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Abstract

It is well known that tilting modules of projective dimension� 1 coincide with∗-modules gen-
erating all injectives. This result is extended in this paper. Namely, we generalize∗-modules to so-
called∗n-modules and show that tilting modules of projective dimension� n are∗n-modules which
n-present all injectives.
 2003 Elsevier Inc. All rights reserved.

0. Introduction

Tilting theory may be viewed as a far-reaching generalization of the Morita theo
equivalences between module categories (see [1,2,6,7] et al.). By introducing the
of a quasi-progenerator, Fuller showed a different way of generalization of the M
theory [5]. Later, Menini and Orsatti found a common point by discovering the ge
notion of ∗-modules [8]. Colpi then proved that tilting modules of projective dimens
� 1 coincide with∗-modules which generate all injectives [2], while quasi-progenera
are just the∗-modules which generate all of their submodules [1]. However, tilting mod
of projective dimension� n are∗-modules if and only ifn � 1 (see Lemma 3.1, this fac
was first inferred in [9]). Hence it’s interesting to give some generalizations of∗-modules
and to consider the connection between them and tilting modules of finite proje
dimension.
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The paper is constructed as follows. In Section 1 we introduce some notion
preliminary results. In Section 2 we generalize∗-modules to∗n-modules and we give som
basic properties of∗n-modules. As corollaries, some known results about∗-modules are
obtained. We also show that any∗n-module defines an equivalence between two mo
subcategories (Theorem 2.10). In Section 3 we first show that tilting modules of proj
dimension� n are∗n-modules (Proposition 3.4). Then we characterize∗n-modules which
n-present the injectives (Theorem 3.5). The main result is Theorem 3.8 where a
connection between∗n-modules and tilting modules of projective dimension� n is given.
Section 4 contains some open questions about∗n-modules.

1. Preliminaries

All rings have non-zero identity and all modules are unitary. For every ringR, Mod-R
(R-Mod) denotes the category of all right (left)R-modules. LetPR ∈ Mod-R. We say that
a rightR-moduleMR is n-presented byPR if there exists an exact sequenceP (Xn−1) →
P (Xn−2) → ·· · → P (X1) → P (X0) → MR → 0 whereXi , 0� i � n−1, are sets. Denote b
n-Pres(PR) the category of all modulesn-presented byPR . Of course, for everyn we have
(n+ 1)-Pres(PR) ⊆ n- Pres(PR). We denote 2-Pres(PR) by Pres(PR) and 1-Pres(PR) by
Gen(PR), as usual.

By taking a free resolution ofBA, one can prove the following result.

Lemma 1.1. Let PR ∈ Mod-R and A = End(PR). ThenB ⊗A P ∈ Pres(PR) for any
BA ∈ Mod-A. If moreoverTorAi (B,P ) = 0 for 1 � i � n, thenB⊗AP ∈ (n+2)-Pres(PR).

A right R-modulePR is selfsmall if, for any setX there is the canonical isomorphis
HomR(P,P

(X)) 
 HomR(P,P )
(X). Namely, if πx :P (X) → P is the canonicalxth

projection, for anyf ∈ HomR(P,P
(X)) it turns out thatπx ◦ f = 0 for almost allx of X.

Clearly, every finitely generated module is selfsmall, but the converse is generally
(see [4]). LetPR ∈ Mod-R. We say thatPR is n-quasi-projective if for any exact sequen
0 → M → P (X) → N → 0 in Mod-R, whereMR ∈ (n − 1)-Pres(PR), the induced
sequence 0→ HomR(P,M) → HomR(P,P

(X))→ HomR(P,N) → 0 is exact. Note tha
in casen= 2 it is just the familiar notion ofw-Σ-quasi-projective introduced by Colpi [1

LetA be a ring andKA ∈ Mod-A. A rightA-moduleNA isn-copresented byKA if there
exists an exact sequence 0→NA → KY0 → KY1 → ·· · → KYn−2 → KYn−1 whereYi , 0�
i � n − 1, are sets. Denote byn- Copres(KA) the category of all modulesn-copresented
byKA. Of course, for everyn we have(n+ 1)-Copres(KA) ⊆ n-Copres(KA). We denote
2-Copres(KA) by Copres(KA) and 1-Copres(KA) by Cogen(KA), as usual.

Let R be a ring,PR ∈ Mod-R and let A = End(PR). Take an arbitrary injective
cogeneratorQR of Mod-P and putKA = HomR(P,Q). Denote byHP the functor
HomR(P,−) and byTP the functor− ⊗A P . It is well known that (TP ,HP ) is a pair
of adjoint functors with canonical morphisms:

ρM :TPHP (MR)→ MR, by f ⊗ p �→ f (p);
σN :NA → HPTP (NA), by n �→ [p �→ n⊗ p].
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Lemma 1.2 [1].
(a) σN is a monomorphism if and only ifNA ∈ Cogen(KA).
(b) ρM is an epimorphism if and only ifMR ∈ Gen(PR).

It follows that Cogen(KA) does not depend on the choice of the injective cogen
tor QR .

We say thatPR is a∗-module if the pair (TP ,HP ) defines an equivalence:

TP : Cogen(KA)� Gen(PR) :HP .

In [1] the following result was proved.

Theorem 1.3. Let PR ∈ Mod-R, A = End(PR). Then the following conditions ar
equivalent:

(1) PR is a∗-module.
(2) PR is selfsmall,w-Σ-quasi-projective, andGen(PR)= Pres(PR).
(3) PR is selfsmall, and for anyMR � P (X), MR ∈ Gen(PR) if and only ifExt1R(P,M)→

Ext1R(P,P
(X)) is canonically a monomorphism.

(4) PR is selfsmall and, for any exact sequence0→ L→ M → N → 0 in Mod-R, where
M,N ∈ Gen(PR), the induced sequence0 → HP (L) → HP (M) → HP (N) → 0 is
exact if and only ifL ∈ Gen(PR).

2. ∗n-modules

Suggested by Theorem 1.3(2) and the ideas in [4], we give the following definiti
∗n-modules.

Definition 2.1. Let PR ∈ Mod-R. PR is a ∗n-module if PR is selfsmall,(n + 1)-quasi-
projective, and(n+ 1)-Pres(PR)= n-Pres(PR).

Remark 1.
(i) Whenn= 1, ∗n-modules are just the classical∗-modules.
(ii) If PR is a∗n-module, then it is a∗m-module for anym� n.
(iii) We will show in Section 3 that tilting modules of projective dimension� n are∗n-

modules. Hence our generalization is not trivial.

Proposition 2.2. LetPR be a∗n-module. ThenρN is an isomorphism andTorAi (HP (N),

P ) = 0 for anyi � 1 and anyN ∈ n- Pres(PR).

Proof. For anyN ∈ n-Pres(PR), we have thatN ∈ (n + 1)-Pres(PR) by the definition
of ∗n-modules. Hence we have an exact sequence 0→ M → P (X) → N → 0 in Mod-R
whereM ∈ n-Pres(PR) andX is a set. SincePR is (n + 1)-quasi-projective, the induce
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sequence 0→ HP (M) → HP (P
(X)) → HP (N) → 0 is exact. We obtain the followin

commutative diagram with exact rows:

0 TorA1 (HP (N),P ) TPHP (M)

ρM

TPHP (P
(X))

ρ
P(X)

TPHP (N)

ρN

0

0 M P(X) N 0

By Lemma 1.2,ρM is an epimorphism. SinceρP (X) is a natural isomorphism,ρN is an
isomorphism. So that applying the same argument as before we can conclude thatρM is an
isomorphism too. It follows that TorA1 (HP (N),P ) = 0. Similarly, TorA1 (HP (M),P ) = 0.
Finally, from the fact that TorAi+1(HP (N),P ) 
 TorAi (HP (M),P ) for anyi � 1 we derive
that TorAi (HP (N),P ) = 0 for anyi � 1. ✷

We give now some characterizations of∗n-modules which are similar to Theorem 1.3

Theorem 2.3. Let PR ∈ Mod-R and A = End(PR). Then the following conditions ar
equivalent:

(1) PR is a∗n-module.
(2) PR is selfsmall and for any exact sequence0 → M → P (X) → N → 0 in Mod-R

whereN ∈ n- Pres(PR) andX is a set,M ∈ n- Pres(PR) if and only ifExt1R(P,M)→
Ext1R(P,P

(X)) is canonically a monomorphism.
(3) PR is selfsmall and for any epimorphismφ :P (X) → N whereN ∈ n- Pres(PR) and

X is a set, sayφ = (φx)x , we haveKerφ ∈ n- Pres(PR) if and only ifHomR(P,N) =∑
x φxA.

Proof. (1) ⇒ (2). First assume thatM ∈ n- Pres(PR). Since PR is (n + 1)-quasi-
projective and(n + 1)-Pres(PR) = n- Pres(PR), the canonical morphism Ext1

R(P,M) →
Ext1R(P,P

(X)) is clearly a monomorphism.
On the other hand, assume that the canonical morphism Ext1

R(P,M) → Ext1R(P,P
(X))

is a monomorphism for the exact sequence 0→ M → P (X) → N → 0. It follows that the
induced sequence 0→ HP (M) → HP (P

(X)) → HP (N) → 0 is exact. Now consider th
commutative diagram:

0 TPHP (M)

ρM

TPHP (P
(X))

ρ
P(X)

TPHP (N)

ρN

0

0 M P(X) N 0

By Proposition 2.2ρN is an isomorphism and TorA
i (HP (N),P ) = 0 for any i � 1.

Therefore the above diagram is exact, so thatρM is an isomorphism and TorA
i (HP (M),

P ) = 0 for anyi � 1. HenceM ∈ n-Pres(PR) by Lemma 1.1.
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(2) ⇒ (3) ⇒ (1) are similar to the proof of (5)⇒ (4) ⇒ (3) in [1, Theorem 4.1]. ✷
Proposition 2.4. LetPR be a∗n-module. ThenTP is an exact functor inHP (n-Pres(PR)).
Moreover,HP (n-Pres(PR)) = ⊥

AP := {MA | TorAi (M,P ) = 0 for all i � 1}, whereA =
End(PR).

Proof. By Proposition 2.2 we have thatHP (n-Pres(PR)) ⊆ ⊥
AP . In particular the functo

TP is exact inHP (n-Pres(PR)). On the other hand, we have thatTP (M) ∈ n- Pres(PR)

for any MA ∈ ⊥
AP by Lemma 1.1. Therefore given the exact sequence 0→ LA →

A(X) → MA → 0 whereX is a set, we haveLA ∈ ⊥
AP and TP (L) ∈ n-Pres(PR).

Consider the induced exact sequence 0→ TP (L) → TP (A
(X)) → TP (M) → 0 (note

that TorA1 (M,P ) = 0). SincePR is a ∗n-module andTP (L) ∈ n-Pres(PR), we have the
following commutative diagram with exact rows:

0 L

σL

A(X)

σ
A(X)

M

σM

0

0 HPTP (L) HPTP (A
(X)) HPTP (M) 0

Note thatσM is an epimorphism sinceσA(X) is a natural isomorphism. The same arg
ment proves thatσL is an epimorphism too. It follows thatσM is an isomorphism. There
fore MA 
 HPTP (M) ∈ HP (n-Pres(PR)). So that the inclusion⊥AP ⊆ HP (n- Pres(PR))

is proved. ✷
As an application, we immediately obtain a new proof of the following result in [3]

Corollary 2.5. Let PR be a∗-module,A = End(PR) and letKA = HomR(P,Q) where
QR is an arbitrary injective cogenerator ofMod-R. Then

(1) TP is an exact functor inCogen(KA).
(2) Cogen(KA)= ⊥1

A P := {MA | TorA1 (M,P )= 0}.

Proof. By Proposition 2.4, the functorTP is exact inHP (Gen(PR)). SincePR is a ∗-
module,HP (Gen(PR))= Cogen(KA). Hence (1) holds true.

By [9, Lemma 2.1] the flat dimension ofAP � 1, so⊥1
A P = {M | TorA1 (M,P ) = 0} =

{M | TorAi (M,P ) = 0 for all i � 1} = ⊥
AP . Finally, thanks to Proposition 2.4 we see th

(2) holds true. ✷
Proposition 2.6. Let PR be a ∗n-module,A = End(PR). ThenHP preserves any exac
sequence inn- Pres(PR).

Proof. Consider any exact sequence 0→ M → N → L → 0 in n-Pres(PR) and the
induced exact sequence 0→ HP (M) → HP (N) → HP (L) → DA → 0, whereDA =
Im(HP (L) → Ext1 (P,M)). Let CA = Im(HP (N) → HP(L)). Applying the functorTP
R
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to the exact sequence 0→ HP (M) → Hp(N) → C → 0, thanks to Proposition 2.2, w
obtain the following commutative diagram with exact rows:

0 TorA1 (C,P ) TPHP (M)

ρM

TPHP (N)

ρN

TP (C) 0

0 M N L 0

whereρM andρN are isomorphisms and TorA
i (HP (M),P ) = 0 = TorAi (HP (N),P ) for

any i � 1. Then TorAi (C,P ) = 0 for any i � 1, andTP (C) 
 L. By Proposition 2.4 we
haveCA =HP (X) for someXR ∈ n- Pres(PR). Then

CA =HP (X) 
HP

(
TPHP (X)

) 
 HPTP
(
HP (X)

) =HPTP (C).

It follows that

DA = Coker
(
C → HP (L)

) 
 Coker
(
HPTP (C)→ HPTPHP (L)

) = 0.

Hence 0→ HP (M)→HP (N) → HP (L)→ 0 is exact. ✷
In particular, we obtain the following corollary.

Corollary 2.7 [1]. LetPR be a∗-module. ThenHP is an exact functor inGen(PR).

Thanks to Proposition 2.6, we are able to give the following characterization o∗n-
modules which generalizes (4) in Theorem 1.3.

Theorem 2.8. LetPR ∈ Mod-R. Then the following conditions are equivalent:

(1) PR is a∗n-module.
(2) PR is selfsmall and for any exact sequence0 → M → N → L → 0 in Mod-R where

N,L ∈ n-Pres(PR), we haveM ∈ n- Pres(PR) if and only if the induced sequenc
0 →HP (M)→ HP (N) →HP (L) → 0 is exact.

Proof. (1) ⇒ (2). The necessity follows from Proposition 2.6 and the sufficiency fro
similar proof as in (1)⇒ (2) in Theorem 2.3.

(2) ⇒ (1). It follows from (2)⇒ (1) in Theorem 2.3. ✷
Proposition 2.9. LetPR be a∗n-module. Thenn- Pres(PR) is extension closed if and on
if n-Pres(PR) ⊆ P

⊥1
R := {MR | Ext1R(P,M) = 0}.

Proof. The necessity. For anyM ∈ n-Pres(PR) and any extension ofM byPR : 0 →M →
N →f PR → 0, we have thatN ∈ n-Pres(PR) by assumption. Thanks to Proposition 2
the induced sequence 0→ HomR(P,M) → HomR(P,N) → HomR(P,P ) → 0 is exact.
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Hence there is a morphismg :PR → N such thatfg = 1PR . This proves thatn-Pres(PR)⊆
P

⊥1
R .

The sufficiency. For anyM,L ∈ n-Pres(PR) and any extension ofM by L : 0 → M →
N → L → 0 we get that the induced sequence 0→ HomR(P,M) → HomR(P,N) →
HomR(P,L) → 0 is exact by assumption. Thank to Proposition 2.2, bothρM and ρL
are isomorphisms and bothHP (M) and HP (L) are in ⊥

AP . It follows that ρN is an
isomorphism andHP (N) ∈ ⊥

AP . Thanks to Lemma 1.1, we obtain thatN ∈ n-Pres(PR),
i.e.,n-Pres(PR) is closed under extensions.✷

We conclude this section with the following category-theoretical characterizatio
∗n-modules.

Theorem 2.10. Let PR ∈ Mod-R, A = End(PR). Then the following conditions ar
equivalent:

(1) PR is a∗n-module.
(2) PR induces an equivalence: TP : ⊥

AP � n-Pres(PR) :HP , where⊥
AP is defined as in

Proposition2.4.

Proof. (1) ⇒ (2). By Propositions 2.2 and 2.4.
(2) ⇒ (1). SinceA ∈ ⊥

AP , we have that HomR(P,P )(X) = A(X) 
 HPTP (A
(X)) =

HP (TP (A
(X))) 
 HP (P

(X)) = HomR(P,P
(X)) canonically. HencePR is selfsmall.

Since HP (N) ∈ ⊥
AP and TPHP (N) 
 N for any N ∈ n-Pres(PR), we get thatN ∈

(n + 1)-Pres(PR) by Lemma 1.1. So that(n + 1)-Pres(PR) = n-Pres(PR). Finally, for
any exact sequence 0→ M → P (X) → N → 0 whereM ∈ n-Pres(PR), we have an
induced exact sequence 0→ HP (M) → HP (P

(X)) → HP (N) → DA → 0 whereDA =
Im(HP (N) → Ext1R(P,M)). A similar proof as in Proposition 2.6 shows thatDA = 0, i.e.,
PR is (n+ 1)-quasi-projective. ✷

3. Tilting modules

In this section we study the connection between tilting modules of projective dime
� n and∗n-modules. In particular, we characterize tilting modules of projective dimen
� n as a subclass of∗n-modules. The results in this section generalize the casen = 1 in
[2,3], etc.

Following Miyashita [7], we say thatPR is a tilting module of projective dimension� n

if it satisfies the following three conditions:

(1) PR has a projective resolution 0→ Fn → ·· · → F0 → PR → 0 such that eachFi is
finitely generated.

(2) ExtiR(P,P ) = 0 if 1 � i � n.
(3) There exists an exact sequence 0→ R → P0 → P1 → ·· · → Pn → 0 such that each

Pi is a direct summand of a finite direct sum of copies ofPR .
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Assume thatPR has a finitely generated projective resolution. Following Wakam
[11,12], we say thatPR is a Wakamatsu-tilting module if it satisfies the following tw
conditions:

(1) R 
 End(AP ) whereA= End(PR).
(2) ExtiR(P,P ) = 0 = ExtiA(P,P ) for all i � 1.

By [11] these conditions are equivalent to the following:

(i) ExtiR(P,P ) = 0 for all i � 1.
(ii) There is an infinite exact sequence 0→ R →i P0 →f0 P1 → ·· · , where eachPi is a

direct summand of a finite direct sum of copies ofPR , and Ext1R(Kerfi,P ) = 0 for
anyi � 0.

Note that both tilting modules of finite projective dimension and Wakamatsu-ti
modules are left–right symmetric [7,11].

We first prove the following fact.

Lemma 3.1. LetPR be a tilting module of projective dimension� n. The following condi-
tions are equivalent:

(1) PR is a∗-module.
(2) n� 1.

Proof. (1) ⇒ (2). By [2, Theorem 3] it is sufficient to prove that the injective envelopE
of RR is generated byPR . Since ExtiR(P,E) is clearly zero for alli � 1, the mapρE is an
isomorphism by [7, Lemma 1.8]. This shows thatE ∈ Gen(PR).

(2) ⇒ (1) is well known. ✷
The proof of the following crucial lemma is essentially due to an idea which co

from [8, Theorem 4.3].

Lemma 3.2. Assume thatPR has a finitely generated projective resolution. The follow
conditions are equivalent:

(1) ExtnR(P,P ) = 0.
(2) ExtnR(P,P

(X))= 0 for any setX.

Proof. (1)⇒ (2). By assumption we have an exact sequence· · · →Rmi+1 →fi+1 Rmi →fi

· · · → Rm0 →f0 PR → 0 where eachmj ∈ N. Let Lj = Imfj for all j � 0. Therefore
L0 = PR and eachLj is a finitely generated rightR-module. Note ExtkR(R

mj ,P ) = 0
for all k � 1 and allj � 1, so that Ext1R(Ln−1,P ) 
 ExtnR(P,P ) = 0. Now applying the
functor HomR(−,P ) to the exact sequence 0→ Ln → Rmn−1 → Ln−1 → 0 we get the
induced exact sequence 0→ HomR(Ln−1,P ) → HomR(R

mn−1,P ) → HomR(Ln,P ) →
0 = Ext1 (Ln−1,P ). It follows that every morphismLn → PR can be extended to
R
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morphismRmn−1 → PR . Consider now a morphismg :Ln → P (X). As Ln is finitely
generated,g is a diagonal morphism of finite family of morphisms fromLn into P .
Henceg extends to a morphism fromRmn−1 into P

(X)
R . Therefore the induced sequen

0 → HomR(Ln−1,P
(X)) → HomR(R

mn−1,P (X)) → HomR(Ln,P
(X)) → 0 is exact. As

Ext1R(R
mn−1,P (X)) = 0 we get Ext1R(Ln−1,P

(X)) = 0. It follows that ExtnR(P,P
(X)) 


Ext1R(Ln−1,P
(X))= 0.

(2) ⇒ (1) is clear. ✷
To study the connection between tilting modules of projective dimension� n and

∗n-modules, we need the following lemma.

Lemma 3.3. Let PR be a selfsmall rightR-module. Assume thatn-Pres(PR) = P⊥
R :=

{MR | ExtiR(P,M) = 0 for all i � 1}. ThenPR is a∗n-module.

Proof. For any exact sequence 0→ M → P (X) → N → 0 whereN ∈ n-Pres(PR), the
induced sequence 0→ HP (M) → HP (P

(X)) → HP(N) → Ext1R(P,M) → 0 is exact.
Note thatN,P (X) ∈ n-Pres(PR) = P⊥

R , so that ExtiR(P,M) = 0 for i � 2. Therefore
Ext1R(P,M) → 0 is canonically a monomorphism if and only if Ext1

R(P,M) = 0 if and
only if M ∈ P⊥

R = n-Pres(PR). It follows thatPR is a∗n-module by Theorem 2.3.✷
We are now ready to prove that a tilting module of projective dimension� n is a

∗n-module.

Proposition 3.4. Suppose thatPR is a tilting module of projective dimension� n. Then
n-Pres(PR)= P⊥

R , so thatPR is a∗n-module.

Proof. For anyN ∈ n-Pres(PR), there exists an exact sequence 0→ M → P (Xn−1) →
P (Xn−2) → ·· · → P (X0) → N → 0 for someMR ∈ Mod-R whereXi , 0� i � n − 1, are
sets. Thanks to Lemma 3.2, we have that Exti

R(P,N) 
 Exti+n
R (P,M)= 0 for all i � 1 by

assumption. It follows thatn-Pres(PR)⊆ P⊥
R .

Now letM ∈ P⊥
R andA= End(PR). Let 0→ M → I0 → I1 → ·· · → In be an injective

resolution ofM. Then the induced sequence 0→ HP(M) → HP (I0) → HP (I1) →
·· · → HP (In) → C → 0 is exact for someC ∈ Mod-A. Moreover, TorAi (HP (I),P ) = 0
for all i � 1 and any injective moduleI ∈ Mod-R by [7, Lemma 1.7]. It follows tha
TorAi (HP (M),P ) 
 TorAi+n(C,P ) = 0 for all i � 1. By [7, Lemma 1.8]TPHP (M) 
 M.
ThusM ∈ n- Pres(PR) by Lemma 1.1. ✷

In fact, the conditionn-Pres(PR) = P⊥
R characterizes the∗n-modulesPR such that

every injective module isn-presented byPR , as the following theorem shows.

Theorem 3.5. LetPR be a rightR-module. Denote by Inj. the class of all injective righ
R-modules. Then the following conditions are equivalent:

(1) PR is a∗n-module and Inj.⊆ n-Pres(PR).
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(2) PR is selfsmall andn-Pres(PR)= P⊥
R .

Proof. (1) ⇒ (2). PR is clearly selfsmall. For anyM ∈ n-Pres(PR), let E be the
injective envelope ofM with the exact sequence 0→ M → E → N → 0. We derive
the induced exact sequence 0→ HP (M) → HP (E) → HP (N) → Ext1R(P,M) → 0. Let
XA = Im(HP (E) → HP (N)), whereA = End(PR). Applying TP to the exact sequenc
0 → HP (M) → HP (E) → X → 0, we have the following commutative diagram w
exact rows:

0 TorA1 (X,P ) TPHP (M)

ρM

TPHP (E)

ρE

TP (X) 0

0 M E N 0

By assumption, bothρM and ρE are isomorphisms, and TorA
i (HP (M),P ) = 0 =

TorAi (HP (E),P ) for all i � 1, thanks to Proposition 2.2. It follows that TorA
i (X,P ) = 0 for

all i � 1 and thatTP (X) 
N . HenceN 
 TP (X) ∈ n-Pres(PR) by Lemma 1.1. Therefor
the induced sequence 0→HP (M)→ HP (E)→HP (N) → 0 is exact by Proposition 2.6
So that Ext1R(P,M) = 0. Similarly, Ext1R(P,N) = 0. Since ExtiR(P,N) 
 Exti+1

R (P,M)

for all i � 1, from the arbitrarity ofM ∈ n-Pres(PR) it follows that ExtiR(P,M) = 0 for
all i � 1. This proves thatn-Pres(PR) ⊆ P⊥

R . The opposite inclusion can be proved by
argument similar to the second part of the proof 3.4.

(2) ⇒ (1). It follows from Lemma 3.3. ✷
Proposition 3.6. Assume that one of the conditions in Theorem3.5holds and thatPR has
a finitely generated projective resolution. ThenPR is a Wakamatsu-tilting module.

Proof. Let E be the injective envelope ofRR . SinceE ∈ n-Pres(PR) andR is projective,
we obtain the following commutative diagram whereX is a set:

R

P(X) E 0

This shows thatPR is faithful. Hence there is an exact sequence 0→ R →
HomA(P,P ) → X → 0 for someXR ∈ Mod-R, whereA = End(PR). Let E(X) be
the injective envelope ofX. Then the induced sequence 0→ HomR(X,E(X)) →
HomR(HomA(P,P ),E(X)) → HomR(R,E(X)) → 0 is exact. SincePR has a fi-
nitely generated projective resolution, HomR(R,E(X)) 
 E(X) 
 TPHP (E(X)) =
HomR(P,E(X)) ⊗A P 
 HomR(HomA(P,P ),E(X)) canonically. It follows that
HomR(X,E(X))= 0, i.e.,X = 0. HenceR 
 End(AP ).
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It is clear that ExtiR(P,P ) = 0 for all i � 1. Moreover, by Proposition 2.4 we ha
TorAi (HP (I),P ) = 0 for all i � 1 and any injective moduleI ∈ Mod-R. It follows that
ExtiA(P,P ) = 0 for all i � 1 by [7, Lemma 1.7]. ✷

Lemma 3.7. Assume thatPR has a finitely generated projective resolution. Denote
P

⊥n

R := {MR | ExtnR(P,M) = 0}.

(1) If ExtnR(P,P ) = 0 andprojdim(PR) � n, thenGen(PR)⊆ P
⊥n

R .

(2) If Inj .⊆ Gen(PR) ⊆ P
⊥n

R , thenprojdim(PR)� n.

Proof. (1) For anyM ∈ Gen(PR), from an exact sequence 0→ N → P (X) → M → 0
we get the induced exact sequence Extn

R(P,P
(X)) → ExtnR(P,M) → Extn+1

R (P,N).
By assumption and Lemma 3.2 we get Extn

R(P,P
(X)) = 0 = Extn+1

R (P,N). Hence
ExtnR(P,M) = 0. This proves the thesis.

(2) For anyM ∈ Mod-R, consider the exact sequence 0→ M →E →L → 0 whereE
is the injective envelope ofM. By assumptionE ∈ Gen(PR), soL ∈ Gen(PR) too. Hence
ExtnR(P,L) = 0 by assumption. From the induced exact sequence 0= ExtnR(P,L) →
Extn+1

R (P,M) → Extn+1
R (P,E) = 0 we derive that Extn+1

R (P,M) = 0. This proves the
thesis. ✷

We give now a characterization of tilting modules of projective dimension� n in term
of ∗n-modules.

Theorem 3.8. Assume thatPR has a finitely generated projective resolution. Then
following conditions are equivalent:

(1) PR is a tilting module of projective dimension� n.
(2) n-Pres(PR)= P⊥

R andGen(PR) ⊆ P
⊥n

R .

(3) PR is a∗n-module, Inj.⊆ n-Pres(PR) andGen(PR) ⊆ P
⊥n

R .

Proof. We already know that (1)⇒ (2) ⇒ (3) hold true.
(2) ⇒ (1). It remains to be proved that there is an exact sequence 0→ R → P0 →

P1 → ·· · → Pn → 0 where eachPi , 0 � i � n, is a direct summand of a finite dire
sum of copies ofPR . By Proposition 3.6PR is a Wakamatsu-tilting module, so that the
is an infinite exact sequence 0→ R →i P0 →f0 P1 →f1 · · · , wherePi ’s are finite direct
sums of copies ofPR and Ext1R(Kerfi,P ) = 0 for all i � 0. LetX = Kerfn. ThenX∈
n-Pres(PR). Note that(n+1)-Pres(PR)= n-Pres(PR), so that we have an exact sequen
P (X−1) →g−1 P (X0) →g0 · · · →gn−2 P (Xn−1) →gn−1 X → 0 where Kergi ∈ n- Pres(PR)

and allXi , −1� i � n−1, are finite sets. We claim that Ext1
R(X,Kergn−1)= 0. Therefore

X is just a summand ofP (Xn−1) and the result follows.



J. Wei et al. / Journal of Algebra 268 (2003) 404–418 415

:

s

In fact, we can show, by induction onk, that Ext1R(Kerfk,Kergk−1) = 0 for k � 1.
In casek = 1, note that Kergi ∈ n-Pres(PR), so that Ext1R(Pj ,Kergi) = 0 for −1 � i�
n− 1 andj � 0. It follows that Ext1R(Kerf1,Kerg0)= 0 if and only if

HomR(P0,Kerg0)→σ HomR(R,Kerg0)→ 0

is exact. To show thatσ is epic, leth ∈ HomR(R,Kerg0). Consider the following diagram

0 R
i

h
j

P0
f0

l
θ

Kerf1 0

P (X−1)
g−1

Kerg0 0

SinceR is projective, there existsj ∈ HomR(R,P
(X−1)) such thath = g−1 ◦ j . Then

the induced sequence

0→ HomR

(
Kerf1,P

(X−1)
) → HomR

(
P0,P

(X−1)
)

→ HomR

(
R,P (X−1)

) → Ext1R
(
Kerf1,P

(X−1)
) = 0

is exact. Hence there existsl ∈ HomR(P0,P
(X−1)) such thatj = l ◦ i. Let θ = g−1 ◦ l ∈

HomR(P0,Kerg0). Note thatθ ◦ i = g−1 ◦ l ◦ i = g−1 ◦ j = h, so thatσ is epic. Now we
show that Ext1R(X,Kergn−1)= 0, just proving that

HomR(Pn−1,Kergn−1)→σ ′
HomR(Kerfn−1,Kergn−1) → 0

is exact. For anyh′ ∈ HomR(Kerfn−1,Kergn−1), consider the following diagram:

0 Kerfn−1
i′

h′
j ′

Pn−1
fn−1

l′ θ ′

X 0

0 Kergn−2 P (Xn−2)
gn−2

Kergn−1 0

Since

Ext1R(Kerfn−1,Kergn−2)= 0

by assumption, applying the functor HomR(Kerfn−1,−) to the second row in the previou
diagram, we see that the sequence

HomR

(
Kerfn−1,P

(Xn−2)
) → HomR(Kerfn−1,Kergn−1) → 0
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is exact. It follows that there existsj ′ ∈ HomR(Kerfn−1,P
(Xn−2)) such thath′ = gn−2 ◦j ′.

Then the induced sequence

0 → HomR

(
X,P (Xn−2)

) → HomR

(
Pn−1,P

(Xn−2)
) → HomR

(
Kerfn−1,P

(Xn−2)
)

→ Ext1R
(
X,P (Xn−2)

) = 0

is exact. Therefore there existsl′ ∈ HomR(Pn−1,P
(Xn−2)) such thatj ′ = l′ ◦ i ′. Let

θ ′ = gn−2 ◦ l′ ∈ HomR(Pn−1,Kergn−2). Thenθ ′ ◦ i ′ = gn−2 ◦ l′ ◦ i ′ = gn−2 ◦ j ′ = h′.
This proves thatσ ′ is epic. ✷
Remark 2. Clearly the condition Gen(PR)⊆ P

⊥n

R in the previous theorem can be remov
in casen = 1. It can also be removed in casen = 2. To see this, it is sufficient t
show that Pres(PR) = P⊥

R implies Gen(PR) ⊆ P
⊥2
R . In fact, for anyN ∈ Gen(PR), let

0 → N → E → X → 0 bean exact sequence whereE is the injective envelope ofN . We
have an induced exact sequence 0→ HP (N) → HP (E) → C → 0 for someC ∈ Mod-A,
whereA= End(PR). Now consider the following commutative diagram with exact row

TPHP (N)

ρN

TPHP (E)

ρE

TP (C) 0

0 N E X 0

Note thatρN is an epimorphism andρE is an isomorphism, so that we haveTP (C)
 X.
By Lemma 1.1X ∈ Pres(PR). Hence Ext2R(P,N) 
 Ext1R(P,X) = 0.

In particular we can conclude that tilting modules of projective dimension� 2 are just
∗2-modules which admit a finitely generated projective resolution and which prese
injectives.

4. Questions

In [4], the authors studied∗λ-modules as generalizations of∗-modules, whereλ is a
cardinal. Following [4], a rightR-moduleP is a∗λ-module for some cardinalλ provided
P is finitely generated andP satisfies the conditionC(k) for all k < A. HereC(k) denotes
the following assertion:

“For every submoduleM of P (k), the conditionM ∈ Gen(P ) is equivalent to the
injective of the canonical group homomorphism Ext1

R(P,M) → Ext1R(P,P
(k)).”

It should be noted thatC(k) implies C(k′) for all k′ � k [4, Lemma 2.1], and tha
∗λ-modules are just finitely generated modules in caseλ= 1.

The following example shows that∗n-modules and∗λ-modules are different genera
izations of∗-modules.
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Example. Let PR be a rightR-module which is finitely generated and quasi-project
Let A = End(PR). Assume that the flat dimension ofAP is finite and thatPR is not a
quasi-progenerator. Such modules exist clearly (see, for instance, [5, Example 4.6
[13, Corollary 3.3]PR is a∗n-module for somen � 2. ButPR is never a∗λ-module for
anyλ� 2. Otherwise, we have thatPR is a self-generator sincePR is quasi-projective and
PR satisfies the conditionC(2). ThereforePR must be a quasi-progenerator, which i
contradiction.

Let STAR(n), STAR(λ) andSTAR be the class of all∗n-modules, all∗λ-modules and al
∗-modules respectively. We have the following question.

Question 1. Is it true thatSTAR(n) ∩ STAR(λ) = STAR?

As we see, there are many properties of∗n-modules similar to that of∗-modules. Note
that an important fact of∗-modules is that they are finitely generated (see [10]), our se
question is:

Question 2. Are all ∗n-modules finitely generated?

Let PR be a∗-module andA = End(PR). Then the flat dimension ofAP is not more
than 1 [9]. It seems natural to consider the following:

Question 3. Does it happen that the flat dimension ofAP is not more thann for any
∗n-modulePR with A= End(PR)?

A new result in [13] by the first author may be helpful to the third question. It cla
that for any∗n-modulePR with A = End(PR), ⊥

AP := {MA | TorAi (M,P ) = 0 for all
i � 1} = ⊥1�i�n

AP := {MA | TorAi (M,P ) = 0 for all 1� i � n}.
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