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Abstract

Let A be a left and right Artin ring andiw 4 a faithfully balanced selforthogonal bimodule. We
give a sufficient condition that the injective dimensionwof is finite implies that ofy w is also finite.
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1. Introduction

Unless stated otherwisey is a left noetherian ringl” is a right noetherian ring. We
use modi (resp. mod™°P) to denote the category of finitely generated lafimodules
(resp. rightI"-modules). The modules considered are finitely generated. For a medule
in modA (resp. mod °P) we use lid 4 (w) (resp. tid - (w)) to denote the left (resp. right)
injective dimension ofy.

Definition 1[10]. Letw be in modA. We callw a selforthogonal module if ES/gl(a), w)=0
foranyi > 1. A selforthogonal module is called a cotilting module if.id 4 (w) < oo and
the natural mapl — End(weng ,0)) IS @n isomorphism. Similarly, we define the notion
of cotilting modules in mod™°P. Dually, we define the notion of tilting modules in mad
(resp. mod™°F),

E-mail addresshuangzy@nju.edu.cn.
1 The author was partially supported by National Natural Science Foundation of China (Grant No. 10001017),
Scientific Research Foundation for Returned Overseas Chinese Scholars (State Education Ministry) and Nanjing
University Talent Development Foundation.

0021-8693/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0021-8693(03)00127-3



Z. Huang / Journal of Algebra 264 (2003) 262—-268 263

Remark. In caseA (resp.I") is an Artin algebra, the definitions of tilting modules and
cotilting modules coincide with those given in [2,3]. These can be seen by using [12,
Proposition 1.6] and its dual result.

A bimodule swr is called a faithfully balanced selforthogonal bimodule if it satisfies
the following conditions:

(1) The natural mapg’ — End(Aa))Op andA — Endw) are isomorphisms.
(2) Ext,(aw,a0) =0=Ext-(wr,wr) foranyi > 1.

Miyashita in [12] showed that for a faithfully balanced selforthogonal bimodule
Awr, qw is tilting if and only if o is tilting. Assume thatA and ™ are Artin algebras. If
Aw andw are cotilting then.id 4 (w) =r.id (w) by [3, Lemma 1.7]. However, in general
we do not know whethejiw (resp.wy) is necessarily cotilting or not provided thai
(resp. sw) is cotilting. Then it is natural to ask whegw is cotilting if wr is cotilting.
This question is a general case of an important question raised by Auslander and Reiten [2,
p. 150] (that is, doesid 4 (A) < oo imply l.id 4 (A) < oo (WhereA is an Artin algebra) ?).

In this paper, for a faithfully balanced selforthogonal bimodsdes over a left and right
Artin ring A, we give a sufficient condition that, is cotilting implies thatyw is also
cotilting. As a consequence, we have thai is classical cotilting if and only itw, is

classical cotilting.

2. Main result

Let A be in modA (resp. mod™°P) andi a non-negative integer. We say that the
grade of A, written gradeA, is greater than or equal to if ExtQ(A,A) =0 (resp.
Ext}(A, I') =0) for any 0< j < i. We denote gradeA > i if gradeX > i for each
submodulex of A. Let W be in modA (resp. mod™°P). We say that the grade df with
respect toW, written gradeg, A, is greater than or equal toif Extf‘(A, W) =0 (resp.
Ext}(A, W) =0)forany 0< j <.

Assume thatA is a left and right Artin ring andaw, is a faithfully balanced
selforthogonal bimodule. Our main result is the following

Theorem. Letm andn be positive integers. Suppose thid 4 (w) < n andgrade, Ext’} (M,
w) =2n—1foranyM e modA. Thenl.idj(w) <m+n — 1.

A cotilting module, w (resp.w,) is call classical cotilting if id 4 (w) (resp. tid 4 (w)) <
1. Consider the case = 1 in theorem above. It is clear that the second assumption
(gradeg, Ext} (M, w) > n — 1 foranyM e modA) is always satisfied and we get

Corallary 1. s is classical cotilting if and only ifv 4 is classical cotilting.

Put ooy =4 A4. Then we have
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Corollary 2. lids(A) < lifand onlyifrid,(A) < 1.
Letr.ids(A) <n(< oo0) and
O-A—-lhh—->NL—> - —>1,—0

be a minimal injective resolution oft as a right A-module. Assume that the right
flat dimension of @' I; is less than or equal te(< oc). We may assume that
r >n andr =n + s wheres is a non-negative integer. Then by [8, Theorem 2.8]
we have grade EX;™ (M, A) > n, and certainly grade Et* (M, A) > n for any

M € modA. By theorem above,ilpy(A) < (n+s+1D)+n—1=2n+s (< 00). It
follows from [13, Lemma A] that.ld4 (A) =r.id 4 (A). Hence we have established

Corollary 3. If r.id4(A) = n and the firstz terms of the minimal injective resolution of
A4 have finite right flat dimension, thénd 4 (A) = n.

Supposek is a positive integer. An Artin algebra is called quask-Gorenstein [9]
(resp.k-Gorenstein [4]) if theith term of the minimal injective resolution of A has
left flat dimension at most+ 1 (resp.i) for any 0< i < k — 1. By theorem above, [8,
Theorem 3.3] (or [5, Theorem 4.7]) and [13, Lemma A] we have

Corollary 4. l.id4(A) =r.id 4 (A) if A is a(quas) k-Gorenstein algebra for alt.

Auslander showed in [7, Theorem 3.7] that the notionkeBorenstein algebras is
left-right symmetric (note: on the contrary, the notion of quasborenstein algebras
is not left-right symmetric [9]). An Artin algebral is called Auslander—-Gorenstein [6]
if A is k-Gorenstein for allk and it has finite left and right self-injective dimension
(that is, lids(A) =r.ids(A) < o0). By Corollary 4 we may weaken the condition of
this definition, that is, we have that an Artin algebtais Auslander—Gorenstein ift
is k-Gorenstein for alk and it has finite either sided self-injective dimension (see [4,
Corollary 5.5(b)]).

3. The proof of main result

We first recall some notions. Let be in modA (resp. mod™°P). We call Hormy (44,
aor) (resp. Homp (A 1, o)) the dual module oft with respect taw, and denote either of
these modules by®. For a homomorphisnf betweenA-modules (respl"°P-modules),
we put f¢ = Hom(f, pwr). Letog: A — A®® viaoa(x)(f) = f(x) for anyx € A and
f € A® be the canonical evaluation homomorphistis calledw-torsionless (respw-
reflexive) if o4 is a monomorphism (resp. an isomorphism). It is easy to see that any
projective module in mod (resp. mod°P) is w-reflexive.

Let A be in modA and

s P 2 B by A0
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be a projective resolution of in modA. PutA; = Cokerf; 1 and X; = Cokerf”. For
eachf; (i > 1) there is a natural epic-monic decompositigh= «; 7r; with 7; epic andy;
monic.

Lemmal X =A;11 and X =AY

Y1 =Ker fi, foranyi >1

Proof. For anyi > 1 we have exact sequences:

0—>A,+1I—+;P L>P 1—>A, 1— 0,

@ fw :
0— A“’l—>P“’1—>P“’i>X — 0.

Then we get the following commutative diagram with exact rows:

i1 fi Ti-1
0 At P; Ppg——A_1——0
\L f l op; l‘”’il (1)
/B,w fia)a)
0 Xy P P

whereop, andop,_, are isomorphisms. Hencgis an isomorphism and’ = A; 3. The
other assertions follow easily.0

Lemma 2. For anyi > 1 there is an exact sequence

i:0— EXt’ (A, w) — X; —>P 11— Xiy1— 0.
Proof. Let¢; be the composition:

x; 7% xoo 1% p0 T po
thatis,¢; = ﬂlfilfwvxi.

Sincer”, ; isamonomorphismangd® is an isomorphism, Kef; = Ker(r% , f“ox,) =
Keroy, = Extl (A;_1, w) = Ext, (A, ») by [11, Lemma 2.1].

Now we calculate Coke; .

Since fi+1 = @iamiv1, fiq = 70 1. From diagram (1) we know thatp, ;11 =
B f and o jop = fB”, and so f 0p = wh o 0p = m, fCB. Since
opope = 1lpe (cf [1, Proposition 20.14]) an;&“’“’apw = oy, /3,, we have thatf; =

,+1f‘“ﬁ“’“’crpw =7 1f%ox,Bi = ¢iPi. Sincep; is epic, Imf 1 =1m@ipi) =1Imeg;

and Cokew; = P}, /Im¢; = P 1/Im f, = Cokerf; = X;+1. We are done. O

Lemma 3. ExtL(X;, w) = O for anyi > 2
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Proof. By [11, Lemma 2.1] there is an exact sequence:

A1 e
0— EXt%(X,-, w) = A1 — AYY — EXt%(X,-, w) — 0.

If i > 2, thenA;_1 is w-torsionless becaus#;_1 is a submodule of; _». It follows that
o4, , is monic and EXt(X;, ) =0. O

Lemma 4. Suppose: andn are positive integers angrade, Ext’ (M, w) > n — 1 for any
M € modA. ThenExty(X;1j_1, ) =0foranyi >m+land1< j<n.

Proof. The case = 1 follows from Lemma 3. Now suppoge> 2. Since gradgExt); (M,
w) > n —1foranyM € modA, it is easy to see that gra,glExt"A(M, w) > n — 1 forany
M € modA andi > m. Applying Homr(—, w) to the exact sequencés), ..., (Si+n—2)
(wherei > m + 1) in Lemma 2, we get a chain of embeddings:

EXCH(Xin—1, ®) > EX(H(Xin_2, @) <> - - <> EXUh (X}, ©).

Now our assertion follows from Lemma 3.0

From now on, assume that andn are positive integers,idr () < n and gradg
Ext} (M, w) > n — 1 foranyM € modA.

Lemmab. Ext}(Xi,a)) =0foranyi >m+nandj > 1.

Proof. Since ridr(w) < n, Ext}(Xi,w) =0 for anyj > n + 1. On the other hand,
Ext-(X;, ) =0 for any 1< j < n by Lemma 4. Hence we are doneQ

Lemma 6. A; is w-reflexive forany >m +n — 1.
Proof. By [11, Lemma 2.1] there is an exact sequence:
UAi
0— Exth(Xii1, w) = Aj —> A — EXt.(X 41, w) — 0.

By Lemma 5, Ext (X 41, w) = 0 = EXt2(X;4+1, ®) for anyi > m +n — 1. S0ay, is an
isomorphism andy; is w-reflexive. O

Lemma?. Ext’}(Al‘.", w)=0foranyi >m+n—1andj > 1.
Proof. Because there is an exact sequence
0— A? - P? =5 P21 — Xi41— 0,

our conclusion follows from Lemma 5.0
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Lemma 8. grade, Ext, (A, ) = oo for anyi > m + n.

Proof. From the definition ofg; (see the proof of Lemma 2) we know thaf =

ni . fPox, andg = oy [Um . Notice thatA; ;1 is w-reflexive by Lemma 6, S
is an isomorphism. Smcs 1O'PH_1 =04, i+1 @ndm; 1 IS epic, n 1 is also epic. On
the other hand;;‘(’l is epic by [1, Proposition 20.14F,“* is an |somorph|sm sincg is an
isomorphism (see the proof of Lemma 1). Hence we havegifias epic.

PutK =Im¢;. Then we have an epic-monic decompositigr= o with 7 : X; — K

epic anda : K — P{1; monic. Sincep)” is epic andr® is monic, from¢:” = 7“a® we
know thatz® is an epimorphism and hence an isomorphism. Moreover, from the exact
sequence 6> Ext, (A, ») — X; -5 K — 0 we get a long exact sequence:

0> K25 X9 [Ext, (4, )]” — Ext.(K, 0) — Exth(X;, o)
— Exth (Ext, (A, w), 0) — Ex (K, 0) = EXB.(X;, @) = - -- — Exth(X;, )
— Ext).(Exty (A, ), 0) = ExtTH(K, ) > Ext (X, 0) = -

on the other hand, applying Hani—, w) to the exact sequence-8 K — P2, —
Xi+1 — 0 we get the following isomorphisms:

Ext/.(K, ») = ExtTH(Xi 41, 0)

foranyj >

Note thatz m+n, s0 Ex{-(X;, ) =0 = Ext’F (Xi+1,0) for any j > 1 by
Lemma 5. It follows from the long exact sequence above tEa(t’A(A,w)]‘” =0=
Ext’ (Ext‘ (A, w),w) foranyj > 1 and gradgExt‘ (A,w)y=00. O

Assume thatA is a left and right Artin ring andywr =4 w4. We now give the proof of
the main result.

Proof of Theorem. Because .id4(w) < n(< o0), there is a well defined linear map
B: Ko(modA®P) — Kg(modA) via B([X]) = E;o(—l)" [Ext,(X,w)] for any X in
modA°P,

Fori >m+n — 1, by Lemmas 6 and 7 we have

Z( D[P+ (-1)[A Z( DI[Pre]+ (- [AP”]

j=0 j=0

Z B + DAY

0

-1
Z -] P+ (=1) [A“’])
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which implies thaf8 is surjective.

Note that A is a left and right Artin ring, so bothKo(modA°P) and Ko(modA)
are finitely generated free abelian groups with r&gkmodA°P) = rankKg(modA),
and [X] = 0 if and only if X = 0 for any X in modA®P. On the other hand,
grade, Ext, (A, w) = oo for anyi > m +n by Lemma 8. So EXY{(Ext, (A, »), ) =0
foranyj>0andi >m+n andﬂ([Efo (A, w)]) =0 for anyi > m + n. Consequently
[Ext,(A,w)] = 0 and Ex{ (A, w) = 0 for anyi > m + n, which implies lid, (o) <
m+n-—1. O
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