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1. Introduction

Given a triangulated category T , Rouquier introduced in [20,21] the dimension dim T
of T under the idea of Bondal and van den Bergh in [7]. This dimension and the infimum 
of the Orlov spectrum of T coincide, see [4,18]. Roughly speaking, it is an invariant that 
measures how quickly the category can be built from one object. This dimension plays 
an important role in representation theory. For example, it can be used to compute 
the representation dimension of artin algebras ([20,15]). Many authors have studied the 
upper bound of dim T , see [4,6,8,10,17,20,21,24] and so on.

There are a lot of triangulated categories having infinite dimension; for instance, Op-
permann and Št’ovíček proved in [17] that all proper thick subcategories of the bounded 
derived category of finitely generated modules over a Noetherian algebra containing 
perfect complexes have infinite dimension. Let Λ be an artin algebra and mod Λ the 
category of finitely generated right Λ-modules. It was proved in [21, Propositions 7.37 
and 7.4] that the dimension of the bounded derived category Db(mod Λ) is at most 
min{LL(Λ) − 1, gl.dim Λ}, where LL(Λ) and gl.dim Λ are the Loewy length and global 
dimension of Λ respectively.

As an analogue of the dimension of triangulated categories, the (extension) dimension 
ext.dimA of an abelian category A was introduced by Beligiannis in [5], also see [9]. Let 
Λ be an artin algebra. Note that the representation dimension of Λ is at most two (that 
is, Λ is of finite representation type) if and only if ext.dimmod Λ = 0 ([5]). So, like the 
representation dimension of Λ, the extension dimension ext.dimmod Λ is also an invariant 
that measures how far Λ is from of finite representation type. It was proved in [5,25]
that ext.dim mod Λ � min{LL(Λ) − 1, gl.dim Λ}, which is a counterpart of the above 
result of Roquier. In [24,25], we obtained many upper bounds of dimDb(mod Λ) and 
ext.dim mod Λ in terms of the radical layer length of Λ and the projective (or injective) 
dimension of some simple Λ-modules, such that the upper bounds LL(Λ) −1 and gl.dim Λ
are special cases.

In this paper, for an abelian category A, we establish the relation between the di-
mensions of A and the bounded derived category Db(A) of A. Then for an artin algebra 
Λ, we give the upper bounds of ext.dim mod Λ in terms of the radical layer length of Λ
and certain relative projective (or injective) dimension of some simple Λ-modules, from 
which some new upper bounds of dimDb(mod Λ) are induced. The paper is organized 
as follows.

In Section 2, we give some terminology and some preliminary results.
Let A be an abelian category. The dimensions of Db(A) and A are usually called 

the derived and extension dimensions of A, and denoted by der.dimA and ext.dimA
respectively. In Section 3, we get that der.dimA � 2 ext.dimA + 1 (Theorem 3.3). Let 
Λ be an artin algebra and V a certain class of simple Λ-modules. Then for a subcat-
egory X of mod Λ of finite type, we give an upper bound of ext.dim mod Λ in terms 
of the X -projective (or X -injective) dimension of V and the radical layer length of Λ
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(Theorem 3.12). Combining this result with Theorem 3.3, we get some new upper bounds 
of der.dim mod Λ (Theorem 3.18).

In Section 4, we give two examples to illustrate that in some cases, the upper bounds 
obtained in this paper are more precise, even arbitrarily smaller, than that in the liter-
ature known so far, and that we may obtain the exact value of the derived dimension of 
some certain algebras.

2. Preliminaries

Throughout this paper, A is an abelian category and all subcategories of A involved 
are full, additive and closed under isomorphisms and direct summands, and all functors 
between categories are additive. For a subclass U of A, we use addU to denote the 
subcategory of A consisting of direct summands of finite direct sums of objects in U .

2.1. The extension dimension of an abelian category

Let U1, U2, · · · , Un be subcategories of A. Define

U1 • U2 := add{A ∈ A | there exists an exact sequence 0 → U1 → A → U2 → 0

in A with U1 ∈ U1 and U2 ∈ U2}.

For any subcategories U , V and W of A, by [9, Proposition 2.2] we have

(U • V) •W = U • (V •W).

Inductively, we define

U1 • U2 • · · · • Un := add{A ∈ A | there exists an exact sequence 0 → U → A → V → 0

in A with U ∈ U1 and V ∈ U2 • · · · • Un}.

For a subcategory U of A, set [U ]0 = 0, [U ]1 = addU , [U ]n = [U ]1 • [U ]n−1 for any n � 2, 
and [U ]∞ =

⋃
n�0[U ]n ([5]).

Definition 2.1. ([5]) The extension dimension ext.dimA of A is defined to be

ext.dimA := inf{n � 0 | A = [A]n+1 with A ∈ A},

or ∞ if no such an integer exists.

The following lemma is used frequently in the sequel.

Lemma 2.2. ([25, Corollary 2.3(1)]) For any A1, A2 ∈ A and m, n � 1, we have

[A1]m • [A2]n ⊆ [A1 ⊕A2]m+n.
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2.2. The dimension of a triangulated category

Let T be a triangulated category and I ⊆ ObT . Let 〈I〉1 be the full subcategory of T
consisting of all direct summands of finite direct sums of shifts of objects in I. Given two 
subclasses I1, I2 ⊆ ObT , we use I1 ∗ I2 to denote the full subcategory of all extensions 
between them, that is,

I1 ∗ I2 = {X | there exists a distinguished triangle X1 −→ X −→ X2 −→ X1[1]

in T with X1 ∈ I1 and X2 ∈ I2}.

We write I1 
 I2 := 〈I1 ∗ I2〉1. Then for any subclasses I1, I2 and I3 of T , we have

(I1 
 I2) 
 I3 = I1 
 (I2 
 I3)

by the octahedral axiom. In addition, we write

〈I〉0 := 0, 〈I〉1 := 〈I〉 and 〈I〉n+1 := 〈I〉n 
 〈I〉1 for any n � 1.

Definition 2.3. ([14,15,20])

(1) The dimension dim T of a triangulated category T is defined to be

dim T := inf{n � 0 | T = 〈T 〉n+1 for some T ∈ T },

or ∞ if no such an integer exists.
(2) For a subcategory C of T , the dimension of C is defined to be

dimT C := inf{n � 0 | C ⊆ 〈T 〉n+1 for some T ∈ T },

or ∞ if no such an integer exists.
(3) For an abelian category A, the bounded derived category Db(A) of A is a triangu-

lated category. We call der.dimA := dimDb(A) the derived dimension of A.

The following lemma is an analogue of Lemma 2.2.

Lemma 2.4. ([19, Lemma 7.3]) For any T1, T2 ∈ T and m, n � 1, we have

〈T1〉m 
 〈T2〉n ⊆ 〈T1 ⊕ T2〉m+n.

2.3. Radical layer lengths and torsion pairs

We recall some notions from [11]. Let C be a length-category, that is, C is an abelian, 
skeletally small category and every object of C has a finite composition series. We use 
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EndZ(C) to denote the category of all additive functors from C to C, and use rad to 
denote the Jacobson radical lying in EndZ(C). For any α ∈ EndZ(C), set the α-radical 
functor Fα := rad ◦α.

Definition 2.5. ([11, Definition 3.1]) For any α, β ∈ EndZ(C), we define the (α, β)-layer 
length ��βα : C −→ N ∪ {∞} via ��βα(M) = inf{i � 0 | α ◦ βi(M) = 0}; and the α-radical 
layer length ��α := ��Fα

α .

Lemma 2.6. ([24, Lemma 2.6]) Let α, β ∈ EndZ(C). For any M ∈ C, if ��βα(M) = n, 
then ��βα(M) = ��βα(βj(M)) + j for any 0 � j � n; in particular, if ��α(M) = n, then 
��α(Fn

α (M)) = 0.

Recall that a torsion pair (or torsion theory) for C is a pair of classes (T , F) of objects 
in C satisfying the following conditions.

(1) HomC(M, N) = 0 for any M ∈ T and N ∈ F ;
(2) an object X ∈ C is in T if HomC(X, −)|F = 0;
(3) an object Y ∈ C is in F if HomC(−, Y )|T = 0.

For a subfunctor α of the identity functor 1C, we write qα := 1C/α. Let (T , F) be a 
torsion pair for C. Recall that the torsion radical t is a functor in EndZ(C) such that

0 −→ t(M) −→ M −→ qt(M) −→ 0

is a short exact sequence and qt(M) = M/t(M) ∈ F .

2.4. Homologically finite subcategories

Let Λ be an artin algebra and mod Λ the category of finitely generated right Λ-
modules. Let M, N ∈ mod Λ. Recall that a homomorphism f : N → M in mod Λ is called
right minimal if every h ∈ End(NΛ) such that fh = f is an automorphism. Let X be a 
subcategory of modΛ and M ∈ mod Λ. A homomorphism f : X → M in mod Λ is called a
right X -approximation of M if X ∈ X and the sequence HomΛ(X ′, f) is epic for any X ′ ∈
X . The category X is called a contravariantly finite subcategory of modΛ if each module 
in mod Λ admits a right X -approximation. Dually, (minimal) left X -approximations and
covariantly finite subcategories are defined ([3]). If f : X → M in mod Λ is a minimal 
right X -approximation of M and n � 1, then we write Ω1

X (M) := Ker f and Ωn
X (M) :=

Ω1
X (Ωn−1

X (M)). Dually, if f : M → X in mod Λ is a minimal left X -approximation of 
M , then we write Ω−1

X (M) := Coker f and Ω−n
X (M) := Ω−1

X (Ω−(n−1)
X (M)). In particular, 

Ω0
X (M) := M .
Recall that a subcategory X of mod Λ is called resolving if X contains all projective 

modules in modΛ, and X is closed under extensions and kernels of epimorphisms; and X
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is called coresolving if X contains all injective modules in mod Λ, and X is closed under 
extensions and cokernels of monomorphisms.

Let M ∈ mod Λ. If X is a contravariantly finite and resolving subcategory of modΛ, 
then there exists an exact sequence

· · · → Xn
fn−→ Xn−1 → · · · → X1

f1−→ X0
f0−→ M → 0

in mod Λ such that each Xi → Im fi is a (minimal) right X -approximation of Im fi. In 
this case, we call this exact sequence a (minimal) X -resolution of M .

Let X be a subcategory of modΛ and M ∈ mod Λ. If X is contravariantly finite and 
resolving, then the X -projective dimension pdX M of M is defined as inf{n | Ωn

X (M) ∈
X}, and set pdX M = ∞ if no such an integer exists. Dually, if X is covariantly finite and 
coresolving, then the X -injective dimension idX M of M is defined as inf{n | Ω−n

X (M) ∈
X}, and set idX M = ∞ if no such an integer exists. In particular, set pdX M = −1 =
idX M if M = 0.

3. Main results

3.1. A relation between the derived and extension dimensions

The following lemma is essentially contained in the proof of [10, Theorem].

Lemma 3.1. For any bounded complex X = (Xn, fn)n∈Z over A, we have

X ∈ 〈⊕n∈ZYn[n]〉1 
 〈⊕n∈ZZn[n]〉1

in Db(A), where Yn = Ker fn and Zn = Im fn for any n ∈ Z, and both ⊕n∈ZYn[n] and 
⊕n∈ZZn[n] have only finitely many nonzero summands.

We also need the following lemma.

Lemma 3.2.

(1) For an object M ∈ A, if M ∈ [T ]n+1 for some T ∈ A, then M ∈ 〈T 〉n+1 in Db(A)
with M and T stalk complexes in degree zero.

(2) dimDb(A) A � min{der.dimA, ext.dimA}.

Proof. (1) Let M ∈ [T ]n+1. Then we have the following exact sequence

0 −→ Yi −→ Zi−1 ⊕ Z ′
i−1 −→ Zi −→ 0

in A with Z0 = M , Yi ∈ [T ]1 and Zi ∈ [T ]n+1−i for any 1 � i � n. It induces a triangle
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Yi −→ Zi−1 ⊕ Z ′
i−1 −→ Zi −→ Yi[1]

in Db(A) for any 1 � i � n. Thus 〈Zi−1〉1 ⊆ 〈Yi〉1
〈Zi〉1 for any 1 � i � n, and therefore

M ∈ 〈Z0〉1 ⊆〈Y1〉1 
 〈Y2〉1 
 · · · 
 〈Yn〉1 
 〈Zn〉1
⊆〈T 〉1 
 〈T 〉1 
 · · · 
 〈T 〉1 
 〈T 〉1︸ ︷︷ ︸

n

⊆〈T 〉n+1. (by Lemma 2.4)

(2) By (1) and Definition 2.3. �
We establish a relation between the derived and extension dimensions of A.

Theorem 3.3. We have

dimDb(A) A � der.dimA � 2 dimDb(A) A + 1 � 2 ext.dimA + 1.

Proof. By Lemma 3.2(2), it suffices to prove der.dimA � 2 dimDb(A) A +1. Without loss 
of generality, suppose that dimDb(A) A = m < ∞ and A ⊆ 〈T 〉m+1 for some T ∈ Db(A). 
For any X ∈ Db(A), by Lemma 3.1 we have

X ∈ 〈⊕n∈ZYn[n]〉1 
 〈⊕n∈ZZn[n]〉1

in Db(A), where Yn, Zn ∈ A for any n ∈ Z, and ⊕n∈ZYn[n] and ⊕n∈ZZn[n] have only 
finitely many nonzero direct summands.

By Lemma 3.2, we have Zn[n] ∈ 〈T 〉m+1 and ⊕n∈ZZn[n] ∈ 〈T 〉m+1, and then 
〈⊕n∈ZZn[n]〉1 ⊆ 〈T 〉m+1. Similarly, we have 〈⊕n∈ZYn[n]〉1 ⊆ 〈T 〉m+1. It follows from 
Lemma 2.4 that

X ∈ 〈⊕n∈ZYn[n]〉1 
 〈⊕n∈ZZn[n]〉1 ⊆ 〈T 〉m+1
 ⊆ 〈T 〉m+1 ⊆ 〈T 〉2m+2

and der.dimA � 2m + 1. �
Let Λ be an artin algebra. For simplicity, we write

ext.dim Λ := ext.dim mod Λ and der.dim Λ := der.dim mod Λ.

Recall from [2] that the representation dimension rep.dim Λ of Λ is defined as

rep.dim Λ :=

⎧⎪⎪⎨
⎪⎪⎩

inf{gl.dim EndΛ(M) | M is a generator-cogenerator for mod Λ},
if Λ is non-semisimple;

1, if Λ is semisimple.
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In [14, p.70], Oppermann posed an open question:
Are there non-semisimple artin algebras Λ, such that the equality holds in the inequality

rep.dim Λ � der.dim Λ?

Let Λ be a non-semisimple artin algebra of finite representation type. It is well known 
that rep.dim Λ = 2. By [10, Theorem], we have der.dim Λ � 1. Thus, in this case, 
rep.dim Λ > der.dim Λ. Here, we give the following example in which Λ is of infinite 
representation type such that rep.dim Λ > der.dim Λ.

Example 3.4. Let Λ be the Beilinson algebra kQ/I with Q the quiver

0
xn

x0

... 1
xn

x0

... 2
xn

x0

... 3 · · · n− 1
xn

x0

... n

and I = (xixj − xjxi) (where 0 � i, j � n) (see [16, Example 3.7]). Then gl.dim Λ =
n. From [16, Theorem 4.15] and its proof, we know that rep.dim Λ = n + 2 and 
dimDb(mod Λ) mod Λ � n. Then ext.dim Λ � n by Lemma 3.2(2). On the other hand, 
we have ext.dim Λ � rep.dim Λ − 2 = (n + 2) − 2 = n by [25, Corollary 3.6]. Thus 
ext.dim Λ = n. Note that der.dim Λ � gl.dim Λ = n (see [15, Lemma 2.11] or [21, Propo-
sition 7.4]). Now Lemma 3.2(2) induces the following equality

dimDb(mod Λ) mod Λ = ext.dim Λ = der.dim Λ = gl.dim Λ = rep.dim Λ − 2 = n.

3.2. Syzygies and cosyzygies

Let M ∈ A. If A has enough projective objects, then there exists an exact sequence

· · · → Pi → · · · → P1 → P0 → M → 0

in A with all Pi projective. We write Ωn(M) := Im(Pn → Pn−1) for any n � 1. Dually, 
if A has enough injective objects, then there exists an exact sequence

0 → M → I0 → I1 → · · · → Ii → · · ·

in A with all Ii injective. We write Ω−n(M) := Im(In−1 → In) for any n � 1. In 
particular, we write Ω0(M) := M .

Lemma 3.5.

(1) If A has enough projective objects and

0 −→ M −→ X0 −→ X1 −→ · · · −→ Xn −→ 0,
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is an exact sequence in A with n � 0, then

M ∈ [Ωn(Xn)]1 • [Ωn−1(Xn−1)]1 • · · · • [Ω1(X1)]1 • [X0]1 ⊆ [⊕n
i=0Ωi(Xi)]n+1.

(2) If A has enough injective objects and

0 −→ Xn −→ · · · −→ X1 −→ X0 −→ M −→ 0,

is an exact sequence in A with n � 0, then

M ∈ [X0]1 • [Ω−1(X1)]1 • · · · • [Ω−n(Xn)]1 ⊆ [⊕n
i=0Ω−i(Xi)]n+1.

Proof. The assertion (1) is [9, Lemma 5.8], and (2) is dual to (1). �
Lemma 3.6. Let X, Y ∈ A satisfy [X]n1 ⊆ [Y ]n2 with n1, n2 � 1. Then for any m � 0, 
we have

(1) If A has enough projective objects, then [Ωm(X)]n1 ⊆ [Ωm(Y )]n1n2 .
(2) If A has enough injective objects, then [Ω−m(X)]n1 ⊆ [Ω−m(Y )]n1n2 .

Proof. We only prove (1), and we get (2) dually.
We proceed by induction on n1. Let n1 = 1 and W ∈ [Ωm(X)]1. Then

W ⊕W1 ∼= (Ωm(X))(l)(∼= Ωm(X(l))

for some l � 1 and W1 ∈ A. Since X(l) ∈ [X]1 ⊆ [Y ]n2 by assumption, we have the 
following exact sequences

0 −→ Y ′
1 −→ X(l) ⊕ Z1 −→ Y1 −→ 0,

0 −→ Y ′
2 −→ Y1 ⊕ Z2 −→ Y2 −→ 0,

0 −→ Y ′
3 −→ Y2 ⊕ Z3 −→ Y3 −→ 0,

· · · · · · · · ·
0 −→ Y ′

n2−1 −→ Yn2−2 ⊕ Zn2−1 −→ Yn2−1 −→ 0,

where Zi ∈ A, Y ′
i ∈ [Y ]1 and Yi ∈ [Y ]n2−i for any 1 � i � n2 − 1. By the horseshoe 

lemma, we have

0 −→ Ωm(Y ′
1) −→ Ωm(X(l)) ⊕ Ωm(Z1) ⊕ P1 −→ Ωm(Y1) −→ 0,

0 −→ Ωm(Y ′
2) −→ Ωm(Y1) ⊕ Ωm(Z2) ⊕ P2 −→ Ωm(Y2) −→ 0,

0 −→ Ωm(Y ′
3) −→ Ωm(Y2) ⊕ Ωm(Z3) ⊕ P3 −→ Ωm(Y3) −→ 0,

· · · · · · · · ·
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0 −→ Ωm(Y ′
n2−1) −→ Ωm(Yn2−2) ⊕ Ωm(Zn2−1) ⊕ Pn2−1 −→ Ωm(Yn2−1) −→ 0,

where all Pi are projective. Then we have

Ωm(X(l)) ∈[Ωm(Y ′
1)]1 • [Ωm(Y1)]1

⊆[Ωm(Y ′
1)]1 • [Ωm(Y ′

2)]1 • [Ωm(Y2)]1
⊆[Ωm(Y ′

1)]1 • [Ωm(Y ′
2)]1 • [Ωm(Y ′

3)]1 • [Ωm(Y3)]1
· · · · · · · · ·

⊆[Ωm(Y ′
1)]1 • [Ωm(Y ′

2)]1 • · · · • [Ωm(Y ′
n2−1)]1 • [Ωm(Yn2−1)]1

⊆[(⊕n2−1
i=1 Ωm(Y ′

i )) ⊕ Ωm(Yn2−1)]n2

⊆[Ωm(Y )]n2 ,

and hence W ∈ [Ωm(Y )]n2 . The case for n1 = 1 is proved.
Now suppose n1 � 2 and W ∈ [Ωm(X)]n1 . By [25, Proposition 2.2(3)] and assumption, 

we have

[X]1 ⊆ [X]n1−1 ⊆ [X]n1 ⊆ [Y ]n2 .

Then by the induction hypothesis, we have

[Ωm(X)]1 ⊆ [Ωm(Y )]n2 and [Ωm(X)]n1−1 ⊆ [Ωm(Y )](n1−1)n2 .

Thus

W ∈[Ωm(X)]n1

=[Ωm(X)]1 • [Ωm(X)]n1−1

⊆[Ωm(Y )]n2 • [Ωm(Y )](n1−1)n2 (by [25, Proposition 2.2(1)])

=[Ωm(Y )]n1n2.

The proof is finished. �
3.3. tV -radical layer length and extension dimension

From now on, Λ is an artin algebra. Then the category modΛ of finitely generated 
right Λ-modules is a length-category. We use radΛ to denote the Jacobson radical of Λ. 
For a module M in mod Λ, we use topM to denote the top of M .

Let S be the set of all pairwise non-isomorphic simple modules in modΛ and V a 
subset of S. We write F (V) := {M ∈ mod Λ | there exists a finite chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M
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of submodules of M such that each quotient Mi/Mi−1 is isomorphic to some module in 
V}. By [11, Lamma 5.7 and Proposition 5.9], we have that (TV , F(V)) is a torsion pair, 
where

TV = {M ∈ mod Λ | topM ∈ addV ′ with V ′ = S\V}.

We use tV to denote the torsion radical of the torsion pair (TV , F(V)). Then tV(M) ∈ TV
and q

tV
(M) ∈ F(V) for any M ∈ mod Λ. By [11, Proposition 5.3], we have

F(V) = {M ∈ mod Λ | tV(M) = 0},
TV = {M ∈ mod Λ | tV(M) ∼= M}.

We have the following easy observation.

Lemma 3.7. Let V be a subset of S. Then for any M ∈ mod Λ and i � 0, we have the 
following exact sequences

0 → tVF
i
tV (M) → F i

tV (M) → qtVF
i
tV (M) → 0,

0 → F i+1
tV (M) → tVF

i
tV (M) → top tVF

i
tV (M) → 0,

where FtV = rad ◦tV .

Lemma 3.8. Let V be a subset of S and M ∈ mod Λ.

(1) If ��tV (M) = 0, then M ∈ F(V) and M ∼= qtV (M).
(2) If ��tV (Λ) = n, then ��tV (Fn

tV (M)) = 0; in particular, Fn
tV (M) ∈ F(V).

(3) If M = ⊕m
i=1Mi, then ��tV (M) = max{��tV (Mi) | 1 � i � n}.

Proof. (1) If ��tV (M) = 0, then tV(M) = 0 and M ∈ F(V). Putting i = 0 in the first 
exact sequence in Lemma 3.7, we have M ∈ F(V).

(2) By [11, Lemma 3.4(b)], we have ��tV (M) � ��tV (Λ) = n. Thus ��tV (Fn
tV (M)) = 0

by Lemma 2.6.
(3) It follows from [11, Lemma 3.4(a)]. �

Lemma 3.9. Let V be a subset of S. Then the following statements are equivalent.

(1) V = S.
(2) ��tV (Λ) = 0.
(3) ��tV (M) = 0 for any M ∈ mod Λ.
(4) F(V) = mod Λ.

Proof. The implications (1) ⇔ (4) and (3) ⇒ (2) are trivial. By [24, Proposition 3.4], 
we have (2) ⇒ (3).
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Since F(V) = mod Λ if and only if tV(M) = 0 for any M ∈ mod Λ, we have (3) ⇔
(4). �

For a subcategory X of mod Λ, we write

X⊥ := {Z ∈ mod Λ | ExtiΛ(X,Z) = 0 for any X ∈ X and i � 1}.

Lemma 3.10. Let X be a contravariantly finite and resolving subcategory of modΛ and

0 −→ C1 −→ C2 −→ C3 −→ 0

an exact sequence in modΛ. Then there exists the following commutative diagram with 
exact columns and rows

0 0 0 0 0

· · · Xn
1 Xn−1

1 · · · X1
1 X0

1 C1 0

· · · Xn
2 Xn−1

2 · · · X1
2 X0

2 C2 0

· · · Xn
3 Xn−1

3 · · · X1
3 X0

3 C3 0

0 0 0 0 0

satisfying the following conditions.

(1) The top and bottom rows are minimal X -resolutions of C1 and C3 respectively, and 
the middle row is an X -resolution of C2.

(2) For any i � 1, set Y i := Ker(Xi−1
2 → Xi−2

2 ) (note: X−1
2 = C2). Then Y i =

Ωi
X (C2) ⊕Xi for some Xi ∈ X , and all Ωi

X (C1), Ωi
X (C3) and Y i are in X⊥. More-

over, for any i � 1, we have the following exact sequence

0 → Ωi
X (C1) → Y i(= Ωi

X (C2) ⊕Xi) → Ωi
X (C3) → 0. (3-i)

In particular, if Ωn
X (C3) ∈ X for some n � 1, then the sequence (3-n) splits.

Proof. Since X is a contravariantly finite and resolving subcategory of modΛ, by [3, 
Proposition 3.3(c)] we have minimal X -resolutions
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· · · → Xn
1 → Xn−1

1 → · · · → X1
1 → X0

1 → C1 → 0,
· · · → Xn

3 → Xn−1
3 → · · · → X1

3 → X0
1 → C3 → 0

of C1 and C3 respectively with all Ωi
X (C1) and Ωi

X (C3) are in X⊥. Then by [3, Proposition 
3.6], we get the commutative diagram as above such that all Y i are in X⊥, where 
Y i = Ker(Xi−1

2 → Xi−2
2 ) (note: X−1

2 = C2). It follows that the middle row in the above 
diagram is an X -resolutions of C2 and Y i = Ωi

X (C2) ⊕Xi with Xi ∈ X for any i � 1. 
In particular, we have the following exact sequence

0 → Ωi
X (C1) → Y i(= Ωi

X (C2) ⊕Xi) → Ωi
X (C3) → 0

for any i � 1, which induces an exact sequence

0 → HomΛ(Ωi
X (C3),Ωi

X (C1)) → HomΛ(Ωi
X (C3), Y i) → HomΛ(Ωi

X (C3),Ωi
X (C3))

→ Ext1Λ(Ωi
X (C3),Ωi

X (C1)).

If Ωn
X (C3) ∈ X for some n � 1, then Ext1Λ(Ωn

X (C3), Ωn
X (C1)) = 0 and the exact sequence 

(3-n) splits. �
Let B be a subclass of mod Λ. If X is a contravariantly finite and resolving subcategory 

of mod Λ, then the X -projective dimension pdX B of B is defined as

pdX B =
{

sup{pdX M | M ∈ B}, if B �= ∅;
−1, if B = ∅.

If X is a covariantly finite and coresolving subcategory of modΛ, then the X -injective 
dimension idX B of B is defined as

idX B =
{

sup{idX M | M ∈ B}, if B �= ∅;
−1, if B = ∅.

Lemma 3.11. Let V be a subset of S and M ∈ F(V). Then we have

(1) pdX M � pdX V; in particular, pdX qtV (M) � pdX V.
(2) idX M � idX V; in particular, idX qtV (M) � idX V.

Proof. (1) Let M ∈ F (V). Then there exists a finite chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M

of submodules of M such that each quotient Mi/Mi−1 is isomorphic to some module in V. 
It follows from Lemma 3.10(2) that pdX M � pdX V. In particular, pdX qtV (M) � pdX V
since qtV (M) ∈ F (V).
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(2) It is dual to (1). �
Recall that a category X of mod Λ is said to be of finite type if there are only finitely 

many pairwise non-isomorphic indecomposable modules in X . Also recall that S denotes 
the set of all pairwise non-isomorphic simple modules in modΛ. We are in a position to 
prove the following result.

Theorem 3.12. Let V be a subset of S and X a subcategory of modΛ of finite type.

(1) If X is resolving, then ext.dim Λ � pdX V + ��tV (Λ).
(2) If X is coresolving, then ext.dim Λ � idX V + ��tV (Λ).

Proof. Set ��tV (Λ) = n. Since X is of finite type, we have that X is contravariantly and 
covariantly finite and X = addX for some X ∈ mod Λ.

If n = 0, that is, ��tV (Λ) = 0, then M ∼= qtV (M) by Lemmas 3.9 and 3.8(1), and hence 
pdX M = pdX qtV (M) � pdX V and idX M = idX qtV (M) � idX V by Lemma 3.11. The 
case for n = 0 is proved. Now suppose n � 1.

(1) Let pdX V = p < ∞. By Lemma 3.11(1), we have pdX qtVF
i
tV (M) � p and 

Ωp+1
X (qtVF i

tV (M)) = 0 for any 0 � i � n −1. By Lemma 3.8(2), we have Fn
tV (M) ∈ F(V). 

It follows from Lemma 3.11(1) that pdX Fn
tV (M) � p. Thus Ωp

X (Fn
tV (M)) ∈ X and 

Ωp+1
X (Fn

tV (M)) = 0.
By Lemmas 3.7 and 3.10, we have

Ωp+1
X (tVF i

tV (M)) ∼= Ωp+1
X (F i

tV (M)) ⊕Xi, (3.1)

0 → Ωp+1
X (F i+1

tV (M)) → Ωp+1
X (tVF i

tV (M)) ⊕X ′
i → Ωp+1

X (top tVF
i
tV (M)) → 0 (exact)

(3.2)

with Xi, X ′
i ∈ addX = X for any 0 � i � n − 1. In particular, when i = n − 1 in (3.2), 

we have

Ωp+1
X (tVFn−1

tV (M)) ⊕X ′
n−1

∼= Ωp+1
X (top tVF

n−1
tV (M)). (3.3)

It follows that

[Ωp+1
X (M)]1 ⊆[Ωp+1

X (tV(M))]1 (putting i = 0 in (3.1))

⊆[Ωp+1
X (FtV (M))]1 • [Ωp+1

X (top tV(M))]1 (putting i = 0 in (3.2))

⊆[Ωp+1
X (tVFtV (M))]1 • [Ωp+1

X (top tV(M))]1 (putting i = 1 in (3.1))

⊆[Ωp+1
X (tVFtV (M))]1 • [Ωp+1

X (Λ/ radΛ)]1.

By replacing M with F i
tV (M) for any 1 � i � n − 1 and iterating the above process, we 

have
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[Ωp+1
X (M)]1 ⊆[Ωp+1

X (tVFn−1
tV (M))]1 • [Ωp+1

X (Λ/ radΛ)]n−1

⊆[Ωp+1
X (top tVF

n−1
tV (M))]1 • [Ωp+1

X (Λ/ radΛ)]n−1 (by (3.3))

⊆[Ωp+1
X (Λ/ radΛ)]1 • [Ωp+1

X (Λ/ radΛ)]n−1

⊆[Ωp+1
X (Λ/ radΛ)]n. (by Lemma 2.2) (3.4)

Consider the following exact sequence

0 −→ Ωp+1
X (M) −→ Xp −→ Xp−1 −→ · · · −→ X1 −→ X0 −→ M −→ 0

in mod Λ with all Xi in addX = X . Thus we have

[M ]1 ⊆[X0]1 • [Ω−1(X1)]1 • · · · • [Ω−p(Xp)]1 • [Ω−(p+1)(Ωp+1
X (M))]1 (by Lemma 3.5(2))

⊆[⊕p
i=0Ω

−i(X)]p+1 • [Ω−(p+1)(Ωp+1
X (M))]1 (by Lemma 2.2)

⊆[⊕p
i=0Ω

−i(X)]p+1 • [Ω−(p+1)(Ωp+1
X (Λ/ radΛ))]n (by (3.4) and Lemma 3.6(1))

⊆[⊕p
i=0Ω

−i(X) ⊕ Ω−(p+1)(Ωp+1
X (Λ/ radΛ))]p+1+n. (by Lemma 2.2)

It follows that

mod Λ = [⊕p
i=0Ω

−i(X) ⊕ Ω−(p+1)(Ωp+1
X (Λ/ radΛ))]p+1+n

and ext.dim Λ � p + n.
(2) The proof is dual to that of (1), but we still give it here for the readers’ convenience.
Let idX V = p < ∞. By Lemma 3.11(2), we have idX qtVF

i
tV (M) � p and 

Ω−(p+1)
X (qtVF i

tV (M)) = 0 for any 0 � i � n − 1. By Lemma 3.8(2), we have Fn
tV (M) ∈

F(V). Then by Lemma 3.11(2), we have idX Fn
tV (M) � p. Thus Ω−p

X (Fn
tV (M)) ∈ X and 

Ω−(p+1)
X (Fn

tV (M)) = 0.
By Lemma 3.7 and the dual of Lemma 3.10, we have

Ω−(p+1)
X (tVF i

tV (M)) ∼= Ω−(p+1)
X (F i

tV (M)) ⊕Xi, (3.5)

0 → Ω−(p+1)
X (F i+1

tV (M)) → Ω−(p+1)
X (tVF i

tV (M)) ⊕X ′
i → Ω−(p+1)

X (top tVF
i
tV (M))

→ 0 (exact) (3.6)

with Xi, X ′
i ∈ addX = X for any 0 � i � n − 1. In particular, when i = n − 1 in (3.6), 

we have

Ω−(p+1)
X (tVFn−1

tV (M)) ⊕X ′
n−1

∼= Ω−(p+1)
X (top tVF

n−1
tV (M)). (3.7)

It follows that
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[Ω−(p+1)
X (M)]1 ⊆[Ω−(p+1)

X (tV(M))]1 (putting i = 0 in (3.5))

⊆[Ω−(p+1)
X (FtV (M))]1 • [Ω−(p+1)

X (top tV(M))]1 (putting i = 0 in (3.6))

⊆[Ω−(p+1)
X (tVFtV (M))]1 • [Ω−(p+1)

X (top tV(M))]1 (putting i = 1 in (3.5))

⊆[Ω−(p+1)
X (tVFtV (M))]1 • [Ω−(p+1)

X (Λ/ radΛ)]1.

By replacing M with F i
tV (M) for any 1 � i � n − 1 and iterating the above process, we 

have

[Ω−(p+1)
X (M)]1 ⊆[Ω−(p+1)

X (tVFn−1
tV (M))]1 • [Ω−(p+1)

X (Λ/ radΛ)]n−1

⊆[Ω−(p+1)
X (top tVF

n−1
tV (M))]1 • [Ω−(p+1)

X (Λ/ radΛ)]n−1 (by (3.7))

⊆[Ω−(p+1)
X (Λ/ radΛ)]1 • [Ω−(p+1)

X (Λ/ radΛ)]n−1

⊆[Ω−(p+1)
X (Λ/ radΛ)]n. (by Lemma 2.2) (3.8)

Consider the following exact sequence

0 → M → X0 → X1 → · · · → Xp → Ω−(p+1)
X (M) → 0

in mod Λ with all Xi in addX = X . Thus we have

[M ]1 ⊆[X0]1 • [Ω1(X1)]1 • · · · • [Ωp(Xp)]1 • [Ωp+1(Ω−(p+1)
X (M))]1 (by Lemma 3.5(1))

⊆[⊕p
i=0Ω

i(X)]p+1 • [Ωp+1(Ω−(p+1)
X (M))]1

⊆[⊕p
i=0Ω

i(X)]p+1 • [Ωp+1(Ω−(p+1)
X (Λ/ radΛ))]n (by (3.8) and Lemma 3.6(2))

⊆[⊕p
i=0Ω

i(X) ⊕ Ωp+1(Ω−(p+1)
X (Λ/ radΛ))]p+1+n. (by Lemma 2.2)

It follows that

mod Λ = [⊕p
i=0Ω

i(X) ⊕ Ωp+1(Ω−(p+1)
X (Λ/ radΛ))]p+1+n

and ext.dim Λ � p + n. �
By using exactly the same method, it can be proved that Theorem 3.12 holds true in 

the following more general case.

Remark 3.13. Let (T , F) be a torsion pair in modΛ and t its torsion radical, and let X
be a subcategory of mod Λ of finite type.

(1) If X is resolving, then ext.dim Λ � pdX F + ��t(Λ).
(2) If X is coresolving, then ext.dim Λ � idX F + ��t(Λ).
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3.4. Some applications

Corollary 3.14. Let X be a subcategory of modΛ of finite type.

(1) If X is resolving, then ext.dim Λ � pdX S.
(2) If X is coresolving, then ext.dim Λ � idX S.

Proof. It follows from Theorem 3.12 and Lemma 3.9. �
If X is the subcategory of modΛ consisting of projective (resp. injective) modules, 

then the X -projective dimension pdX M (resp. X -injective dimension idX M) of a module 
M in mod Λ is exactly its projective dimension pdM (resp. injective dimension idM). 
In this case, for a subclass of mod Λ, we write

pdB := pdX B and idB := idX B.

Corollary 3.15.

(1) der.dim Λ � 2 ext.dim Λ + 1.
(2) For any subset V of S, we have

(2.1) ext.dim Λ � min{pdV, idV} + ��tV (Λ).
(2.2) der.dim Λ � 2(min{pdV, idV} + ��tV (Λ)) + 1.

(3) ([12, 4.5.1(3)]) ext.dim Λ � gl.dim Λ.

Proof. The assertion (1) is a direct consequence of Theorem 3.3. The assertion (2.1) 
follows from Theorem 3.12, and (2.2) follows from (1) and (2.1). Since gl.dimΛ = pdS =
idS, the assertion (3) is a special case of Corollary 3.14. �
Corollary 3.16. ([10, Theorem]) If Λ is of finite representation type, then der.dim Λ � 1.

Proof. It is easy to see that Λ is of finite representation type if and only if ext.dim Λ = 0
([5, Example 1.6(i)]). Now the assertion follows from Corollary 3.15(1). �

For any n � 0, recall from [23] that Λ is called n-Igusa-Todorov if there exists U ∈
mod Λ such that for any M ∈ mod Λ, there exists an exact sequence

0 → U1 −→ U0 → Ωn(M) ⊕ P → 0

in mod Λ with U1, U0 ∈ addU and P projective. The class of Igusa-Todorov algebras 
includes algebras with representation dimension at most 3, algebras with radical cube 
zero, monomial algebras, left serial algebras and syzygy finite algebras ([23]).
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Corollary 3.17.

(1) If Λ is an n-Igusa-Todorov algebra, then der.dim Λ � 2n + 3.
(2) der.dim Λ � 5 if Λ is one class of the following algebras.

(2.1) monomial algebras;
(2.2) left serial algebras;
(2.3) rad2n+1 Λ = 0 and Λ/ radn Λ is of finite representation type;
(2.4) 2-syzygy finite algebras.

Proof. (1) If Λ is n-Igusa-Todorov, then ext.dim Λ � n + 1 by [25, Proposition 3.15(2)]. 
Thus der.dim Λ � 2n + 3 by Corollary 3.15(1).

(2) The assertion follows from [25, Corollary 3.16] and Corollary 3.15(1). �
Set

u1 := 2(min{pdV, idV} + ��tV (Λ)) + 1,

u2 := (min{pdV, idV} + 2)(��tV (Λ) + 1) − 2.

Then u2 − u1 = (min{pdV, idV})(��tV (Λ) − 1) − 1. Thus u2 − u1 � 0 if and only if 
min{pdV, idV} � 1 and ��tV (Λ) � 2. Now, combining Corollary 3.15(2.2) with [24, 
Theorem 3.12], we get our main result as follows.

Theorem 3.18. Let V be a subset of S, and let min{pdV, idV} = d and ��tV (Λ) = n. 
Then we have

der.dim Λ �
{

2(d + n) + 1, if d � 1 and n � 2;
(d + 2)(n + 1) − 2, otherwise.

Now we compare the upper bounds obtained in the above theorem with those known 
upper bounds for der.dim Λ.

Remark 3.19. Keeping the notation as above, the following results have been known.

(1) der.dim Λ � LL(Λ) − 1 ([20, Proposition 7.37]);
(2) der.dim Λ � gl.dim Λ ([20, Proposition 7.4] and [13, Proposition 2.6]);
(3) der.dim Λ � (d + 2)(n + 1) − 2 ([24, Theorem 3.12]).

According to the argument before Theorem 3.18, we have that when d � 1 and n � 2, 
the upper bounds in Theorem 3.18 are at most that in (3), with equality if d = 1 and 
n = 2; otherwise, they coincide.

It was pointed out in [24, Remark 3.16] that if V = ∅, then the upper bounds in 
(1) and (3) coincide; and if V = S, then the upper bounds in (2) and (3) coincide. By 
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choosing suitable V, the upper bounds in (3) are smaller than that in (1) and (2) and 
the difference may be arbitrarily large; see [24, Examples 4.1 and 4.2].

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. Let k be an algebraically closed field and Λ = kQ/I, where Q is the quiver

1

α

β
2

γ1

γ2
3 δ 4

ρ1

n + 4

μ1 μ2

n + 3
ρn

n + 2
ρn−1 · · ·

ρn−2
7

ρ4 6
ρ3 5

ρ2

and I is generated by {αm, αβ, γ1δ − γ2δ, ρnμ1α, ρnμ2α, μ1β − μ2β} with m � 4 and 
n � 1 (note: following [1,22], we concatenate the arrows from left to right). Then the 
indecomposable projective Λ-modules are

1 2

1 2 3 3 3 n + 4

P (1) = 1 3 3 P (2) = 4 P (3) = 4 P (n + 4) = 1 1

1 4 5 5 1 1

.

.

. 5
.
.
.

.

.

. 1 1

1
.
.
. n + 2 n + 2 1 1

1 n + 3 n + 3 n + 3
.
.
.

.

.

.

1 n + 4 n + 4 n + 4 1 1

1 1 1 1 1 1 1 1

and P (i) = radP (i − 1) for each 4 � i � n + 3. It is straightforward to verify that

pdS(i) =

⎧⎪⎪⎨
⎪⎪⎩
∞, if i = 1, n + 3;
2, if i = 2, n + 4;
1, if 3 � i � n + 2.
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Let V := {S(i) | 3 � i � n + 2}. Then pdV = 1. Let V ′ be all the others simple modules 
in mod Λ, that is, V ′ = {S(1), S(2), S(n + 3), S(n + 4)}. Since Λ = ⊕n+4

i=1 P (i), we have

��tV (Λ) = max{��tV (P (i)) | 1 � i � n + 4}

by [11, Lemma 3.4(a)].
In order to compute ��tV (P (1)), we need to find the least non-negative integer i such 

that tVF i
tV (P (1)) = 0. Since topP (1) = S(1) ∈ addV ′, we have tV(P (1)) = P (1) by [11, 

Proposition 5.9(a)]. Thus

FtV (P (1)) = rad tV(P (1)) = radP (1) = Tm−1 ⊕ P (2),

1

where Tm−1 = 1 (the number of 1 is m− 1).

...

1
Since topTm−1 = S(1) ∈ V ′, we have tV(Tm−1) = Tm−1 by [11, Proposition 5.9(a)]

again. Similarly, tV(P (2)) = P (2). Thus we have

tVFtV (P (1)) = tV(Tm−1 ⊕ P (2)) = tV(Tm−1) ⊕ tV(P (2)) = Tm−1 ⊕ P (2),

F 2
tV (P (1)) = rad tVFtV (P (1)) = rad(Tm−1 ⊕ P (2)) = rad(Tm−1) ⊕ rad(P (2))

= Tm−2 ⊕M,

3 3

4

where M = 5

...

n + 2

n + 3

n + 4

1 1.
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Thus

tVF 2
tV (P (1)) = tV(Tm−2 ⊕M) = tV(Tm−2) ⊕ tV(M) = Tm−2 ⊕ P (n + 3).

Repeating the process, we get that S(1) is a direct summand of tVFm−1
tV (P (1)), that is, 

tVF
m−1
tV (P (1)) �= 0 and tVFm

tV (P (1)) = 0. It follows that ��tV (P (1)) = m. Similarly, we 
have

��tV (P (i)) =

⎧⎪⎪⎨
⎪⎪⎩

4, if i = 2;
3, if 3 � i � n + 3;
m + 1, if i = n + 4.

Consequently, we conclude that

��tV (Λ) = max{��tV (P (i)) | 1 � i � n + 4} = m + 1.

(1) Since LL(Λ) = n + 5 and gl.dim Λ = ∞, by [5, Example 1.6(ii)] we have

ext.dim Λ � LL(Λ) − 1 = max{m− 1, n + 5} − 1 = max{m− 2, n + 4}.

(2) By Corollary 3.15(2.1), we have

ext.dim Λ � pdV + ��tV (ΛΛ) = 1 + (1 + m) = m + 2.

(3) By [24, Theorem 3.12], we have

der.dim Λ � (pdV + 2)(��tV (Λ) + 1) − 2 = (1 + 2)(m + 1 + 1) − 2 = 3m + 4.

(4) By Corollary 3.15(2.2), we have

der.dim Λ � 2(pdV + ��tV (Λ)) + 1 = 2 × (2 + m) + 1 = 2m + 5.

Thus, it is clear that by choosing suitable m and n, the upper bounds obtained in this 
paper are more precise, even arbitrarily smaller, than that in the literature known so far.

The following example shows that we may obtain the exact value of the derived 
dimension of some certain algebras.

Example 4.2. Let k be an algebraically closed field and Λ = kQ/I, where Q is the quiver

1

α1
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and I is generated by {αr
1} with r � 2. Then the indecomposable projective (also injec-

tive) Λ-module is

1

1

P (1) = I(1) = 1

...

1.

It is verified directly that the injective and projective dimensions of S(1) are infinite and 
gl.dim Λ = ∞, and that Λ is a self-injective algebra of finite CM-type. By [25, Corollary 
3.7], we have ext.dim Λ = 0. It follows from Corollary 3.15(1) that der.dim Λ � 1. On 
the other hand, der.dim Λ � 1 by [8]. Thus we conclude that der.dim Λ = 1.
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