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Let Γ be a weak excellent extension of an Artinian algebra Λ. We
prove that if Λ is of finite representation type (resp. CM-finite,
CM-free), then so is Γ ; furthermore, if Γ is an excellent extension
of Λ, then the converse also holds true. We also study when the
representation dimension of an Artinian algebra is invariant under
excellent extensions.
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1. Introduction

In studying the algebraic structure of group rings, Passman introduced in [26] the notion of the
excellent extensions of rings, which was named in [8]. Such extensions of rings are vital since they
include two important classes of extensions of rings, that is, finite matrix rings and skew group rings
Λ ∗ G where the finite group G satisfies the condition |G|−1 ∈ Λ (see Example 2.2 below for the
details). Many authors have studied the invariant properties of rings under excellent extensions [8,15,
23,25,26,29,33]. It has been known that many important homological properties, such as the (weak)
global dimension of rings, the projectivity, injectivity and flatness of modules and so on, are invariant
under excellent extensions [23,29].
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Recall that an Artinian algebra Λ is said to be of finite representation type if there exist only finitely
many isomorphism classes of finitely generated indecomposable Λ-modules. It is well known that
determining the representation type of algebras is fundamental and important in representation the-
ory of Artinian algebras. Auslander proved in [2] that there exists a bijective correspondence between
the Morita equivalent classes of Artinian algebras of finite representation type and that of Artinian
algebras with global dimension at most 2 and with dominant dimension at least 2. Motivated by
this correspondence, Auslander introduced the notion of the representation dimension of Artinian
algebras, and proved that an Artinian algebra is of finite representation type if and only if its repre-
sentation dimension is at most 2. In this sense, the representation dimension of an Artinian algebra is
regarded as a trial to give a reasonable way of measuring homologically how far an Artinian algebra
is from being of finite representation type. Recently, the interest in the representation dimension was
revived, and many interesting connections were established with different problems in representation
theory, as well as with other areas (see [1,14,16,18,19,28,30–32] for the details). In particular, Iyama
proved in [19] that the representation dimension of any Artinian algebra is finite, and Rouquier proved
in [28] that the representation dimension of the exterior algebra

∧n K is n + 1. However, in general,
it is quite hard to compute the representation dimension or even to control it. One possible method
is to study the relationship between the representation dimensions of “nicely” related algebras. For
instance, Guo proved in [16] that the representation dimension of an Artinian algebra is invariant
under stable equivalences.

As an analogy of Artinian algebras of finite representation type, recall that an Artinian algebra Λ

is called CM-finite if there exist only finitely many isomorphism classes of finitely generated indecom-
posable Gorenstein projective Λ-modules. This notion was introduced by Beligiannis in [6]. Since then
CM-finite Artinian algebras have attracted considerable attentions [6,7,9,21,22].

In this paper, we will study the invariance of the representation type, the CM-finite type and the
representation dimension of Artinian algebras under excellent extensions. This paper is organized as
follows.

In Section 2, we give some notations in our terminology and some preliminary results which are
often used in this paper; in particular, we introduce the notion of weak excellent extensions of rings
as a generalization of that of the excellent extensions of rings.

Recall from [10] that an Artinian algebra Λ is called CM-free if any finitely generated Gorenstein
projective Λ-module is projective. Note that CM-free algebras are an extreme case of CM-finite alge-
bras. In Section 3, we prove the following

Theorem 1.1. Let Γ be a weak excellent extension of an Artinian algebra Λ. If Λ is of finite representation type
(resp. CM-finite, CM-free), then so is Γ ; furthermore, if Γ is an excellent extension of Λ, then the converse also
holds true.

Let Γ be an excellent extension of an Artinian algebra Λ. By the above theorem, we have that
the representation dimensions of Λ and Γ are identical provided either of them is at most two. We
conjecture that these two representation dimensions are always identical. In Section 4, we prove that
the answer to this conjecture is positive when Λ is commutative; that is, we have the following

Theorem 1.2. Let R be a commutative Artinian ring and Γ an R-algebra. If Γ is an excellent extension of R,
then the representation dimensions of R and Γ are identical.

2. Preliminaries

Throughout this paper, all rings are associative rings with identity and all modules are finitely
generated right modules unless stated otherwise.

We first introduce the notion of weak excellent extensions of rings as follows.

Definition 2.1. Let Λ be a subring of a ring Γ such that Λ and Γ have the same identity. Then Γ is
called a ring extension of Λ, and denoted by Γ � Λ. A ring extension Γ �Λ is called a weak excellent
extension if:
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(1) Γ is right Λ-projective [26, p. 273], that is, if NΓ is a submodule of MΓ and if NΛ is a direct
summand of MΛ , denoted by NΛ | MΛ , then NΓ | MΓ .

(2) Γ is a finite extension of Λ, that is, there exist γ1, . . . , γn ∈ Γ such that Γ = ∑n
i=1 γiΛ.

(3) ΓΛ is flat and ΛΓ is projective.

Recall from [26,8] that a ring extension Γ � Λ is called an excellent extension if it is weak excellent
and ΓΛ and ΛΓ are free with a common basis {γ1, . . . , γn}, such that Λγi = γiΛ for any 1 � i � n.
In addition, compare the definition of the weak excellent extension with that of the almost excellent
extension in [29].

Example 2.2. (See [26,8].)

(1) For a ring Λ, Mn(Λ) (the matrix ring of Λ of degree n) is an excellent extension of Λ.
(2) Let Λ be a ring and G a finite group. If |G|−1 ∈ Λ, then the skew group ring Λ ∗ G is an excellent

extension of Λ.
(3) Let A be a finite-dimensional algebra over a field K , and let F be a finite separable field extension

of K . Then A ⊗K F is an excellent extension of A.
(4) Let K be a field, and let G be a group and H a normal subgroup of G . If [G : H] is finite and is

not zero in K , then K G is an excellent extension of K H .
(5) Let K be a field of characteristic p, and let G be a finite group and H a normal subgroup of G . If

H contains a Sylow p-subgroup of G , then K G is an excellent extension of K H .
(6) Let K be a field and G a finite group. If G acts on K (as field automorphisms) with kernel H ,

then the skew group ring K ∗ G is an excellent extension of the group ring K H , and the center
Z(K H) of K H is an excellent extension of the center Z(K ∗ G) of K ∗ G .

Recall that a Hopf algebra (H,m,μ,�,ε, S) is said to measure a finite-dimensional K -algebra A
over a field K if there exists a K -linear map H ⊗ A → A given by h ⊗ a → h · a such that h · 1 =
ε(h)1 and h · (ab) = ∑

(h1 · a)(h2 · b) for any h ∈ H and a,b ∈ A. A map σ ∈ HomK (H ⊗ H, A) is
said to be convolution invertible if there exists a map δ ∈ HomK (H ⊗ H, A) such that (σ ∗ δ)(h ⊗ g) =∑

σ(h1 ⊗ g1)δ(h2 ⊗ g2) = ε(h)ε(g)1A = ∑
δ(h1 ⊗ g1)σ (h2 ⊗ g2) = (δ ∗ σ)(h ⊗ g) for any h, g ∈ H .

Assume that H measures A and σ is a convolution invertible map in HomK (H ⊗ H, A). The crossed
product A #σ H of A with H is the set A ⊗ H as a vector space with multiplication (a # h)(b # k) =∑

(a(h1 ·b))σ (h2,k1)#h3k2 for any a,b ∈ A and h,k ∈ H . Here write a #h for the tensor product a ⊗h.
By [24, Lemma 7.1.2], we have that A #σ H is an associative algebra with identity element 1 # 1 if and
only if the following conditions are satisfied: (1) A is a twisted H-module algebra with action ·, that
is, 1 · a = a and h · (k · a) = ∑

σ(h1,k1)(h2k2 · a)σ−1(h3,k3) for any h,k ∈ H and a ∈ A, and (2) σ is a
cocycle, that is, σ(h,1) = σ(1,h) = ε(h)1 and

∑[h1 · σ(k1,m1)]σ(h1,k2m2) = ∑
σ(h1,k1)σ (h2k2,m)

for any h,k,m ∈ H .
By Definition 2.1, we have that an excellent extension is a weak excellent extension, but the con-

verse does not hold true in general. For example, if H is a finite-dimensional semisimple Hopf algebra
over a field K and A is a twisted H-module algebra, then for any cocycle σ ∈ HomK (H ⊗ H, A), the
crossed product algebra A #σ H is a weak excellent extension of A, but not an excellent extension
of A in general [11].

Lemma 2.3. (See [29, Lemma 1.1].) Let Γ � Λ be a ring extension such that Γ is right Λ-projective. Then
MΓ | (M ⊗Λ Γ )Γ for any M ∈ mod Γ .

Let Λ be a ring and mod Λ the subcategory of finitely generated right Λ-modules. We denote by
gl.dim Λ the global dimension of Λ. For a module M ∈ mod Λ, we denote by pd MΛ the projective
dimension of M .

Lemma 2.4. (See [29, Theorem 1.4], [23, Theorem 3].) Let Γ � Λ be an excellent extension and M ∈ mod Γ .
Then we have:
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(1) pd MΓ = pd MΛ = pd(M ⊗Λ Γ )Γ .
(2) gl.dim Γ = gl.dimΛ.

Let Λ be a left and right Noetherian ring, and let M ∈ mod Λ and

P1
f

P0 M 0

be a projective presentation of M in modΛ. Then Coker f ∗ is called the transpose of M [3], and
is denoted by Tr M , where (−)∗ = HomΛ(−,Λ). It is well known that the transpose of M depends
on the choice of the projective resolution of M , but it is unique up to projective equivalence. Re-
call from [3] that M is said to have Gorenstein dimension zero if M is reflexive and Exti

Λ(MΛ,Λ) =
0 = Exti

Λ(M∗,Λ) for any i � 1 (equivalently, Exti
Λ(MΛ,Λ) = 0 = Exti

Λ(Tr MΛ,Λ) for any i � 1). Fol-
lowing the terminology of Enochs and Jenda, a module having Gorenstein dimension zero is called
Gorenstein projective [12]. The Gorenstein projective dimension (or Gorenstein dimension) of M , denoted
by Gpd MΛ , is defined as inf{n | there exists an exact sequence 0 → Gn → ·· · → G1 → G0 → M → 0
in modΛ with Gi Gorenstein projective for any 0 � i � n} (see [3] and [13]). Also recall that the fini-
tistic dimension of Λ, denoted by fin.dimΛ, is defined as sup{pd MΛ | M ∈ mod Λ and pd MΛ < ∞}.

The following result was proved in [32, Lemma 4.4] for the case of Artinian algebras. The proof
there remains valid in our setting.

Lemma 2.5. For a left and right Noetherian ring Λ, fin.dimΛ = sup{Gpd MΛ | M ∈ mod Λ and
Gpd MΛ < ∞}.

Let M, N be in modΛ. Recall that a homomorphism f : M → N in mod Λ is called right minimal
if every h ∈ End(MΛ) such that f h = f is an automorphism. Let C be a subcategory of mod Λ and
M ∈ mod Λ. A homomorphism f : C → M in mod Λ is called a right C-approximation of M if C ∈ C

and the sequence HomΛ(−, C)
(−, f )

HomΛ(−, M) 0 is exact in C . We say that an exact
sequence:

0 Cn
fn

Cn−1
fn−1 · · · C0

f0
X 0

in modΛ is an n-C-resolution of M if Ci ∈ C for any 0 � i � n, and the sequence:

0 HomΛ(−, Cn)
(−, fn)

HomΛ(−, Cn−1)
(−, fn−1) · · ·

HomΛ(−, C0)
(−, f0)

HomΛ(−, X) 0

is exact in C [4]. We denote by add MΛ the full subcategory of modΛ consisting of all modules
isomorphic to direct summands of finite direct sums of copies of M , and denote by Gen MΛ the full
subcategory of mod Λ consisting of all modules X such that there exists an epimorphism M0 → X
with M0 ∈ add MΛ .

Lemma 2.6. (See [1, Lemma 1.4].) Let Λ be an Artinian algebra and M ∈ mod Λ. If X ∈ Gen MΛ , then there
exists an epimorphism f : M0 → X in mod Λ, which is a minimal right add MΛ-approximation.

Let Λ be an Artinian algebra. Recall that a module M ∈ mod Λ is called a generator–cogenerator for
mod Λ if every indecomposable projective module and also every indecomposable injective module
in modΛ is isomorphic to a direct summand of M .
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Lemma 2.7. (See [14, Lemma 1.1].) Let Λ be an Artinian algebra and M a generator–cogenerator for mod Λ.
Then for any n � 3, the following statements are equivalent.

(1) Any indecomposable module X ∈ mod Λ has an (n − 2)-add MΛ-resolution.
(2) gl.dim End(MΛ) � n.

By a similar argument to that of [13, Lemma 3.2.4] (where Γ is assumed to be commutative), we
get the following

Lemma 2.8. Let R be a commutative Noetherian ring, and let Γ be a flat R-algebra and M, N be R-modules
with M finitely generated. Then we have

HomR(M, N) ⊗R Γ ∼= HomΓ (M ⊗R Γ, N ⊗R Γ ).

3. CM-finite and CM-free algebras

In this section, all rings are left and right Noetherian rings unless stated otherwise. We begin with
the following easy observation.

Lemma 3.1. Let Γ � Λ be a ring extension. Then we have:

(1) For any M ∈ mod Λ, Tr(M ⊗Λ Γ )Γ and Γ ⊗Λ Tr MΛ are projectively equivalent, denoted by
Tr(M ⊗Λ Γ )Γ ≈ Γ ⊗Λ Tr MΛ .

(2) If Γ is a finitely generated projective right Λ-module and M ∈ mod Γ , then Tr MΛ ≈
HomΛ(Γ ΓΛ,ΛΛ) ⊗Γ Tr MΓ .

Proposition 3.2. Let Γ � Λ be a ring extension such that ΓΛ and ΛΓ are flat. Then Gpd(M ⊗Λ Γ )Γ �
Gpd MΛ for any M ∈ mod Λ.

Proof. Without loss of generality, assume that Gpd MΛ < ∞. If MΛ is Gorenstein projective, then
there exists an exact sequence:

0 K
f

P
g

M 0 (1)

in mod Λ with P projective and K Gorenstein projective. By applying HomΛ(−,Λ) to (1), we get the
following exact sequence:

0 HomΛ(M,Λ)
(g,Λ)

HomΛ(P ,Λ)
( f ,Λ)

HomΛ(K ,Λ) 0. (2)

On the other hand, the flatness of ΛΓ induces the following sequence:

0 K ⊗Λ Γ
f ⊗1Γ

P ⊗Λ Γ
g⊗1Γ

M ⊗Λ Γ 0

in modΓ . Because ΓΛ is flat, for any X ∈ mod Λ we have

Γ ⊗Λ HomΛ(X,Λ) ∼= HomΛ(X,Γ )
(
by [13, Theorem 3.2.14]

)

∼= HomΓ (X ⊗Λ Γ,Γ ) (by the adjoint isomorphism theorem).
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Then by applying HomΓ (−,Γ ) to (2), we get the following commutative diagram with exact arrows:

0 Γ ⊗Λ M∗

∼=

1Γ ⊗g∗
Γ ⊗Λ P∗

∼=

1Γ ⊗ f ∗
Γ ⊗Λ K ∗

∼=

0

0 (M ⊗Λ Γ )†
(g⊗1Γ )†

(P ⊗Λ Γ )†
( f ⊗1Γ )†

(K ⊗Λ Γ )† Ext1
Γ (M ⊗Λ Γ,Γ ) 0

where (−)∗ and (−)† stand for HomΛ(−,Λ) and HomΓ (−,Γ ) respectively. So Ext1
Γ (M ⊗Λ Γ,Γ ) = 0.

Similarly, we have Ext1
Γ (K ⊗Λ Γ,Γ ) = 0. So Ext2

Γ (M ⊗Λ Γ,Γ ) ∼= Ext1
Γ (K ⊗Λ Γ,Γ ) = 0. Continuing this

process, we get that Exti
Γ (M ⊗Λ Γ,Γ ) = 0 for any i � 1.

Similarly, we get that Exti
Γ (Γ ⊗Λ Tr MΛ,Γ ) = 0 for any i � 1. Then Exti

Γ (Tr(M ⊗Λ Γ )Γ ,Γ ) ∼=
Exti

Γ (Γ ⊗Λ Tr MΛ,Γ ) = 0 for any i � 1 by Lemma 3.1(1). So (M ⊗Λ Γ )Γ is Gorenstein projective.
If Gpd MΛ = n � 1, then there exists an exact sequence:

0 → Gn → Gn−1 → ·· · → G0 → M → 0

in modΛ with Gi Gorenstein projective for any 0 � i � n. Since ΛΓ is flat, we get the following exact
sequence:

0 → Gn ⊗Λ Γ → Gn−1 ⊗Λ Γ → ·· · → M ⊗Λ Γ → 0

in modΓ . By the above argument, (Gi ⊗Λ Γ )Γ is Gorenstein projective for any 0 � i � n. So
Gpd(M ⊗Λ Γ )Γ � n. �

Let α : Λ → Γ be a homomorphism of rings. We recall the following facts.

(1) A right (resp. left) Γ -module H has a right (resp. left) Λ-module structure via xλ = xα(λ) (resp.
λx = α(λ)x) for any x ∈ H and λ ∈ Λ.

(2) Given a (Γ,Λ)-bimodule Γ MΛ (it can be viewed as a (Λ,Λ)-bimodule by (1)) and a right
Λ-module NΛ , HomΛ(Γ MΛ, NΛ) has a right Γ -module structure via f γ (x) = f (γ x) for any
f ∈ HomΛ(Γ MΛ, NΛ), γ ∈ Γ and x ∈ M , which induces a right Λ-module structure via f λ(x) =
f α(λ)(x) = f (α(λ)x) for any λ ∈ Λ. This right Λ-module structure can be induced equivalently
by HomΛ(ΛMΛ, NΛ) via f λ(x) = f (λx), because f (α(λ)x) = f (λx) by (1).

Proposition 3.3. Let Γ � Λ be a weak excellent extension. Then Gpd MΛ = Gpd MΓ for any M ∈ mod Γ .

Proof. Let Γ � Λ be a weak excellent extension. By Lemma 2.3, we have MΓ | (M ⊗Λ Γ )Γ . So
Gpd MΓ � Gpd(M ⊗Λ Γ )Γ � Gpd MΛ by Proposition 3.2. It remains to prove Gpd MΛ � Gpd MΓ .

Without loss of generality, assume that Gpd MΓ < ∞. If MΓ is Gorenstein projective, then
Exti

Γ (MΓ ,Γ ) = 0 = Exti
Γ (Tr MΓ ,Γ ) for any i � 1. Because Λ is a left and right Noetherian ring,

a finitely generated flat right Λ-module is projective. So both ΓΛ and ΛΓ are projective by the defi-
nition of weak excellent extensions.

We claim that HomΛ(Γ ΓΛ,ΛΛ)Γ is projective. Let f : MΓ → HomΛ(Γ ΓΛ,ΛΛ)Γ be an epimor-
phism in modΓ . Then f is also an epimorphism in mod Λ. Note that the right Λ-structure of
HomΛ(Γ ΓΛ,ΛΛ) can be induced equivalently by HomΛ(ΛΓΛ,ΛΛ) by the argument before this
proposition. So HomΛ(Γ ΓΛ,ΛΛ)Λ is projective and f is split in modΛ, and hence (Ker f )Λ | MΛ .
Thus (Ker f )Γ | MΓ by the definition of weak excellent extensions, which implies that
HomΛ(Γ ΓΛ,ΛΛ)Γ is projective. The claim is proved. Thus HomΛ(Γ ΓΛ,ΛΛ) ⊗Γ Exti

Γ (MΓ ,Γ ) ∼=
Exti

Γ (MΓ ,HomΛ(Γ ΓΛ,ΛΛ)) = 0 for any i � 1 by [13, Theorem 3.2.15]. Then for any i � 1 we have
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Exti
Λ(MΛ,Λ) ∼= Exti

Λ(M ⊗Γ Γ,Λ)

∼= Exti
Γ

(
MΓ ,HomΛ(Γ ΓΛ,ΛΛ)

) (
by [27, Corollary 10.65]

)

= 0,

and

Exti
Λ(Tr MΛ,Λ) ∼= Exti

Λ

(
HomΛ(Γ ΓΛ,ΛΛ) ⊗Γ Tr MΓ ,Λ

) (
by Lemma 3.1(2)

)

∼= Exti
Γ

(
Tr MΓ ,HomΛ

(
HomΛ(Γ ΓΛ,ΛΛ),Λ

)) (
by [27, Corollary 10.65]

)

∼= Exti
Γ (Tr MΓ ,Γ ) = 0.

It implies that MΛ is Gorenstein projective.
If Gpd MΓ = m (� 1), then there exists an exact sequence:

0 → Vm → Vm−1 → ·· · → V 0 → M → 0

in modΓ with V iΓ Gorenstein projective for 0 � i � m, which is also exact in modΛ. By the above
argument, V iΛ is Gorenstein projective, so we have that Gpd MΛ � m. The proof is finished. �
Corollary 3.4. Let Γ � Λ be an excellent extension. Then Gpd(M ⊗Λ Γ )Γ = Gpd MΛ for any M ∈ mod Λ.

Proof. By Proposition 3.2, it suffices to prove Gpd MΛ � Gpd(M ⊗Λ Γ )Γ . Because Γ � Λ is an
excellent extension, MΛ | (M ⊗Λ Γ )Λ . So Gpd MΛ � Gpd(M ⊗Λ Γ )Λ = Gpd(M ⊗Λ Γ )Γ by Proposi-
tion 3.3. �

By the definition of weak excellent extensions, it is easy to prove the following

Lemma 3.5. Let Γ � Λ be a weak excellent extension. If Λ is an Artinian algebra, then so is Γ .

Recall that a ring is called Gorenstein if its left and right self-injective dimensions are finite.

Proposition 3.6.

(1) If Γ � Λ is a weak excellent extension, then fin.dim Γ � fin.dim Λ. The equality holds true if Γ � Λ is
an excellent extension.

(2) If Γ � Λ is a weak excellent extension, then gl.dimΓ � gl.dim Λ.
(3) Let Γ be a weak excellent extension of an Artinian algebra Λ. If Λ is Gorenstein, then so is Γ . Furthermore,

if Γ �Λ is an excellent extension, then Λ is Gorenstein if and only if so is Γ .

Proof. (1) According to Lemma 2.5, the first assertion follows from Proposition 3.3, and the second
assertion follows from the first one and Corollary 3.4.

(2) Let M ∈ mod Γ . Then it is easy to get that pd(M ⊗Λ Γ )Γ � pd MΛ . Because MΓ | (M ⊗Λ Γ ) by
Lemma 2.3, pd MΓ � pd MΛ . Then the assertion follows.

(3) Let Γ be a weak excellent extension of an Artinian algebra Λ. Then Γ is also an Artinian
algebra by Lemma 3.5. By [17, Theorem], we have that an Artinian algebra is Gorenstein if and only
if each of its finitely generated right modules has finite Gorenstein projective dimension. Then the
first assertion follows from Proposition 3.3, and the second assertion follows from the first one and
Corollary 3.4. �
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Recall from [10] that an Artinian algebra Λ is called Cohen–Macaulay free, or simply, CM-free, if
any Gorenstein projective module in mod Λ is projective. It was proved in [10, Theorem 1.1] that a
connected Artinian algebra with radical square zero is either self-injective or CM-free.

Theorem 3.7. Let Γ be a weak excellent extension of an Artinian algebra Λ. If Λ is CM-free, then so is Γ ;
furthermore, if Γ �Λ is an excellent extension, then Λ is CM-free if and only if so is Γ .

Proof. Let Λ be CM-free and let M ∈ mod Γ be Gorenstein projective. Then MΛ is Gorenstein projec-
tive by Proposition 3.3. So MΛ is projective and hence MΓ is also projective by Lemma 2.4(1). Thus
Γ is CM-free.

Assume that Γ � Λ is an excellent extension and Γ is CM-free. Let M ∈ mod Λ be Gorenstein
projective. Then (M ⊗Λ Γ )Γ is Gorenstein projective by Corollary 3.4. So (M ⊗Λ Γ )Γ is projective and
hence (M ⊗Λ Γ )Λ is also projective by Lemma 2.4(1). Because MΛ | (M ⊗Λ Γ )Λ , MΛ is projective and
so Λ is CM-free. �

Recall that a module M ∈ mod Λ is called an additive generator for modΛ if any indecomposable
module in modΛ is in add MΛ . Obviously, an Artinian algebra Λ is of finite representation type if
and only if mod Λ has an additive generator. Let GP(Λ) be the full subcategory of modΛ consisting
of Gorenstein projective modules. Recall from [6] that an Artinian algebra Λ is said to be of finite
Cohen–Macaulay type, or simply, CM-finite, if there exist only finitely many isomorphism classes of
indecomposable Gorenstein projective modules in mod Λ. Clearly, Λ is CM-finite if and only if there
exists a module E ∈ mod Λ such that GP(Λ) = add EΛ . It is clear that Λ is CM-finite if Λ is of
finite representation type. Furthermore, if gl.dimΛ < ∞, then GP(Λ) = P(Λ) (where P(Λ) is the
full subcategory of modΛ consisting of all projective modules) and Λ is CM-finite. These are “trivial”
examples of CM-finite algebras. But, in general, little examples of “non-trivial” CM-finite algebras have
been known.

Theorem 3.8. Let Γ be a weak excellent extension of an Artinian algebra Λ.

(1) If Λ is of finite representation type, then so is Γ ; furthermore, if Γ � Λ is an excellent extension, then Λ

is of finite representation type if and only if so is Γ .
(2) If Λ is CM-finite, then so is Γ ; furthermore, if Γ � Λ is an excellent extension, then Λ is CM-finite if and

only if so is Γ .

Proof. (1) Let Λ be of finite representation type and M ∈ mod Λ an additive generator for modΛ. It
suffices to prove that (M ⊗Λ Γ )Γ is an additive generator for modΓ . Let X ∈ mod Γ be indecom-
posable. Then X ∈ mod Λ and XΛ | (MΛ)n for some positive integer n. So (X ⊗Λ Γ )Γ | (M ⊗Λ Γ )n

Γ .
It follows from Lemma 2.3 that XΓ ∈ add(M ⊗Λ Γ )Γ and (M ⊗Λ Γ )Γ is an additive generator for
mod Γ .

Furthermore, if Γ � Λ is an excellent extension and Γ is of finite representation type, then there
exists an additive generator MΓ for modΓ . It suffices to prove that MΛ is an additive generator for
mod Λ. Let Y ∈ mod Λ be indecomposable. Then YΛ | (Y ⊗Λ Γ )Λ . Notice that (Y ⊗Λ Γ )Γ | Mm

Γ for
some positive integer m, so (Y ⊗Λ Γ )Λ | Mm

Λ and MΛ is an additive generator for mod Λ.
(2) The proof is similar to that of (1), but for the sake of completeness, we also give it.
Let Λ be CM-finite. Then there exists a module E ∈ mod Λ such that GP(Λ) = add EΛ . It suffices

to prove that GP(Γ ) = add(E ⊗Λ Γ )Γ . By Proposition 3.2, add(E ⊗Λ Γ )Γ ⊆ GP(Γ ). Let M ∈ mod Γ be
indecomposable Gorenstein projective. By Proposition 3.3, we have that MΛ is Gorenstein projective.
So MΛ | En

Λ for some positive integer n and hence (M ⊗Λ Γ )Γ | (E ⊗Λ Γ )n
Γ . By Lemma 2.3, we have

MΓ | (M ⊗Λ Γ )Γ . Thus MΓ | (E ⊗Λ Γ )n
Γ and therefore GP(Γ ) = add(E ⊗Λ Γ )Γ .

Furthermore, if Γ � Λ is an excellent extension and Γ is CM-finite, then there exists a module
V ∈ mod Γ such that GP(Γ ) = add VΓ . It suffices to prove that GP(Λ) = add VΛ . By Proposition 3.3,
add VΛ ⊆ GP(Λ). Let Y ∈ mod Λ be indecomposable Gorenstein projective. Then YΛ | (Y ⊗Λ Γ )Λ . On
the other hand, (Y ⊗Λ Γ )Γ is Gorenstein projective by Corollary 3.4. So (Y ⊗Λ Γ )Γ | V m

Γ for some
positive integer m and hence (Y ⊗Λ Γ )Λ | V m

Λ . Thus YΛ | V m
Λ and GP(Λ) = add VΛ . �
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By [11, Theorem 6.1.7], we have that if H is a finite-dimensional semisimple Hopf algebra over a
field K and A is a twisted H-module algebra, then for any cocycle σ ∈ HomK (H ⊗ H, A), A #σ H is
a weak excellent extension of A and A #σ H ∼= H ⊗K A as right A-modules, but A #σ H is not an
excellent extension of A. By Theorem 3.8, we have the following

Corollary 3.9. Let H be a finite-dimensional semisimple Hopf algebra over a field K and A a finitely generated
twisted H-module algebra. Then for any cocycle σ ∈ HomK (H ⊗ H, A), A is of finite representation type (resp.
CM-finite, CM-free) if and only if so is A #σ H.

Proof. The necessity follows from Theorems 3.8 and 3.7. Conversely, if A #σ H is of finite represen-
tation type (resp. CM-finite, CM-free), then so is (A #σ H) # Ĥ also by Theorems 3.8 and 3.7, where
Ĥ = HomK (H, K ). Notice that Ĥ is a semisimple Hopf algebra, so by the Blattner–Montgomery du-
ality theorem (see [24, Section 9.4]), (A #σ H) # Ĥ ∼= Mn(A) where n = dimK H . Because A is Morita
equivalent to Mn(A), A is also Morita equivalent to (A #σ H) # Ĥ . On the other hand, it is not difficult
to prove that the representation type (resp. CM-finiteness, CM-freeness) of algebras is invariant under
Morita equivalences. Then the assertion follows. �

Note that Li and Zhang showed in [21, Corollary–Example 1.3] that for an algebraically closed
field K , Λ = T2(K [x]/〈xn〉) (the upper triangular algebra of K [x]/〈xn〉 of degree two) is a “non-trivial”
CM-finite Gorenstein algebra when n =4 or 5. By Theorem 3.8, Lemma 2.4(2) and Proposition 3.6(3),
any excellent extension of Λ given above is also a “non-trivial” CM-finite Gorenstein algebra. For
example, let Fi be a finite separable field extension of K for any i � 1 and Λ = T2(K [x]/〈xn〉) where
n =4 or 5. Then all of Λ ⊗K F1, (Λ ⊗K F1) ⊗K F2, ((Λ ⊗K F1) ⊗K F2) ⊗K F3, . . . are “non-trivial”
CM-finite Gorenstein algebras by Example 2.2(3).

4. The representation dimension

In this section, Λ is an Artinian algebra. Auslander introduced in [2] the notion of the representa-
tion dimension of an Artinian algebra as follows.

Definition 4.1. The representation dimension rep.dimΛ of Λ is defined as inf{gl.dim End(MΛ) | M is
a generator–cogenerator for mod Λ} if Λ is non-semisimple; and rep.dimΛ = 1 if Λ is semisimple.

Let Γ � Λ be an excellent extension. Then we have that Λ is semisimple if and only if so is
Γ by Lemma 2.4(2), and that rep.dimΛ = rep.dimΓ provided either of them is at most two by
Theorem 3.8(1). On the other hand, if Λ is hereditary, then Γ is also hereditary by Lemma 2.4(2) and
so rep.dimΛ = rep.dimΓ by [2] and Theorem 3.8(1). Based on these facts, it is natural to raise the
following

Conjecture. If Γ � Λ is an excellent extension, then rep.dimΛ = rep.dimΓ .

As applications of Theorem 3.8(1), in this section we will study this conjecture and prove it par-
tially. To compute the representation dimension of an Artinian algebra, we need the following easy
observation, which is maybe known.

Lemma 4.2. Let X, M ∈ mod Λ and X = X1 ⊕ X2 ∈ Gen MΛ . If X has an n-add MΛ-resolution:

0 Mn
fn

Mn−1 · · · M0
f0

X 0,

then X1 also has an n-add MΛ-resolution:

0 M ′
n

f ′
n

M ′
n−1 · · · M ′

0

f ′
0

X1 0.
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Proof. We claim that if there exists an exact sequence:

0 K0 M0
f0

X 0

in mod Λ with f0 a right add MΛ-approximation of X , then there exists an epimorphism f ′
0 : M ′

0 →
X1 in modΛ, which is a right add MΛ-approximation of X1 and K ′

0 (= Ker f ′) | K0. Because X1 ∈
Gen MΛ , there exists an epimorphism f ′

0 : M ′
0 → X1 in mod Λ which is a minimal right add MΛ-

approximation of X1 by Lemma 2.6. So we have the following commutative diagram with exact rows:

0 K ′
0

s

M ′
0

α

f ′
0

X1

i

0

0 K0

t

M0

β

f0
X

p

0

0 K ′
0 M ′

0

f ′
0

X1 0

where pi = 1X1 . The minimality of f ′
0 implies that βα is an isomorphism and hence ts is also an

isomorphism, which implies that Γ is a split monomorphism. The claim is proved. Then by using
induction on n, we get the assertion easily. �
Lemma 4.3. (See [26, p. 273, Lemma 2.3].) Let A be a finite-dimensional algebra over a field K , and let F be a
finite separable field extension of K . Then A ⊗K F is an excellent extension of A.

Remark 4.4. The condition “separable” is necessary for this lemma. For example, let K be a field
of characteristic p. If F is a finite field extension of K but not separable, then there exists a finite-
dimensional semisimple algebra A such that A ⊗K F is not semisimple [20]. Thus A ⊗K F is not an
excellent extension of A by Lemma 2.4(2).

By Lemmas 2.4(2) and 4.3 and Theorem 3.8(1), we immediately get the following

Corollary 4.5. (See [20, Theorem 3.3].) Let A be a finite-dimensional algebra over a field K , and let F be a finite
separable field extension of K . Then rep.dim A ⊗K F = rep.dim A provided either of them is at most two.

Now we are in a position to establish the relation between the representation dimensions of A
and A ⊗K F in general case as follows.

Theorem 4.6. Let A be a finite-dimensional algebra over a field K , and let F be a finite separable field extension
of K . Then rep.dim A ⊗K F = rep.dim A.

Proof. The assertion holds true if rep.dim A ⊗K F � 2 by Corollary 4.5.
Assume that rep.dim A ⊗K F = n (� 3) and V A⊗K F is a generator–cogenerator for mod A ⊗K F

such that gl.dim End(V A⊗K F ) = n. It is easy to see that V A is a generator–cogenerator for mod A. Let
X ∈ mod A be indecomposable. Then X ⊗K F ∈ mod A ⊗K F . So X ⊗K F has an (n − 2)-add V A⊗K F -
resolution:

0 Vn−2
fn−2

Vn−3 · · · V 0
f0

X ⊗K F 0 (3)

in mod A ⊗K F by Lemma 2.7.
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We claim that X ⊗K F as a right A-module has an (n − 2)-add V A -resolution. Obviously, (3) is in
mod A. Let Ki = Ker f i for any 0 � i � n − 2 and K−1 = X ⊗K F . Then we have exact sequences:

0 → HomA⊗K F (V , Ki) → HomA⊗K F (V , V i) → HomA⊗K F (V , Ki−1) → 0

and

0 → HomA⊗K F (V , Ki) ⊗K F → HomA⊗K F (V , V i) ⊗K F

→ HomA⊗K F (V , Ki−1) ⊗K F → 0

for any 0 � i � n − 2.
Because

HomA(A ⊗K F ,−) ∼= HomK
(

F ,HomA(A,−)
)

(by the adjoint isomorphism theorem)

∼= HomK (F ,−)

∼= HomK
(
HomK (−, K ),HomK (F , K )

)
(by the Yoneda lemma)

∼= HomK
(
HomK (−, K ), F

)

∼= − ⊗K F ,

we have

HomA⊗K F (V ,−) ⊗K F ∼= HomA⊗K F (V ,− ⊗K F )

∼= HomA⊗K F
(

V ,HomA(A ⊗K F ,−)
)

∼= HomA
(

V ⊗A⊗K F (A ⊗K F ),−)
(by the adjoint isomorphism theorem)

∼= HomA(V ,−).

So from the last exact sequence we get the following exact sequence:

0 → HomA(V , Ki) → HomA(V , V i) → HomA(V , Ki−1) → 0

for any 0 � i � n − 2, which induces an exact sequence:

0 → HomA(V , Vn−2) → HomA(V , Vn−3) → ·· ·
→ HomA(V , V 0) → HomA(V , X ⊗K F ) → 0.

The claim is proved.
Since X A | (X ⊗K F )A , X A has an (n − 2)-add V A -resolution by Lemma 4.2. Thus we conclude that

gl.dim End(V A) � n by Lemma 2.7 and therefore rep.dim A � n.
Conversely, assume that rep.dim A = m and M A is a generator–cogenerator for mod A such that

gl.dim End(M A) = m. It is easy to see that M ⊗K F is a generator–cogenerator for mod A ⊗K F . Since
End((M ⊗K F )A⊗K F ) ∼= End(M A) ⊗K F , End((M ⊗K F )A⊗K F ) is an excellent extension of End(M A)

by Lemma 4.3. So gl.dim End((M ⊗K F )A⊗K F ) = gl.dim End(M A) by Lemma 2.4(2). It follows that
rep.dim A ⊗K F � m. The proof is finished. �
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For any Γ � Λ, by the adjoint isomorphism theorem we have the following adjoint pair (F , H):

F = − ⊗Λ Γ : mod Λ → mod Γ,

H = HomΓ (Γ,−) : mod Γ → mod Λ.

Lemma 4.7. Let Γ �Λ be an excellent extension and F and H as above. Then (H, F ) is an adjoint pair.

Proof. Because Γ � Λ is an excellent extension, both ΛΓ and ΓΛ are finitely generated free,
Γ ∼= HomΛ(Γ,Λ) as left Λ-modules and as right Λ-modules, as well as right Γ -modules. Then
F ∼= HomΛ(Γ,−) by [5, Chapter III, Proposition 4.12]. On the other hand, H ∼= − ⊗Γ Γ . Note that
(− ⊗Γ Γ,HomΛ(Γ,−)) is an adjoint pair by the adjoint isomorphism theorem, so (H, F ) is also an
adjoint pair. �

For a commutative Artinian ring R and an Artinian R-algebra Γ , we denote by D =
HomR(−, E(R/ J (R))) the Matlis duality between mod Γ and modΓ op , where J (R) is the radical
of R and E(R/ J (R)) is the injective envelope of R/ J (R). We establish the relation between the rep-
resentation dimensions of a commutative Artinian ring and its excellent extension as follows.

Theorem 4.8. Let R be a commutative Artinian ring and Γ an R-algebra. If Γ is an excellent extension of R,
then rep.dimΓ = rep.dim R.

Proof. By Lemma 3.5, Γ is an Artinian algebra. Then by Lemma 2.4(2) and Theorem 3.8(1), the asser-
tion holds true provided either rep.dim R or rep.dimΓ is at most two.

Now assume that rep.dim R = n (� 3) and MR is a generator–cogenerator for mod R such that
gl.dim End(MR) = n. Because R ⊕ DR ∈ add MR and Γ ∼= R ⊗R Γ ∈ add(M ⊗R Γ )Γ , (M ⊗R Γ )Γ is a
generator for mod Γ . Let Y ∈ mod Γ . Then there exists a positive integer n such that 0 → Y R → Mn

is exact in mod R and so 0 → Y ⊗R Γ → (M ⊗R Γ )n is exact in modΓ . Because Γ � R is an excellent
extension by assumption, RΓ is free. So YΓ | (Y ⊗R Γ )Γ , and hence (M ⊗R Γ )Γ is a cogenerator for
mod Γ . Thus we get that (M ⊗R Γ )Γ is a generator–cogenerator for mod Γ .

Let X ∈ mod Γ be indecomposable. Then by Lemma 2.7, X as an R-module has an (n − 2)-add MR -
resolution:

0 Mn−2
fn−2

Mn−3 · · · M0
f0

X 0.

We claim that (X ⊗R Γ )Γ has an (n − 2)-add(Γ ⊗R M)Γ -resolution:

0 → Mn−2 ⊗R Γ → Mn−3 ⊗R Γ → ·· · → M0 ⊗R Γ → X ⊗R Γ → 0.

Let Ki = Ker f i for any 0 � i � n −2 and K−1 = X . Because Γ is a finitely generated free R-module,
we have the following exact sequence:

0 → Ki ⊗R Γ → Mi ⊗R Γ → Ki−1 ⊗R Γ → 0,

which is exact as right Γ -modules and as R-modules for any 0 � i � n − 2. On the other hand, we
have the following exact sequence:

0 → HomR(M, Ki) → HomR(M, Mi) → HomR(M, Ki−1) → 0

in mod R , which induces the following exact sequence:
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0 → HomR(M, Ki) ⊗R Γ → HomR(M, Mi) ⊗R Γ → HomR(M, Ki−1) ⊗R Γ → 0

for any 0 � i � n − 2. By Lemma 2.8, the sequence:

0 → HomΓ (M ⊗R Γ, Ki ⊗R Γ ) → HomΓ (M ⊗R Γ, Mi ⊗R Γ )

→ HomΓ (M ⊗R Γ, Ki−1 ⊗R Γ ) → 0

is also exact for any 0 � i � n − 2, which implies that the following sequence:

0 → HomΓ (M ⊗R Γ, Mn−2 ⊗R Γ ) → HomΓ (M ⊗R Γ, Mn−3 ⊗R Γ ) → ·· ·
→ HomΓ (M ⊗R Γ, M0 ⊗R Γ ) → HomΓ (M ⊗R Γ, X ⊗R Γ ) → 0

is exact. The claim is proved.
Notice that XΓ | (X ⊗R Γ )Γ , so XΓ has an (n − 2)-add(M ⊗R Γ )Γ -resolution by Lemma 4.2. Thus

gl.dim End((M ⊗R Γ )Γ )� n by Lemma 2.7 and therefore rep.dimΓ � n.
Conversely, assume that rep.dimΓ = m (� 3) and VΓ is a generator–cogenerator for modΓ such

that gl.dim End(VΓ ) = m. It is easy to see that V R is a generator–cogenerator for mod R . Let Y ∈ mod R
be indecomposable. Then Y ⊗R Γ ∈ mod Γ . So by Lemma 2.7, we have the following exact sequence:

0 → Vm−2 → Vm−3 → ·· · → V 0 → Y ⊗R Γ → 0

in modΓ (and hence in mod R) such that

0 → HomΓ (V , Vm−2) → HomΓ (V , Vm−3) → ·· ·
→ HomΓ (V , V 0) → HomΓ (V , Y ⊗R Γ ) → 0

is also exact in mod R . Because Γ � R is an excellent extension by assumption, RΓ is free. Then we
get the following exact sequence:

0 → HomΓ (V , Vm−2) ⊗R Γ → HomΓ (V , Vm−3) ⊗R Γ → ·· ·
→ HomΓ (V , V 0) ⊗R Γ → HomΓ (V , Y ⊗R Γ ) ⊗R Γ → 0.

Since (HomΓ (Γ,−),− ⊗R Γ ) is an adjoint pair by Lemma 4.7, for any U ∈ mod Γ we have

HomΓ (V , U ) ⊗R Γ ∼= HomΓ (V , U ⊗R Γ )
(
by [13, Theorem 3.2.14]

)

∼= HomR
(
HomΓ (Γ, V ), U

)
(by the adjoint isomorphism theorem)

∼= HomR(V , U ).

So from the last exact sequence we get the following exact sequence:

0 → HomR(V , Vm−2) → HomR(V , Vm−3) → ·· ·
→ HomR(V , V 0) → HomR(V , Y ⊗R Γ ) → 0.

Thus Y ⊗R Γ as an R-module has an (m − 2)-add V R -resolution. Since Y R | (Y ⊗R Γ )R , Y R has an
(m − 2)-add V R -resolution by Lemma 4.2. Thus gl.dim End(V R) � m by Lemma 2.7 and therefore
rep.dim R � m. The proof is finished. �
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Corollary 4.9.

(1) Let R be a commutative Artinian ring and G a finite group with |G|−1 ∈ R. Then rep.dim R ∗ G =
rep.dim R.

(2) Let K be a field of characteristic p and H a subgroup of the center of a finite group G. If H contains a Sylow
p-subgroup of G, then rep.dim K G = rep.dim K H.

Proof. By Example 2.2, both R ∗ G � R (in (1)) and K G � K H (in (2)) are excellent extensions. So
both assertions follow from Theorem 4.8. �
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