a minimal projective resolution of I0(M)/M and pdΛ I0(M)/M = n + 1, which contradicts the
assumption that gl.dimΛ = n. So the case for i = 0 is proved.

For the case i = n, we have that M is projective. Then M is not injective by assumption. Because
gl.dim Λ = n, idΛ M � n. On the other hand, because Λ admits a trivial maximal (n − 1)-orthogonal
subcategory of mod Λ, Ext j

Λ(DΛop,Λ) = 0 for any 1 � j � n − 1. Then it is not difficult to show
that idΛ M = n. By Lemma 3.3, there exists an indecomposable injective module T ∈ mod Λ with
pdΛ T = n such that M ∼= Ωn T . By the above argument, T is simple.

Now suppose 1 � i � n −1. Then pdΛ M = n − i �= 0. We claim that M is not injective. Otherwise, if
M is injective, then the minimal projective resolution of M splits because Ext j

Λ(DΛop,Λ) = 0 for any
1 � j � n − 1. It follows that M is projective, which is a contradiction. The claim is proved. Then by
Lemma 4.2, pdΛ S � n − 1 for any simple submodule S of M and I0(M) is projective. In the following,
we will prove the assertion by induction on i.

If i = 1, then pdΛ M = n − 1. By Lemma 2.6 and Corollary 2.4, pdΛ I0(M)/M = n. So I0(M)/M ∼= S
for some simple module S with pdΛ S = n by the above argument, and hence M ∼= Ω1 S .
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Assume that 2 � i � n − 1 and pdΛ M = n − i. By Corollary 2.4, we have a minimal projective
resolution of I0(M)/M as follows.

0 → Pn−i(M) → ·· · → P1(M) → P0(M) → I0(M)
π−→ I0(M)/M → 0.

Then pdΛ I0(M)/M = n − (i − 1) and I0(M)/M is indecomposable by Lemma 2.6. By the induction
hypothesis, I0(M)/M ∼= Ω i−1 S for some simple module S ∈ mod Λ with pdΛ S = n. It follows that
M ∼= Ω i S . �

As a consequence of Proposition 4.3, we get the following

Proposition 4.4. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n and let S ∈ mod Λ be a simple
module with pdΛ S = n. If Λ admits a trivial maximal (n − 1)-orthogonal subcategory of mod Λ, then Ω i S is
simple and Pi(S) is indecomposable for any 0 � i � n.

Proof. Let S ∈ mod Λ be a simple module with pdΛ S = n. By Lemma 3.7, S is injective. It follows
from Lemma 3.2(2) that the minimal projective resolution of S

0 → Pn(S) → ·· · → P1(S) → P0(S) → S → 0

is a minimal injective resolution of Pn(S).
We proceed by induction on i. The case for i = 0 holds true trivially, and the case for i = n follows

from Lemma 3.4 and the dual version of Proposition 4.3.
Now assume that 1 � i � n − 1 and S ′ ∈ mod Λ is a simple submodule of Ω i S . Because Λ is an

(n−1)-Auslander algebra and S is injective, P0(S) is projective–injective and indecomposable. So S ′ is
the unique simple submodule of P0(S) and hence I0(S ′) = P0(S). By Lemma 2.2, Extn−1

Λ (S ′, Pn(S)) ∼=
HomΛ(S ′,Ω1 S) �= 0, which implies that pdΛ S ′ � n − 1. Because gl.dimΛ = n, it is easy to see that
pdΛ S ′ = n − 1. Then by Proposition 4.3, there exists a simple module S ∈ mod Λ such that pdΛ S = n
and S ′ ∼= Ω1 S . By Lemma 3.7, S is injective. So idΛ S ′ = 1 by Lemma 3.2(2).

Connecting a minimal projective resolution and a minimal injective resolution of S ′ , then by
Lemma 2.6, the following exact sequence is a minimal projective resolution of I1(S ′):

0 → Pn−1
(

S ′) → ·· · → P0
(

S ′) → I0(S ′)(∼= P0(S)
) → I1(S ′) → 0

with I1(S ′) indecomposable. So pdΛ I1(S ′) = n and hence I1(S ′) is simple by Lemma 3.2(1). It follows
that S ∼= I1(S ′) and Ω1 S ∼= S ′ is simple. Thus P1(S) is indecomposable. The case for i = 1 is proved.

Now suppose 2 � i � n − 1. By Lemma 2.2, Extn−i
Λ (S ′, Pn(S)) ∼= HomΛ(S ′,Ω i S) �= 0. So

pdΛ S ′(= t) � n − i.
Consider the following commutative diagram with exact rows:

0 S ′

α

Pi−1(S)
π

M

β

0

0 Ω i S P i−1(S) Ω i−1 S 0

where M = Pi−1(S)/S ′ , α is an embedding homomorphism and β is an induced homomorphism. By
the induction hypothesis, Ω i−1 S is simple and hence Pi−1(S) is indecomposable. Then, by Lemma 2.6,
M is indecomposable and π is right minimal. It follows that pdΛ M = t + 1. Thus M ∼= Ωn−t−1 S ′′ for
some simple module S ′′ ∈ mod Λ with pdΛ S ′′ = n by Proposition 4.3. Because i � n − t − 1, M is
simple by the induction hypothesis. It is clear that β is an epimorphism and so it is an isomorphism,
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which implies that α is an isomorphism and Ω i S ∼= S ′ is simple. It follows that Pi(S) is indecompos-
able. �

The following result is an immediate consequence of Propositions 4.3 and 4.4.

Corollary 4.5. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n admitting a trivial maximal (n − 1)-
orthogonal subcategory of mod Λ. Then we have:

(1) Any indecomposable module M ∈ mod Λ is either projective–injective or simple.
(2) Any projective–injective module in mod Λ has length at most 2.

By Proposition 4.4 and Corollary 4.5, we get the following

Corollary 4.6. Let Λ be as in Corollary 4.5 and let S ∈ mod Λ be a simple module.

(1) If S is non-projective, then 0 → Ω1 S → P0(S) → S → 0 is an almost split sequence.
(2) If S is non-injective, then 0 → S → I0(S) → Ω−1 S → 0 is an almost split sequence.

Furthermore we get the following

Corollary 4.7. Let Λ be as in Corollary 4.5. If Λ is connected, then the Auslander–Reiten quiver of Λ is the
following:

P (2) P (3) · · · P (n) P (n + 1)

P (1) S(2) S(3) S(n − 1) S(n) S(n + 1)

where P (i) and S(i) are the ith projective module and simple module in mod Λ respectively for any 1 � i �
n + 1.

Proof. It is not difficult to show that S(n + 1) is the unique simple module in mod Λ such that
pdΛ S(n + 1) = n by Proposition 4.4. Then by Corollary 4.6 and Proposition 4.4 again, we get the
assertion. �

For an algebra Λ, we use J (Λ) to denote the Jacobson radical of Λ. Now we are in a position to
state the main result as follows.

Theorem 4.8. Λ is an (n − 1)-Auslander algebra with gl.dimΛ = n admitting a trivial maximal (n − 1)-
orthogonal subcategory of mod Λ if and only if it is Morita equivalent to a finite product of F and

Tn+1(F )/ J 2(Tn+1(F )) =

⎛
⎜⎜⎝

F F 0 ··· 0 0
0 F F ··· 0 0
0 0 F ··· 0 0

··· ··· ···
0 0 0 ··· F F
0 0 0 ··· 0 F

⎞
⎟⎟⎠

(n+1)×(n+1)

, where F is a division algebra and Tn+1(F ) is an

(n + 1) × (n + 1) upper triangular matrix algebra over F .

Proof. It is straightforward to verify the sufficiency. In the following, we prove the necessity.
First, all End(Λ P (1)),End(Λ P (2)), . . . ,End(Λ P (n + 1)) are division algebras since the Auslander–

Reiten quiver of Λ does not contain oriented cycles by Corollary 4.7. Moreover, they are mutually
isomorphic since they are connected by arrows with trivial valuation (1,1). Thus we get a division al-
gebra F := End(Λ P (1)) ∼= End(Λ P (2)) ∼= · · · ∼= End(Λ P (n+1)). Next, observe that HomΛ(P (i), P (i +1))
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is one-dimensional as left and right F -vector spaces, and that HomΛ(P (i), P ( j)) = 0 if j �= i, i + 1 by
Corollary 4.7. Finally, since J 2(Λ) = 0 by Corollary 4.5, we get that Λ has the desired form. �

The algebra in Theorem 4.8 is T (n)
2 (F ) in Iyama’s terminology (see [Iy6, Theorem 1.18]).

Recall from [AuRS] that Λ is called a Nakayama algebra if every indecomposable projective module
and every indecomposable injective module in mod Λ have a unique composition series.

Corollary 4.9. Let Λ be an (n − 1)-Auslander algebra with gl.dimΛ = n admitting a trivial maximal (n − 1)-
orthogonal subcategory of mod Λ. Then we have:

(1) Λ is a Nakayama algebra.
(2) pdΛ M + idΛ M = n for any indecomposable non-projective–injective module M ∈ mod Λ.
(3) pdΛ M � n − 1 or idΛ M � n − 1 for any indecomposable module M ∈ mod Λ.

Proof. It is straightforward to verify (1) by Theorem 4.8.
(2) By Corollary 4.5(1), any indecomposable non-projective–injective module in mod Λ is simple.

Then it is not difficult to get the assertion by Corollary 4.7 or Theorem 4.8.
(3) Follows from (2) immediately. �
The following example illustrates that there exists a basic and connected (n − 1)-Auslander alge-

bra Λ with gl.dimΛ = n, which is a Nakayama algebra, but admits no maximal (n − 1)-orthogonal
subcategories of mod Λ.

Example 4.10. Let Λ be a finite-dimensional algebra over an algebraically closed field given by the
quiver:

1 2
β1

3
β2 · · ·β3

2n
β2n−1

2n + 1
β2n

modulo the ideal generated by {βiβi+1 | 1 � i � 2n − 1 but i �= n}. Then Λ is a basic and connected
(n − 1)-Auslander algebra with gl.dimΛ = n. By [ASS, Chapter V, Theorem 3.2], Λ is a Nakayama alge-
bra. We use P (i), I(i) and S(i) to denote the projective, injective and simple modules corresponding
to the vertex i for any 1 � i � 2n + 1. Because P (n + 2) = I(n) is not simple, it follows from [ASS,
Chapter IV, Proposition 3.11] that 0 → P (n + 1) → S(n + 1) ⊕ P (n + 2) → I(n + 1) → 0 is an almost
split sequence. So Ext1

Λ(I(n +1), P (n +1)) �= 0 and hence there does not exist a maximal j-orthogonal
subcategory of mod Λ for any j � 1.

Recall from [HRS] that Λ is called almost hereditary if the following conditions are satisfied:
(1) gl.dim Λ � 2; and (2) if X ∈ mod Λ is indecomposable, then either pdΛ X � 1 or idΛ X � 1. Recall
from [HRi] that Λ is called tilted if Λ is of the form Λ = End(TΓ ), where TΓ is a tilting module over
a hereditary Artinian algebra Γ .

Corollary 4.11. Let Λ be an Auslander algebra with gl.dimΛ = 2. If Λ admits a trivial maximal 1-orthogonal
subcategory of mod Λ, then Λ is a tilted algebra of finite representation type.

Proof. By Corollary 4.9, Λ is an almost hereditary algebra of finite representation type. So Λ is tilted
by [HRS, Chapter III, Corollary 3.6]. �
Remark 4.12. (1) Let Λ be an Auslander algebra (of finite representation type) with gl.dimΛ = 2.
If Λ admits a non-trivial maximal 1-orthogonal subcategory of mod Λ (note: Iyama in [Iy6] con-
structed an example to illustrate that this may occur), then Λ is not almost hereditary because any
maximal 1-orthogonal subcategory (if it exists) for an almost hereditary algebra is trivial by [HuZ,
Theorem 3.15]. So Λ is not tilted.
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(2) In the statement of Corollary 4.11, the conditions “Λ is an Auslander algebra” and “Λ is a tilted
algebra of finite representation type” cannot be exchanged. For example, let Λ be a finite-dimensional
algebra given by the quiver:

1 2
α1

3
α2

4
α3

5
α4

modulo the ideal generated by {α1α2α3α4}. Then Λ is a tilted algebra of finite representation type
(cf. [ASS, p. 323]), and Λ admits a trivial maximal 1-orthogonal subcategory addΛ

⊕5
i=1 P (i) ⊕ I(3) ⊕

I(4) ⊕ I(5) of mod Λ. However, Λ is not an Auslander algebra because pdΛ I1(Λ) = 2.

5. Non-trivial maximal 1-orthogonal subcategories

In this section, based on [HuZ, Corollary 3.12], we will further give some necessary condition for
Auslander algebras with global dimension 2 admitting a non-trivial maximal 1-orthogonal subcategory
in terms of the homological properties of simple modules.

Lemma 5.1. Let Λ be an Auslander algebra with gl.dimΛ = 2 and let S ∈ mod Λ be a simple module with
idΛ S = 2. Then I2(S) is indecomposable and I0(S) � I1(S).

Proof. By Lemma 3.5, there exists a simple module S ′ ∈ mod Λ such that pdΛ S ′ = 2 and
D Ext2

Λ(S ′,Λ) = S . From the minimal projective resolution of S ′ , we get an exact sequence:

0 → P0
(

S ′)∗ → P1
(

S ′)∗ → P2
(

S ′)∗ → Ext2
Λ

(
S ′,Λ

) → 0,

which is a minimal projective resolution of Ext2
Λ(S ′,Λ) by [M, Proposition 4.2]. Then applying the

functor D, we get a minimal injective resolution of S = D Ext2
Λ(S ′,Λ):

0 → S → DP2
(

S ′)∗ → DP1
(

S ′)∗ → DP0
(

S ′)∗ → 0.

It follows that I2(S) ∼= DP0(S ′)∗ , I1(S) ∼= DP1(S ′)∗ and I0(S) ∼= DP2(S ′)∗ . On the other hand, from the
minimal projective resolution of S ′:

0 → P2
(

S ′) → P1
(

S ′) → P0
(

S ′) → S ′ → 0,

we know that P0(S ′) is indecomposable and P2(S ′) � P1(S ′). So the assertion follows. �
Proposition 5.2. Let Λ be an Auslander algebra with gl.dimΛ = 2. If Λ admits a non-trivial maximal
1-orthogonal subcategory of mod Λ, then we have:

(1) There exists a simple module in mod Λ with both projective and injective dimensions 2.
(2) There exist at least two non-injective simple modules in mod Λ with projective dimension 2.

Proof. (1) It follows from [HuZ, Corollary 3.12].
(2) By (1), there exists a non-injective simple module in mod Λ with projective dimension 2. If the

non-injective simple module in mod Λ with projective dimension 2 is unique (say S), then idΛ S = 2
by (1). Since I0(S) and I2(S) are indecomposable by Lemma 5.1, grade I0(S) = grade I2(S) = 2 by
Lemma 3.10. Put K = Coker(S ↪→ I0(S)). Then grade K = 2 by Lemma 3.9 and so grade I1(S) = 2. We
claim that I0(S) is isomorphic to a direct summand of I1(S). Otherwise, since S is the unique non-
injective simple module with projective dimension 2, any non-zero indecomposable direct summand
of I1(S) is simple by Lemma 3.8(2). So I1(S) is semisimple and hence K is injective, which contradicts
the fact that idΛ S = 2. The claim is proved.
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Notice that I2(S) is indecomposable and pdΛ I2(S) = 2, so I2(S) ∼= I0(S) or I2(S) ∼= S ′ for some
simple module S ′ ∈ mod Λ such that S � S ′ and pdΛ S ′ = 2. In the latter case, we have that Ł(I0(S)) =
Ł(I1(S)). Since I0(S) is isomorphic to a direct summand of I1(S) by the above argument, I0(S) ∼=
I1(S), which is a contradiction by Lemma 5.1.

Because Λ is an Auslander algebra and pdΛop DS = 2, it follows from Lemma 3.10 that
grade DS = 2. Then Ext1

Λ(I, S) ∼= Ext1
Λop (DS,DI) = 0 for any injective module I ∈ mod Λ. Moreover,

S ↪→ I0(S) is left minimal, thus K has no injective direct summands by Lemma 2.5 and therefore
K is indecomposable by Lemmas 5.1 and 2.1. It follows from Lemma 2.3 that I1(S) → I2(S) is right
minimal. So, if I2(S) ∼= I0(S), then I1(S) has no simple direct summand S ′′ such that S ′′ � S and
pdΛ S ′′ = 2. It yields that I1(S) ∼= [I0(S)]t for some t � 1 and 2Ł(I0(S)) = tŁ(I0(S)) + 1. It implies that
t = 1 and I0(S) ∼= I1(S), which is a contradiction by Lemma 5.1. The proof is finished. �

We end this section with some examples to illustrate Proposition 5.2.
The following example shows that there exists an Auslander algebra Λ with gl.dimΛ = 2 satisfying

the condition (1) in Proposition 5.2, but not satisfying the condition (2) in this proposition.

Example 5.3. When n = 2, the algebra Λ in Example 4.10 satisfies the conditions:

(1) Λ is an Auslander algebra with gl.dimΛ = 2.
(2) All simple modules in mod Λ with projective dimension 2 are S(3) and S(5).
(3) idΛ S(3) = 2 and S(5) is injective.

Then by Lemma 3.7 and Proposition 5.2(2), there does not exist any maximal 1-orthogonal subcat-
egory of mod Λ.

The following example shows that there exists an Auslander algebra Λ with gl.dimΛ = 2 satisfying
the condition (2) in Proposition 5.2, but not satisfying the condition (1) in this proposition.

Example 5.4. Let Λ be a finite-dimensional algebra given by the quiver:

6
α

γ

4

β

5
δ

3
λ

μ

1

2

modulo the ideal generated by {βα − δγ ,μδ,λβ}. Then we have

(1) Λ is an Auslander algebra and an almost hereditary algebra with gl.dim Λ = 2.
(2) All simple modules in mod Λ with projective dimension 2 are S(4), S(5) and S(6).
(3) idΛ S(4) = idΛ S(5) = 1 and S(6) is injective.

Then by Lemma 3.7 and Proposition 5.2(1), there does not exist any maximal 1-orthogonal subcat-
egory of mod Λ.

By Examples 5.3 and 5.4, we have that the conditions (1) and (2) in Proposition 5.2 are indepen-
dent.
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