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Abstract

LetΛ be a left and right Artin ring andΛωΛ a faithfully balanced selforthogonal bimodule. W
give a sufficient condition that the injective dimension ofωΛ is finite implies that ofΛω is also finite.
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1. Introduction

Unless stated otherwise,Λ is a left noetherian ring,Γ is a right noetherian ring. W
use modΛ (resp. modΓ op) to denote the category of finitely generated leftΛ-modules
(resp. rightΓ -modules). The modules considered are finitely generated. For a modω
in modΛ (resp. modΓ op) we use l.idΛ(ω) (resp. r.idΓ (ω)) to denote the left (resp. righ
injective dimension ofω.

Definition 1 [10]. Letω be in modΛ. We callω a selforthogonal module if ExtiΛ(ω,ω)= 0
for anyi � 1. A selforthogonal moduleω is called a cotilting module if l.idΛ(ω) <∞ and
the natural mapΛ→ End(ωEnd(Λω)) is an isomorphism. Similarly, we define the noti
of cotilting modules in modΓ op. Dually, we define the notion of tilting modules in modΛ
(resp. modΓ op).
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Remark. In caseΛ (resp.Γ ) is an Artin algebra, the definitions of tilting modules a
cotilting modules coincide with those given in [2,3]. These can be seen by using
Proposition 1.6] and its dual result.

A bimoduleΛωΓ is called a faithfully balanced selforthogonal bimodule if it satis
the following conditions:

(1) The natural mapsΓ → End(Λω)op andΛ→ End(ωΓ ) are isomorphisms.
(2) ExtiΛ(Λω,Λω)= 0 = ExtiΓ (ωΓ ,ωΓ ) for anyi � 1.

Miyashita in [12] showed that for a faithfully balanced selforthogonal bimod
ΛωΓ ,Λω is tilting if and only if ωΓ is tilting. Assume thatΛ andΓ are Artin algebras. I
Λω andωΓ are cotilting then l.idΛ(ω)= r.idΓ (ω) by [3, Lemma 1.7]. However, in gener
we do not know whetherΛω (resp.ωΓ ) is necessarily cotilting or not provided thatωΓ
(resp.Λω) is cotilting. Then it is natural to ask whenΛω is cotilting if ωΓ is cotilting.
This question is a general case of an important question raised by Auslander and Re
p. 150] (that is, does r.idΛ(Λ) <∞ imply l.idΛ(Λ) <∞ (whereΛ is an Artin algebra)?)
In this paper, for a faithfully balanced selforthogonal bimoduleΛωΛ over a left and right
Artin ring Λ, we give a sufficient condition thatωΛ is cotilting implies thatΛω is also
cotilting. As a consequence, we have thatΛω is classical cotilting if and only ifωΛ is
classical cotilting.

2. Main result

Let A be in modΛ (resp. modΓ op) and i a non-negative integer. We say that t
grade ofA, written gradeA, is greater than or equal toi if ExtjΛ(A,Λ) = 0 (resp.

ExtjΓ (A,Γ ) = 0) for any 0� j < i. We denote s.gradeA � i if gradeX � i for each
submoduleX of A. LetW be in modΛ (resp. modΓ op). We say that the grade ofA with
respect toW , written gradeW A, is greater than or equal toi if ExtjΛ(A,W) = 0 (resp.

ExtjΓ (A,W)= 0) for any 0� j < i.
Assume thatΛ is a left and right Artin ring andΛωΛ is a faithfully balanced

selforthogonal bimodule. Our main result is the following

Theorem. Letm andn be positive integers. Suppose thatr.idΛ(ω)� n andgradeω ExtmΛ(M,
ω)� n− 1 for anyM ∈ modΛ. Thenl.idΛ(ω)�m+ n− 1.

A cotilting moduleΛω (resp.ωΛ) is call classical cotilting if l.idΛ(ω) (resp. r.idΛ(ω))�
1. Consider the casen = 1 in theorem above. It is clear that the second assump
(gradeω ExtmΛ(M,ω)� n− 1 for anyM ∈ modΛ) is always satisfied and we get

Corollary 1. Λω is classical cotilting if and only ifωΛ is classical cotilting.

PutΛωΓ =ΛΛΛ. Then we have
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Corollary 2. l.idΛ(Λ)� 1 if and only if r.idΛ(Λ)� 1.

Let r.idΛ(Λ)� n(<∞) and

0 →Λ→ I0 → I1 → ·· · → In → 0

be a minimal injective resolution ofΛ as a rightΛ-module. Assume that the righ
flat dimension of

⊕n−1
i=0 Ii is less than or equal tor(< ∞). We may assume tha

r � n and r = n + s where s is a non-negative integer. Then by [8, Theorem 2
we have s.gradeExtn+s+1

Λ (M,Λ) � n, and certainly gradeExtn+s+1
Λ (M,Λ) � n for any

M ∈ modΛ. By theorem above, l.idΛ(Λ) � (n + s + 1) + n − 1 = 2n + s (< ∞). It
follows from [13, Lemma A] that l.idΛ(Λ)= r.idΛ(Λ). Hence we have established

Corollary 3. If r.idΛ(Λ) = n and the firstn terms of the minimal injective resolution
ΛΛ have finite right flat dimension, thenl.idΛ(Λ)= n.

Supposek is a positive integer. An Artin algebraΛ is called quasik-Gorenstein [9]
(resp.k-Gorenstein [4]) if theith term of the minimal injective resolution ofΛΛ has
left flat dimension at mosti + 1 (resp.i) for any 0� i � k − 1. By theorem above, [8
Theorem 3.3] (or [5, Theorem 4.7]) and [13, Lemma A] we have

Corollary 4. l.idΛ(Λ)= r.idΛ(Λ) if Λ is a (quasi) k-Gorenstein algebra for allk.

Auslander showed in [7, Theorem 3.7] that the notion ofk-Gorenstein algebras
left-right symmetric (note: on the contrary, the notion of quasik-Gorenstein algebra
is not left-right symmetric [9]). An Artin algebraΛ is called Auslander–Gorenstein [
if Λ is k-Gorenstein for allk and it has finite left and right self-injective dimensi
(that is, l.idΛ(Λ) = r.idΛ(Λ) < ∞). By Corollary 4 we may weaken the condition
this definition, that is, we have that an Artin algebraΛ is Auslander–Gorenstein ifΛ
is k-Gorenstein for allk and it has finite either sided self-injective dimension (see
Corollary 5.5(b)]).

3. The proof of main result

We first recall some notions. LetA be in modΛ (resp. modΓ op). We call HomΛ(ΛA,
ΛωΓ ) (resp. HomΓ (AΓ ,ΛωΓ )) the dual module ofAwith respect toω, and denote either o
these modules byAω. For a homomorphismf betweenΛ-modules (resp.Γ op-modules),
we putf ω = Hom(f,ΛωΓ ). Let σA :A→ Aωω via σA(x)(f ) = f (x) for anyx ∈ A and
f ∈ Aω be the canonical evaluation homomorphism.A is calledω-torsionless (resp.ω-
reflexive) if σA is a monomorphism (resp. an isomorphism). It is easy to see tha
projective module in modΛ (resp. modΓ op) is ω-reflexive.

LetA be in modΛ and

· · · → Pi
fi−→ · · · f2−→P1

f1−→P0 →A→ 0
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be a projective resolution ofA in modΛ. PutAi = Cokerfi+1 andXi = Cokerf ωi . For
eachfi (i � 1) there is a natural epic-monic decomposition:fi = αiπi with πi epic andαi
monic.

Lemma 1. Xωi
∼=Ai+1 andXωωi

∼=Aωi+1
∼= Kerf ωi+2 for anyi � 1.

Proof. For anyi � 1 we have exact sequences:

0 →Ai+1
αi+1−→Pi

fi−→Pi−1
πi−1−→Ai−1 → 0,

0 →Aωi−1

πω
i−1−→Pωi−1

f ωi−→Pωi
βi−→Xi → 0.

Then we get the following commutative diagram with exact rows:

0 Ai+1

f

αi+1
Pi

σPi

fi
Pi−1

σPi−1

πi−1
Ai−1 0

0 Xωi

βωi
Pωωi

f ωωi
Pωωi−1

(1)

whereσPi andσPi−1 are isomorphisms. Hencef is an isomorphism andXωi
∼= Ai+1. The

other assertions follow easily.✷
Lemma 2. For anyi � 1 there is an exact sequence:

ζi : 0 → ExtiΛ(A,ω)→Xi
φi−→Pωi+1 →Xi+1 → 0.

Proof. Let φi be the composition:

Xi
σXi−→Xωωi

f ω−→Aωi+1

πω
i+1−→Pωi+1,

that is,φi = πωi+1f
ωσXi .

Sinceπωi+1 is a monomorphism andf ω is an isomorphism, Kerφi = Ker(πωi+1f
ωσXi )

∼=
KerσXi ∼= Ext1Λ(Ai−1,ω)∼= ExtiΛ(A,ω) by [11, Lemma 2.1].

Now we calculate Cokerφi .
Sincefi+1 = αi+1πi+1, f ωi+1 = πωi+1α

ω
i+1. From diagram (1) we know thatσPi αi+1 =

βωi f and αωi+1σ
ω
Pi

= f ωβωωi , and so f ωi+1σ
ω
Pi

= πωi+1α
ω
i+1σ

ω
Pi

= πωi+1f
ωβωωi . Since

σωPi σP
ω
i

= 1Pωi (cf. [1, Proposition 20.14]) andβωωi σPωi = σXi βi , we have thatf ωi+1 =
πωi+1f

ωβωωi σPωi = πωi+1f
ωσXi βi = φiβi. Sinceβi is epic, Imf ωi+1 = Im(φiβi) ∼= Imφi

and Cokerφi ∼= Pωi+1/ Imφi ∼= Pωi+1/ Imf ωi+1
∼= Cokerf ωi+1 =Xi+1. We are done. ✷

Lemma 3. Ext1 (Xi,ω)= 0 for anyi � 2.
Γ
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Proof. By [11, Lemma 2.1] there is an exact sequence:

0 → Ext1Γ (Xi,ω)→Ai−1
σAi−1−→ Aωωi−1 → Ext2Γ (Xi,ω)→ 0.

If i � 2, thenAi−1 is ω-torsionless becauseAi−1 is a submodule ofPi−2. It follows that
σAi−1 is monic and Ext1Γ (Xi,ω)= 0. ✷
Lemma 4. Supposem andn are positive integers andgradeω ExtmΛ(M,ω)� n− 1 for any

M ∈ modΛ. ThenExtjΓ (Xi+j−1,ω)= 0 for anyi �m+ 1 and1 � j � n.

Proof. The casen= 1 follows from Lemma 3. Now supposen� 2. Since gradeω ExtmΛ(M,
ω)� n− 1 for anyM ∈ modΛ, it is easy to see that gradeω ExtiΛ(M,ω)� n− 1 for any
M ∈ modΛ andi �m. Applying HomΓ (−,ω) to the exact sequences(ζi), . . . , (ζi+n−2)

(wherei �m+ 1) in Lemma 2, we get a chain of embeddings:

ExtnΓ (Xi+n−1,ω) ↪→ Extn−1
Γ (Xi+n−2,ω) ↪→ ·· · ↪→ Ext1Γ (Xi,ω).

Now our assertion follows from Lemma 3.✷
From now on, assume thatm and n are positive integers, r.idΓ (ω) � n and gradeω

ExtmΛ(M,ω)� n− 1 for anyM ∈ modΛ.

Lemma 5. ExtjΓ (Xi,ω)= 0 for anyi �m+ n andj � 1.

Proof. Since r.idΓ (ω) � n, ExtjΓ (Xi,ω) = 0 for any j � n + 1. On the other hand

ExtjΓ (Xi,ω)= 0 for any 1� j � n by Lemma 4. Hence we are done.✷
Lemma 6. Ai is ω-reflexive for anyi �m+ n− 1.

Proof. By [11, Lemma 2.1] there is an exact sequence:

0→ Ext1Γ (Xi+1,ω)→Ai
σAi−→Aωωi → Ext2Γ (Xi+1,ω)→ 0.

By Lemma 5, Ext1Γ (Xi+1,ω) = 0 = Ext2Γ (Xi+1,ω) for any i � m+ n− 1. SoσAi is an
isomorphism andAi is ω-reflexive. ✷
Lemma 7. ExtjΓ (A

ω
i ,ω)= 0 for anyi �m+ n− 1 andj � 1.

Proof. Because there is an exact sequence

0 →Aωi → Pωi

f ωi+1−→Pωi+1 →Xi+1 → 0,

our conclusion follows from Lemma 5.✷
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Lemma 8. gradeω ExtiΛ(A,ω)= ∞ for anyi �m+ n.

Proof. From the definition ofφi (see the proof of Lemma 2) we know thatφi =
πωi+1f

ωσXi andφωi = σωXi f ωωπωωi+1. Notice thatAi+1 is ω-reflexive by Lemma 6, soσAi+1

is an isomorphism. Sinceπωωi+1σPi+1 = σAi+1πi+1 andπi+1 is epic,πωωi+1 is also epic. On
the other hand,σωXi is epic by [1, Proposition 20.14],f ωω is an isomorphism sincef is an
isomorphism (see the proof of Lemma 1). Hence we have thatφωi is epic.

PutK = Imφi . Then we have an epic-monic decompositionφi = απ with π :Xi →K

epic andα :K → Pωi+1 monic. Sinceφωi is epic andπω is monic, fromφωi = πωαω we
know thatπω is an epimorphism and hence an isomorphism. Moreover, from the
sequence 0→ ExtiΛ(A,ω)→Xi

π−→K → 0 we get a long exact sequence:

0 → Kω
πω−→Xωi → [

ExtiΛ(A,ω)
]ω → Ext1Γ (K,ω)→ Ext1Γ (Xi,ω)

→ Ext1Γ
(
ExtiΛ(A,ω),ω

)→ Ext2Γ
(
K,ω)→ Ext2Γ (Xi,ω)→ ·· · → ExtjΓ

(
Xi,ω)

→ ExtjΓ
(
ExtiΛ(A,ω),ω

)→ Extj+1
Γ (K,ω)→ Extj+1

Γ (Xi,ω)→ ·· · ;

on the other hand, applying HomΓ (−,ω) to the exact sequence 0→ K
α−→Pωi+1 →

Xi+1 → 0 we get the following isomorphisms:

ExtjΓ (K,ω)
∼= Extj+1

Γ (Xi+1,ω)

for anyj � 1.
Note that i � m + n, so ExtjΓ (Xi,ω) = 0 = Extj+1

Γ (Xi+1,ω) for any j � 1 by
Lemma 5. It follows from the long exact sequence above that[ExtiΛ(A,ω)]ω = 0 =
ExtjΓ (ExtiΛ(A,ω),ω) for anyj � 1 and gradeω ExtiΛ(A,ω)= ∞. ✷

Assume thatΛ is a left and right Artin ring andΛωΓ =ΛωΛ. We now give the proof o
the main result.

Proof of Theorem. Because r.idΛ(ω) � n(< ∞), there is a well defined linear ma
β :K0(modΛop) → K0(modΛ) via β([X]) = ∑

i�0(−1)i[ExtiΛ(X,ω)] for any X in
modΛop.

For i �m+ n− 1, by Lemmas 6 and 7 we have

[A] =
i−1∑
j=0

(−1)j [Pj ] + (−1)i[Ai] =
i−1∑
j=0

(−1)j
[
Pωωj

]+ (−1)i
[
Aωωi

]

=
i−1∑
j=0

(−1)jβ
([
Pωj
])+ (−1)iβ

([
Aωi
])

= β

(
i−1∑
(−1)j

[
Pωj
]+ (−1)i

[
Aωi
])
,

j=0
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which implies thatβ is surjective.
Note thatΛ is a left and right Artin ring, so bothK0(modΛop) and K0(modΛ)

are finitely generated free abelian groups with rankK0(modΛop) = rankK0(modΛ),
and [X] = 0 if and only if X = 0 for any X in modΛop. On the other hand
gradeω ExtiΛ(A,ω) = ∞ for any i � m + n by Lemma 8. So ExtjΛ(ExtiΛ(A,ω),ω) = 0
for anyj � 0 andi �m+ n andβ([ExtiΛ(A,ω)])= 0 for anyi �m+ n. Consequently
[ExtiΛ(A,ω)] = 0 and ExtiΛ(A,ω) = 0 for any i � m + n, which implies l.idΛ(ω) �
m+ n− 1. ✷

References

[1] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, 2nd Edition, in: Graduate Te
Mathematics, Vol. 13, Springer-Verlag, Berlin–Heidelberg–New York, 1992.

[2] M. Auslander, I. Reiten, Applications to contravariantly finite subcategories, Advances in Math. 86 (
111–152.

[3] M. Auslander, I. Reiten, Cohen–Macaulay and Gorenstein algebras, in: G.O. Michler, C.M. Ringel
Representation Theory of Finite Groups and Finite Dimensional Algebras, Bielefeld 1991, in: Prog
Mathematics, Vol. 95, Birkhäuser, Basel, 1991, pp. 221–245.

[4] M. Auslander, I. Reiten,k-Gorenstein algebras and syzygy modules, J. Pure and Appl. Algebra 92 (
1–27.

[5] M. Auslander, I. Reiten, Syzygy modules for noetherian rings, J. Algebra 183 (1996) 167–185.
[6] J.E. Björk, The Auslander condition on noetherian rings, in: Séminaire d’Algèbre Paul Dubreil et M

Paul Malliavin, Paris 1987–1988, in: Lecture Notes in Mathematics, Vol. 1404, Springer-Verlag, B
Heidelberg–New York, 1989, pp. 137–173.

[7] R.M. Fossum, P.A. Griffith, I. Reiten, Trivial Extensions of Abelian Categories, in: Lecture Note
Mathematics, Vol. 456, Springer-Verlag, Berlin–Heidelberg–New York, 1975.

[8] Z.Y. Huang, Extension closure ofk-torsionfree modules, Comm. Algebra 27 (1999) 1457–1464.
[9] Z.Y. Huang,Wt -approximation representations over quasik-Gorenstein algebras, Science in China (Se

A) 42 (1999) 945–956.
[10] Z.Y. Huang, Selforthogonal modules with finite injective dimension, Science in China (Series A) 43 (

1174–1181.
[11] Z.Y. Huang, G.H. Tang, Self-orthogonal modules over coherent rings, J. Pure and Appl. Algebra 161

167–176.
[12] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986) 113–146.
[13] A. Zaks, Injective dimension of semiprimary rings, J. Algebra 13 (1969) 73–89.


