Tilting modules of finite projective dimension and a generalization of $*$-modules ${ }^{*}$

Jiaqun Wei, ${ }^{* 1}$ Zhaoyong Huang, Wenting Tong, and Jihong Huang
Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China
Received 30 June 2000
Communicated by Kent R. Fuller

Abstract

It is well known that tilting modules of projective dimension $\leqslant 1$ coincide with $*$-modules generating all injectives. This result is extended in this paper. Namely, we generalize $*$-modules to socalled $*^{n}$-modules and show that tilting modules of projective dimension $\leqslant n$ are $*^{n}$-modules which n-present all injectives. © 2003 Elsevier Inc. All rights reserved.

0. Introduction

Tilting theory may be viewed as a far-reaching generalization of the Morita theory of equivalences between module categories (see [1,2,6,7] et al.). By introducing the notion of a quasi-progenerator, Fuller showed a different way of generalization of the Morita theory [5]. Later, Menini and Orsatti found a common point by discovering the general notion of $*$-modules [8]. Colpi then proved that tilting modules of projective dimension $\leqslant 1$ coincide with $*$-modules which generate all injectives [2], while quasi-progenerators are just the $*$-modules which generate all of their submodules [1]. However, tilting modules of projective dimension $\leqslant n$ are $*$-modules if and only if $n \leqslant 1$ (see Lemma 3.1, this fact was first inferred in [9]). Hence it's interesting to give some generalizations of $*$-modules and to consider the connection between them and tilting modules of finite projective dimension.

[^0]The paper is constructed as follows. In Section 1 we introduce some notions and preliminary results. In Section 2 we generalize $*$-modules to $*^{n}$-modules and we give some basic properties of $*^{n}$-modules. As corollaries, some known results about $*$-modules are obtained. We also show that any $*^{n}$-module defines an equivalence between two module subcategories (Theorem 2.10). In Section 3 we first show that tilting modules of projective dimension $\leqslant n$ are $*^{n}$-modules (Proposition 3.4). Then we characterize $*^{n}$-modules which n-present the injectives (Theorem 3.5). The main result is Theorem 3.8 where a strong connection between $*^{n}$-modules and tilting modules of projective dimension $\leqslant n$ is given. Section 4 contains some open questions about $*^{n}$-modules.

1. Preliminaries

All rings have non-zero identity and all modules are unitary. For every ring R, Mod- R (R-Mod) denotes the category of all right (left) R-modules. Let $P_{R} \in \operatorname{Mod}-R$. We say that a right R-module M_{R} is n-presented by P_{R} if there exists an exact sequence $P^{\left(X_{n-1}\right)} \rightarrow$ $P^{\left(X_{n-2}\right)} \rightarrow \cdots \rightarrow P^{\left(X_{1}\right)} \rightarrow P^{\left(X_{0}\right)} \rightarrow M_{R} \rightarrow 0$ where $X_{i}, 0 \leqslant i \leqslant n-1$, are sets. Denote by n - $\operatorname{Pres}\left(P_{R}\right)$ the category of all modules n-presented by P_{R}. Of course, for every n we have $(n+1)-\operatorname{Pres}\left(P_{R}\right) \subseteq n-\operatorname{Pres}\left(P_{R}\right)$. We denote $2-\operatorname{Pres}\left(P_{R}\right)$ by $\operatorname{Pres}\left(P_{R}\right)$ and 1- $\operatorname{Pres}\left(P_{R}\right)$ by $\operatorname{Gen}\left(P_{R}\right)$, as usual.

By taking a free resolution of B_{A}, one can prove the following result.
Lemma 1.1. Let $P_{R} \in \operatorname{Mod}-R$ and $A=\operatorname{End}\left(P_{R}\right)$. Then $B \otimes_{A} P \in \operatorname{Pres}\left(P_{R}\right)$ for any $B_{A} \in \operatorname{Mod}$-A. If moreover $\operatorname{Tor}_{i}^{A}(B, P)=0$ for $1 \leqslant i \leqslant n$, then $B \otimes_{A} P \in(n+2)-\operatorname{Pres}\left(P_{R}\right)$.

A right R-module P_{R} is selfsmall if, for any set X there is the canonical isomorphism $\operatorname{Hom}_{R}\left(P, P^{(X)}\right) \simeq \operatorname{Hom}_{R}(P, P)^{(X)}$. Namely, if $\pi_{x}: P^{(X)} \rightarrow P$ is the canonical x th projection, for any $f \in \operatorname{Hom}_{R}\left(P, P^{(X)}\right)$ it turns out that $\pi_{x} \circ f=0$ for almost all x of X. Clearly, every finitely generated module is selfsmall, but the converse is generally false (see [4]). Let $P_{R} \in \operatorname{Mod}-R$. We say that P_{R} is n-quasi-projective if for any exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$ in Mod- R, where $M_{R} \in(n-1)$ - $\operatorname{Pres}\left(P_{R}\right)$, the induced sequence $0 \rightarrow \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}\left(P, P^{(X)}\right) \rightarrow \operatorname{Hom}_{R}(P, N) \rightarrow 0$ is exact. Note that in case $n=2$ it is just the familiar notion of $w-\Sigma$-quasi-projective introduced by Colpi [1].

Let A be a ring and $K_{A} \in \operatorname{Mod}-A$. A right A-module N_{A} is n-copresented by K_{A} if there exists an exact sequence $0 \rightarrow N_{A} \rightarrow K^{Y_{0}} \rightarrow K^{Y_{1}} \rightarrow \cdots \rightarrow K^{Y_{n-2}} \rightarrow K^{Y_{n-1}}$ where $Y_{i}, 0 \leqslant$ $i \leqslant n-1$, are sets. Denote by n-Copres $\left(K_{A}\right)$ the category of all modules n-copresented by K_{A}. Of course, for every n we have $(n+1)$ - Copres $\left(K_{A}\right) \subseteq n$-Copres $\left(K_{A}\right)$. We denote 2 - Copres $\left(K_{A}\right)$ by Copres $\left(K_{A}\right)$ and $1-\operatorname{Copres}\left(K_{A}\right)$ by Cogen $\left(K_{A}\right)$, as usual.

Let R be a ring, $P_{R} \in \operatorname{Mod}-R$ and let $A=\operatorname{End}\left(P_{R}\right)$. Take an arbitrary injective cogenerator Q_{R} of Mod- P and put $K_{A}=\operatorname{Hom}_{R}(P, Q)$. Denote by H_{P} the functor $\operatorname{Hom}_{R}(P,-)$ and by T_{P} the functor $-\otimes_{A} P$. It is well known that $\left(T_{P}, H_{P}\right)$ is a pair of adjoint functors with canonical morphisms:

$$
\begin{aligned}
& \rho_{M}: T_{P} H_{P}\left(M_{R}\right) \rightarrow M_{R}, \quad \text { by } f \otimes p \mapsto f(p) ; \\
& \sigma_{N}: N_{A} \rightarrow H_{P} T_{P}\left(N_{A}\right), \quad \text { by } n \mapsto[p \mapsto n \otimes p] .
\end{aligned}
$$

Lemma 1.2 [1].
(a) σ_{N} is a monomorphism if and only if $N_{A} \in \operatorname{Cogen}\left(K_{A}\right)$.
(b) ρ_{M} is an epimorphism if and only if $M_{R} \in \operatorname{Gen}\left(P_{R}\right)$.

It follows that $\operatorname{Cogen}\left(K_{A}\right)$ does not depend on the choice of the injective cogenerator Q_{R}.

We say that P_{R} is a $*$-module if the pair $\left(T_{P}, H_{P}\right)$ defines an equivalence:

$$
T_{P}: \operatorname{Cogen}\left(K_{A}\right) \rightleftharpoons \operatorname{Gen}\left(P_{R}\right): H_{P}
$$

In [1] the following result was proved.
Theorem 1.3. Let $P_{R} \in \operatorname{Mod}-R, A=\operatorname{End}\left(P_{R}\right)$. Then the following conditions are equivalent:
(1) P_{R} is $a *$-module.
(2) P_{R} is selfsmall, $w-\Sigma$-quasi-projective, and $\operatorname{Gen}\left(P_{R}\right)=\operatorname{Pres}\left(P_{R}\right)$.
(3) P_{R} is selfsmall, and for any $M_{R} \leqslant P^{(X)}, M_{R} \in \operatorname{Gen}\left(P_{R}\right)$ if and only if $\operatorname{Ext}_{R}^{1}(P, M) \rightarrow$ $\operatorname{Ext}_{R}^{1}\left(P, P^{(X)}\right)$ is canonically a monomorphism.
(4) P_{R} is selfsmall and, for any exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in Mod- R, where $M, N \in \operatorname{Gen}\left(P_{R}\right)$, the induced sequence $0 \rightarrow H_{P}(L) \rightarrow H_{P}(M) \rightarrow H_{P}(N) \rightarrow 0$ is exact if and only if $L \in \operatorname{Gen}\left(P_{R}\right)$.

2. $*^{n}$-modules

Suggested by Theorem 1.3(2) and the ideas in [4], we give the following definition of $*^{n}$-modules.

Definition 2.1. Let $P_{R} \in \operatorname{Mod}-R . P_{R}$ is a $*^{n}$-module if P_{R} is selfsmall, $(n+1)$-quasiprojective, and $(n+1)-\operatorname{Pres}\left(P_{R}\right)=n-\operatorname{Pres}\left(P_{R}\right)$.

Remark 1.

(i) When $n=1, *^{n}$-modules are just the classical $*$-modules.
(ii) If P_{R} is a $*^{n}$-module, then it is a $*^{m}$-module for any $m \geqslant n$.
(iii) We will show in Section 3 that tilting modules of projective dimension $\leqslant n$ are $*^{n}$ modules. Hence our generalization is not trivial.

Proposition 2.2. Let P_{R} be a $*^{n}$-module. Then ρ_{N} is an isomorphism and $\operatorname{Tor}_{i}^{A}\left(H_{P}(N)\right.$, $P)=0$ for any $i \geqslant 1$ and any $N \in n-\operatorname{Pres}\left(P_{R}\right)$.

Proof. For any $N \in n-\operatorname{Pres}\left(P_{R}\right)$, we have that $N \in(n+1)-\operatorname{Pres}\left(P_{R}\right)$ by the definition of $*^{n}$-modules. Hence we have an exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$ in Mod- R where $M \in n-\operatorname{Pres}\left(P_{R}\right)$ and X is a set. Since P_{R} is $(n+1)$-quasi-projective, the induced
sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}\left(P^{(X)}\right) \rightarrow H_{P}(N) \rightarrow 0$ is exact. We obtain the following commutative diagram with exact rows:

By Lemma 1.2, ρ_{M} is an epimorphism. Since $\rho_{P^{(X)}}$ is a natural isomorphism, ρ_{N} is an isomorphism. So that applying the same argument as before we can conclude that ρ_{M} is an isomorphism too. It follows that $\operatorname{Tor}_{1}^{A}\left(H_{P}(N), P\right)=0$. Similarly, $\operatorname{Tor}_{1}^{A}\left(H_{P}(M), P\right)=0$. Finally, from the fact that $\operatorname{Tor}_{i+1}^{A}\left(H_{P}(N), P\right) \simeq \operatorname{Tor}_{i}^{A}\left(H_{P}(M), P\right)$ for any $i \geqslant 1$ we derive that $\operatorname{Tor}_{i}^{A}\left(H_{P}(N), P\right)=0$ for any $i \geqslant 1$.

We give now some characterizations of $*^{n}$-modules which are similar to Theorem 1.3.
Theorem 2.3. Let $P_{R} \in \operatorname{Mod}-R$ and $A=\operatorname{End}\left(P_{R}\right)$. Then the following conditions are equivalent:
(1) P_{R} is $a *^{n}$-module.
(2) P_{R} is selfsmall and for any exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$ in Mod- R where $N \in n-\operatorname{Pres}\left(P_{R}\right)$ and X is a set, $M \in n-\operatorname{Pres}\left(P_{R}\right)$ if and only if $\operatorname{Ext}_{R}^{1}(P, M) \rightarrow$ $\operatorname{Ext}_{R}^{1}\left(P, P^{(X)}\right)$ is canonically a monomorphism.
(3) P_{R} is selfsmall and for any epimorphism $\phi: P^{(X)} \rightarrow N$ where $N \in n-\operatorname{Pres}\left(P_{R}\right)$ and X is a set, say $\phi=\left(\phi_{x}\right)_{x}$, we have $\operatorname{Ker} \phi \in n-\operatorname{Pres}\left(P_{R}\right)$ if and only if $\operatorname{Hom}_{R}(P, N)=$ $\sum_{x} \phi_{x} A$.

Proof. (1) \Rightarrow (2). First assume that $M \in n$ - $\operatorname{Pres}\left(P_{R}\right)$. Since P_{R} is $(n+1)$-quasiprojective and $(n+1)$ - $\operatorname{Pres}\left(P_{R}\right)=n-\operatorname{Pres}\left(P_{R}\right)$, the canonical morphism $\operatorname{Ext}_{R}^{1}(P, M) \rightarrow$ $\operatorname{Ext}_{R}^{1}\left(P, P^{(X)}\right)$ is clearly a monomorphism.

On the other hand, assume that the canonical morphism $\operatorname{Ext}_{R}^{1}(P, M) \rightarrow \operatorname{Ext}_{R}^{1}\left(P, P^{(X)}\right)$ is a monomorphism for the exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$. It follows that the induced sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}\left(P^{(X)}\right) \rightarrow H_{P}(N) \rightarrow 0$ is exact. Now consider the commutative diagram:

By Proposition $2.2 \rho_{N}$ is an isomorphism and $\operatorname{Tor}_{i}^{A}\left(H_{P}(N), P\right)=0$ for any $i \geqslant 1$. Therefore the above diagram is exact, so that ρ_{M} is an isomorphism and $\operatorname{Tor}_{i}^{A}\left(H_{P}(M)\right.$, $P)=0$ for any $i \geqslant 1$. Hence $M \in n-\operatorname{Pres}\left(P_{R}\right)$ by Lemma 1.1.
$(2) \Rightarrow(3) \Rightarrow(1)$ are similar to the proof of $(5) \Rightarrow(4) \Rightarrow(3)$ in [1, Theorem 4.1].
Proposition 2.4. Let P_{R} be $a *^{n}$-module. Then T_{P} is an exact functor in $H_{P}\left(n-\operatorname{Pres}\left(P_{R}\right)\right)$. Moreover, $H_{P}\left(n-\operatorname{Pres}\left(P_{R}\right)\right)=\frac{1}{A} P:=\left\{M_{A} \mid \operatorname{Tor}_{i}^{A}(M, P)=0\right.$ for all $\left.i \geqslant 1\right\}$, where $A=$ $\operatorname{End}\left(P_{R}\right)$.

Proof. By Proposition 2.2 we have that $H_{P}\left(n-\operatorname{Pres}\left(P_{R}\right)\right) \subseteq{ }_{A} P$. In particular the functor T_{P} is exact in $H_{P}\left(n-\operatorname{Pres}\left(P_{R}\right)\right)$. On the other hand, we have that $T_{P}(M) \in n-\operatorname{Pres}\left(P_{R}\right)$ for any $M_{A} \in{ }_{A}^{\perp} P$ by Lemma 1.1. Therefore given the exact sequence $0 \rightarrow L_{A} \rightarrow$ $A^{(X)} \rightarrow M_{A} \rightarrow 0$ where X is a set, we have $L_{A} \in{ }_{A}^{1} P$ and $T_{P}(L) \in n-\operatorname{Pres}\left(P_{R}\right)$. Consider the induced exact sequence $0 \rightarrow T_{P}(L) \rightarrow T_{P}\left(A^{(X)}\right) \rightarrow T_{P}(M) \rightarrow 0$ (note that $\operatorname{Tor}_{1}^{A}(M, P)=0$). Since P_{R} is a $*^{n}$-module and $T_{P}(L) \in n-\operatorname{Pres}\left(P_{R}\right)$, we have the following commutative diagram with exact rows:

Note that σ_{M} is an epimorphism since $\sigma_{A^{(X)}}$ is a natural isomorphism. The same argument proves that σ_{L} is an epimorphism too. It follows that σ_{M} is an isomorphism. Therefore $M_{A} \simeq H_{P} T_{P}(M) \in H_{P}\left(n-\operatorname{Pres}\left(P_{R}\right)\right)$. So that the inclusion ${ }_{A}^{1} P \subseteq H_{P}\left(n-\operatorname{Pres}\left(P_{R}\right)\right)$ is proved.

As an application, we immediately obtain a new proof of the following result in [3].
Corollary 2.5. Let P_{R} be $a *$-module, $A=\operatorname{End}\left(P_{R}\right)$ and let $K_{A}=\operatorname{Hom}_{R}(P, Q)$ where Q_{R} is an arbitrary injective cogenerator of $\operatorname{Mod}-R$. Then
(1) T_{P} is an exact functor in $\operatorname{Cogen}\left(K_{A}\right)$.
(2) $\operatorname{Cogen}\left(K_{A}\right)={ }_{A}^{\perp_{1}} P:=\left\{M_{A} \mid \operatorname{Tor}_{1}^{A}(M, P)=0\right\}$.

Proof. By Proposition 2.4, the functor T_{P} is exact in $H_{P}\left(\operatorname{Gen}\left(P_{R}\right)\right)$. Since P_{R} is a $*-$ module, $H_{P}\left(\operatorname{Gen}\left(P_{R}\right)\right)=\operatorname{Cogen}\left(K_{A}\right)$. Hence (1) holds true.

By [9, Lemma 2.1] the flat dimension of ${ }_{A} P \leqslant 1$, so ${ }_{A}^{{ }^{1}} P=\left\{M \mid \operatorname{Tor}_{1}^{A}(M, P)=0\right\}=$ $\left\{M \mid \operatorname{Tor}_{i}^{A}(M, P)=0\right.$ for all $\left.i \geqslant 1\right\}={ }_{A}^{\perp} P$. Finally, thanks to Proposition 2.4 we see that (2) holds true.

Proposition 2.6. Let P_{R} be a $*^{n}$-module, $A=\operatorname{End}\left(P_{R}\right)$. Then H_{P} preserves any exact sequence in n - $\operatorname{Pres}\left(P_{R}\right)$.

Proof. Consider any exact sequence $0 \rightarrow M \rightarrow N \rightarrow L \rightarrow 0$ in $n-\operatorname{Pres}\left(P_{R}\right)$ and the induced exact sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(N) \rightarrow H_{P}(L) \rightarrow D_{A} \rightarrow 0$, where $D_{A}=$ $\operatorname{Im}\left(H_{P}(L) \rightarrow \operatorname{Ext}_{R}^{1}(P, M)\right)$. Let $C_{A}=\operatorname{Im}\left(H_{P}(N) \rightarrow H_{P}(L)\right)$. Applying the functor T_{P}
to the exact sequence $0 \rightarrow H_{P}(M) \rightarrow H_{p}(N) \rightarrow C \rightarrow 0$, thanks to Proposition 2.2, we obtain the following commutative diagram with exact rows:

where ρ_{M} and ρ_{N} are isomorphisms and $\operatorname{Tor}_{i}^{A}\left(H_{P}(M), P\right)=0=\operatorname{Tor}_{i}^{A}\left(H_{P}(N), P\right)$ for any $i \geqslant 1$. Then $\operatorname{Tor}_{i}^{A}(C, P)=0$ for any $i \geqslant 1$, and $T_{P}(C) \simeq L$. By Proposition 2.4 we have $C_{A}=H_{P}(X)$ for some $X_{R} \in n-\operatorname{Pres}\left(P_{R}\right)$. Then

$$
C_{A}=H_{P}(X) \simeq H_{P}\left(T_{P} H_{P}(X)\right) \simeq H_{P} T_{P}\left(H_{P}(X)\right)=H_{P} T_{P}(C) .
$$

It follows that

$$
D_{A}=\operatorname{Coker}\left(C \rightarrow H_{P}(L)\right) \simeq \operatorname{Coker}\left(H_{P} T_{P}(C) \rightarrow H_{P} T_{P} H_{P}(L)\right)=0
$$

Hence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(N) \rightarrow H_{P}(L) \rightarrow 0$ is exact.
In particular, we obtain the following corollary.
Corollary 2.7 [1]. Let P_{R} be $a *$-module. Then H_{P} is an exact functor in $\operatorname{Gen}\left(P_{R}\right)$.
Thanks to Proposition 2.6, we are able to give the following characterization of $*^{n}$ modules which generalizes (4) in Theorem 1.3.

Theorem 2.8. Let $P_{R} \in \operatorname{Mod}-R$. Then the following conditions are equivalent:
(1) P_{R} is $a *^{n}$-module.
(2) P_{R} is selfsmall and for any exact sequence $0 \rightarrow M \rightarrow N \rightarrow L \rightarrow 0$ in Mod- R where $N, L \in n-\operatorname{Pres}\left(P_{R}\right)$, we have $M \in n-\operatorname{Pres}\left(P_{R}\right)$ if and only if the induced sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(N) \rightarrow H_{P}(L) \rightarrow 0$ is exact.

Proof. (1) \Rightarrow (2). The necessity follows from Proposition 2.6 and the sufficiency from a similar proof as in $(1) \Rightarrow(2)$ in Theorem 2.3.
$(2) \Rightarrow(1)$. It follows from $(2) \Rightarrow(1)$ in Theorem 2.3.
Proposition 2.9. Let P_{R} be $a *^{n}$-module. Then $n-\operatorname{Pres}\left(P_{R}\right)$ is extension closed if and only if $n-\operatorname{Pres}\left(P_{R}\right) \subseteq P_{R}^{\perp_{1}}:=\left\{M_{R} \mid \operatorname{Ext}_{R}^{1}(P, M)=0\right\}$.

Proof. The necessity. For any $M \in n-\operatorname{Pres}\left(P_{R}\right)$ and any extension of M by $P_{R}: 0 \rightarrow M \rightarrow$ $N \rightarrow{ }^{f} P_{R} \rightarrow 0$, we have that $N \in n-\operatorname{Pres}\left(P_{R}\right)$ by assumption. Thanks to Proposition 2.6, the induced sequence $0 \rightarrow \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}(P, N) \rightarrow \operatorname{Hom}_{R}(P, P) \rightarrow 0$ is exact.

Hence there is a morphism $g: P_{R} \rightarrow N$ such that $f g=1_{P_{R}}$. This proves that n - $\operatorname{Pres}\left(P_{R}\right) \subseteq$ P_{R}^{\perp}.

The sufficiency. For any $M, L \in n-\operatorname{Pres}\left(P_{R}\right)$ and any extension of M by $L: 0 \rightarrow M \rightarrow$ $N \rightarrow L \rightarrow 0$ we get that the induced sequence $0 \rightarrow \operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}(P, N) \rightarrow$ $\operatorname{Hom}_{R}(P, L) \rightarrow 0$ is exact by assumption. Thank to Proposition 2.2, both ρ_{M} and ρ_{L} are isomorphisms and both $H_{P}(M)$ and $H_{P}(L)$ are in ${ }_{A}^{\perp} P$. It follows that ρ_{N} is an isomorphism and $H_{P}(N) \in{ }_{A}^{\perp} P$. Thanks to Lemma 1.1, we obtain that $N \in n-\operatorname{Pres}\left(P_{R}\right)$, i.e., n - $\operatorname{Pres}\left(P_{R}\right)$ is closed under extensions.

We conclude this section with the following category-theoretical characterization of $*^{n}$-modules.

Theorem 2.10. Let $P_{R} \in \operatorname{Mod}-R, A=\operatorname{End}\left(P_{R}\right)$. Then the following conditions are equivalent:
(1) P_{R} is $a *^{n}$-module.
(2) P_{R} induces an equivalence: $T_{P}:{ }_{A}^{\perp} P \rightleftharpoons n$ - $\operatorname{Pres}\left(P_{R}\right): H_{P}$, where ${ }_{A}^{\perp} P$ is defined as in Proposition 2.4.

Proof. (1) \Rightarrow (2). By Propositions 2.2 and 2.4.
(2) \Rightarrow (1). Since $A \in \frac{1}{A} P$, we have that $\operatorname{Hom}_{R}(P, P)^{(X)}=A^{(X)} \simeq H_{P} T_{P}\left(A^{(X)}\right)=$ $H_{P}\left(T_{P}\left(A^{(X)}\right)\right) \simeq H_{P}\left(P^{(X)}\right)=\operatorname{Hom}_{R}\left(P, P^{(X)}\right)$ canonically. Hence P_{R} is selfsmall. Since $H_{P}(N) \in{ }_{A}^{1} P$ and $T_{P} H_{P}(N) \simeq N$ for any $N \in n-\operatorname{Pres}\left(P_{R}\right)$, we get that $N \in$ $(n+1)-\operatorname{Pres}\left(P_{R}\right)$ by Lemma 1.1. So that $(n+1)-\operatorname{Pres}\left(P_{R}\right)=n-\operatorname{Pres}\left(P_{R}\right)$. Finally, for any exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$ where $M \in n-\operatorname{Pres}\left(P_{R}\right)$, we have an induced exact sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}\left(P^{(X)}\right) \rightarrow H_{P}(N) \rightarrow D_{A} \rightarrow 0$ where $D_{A}=$ $\operatorname{Im}\left(H_{P}(N) \rightarrow \operatorname{Ext}_{R}^{1}(P, M)\right)$. A similar proof as in Proposition 2.6 shows that $D_{A}=0$, i.e., P_{R} is $(n+1)$-quasi-projective.

3. Tilting modules

In this section we study the connection between tilting modules of projective dimension $\leqslant n$ and $*^{n}$-modules. In particular, we characterize tilting modules of projective dimension $\leqslant n$ as a subclass of $*^{n}$-modules. The results in this section generalize the case $n=1$ in [2,3], etc.

Following Miyashita [7], we say that P_{R} is a tilting module of projective dimension $\leqslant n$ if it satisfies the following three conditions:
(1) P_{R} has a projective resolution $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{0} \rightarrow P_{R} \rightarrow 0$ such that each F_{i} is finitely generated.
(2) $\operatorname{Ext}_{R}^{i}(P, P)=0$ if $1 \leqslant i \leqslant n$.
(3) There exists an exact sequence $0 \rightarrow R \rightarrow P_{0} \rightarrow P_{1} \rightarrow \cdots \rightarrow P_{n} \rightarrow 0$ such that each P_{i} is a direct summand of a finite direct sum of copies of P_{R}.

Assume that P_{R} has a finitely generated projective resolution. Following Wakamatsu [11,12], we say that P_{R} is a Wakamatsu-tilting module if it satisfies the following two conditions:
(1) $R \simeq \operatorname{End}\left({ }_{A} P\right)$ where $A=\operatorname{End}\left(P_{R}\right)$.
(2) $\operatorname{Ext}_{R}^{i}(P, P)=0=\operatorname{Ext}_{A}^{i}(P, P)$ for all $i \geqslant 1$.

By [11] these conditions are equivalent to the following:
(i) $\operatorname{Ext}_{R}^{i}(P, P)=0$ for all $i \geqslant 1$.
(ii) There is an infinite exact sequence $0 \rightarrow R \rightarrow{ }^{i} P_{0} \rightarrow{ }^{f_{0}} P_{1} \rightarrow \cdots$, where each P_{i} is a direct summand of a finite direct sum of copies of P_{R}, and $\operatorname{Ext}_{R}^{1}\left(\operatorname{Ker} f_{i}, P\right)=0$ for any $i \geqslant 0$.

Note that both tilting modules of finite projective dimension and Wakamatsu-tilting modules are left-right symmetric [7,11].

We first prove the following fact.
Lemma 3.1. Let P_{R} be a tilting module of projective dimension $\leqslant n$. The following conditions are equivalent:
(1) P_{R} is $a *$-module.
(2) $n \leqslant 1$.

Proof. (1) \Rightarrow (2). By [2, Theorem 3] it is sufficient to prove that the injective envelope E of R_{R} is generated by P_{R}. Since $\operatorname{Ext}_{R}^{i}(P, E)$ is clearly zero for all $i \geqslant 1$, the map ρ_{E} is an isomorphism by [7, Lemma 1.8]. This shows that $E \in \operatorname{Gen}\left(P_{R}\right)$.
$(2) \Rightarrow(1)$ is well known.
The proof of the following crucial lemma is essentially due to an idea which comes from [8, Theorem 4.3].

Lemma 3.2. Assume that P_{R} has a finitely generated projective resolution. The following conditions are equivalent:
(1) $\operatorname{Ext}_{R}^{n}(P, P)=0$.
(2) $\operatorname{Ext}_{R}^{n}\left(P, P^{(X)}\right)=0$ for any set X.

Proof. (1) \Rightarrow (2). By assumption we have an exact sequence $\cdots \rightarrow R^{m_{i+1}} \rightarrow{ }^{f_{i+1}} R^{m_{i}} \rightarrow{ }^{f_{i}}$ $\cdots \rightarrow R^{m_{0}} \rightarrow{ }^{f_{0}} P_{R} \rightarrow 0$ where each $m_{j} \in \mathbb{N}$. Let $L_{j}=\operatorname{Im} f_{j}$ for all $j \geqslant 0$. Therefore $L_{0}=P_{R}$ and each L_{j} is a finitely generated right R-module. Note $\operatorname{Ext}_{R}^{k}\left(R^{m_{j}}, P\right)=0$ for all $k \geqslant 1$ and all $j \geqslant 1$, so that $\operatorname{Ext}_{R}^{1}\left(L_{n-1}, P\right) \simeq \operatorname{Ext}_{R}^{n}(P, P)=0$. Now applying the functor $\operatorname{Hom}_{R}(-, P)$ to the exact sequence $0 \rightarrow L_{n} \rightarrow R^{m_{n-1}} \rightarrow L_{n-1} \rightarrow 0$ we get the induced exact sequence $0 \rightarrow \operatorname{Hom}_{R}\left(L_{n-1}, P\right) \rightarrow \operatorname{Hom}_{R}\left(R^{m_{n-1}}, P\right) \rightarrow \operatorname{Hom}_{R}\left(L_{n}, P\right) \rightarrow$ $0=\operatorname{Ext}_{R}^{1}\left(L_{n-1}, P\right)$. It follows that every morphism $L_{n} \rightarrow P_{R}$ can be extended to a
morphism $R^{m_{n-1}} \rightarrow P_{R}$. Consider now a morphism $g: L_{n} \rightarrow P^{(X)}$. As L_{n} is finitely generated, g is a diagonal morphism of finite family of morphisms from L_{n} into P. Hence g extends to a morphism from $R^{m_{n-1}}$ into $P_{R}^{(X)}$. Therefore the induced sequence $0 \rightarrow \operatorname{Hom}_{R}\left(L_{n-1}, P^{(X)}\right) \rightarrow \operatorname{Hom}_{R}\left(R^{m_{n-1}}, P^{(X)}\right) \rightarrow \operatorname{Hom}_{R}\left(L_{n}, P^{(X)}\right) \rightarrow 0$ is exact. As $\operatorname{Ext}_{R}^{1}\left(R^{m_{n-1}}, P^{(X)}\right)=0$ we get $\operatorname{Ext}_{R}^{1}\left(L_{n-1}, P^{(X)}\right)=0$. It follows that $\operatorname{Ext}_{R}^{n}\left(P, P^{(X)}\right) \simeq$ $\operatorname{Ext}_{R}^{1}\left(L_{n-1}, P^{(X)}\right)=0$.
$(2) \Rightarrow(1)$ is clear.
To study the connection between tilting modules of projective dimension $\leqslant n$ and $*^{n}$-modules, we need the following lemma.

Lemma 3.3. Let P_{R} be a selfsmall right R-module. Assume that $n-\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}:=$ $\left\{M_{R} \mid \operatorname{Ext}_{R}^{i}(P, M)=0\right.$ for all $\left.i \geqslant 1\right\}$. Then P_{R} is $a *^{n}$-module.

Proof. For any exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$ where $N \in n-\operatorname{Pres}\left(P_{R}\right)$, the induced sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}\left(P^{(X)}\right) \rightarrow H_{P}(N) \rightarrow \operatorname{Ext}_{R}^{1}(P, M) \rightarrow 0$ is exact. Note that $N, P^{(X)} \in n-\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}$, so that $\operatorname{Ext}_{R}^{i}(P, M)=0$ for $i \geqslant 2$. Therefore $\operatorname{Ext}_{R}^{1}(P, M) \rightarrow 0$ is canonically a monomorphism if and only if $\operatorname{Ext}_{R}^{1}(P, M)=0$ if and only if $M \in P_{R}^{\perp}=n$ - $\operatorname{Pres}\left(P_{R}\right)$. It follows that P_{R} is a $*^{n}$-module by Theorem 2.3.

We are now ready to prove that a tilting module of projective dimension $\leqslant n$ is a $*^{n}$-module.

Proposition 3.4. Suppose that P_{R} is a tilting module of projective dimension $\leqslant n$. Then n - $\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}$, so that P_{R} is $a *^{n}$-module.

Proof. For any $N \in n$ - $\operatorname{Pres}\left(P_{R}\right)$, there exists an exact sequence $0 \rightarrow M \rightarrow P^{\left(X_{n-1}\right)} \rightarrow$ $P^{\left(X_{n-2}\right)} \rightarrow \cdots \rightarrow P^{\left(X_{0}\right)} \rightarrow N \rightarrow 0$ for some $M_{R} \in \operatorname{Mod}-R$ where $X_{i}, 0 \leqslant i \leqslant n-1$, are sets. Thanks to Lemma 3.2, we have that $\operatorname{Ext}_{R}^{i}(P, N) \simeq \operatorname{Ext}_{R}^{i+n}(P, M)=0$ for all $i \geqslant 1$ by assumption. It follows that n - $\operatorname{Pres}\left(P_{R}\right) \subseteq P_{R}^{\perp}$.

Now let $M \in P_{R}^{\perp}$ and $A=\operatorname{End}\left(P_{R}\right)$. Let $0 \rightarrow M \rightarrow I_{0} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{n}$ be an injective resolution of M. Then the induced sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}\left(I_{0}\right) \rightarrow H_{P}\left(I_{1}\right) \rightarrow$ $\cdots \rightarrow H_{P}\left(I_{n}\right) \rightarrow C \rightarrow 0$ is exact for some $C \in \operatorname{Mod}-A$. Moreover, $\operatorname{Tor}_{i}^{A}\left(H_{P}(I), P\right)=0$ for all $i \geqslant 1$ and any injective module $I \in \operatorname{Mod}-R$ by [7, Lemma 1.7]. It follows that $\operatorname{Tor}_{i}^{A}\left(H_{P}(M), P\right) \simeq \operatorname{Tor}_{i+n}^{A}(C, P)=0$ for all $i \geqslant 1$. By [7, Lemma 1.8] $T_{P} H_{P}(M) \simeq M$. Thus $M \in n-\operatorname{Pres}\left(P_{R}\right)$ by Lemma 1.1.

In fact, the condition n - $\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}$ characterizes the $*^{n}$-modules P_{R} such that every injective module is n-presented by P_{R}, as the following theorem shows.

Theorem 3.5. Let P_{R} be a right R-module. Denote by Inj. the class of all injective right R-modules. Then the following conditions are equivalent:
(1) P_{R} is $a *^{n}$-module and $\operatorname{Inj} . \subseteq n-\operatorname{Pres}\left(P_{R}\right)$.
(2) P_{R} is selfsmall and $n-\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}$.

Proof. (1) \Rightarrow (2). P_{R} is clearly selfsmall. For any $M \in n-\operatorname{Pres}\left(P_{R}\right)$, let E be the injective envelope of M with the exact sequence $0 \rightarrow M \rightarrow E \rightarrow N \rightarrow 0$. We derive the induced exact sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(E) \rightarrow H_{P}(N) \rightarrow \operatorname{Ext}_{R}^{1}(P, M) \rightarrow 0$. Let $X_{A}=\operatorname{Im}\left(H_{P}(E) \rightarrow H_{P}(N)\right)$, where $A=\operatorname{End}\left(P_{R}\right)$. Applying T_{P} to the exact sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(E) \rightarrow X \rightarrow 0$, we have the following commutative diagram with exact rows:

By assumption, both ρ_{M} and ρ_{E} are isomorphisms, and $\operatorname{Tor}_{i}^{A}\left(H_{P}(M), P\right)=0=$ $\operatorname{Tor}_{i}^{A}\left(H_{P}(E), P\right)$ for all $i \geqslant 1$, thanks to Proposition 2.2. It follows that $\operatorname{Tor}_{i}^{A}(X, P)=0$ for all $i \geqslant 1$ and that $T_{P}(X) \simeq N$. Hence $N \simeq T_{P}(X) \in n-\operatorname{Pres}\left(P_{R}\right)$ by Lemma 1.1. Therefore the induced sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(E) \rightarrow H_{P}(N) \rightarrow 0$ is exact by Proposition 2.6. So that $\operatorname{Ext}_{R}^{1}(P, M)=0$. Similarly, $\operatorname{Ext}_{R}^{1}(P, N)=0$. Since $\operatorname{Ext}_{R}^{i}(P, N) \simeq \operatorname{Ext}_{R}^{i+1}(P, M)$ for all $i \geqslant 1$, from the arbitrarity of $M \in n$ - $\operatorname{Pres}\left(P_{R}\right)$ it follows that $\operatorname{Ext}_{R}^{i}(P, M)=0$ for all $i \geqslant 1$. This proves that n - $\operatorname{Pres}\left(P_{R}\right) \subseteq P_{R}^{\perp}$. The opposite inclusion can be proved by an argument similar to the second part of the proof 3.4.
$(2) \Rightarrow(1)$. It follows from Lemma 3.3.
Proposition 3.6. Assume that one of the conditions in Theorem 3.5 holds and that P_{R} has a finitely generated projective resolution. Then P_{R} is a Wakamatsu-tilting module.

Proof. Let E be the injective envelope of R_{R}. Since $E \in n$ - $\operatorname{Pres}\left(P_{R}\right)$ and R is projective, we obtain the following commutative diagram where X is a set:

This shows that P_{R} is faithful. Hence there is an exact sequence $0 \rightarrow R \rightarrow$ $\operatorname{Hom}_{A}(P, P) \rightarrow X \rightarrow 0$ for some $X_{R} \in \operatorname{Mod}-R$, where $A=\operatorname{End}\left(P_{R}\right)$. Let $E(X)$ be the injective envelope of X. Then the induced sequence $0 \rightarrow \operatorname{Hom}_{R}(X, E(X)) \rightarrow$ $\operatorname{Hom}_{R}\left(\operatorname{Hom}_{A}(P, P), E(X)\right) \rightarrow \operatorname{Hom}_{R}(R, E(X)) \rightarrow 0$ is exact. Since P_{R} has a finitely generated projective resolution, $\operatorname{Hom}_{R}(R, E(X)) \simeq E(X) \simeq T_{P} H_{P}(E(X))=$ $\operatorname{Hom}_{R}(P, E(X)) \otimes_{A} P \simeq \operatorname{Hom}_{R}\left(\operatorname{Hom}_{A}(P, P), E(X)\right)$ canonically. It follows that $\operatorname{Hom}_{R}(X, E(X))=0$, i.e., $X=0$. Hence $R \simeq \operatorname{End}\left({ }_{A} P\right)$.

It is clear that $\operatorname{Ext}_{R}^{i}(P, P)=0$ for all $i \geqslant 1$. Moreover, by Proposition 2.4 we have $\operatorname{Tor}_{i}^{A}\left(H_{P}(I), P\right)=0$ for all $i \geqslant 1$ and any injective module $I \in \operatorname{Mod}-R$. It follows that $\operatorname{Ext}_{A}^{i}(P, P)=0$ for all $i \geqslant 1$ by [7, Lemma 1.7].

Lemma 3.7. Assume that P_{R} has a finitely generated projective resolution. Denote by $P_{R}^{\perp_{n}}:=\left\{M_{R} \mid \operatorname{Ext}_{R}^{n}(P, M)=0\right\}$.
(1) If $\operatorname{Ext}_{R}^{n}(P, P)=0$ and $\operatorname{projdim}\left(P_{R}\right) \leqslant n$, then $\operatorname{Gen}\left(P_{R}\right) \subseteq P_{R}^{\perp_{n}}$.
(2) If Inj. $\subseteq \operatorname{Gen}\left(P_{R}\right) \subseteq P_{R}^{\perp_{n}}$, then $\operatorname{proj} \operatorname{dim}\left(P_{R}\right) \leqslant n$.

Proof. (1) For any $M \in \operatorname{Gen}\left(P_{R}\right)$, from an exact sequence $0 \rightarrow N \rightarrow P^{(X)} \rightarrow M \rightarrow 0$ we get the induced exact sequence $\operatorname{Ext}_{R}^{n}\left(P, P^{(X)}\right) \rightarrow \operatorname{Ext}_{R}^{n}(P, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(P, N)$. By assumption and Lemma 3.2 we get $\operatorname{Ext}_{R}^{n}\left(P, P^{(X)}\right)=0=\operatorname{Ext}_{R}^{n+1}(P, N)$. Hence $\operatorname{Ext}_{R}^{n}(P, M)=0$. This proves the thesis.
(2) For any $M \in \operatorname{Mod}-R$, consider the exact sequence $0 \rightarrow M \rightarrow E \rightarrow L \rightarrow 0$ where E is the injective envelope of M. By assumption $E \in \operatorname{Gen}\left(P_{R}\right)$, so $L \in \operatorname{Gen}\left(P_{R}\right)$ too. Hence $\operatorname{Ext}_{R}^{n}(P, L)=0$ by assumption. From the induced exact sequence $0=\operatorname{Ext}_{R}^{n}(P, L) \rightarrow$ $\operatorname{Ext}_{R}^{n+1}(P, M) \rightarrow \operatorname{Ext}_{R}^{n+1}(P, E)=0$ we derive that $\operatorname{Ext}_{R}^{n+1}(P, M)=0$. This proves the thesis.

We give now a characterization of tilting modules of projective dimension $\leqslant n$ in term of $*^{n}$-modules.

Theorem 3.8. Assume that P_{R} has a finitely generated projective resolution. Then the following conditions are equivalent:
(1) P_{R} is a tilting module of projective dimension $\leqslant n$.
(2) n - $\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}$ and $\operatorname{Gen}\left(P_{R}\right) \subseteq P_{R}^{\perp_{n}}$.
(3) P_{R} is a $*^{n}$-module, Inj. $\subseteq n$ - $\operatorname{Pres}\left(P_{R}\right)$ and $\operatorname{Gen}\left(P_{R}\right) \subseteq P_{R}^{\perp_{n}}$.

Proof. We already know that $(1) \Rightarrow(2) \Rightarrow(3)$ hold true.
(2) \Rightarrow (1). It remains to be proved that there is an exact sequence $0 \rightarrow R \rightarrow P_{0} \rightarrow$ $P_{1} \rightarrow \cdots \rightarrow P_{n} \rightarrow 0$ where each $P_{i}, 0 \leqslant i \leqslant n$, is a direct summand of a finite direct sum of copies of P_{R}. By Proposition $3.6 P_{R}$ is a Wakamatsu-tilting module, so that there is an infinite exact sequence $0 \rightarrow R \rightarrow{ }^{i} P_{0} \rightarrow{ }^{f_{0}} P_{1} \rightarrow{ }^{f_{1}} \ldots$, where P_{i} 's are finite direct sums of copies of P_{R} and $\operatorname{Ext}_{R}^{1}\left(\operatorname{Ker} f_{i}, P\right)=0$ for all $i \geqslant 0$. Let $X=\operatorname{Ker} f_{n}$. Then $X \in$ n - $\operatorname{Pres}\left(P_{R}\right)$. Note that $(n+1)$ - $\operatorname{Pres}\left(P_{R}\right)=n$ - $\operatorname{Pres}\left(P_{R}\right)$, so that we have an exact sequence $P^{\left(X_{-1}\right)} \rightarrow^{g_{-1}} P^{\left(X_{0}\right)} \rightarrow^{g_{0}} \ldots \rightarrow^{g_{n-2}} P^{\left(X_{n-1}\right)} \rightarrow^{g_{n-1}} X \rightarrow 0$ where Ker $g_{i} \in n$ - $\operatorname{Pres}\left(P_{R}\right)$ and all $X_{i},-1 \leqslant i \leqslant n-1$, are finite sets. We claim that $\operatorname{Ext}_{R}^{1}\left(X, \operatorname{Ker} g_{n-1}\right)=0$. Therefore X is just a summand of $P^{\left(X_{n-1}\right)}$ and the result follows.

In fact, we can show, by induction on k, that $\operatorname{Ext}_{R}^{1}\left(\operatorname{Ker} f_{k}, \operatorname{Ker} g_{k-1}\right)=0$ for $k \geqslant 1$. In case $k=1$, note that $\operatorname{Ker} g_{i} \in n-\operatorname{Pres}\left(P_{R}\right)$, so that $\operatorname{Ext}_{R}^{1}\left(P_{j}, \operatorname{Ker} g_{i}\right)=0$ for $-1 \leqslant i \leqslant$ $n-1$ and $j \geqslant 0$. It follows that $\operatorname{Ext}_{R}^{1}\left(\operatorname{Ker} f_{1}, \operatorname{Ker} g_{0}\right)=0$ if and only if

$$
\operatorname{Hom}_{R}\left(P_{0}, \operatorname{Ker} g_{0}\right) \rightarrow{ }^{\sigma} \operatorname{Hom}_{R}\left(R, \operatorname{Ker} g_{0}\right) \rightarrow 0
$$

is exact. To show that σ is epic, let $h \in \operatorname{Hom}_{R}\left(R, \operatorname{Ker} g_{0}\right)$. Consider the following diagram:

Since R is projective, there exists $j \in \operatorname{Hom}_{R}\left(R, P^{\left(X_{-1}\right)}\right)$ such that $h=g_{-1} \circ j$. Then the induced sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Ker} f_{1}, P^{\left(X_{-1}\right)}\right) \rightarrow \operatorname{Hom}_{R}\left(P_{0}, P^{\left(X_{-1}\right)}\right) \\
& \rightarrow \operatorname{Hom}_{R}\left(R, P^{\left(X_{-1}\right)}\right) \rightarrow \operatorname{Ext}_{R}^{1}\left(\operatorname{Ker} f_{1}, P^{\left(X_{-1}\right)}\right)=0
\end{aligned}
$$

is exact. Hence there exists $l \in \operatorname{Hom}_{R}\left(P_{0}, P^{\left(X_{-1}\right)}\right)$ such that $j=l \circ i$. Let $\theta=g_{-1} \circ l \in$ $\operatorname{Hom}_{R}\left(P_{0}, \operatorname{Ker} g_{0}\right)$. Note that $\theta \circ i=g_{-1} \circ l \circ i=g_{-1} \circ j=h$, so that σ is epic. Now we show that $\operatorname{Ext}_{R}^{1}\left(X, \operatorname{Ker} g_{n-1}\right)=0$, just proving that

$$
\operatorname{Hom}_{R}\left(P_{n-1}, \operatorname{Ker} g_{n-1}\right) \rightarrow{ }^{\sigma^{\prime}} \operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1}, \operatorname{Ker} g_{n-1}\right) \rightarrow 0
$$

is exact. For any $h^{\prime} \in \operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1}, \operatorname{Ker} g_{n-1}\right)$, consider the following diagram:

Since

$$
\operatorname{Ext}_{R}^{1}\left(\operatorname{Ker} f_{n-1}, \operatorname{Ker} g_{n-2}\right)=0
$$

by assumption, applying the functor $\operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1},-\right)$ to the second row in the previous diagram, we see that the sequence

$$
\operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1}, P^{\left(X_{n-2}\right)}\right) \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1}, \operatorname{Ker} g_{n-1}\right) \rightarrow 0
$$

is exact. It follows that there exists $j^{\prime} \in \operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1}, P^{\left(X_{n-2}\right)}\right)$ such that $h^{\prime}=g_{n-2} \circ j^{\prime}$. Then the induced sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{R}\left(X, P^{\left(X_{n-2}\right)}\right) \rightarrow \operatorname{Hom}_{R}\left(P_{n-1}, P^{\left(X_{n-2}\right)}\right) \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Ker} f_{n-1}, P^{\left(X_{n-2}\right)}\right) \\
& \rightarrow \operatorname{Ext}_{R}^{1}\left(X, P^{\left(X_{n-2}\right)}\right)=0
\end{aligned}
$$

is exact. Therefore there exists $l^{\prime} \in \operatorname{Hom}_{R}\left(P_{n-1}, P^{\left(X_{n-2}\right)}\right)$ such that $j^{\prime}=l^{\prime} \circ i^{\prime}$. Let $\theta^{\prime}=g_{n-2} \circ l^{\prime} \in \operatorname{Hom}_{R}\left(P_{n-1}, \operatorname{Ker} g_{n-2}\right)$. Then $\theta^{\prime} \circ i^{\prime}=g_{n-2} \circ l^{\prime} \circ i^{\prime}=g_{n-2} \circ j^{\prime}=h^{\prime}$. This proves that σ^{\prime} is epic.

Remark 2. Clearly the condition $\operatorname{Gen}\left(P_{R}\right) \subseteq P_{R}^{\perp_{n}}$ in the previous theorem can be removed in case $n=1$. It can also be removed in case $n=2$. To see this, it is sufficient to show that $\operatorname{Pres}\left(P_{R}\right)=P_{R}^{\perp}$ implies $\operatorname{Gen}\left(P_{R}\right) \subseteq P_{R}^{\perp_{2}}$. In fact, for any $N \in \operatorname{Gen}\left(P_{R}\right)$, let $0 \rightarrow N \rightarrow E \rightarrow X \rightarrow 0$ bean exact sequence where E is the injective envelope of N. We have an induced exact sequence $0 \rightarrow H_{P}(N) \rightarrow H_{P}(E) \rightarrow C \rightarrow 0$ for some $C \in \operatorname{Mod}-A$, where $A=\operatorname{End}\left(P_{R}\right)$. Now consider the following commutative diagram with exact rows:

Note that ρ_{N} is an epimorphism and ρ_{E} is an isomorphism, so that we have $T_{P}(C) \simeq X$. By Lemma 1.1 $X \in \operatorname{Pres}\left(P_{R}\right)$. Hence $\operatorname{Ext}_{R}^{2}(P, N) \simeq \operatorname{Ext}_{R}^{1}(P, X)=0$.

In particular we can conclude that tilting modules of projective dimension $\leqslant 2$ are just $*^{2}$-modules which admit a finitely generated projective resolution and which present all injectives.

4. Questions

In [4], the authors studied $*_{\lambda}$-modules as generalizations of $*$-modules, where λ is a cardinal. Following [4], a right R-module P is a $*_{\lambda}$-module for some cardinal λ provided P is finitely generated and P satisfies the condition $C(k)$ for all $k<A$. Here $C(k)$ denotes the following assertion:
"For every submodule M of $P^{(k)}$, the condition $M \in \operatorname{Gen}(P)$ is equivalent to the injective of the canonical group homomorphism $\operatorname{Ext}_{R}^{1}(P, M) \rightarrow \operatorname{Ext}_{R}^{1}\left(P, P^{(k)}\right)$."

It should be noted that $C(k)$ implies $C\left(k^{\prime}\right)$ for all $k^{\prime} \leqslant k$ [4, Lemma 2.1], and that $*_{\lambda}$-modules are just finitely generated modules in case $\lambda=1$.

The following example shows that $*^{n}$-modules and $*_{\lambda}$-modules are different generalizations of $*$-modules.

Example. Let P_{R} be a right R-module which is finitely generated and quasi-projective. Let $A=\operatorname{End}\left(P_{R}\right)$. Assume that the flat dimension of ${ }_{A} P$ is finite and that P_{R} is not a quasi-progenerator. Such modules exist clearly (see, for instance, [5, Example 4.6]). By [13, Corollary 3.3] P_{R} is a $*^{n}$-module for some $n \geqslant 2$. But P_{R} is never a $*_{\lambda}$-module for any $\lambda \geqslant 2$. Otherwise, we have that P_{R} is a self-generator since P_{R} is quasi-projective and P_{R} satisfies the condition $C(2)$. Therefore P_{R} must be a quasi-progenerator, which is a contradiction.

Let $\operatorname{STAR}(n), \operatorname{STAR}(\lambda)$ and STAR be the class of all $*^{n}$-modules, all $*_{\lambda}$-modules and all *-modules respectively. We have the following question.

Question 1. Is it true that $\operatorname{STAR}(n) \cap \operatorname{STAR}(\lambda)=\operatorname{STAR}$?

As we see, there are many properties of $*^{n}$-modules similar to that of $*$-modules. Note that an important fact of $*$-modules is that they are finitely generated (see [10]), our second question is:

Question 2. Are all $*^{n}$-modules finitely generated?
Let P_{R} be a $*$-module and $A=\operatorname{End}\left(P_{R}\right)$. Then the flat dimension of ${ }_{A} P$ is not more than 1 [9]. It seems natural to consider the following:

Question 3. Does it happen that the flat dimension of ${ }_{A} P$ is not more than n for any $*^{n}$-module P_{R} with $A=\operatorname{End}\left(P_{R}\right)$?

A new result in [13] by the first author may be helpful to the third question. It claims that for any $*^{n}$-module P_{R} with $A=\operatorname{End}\left(P_{R}\right),{ }_{A}^{\perp} P:=\left\{M_{A} \mid \operatorname{Tor}_{i}^{A}(M, P)=0\right.$ for all $i \geqslant 1\}={ }^{\perp_{1 \leqslant i}}{ }_{A} P:=\left\{M_{A} \mid \operatorname{Tor}_{i}^{A}(M, P)=0\right.$ for all $\left.1 \leqslant i \leqslant n\right\}$.

Acknowledgment

The authors are greatly indebted to the referee for his/her help in improving this paper.

References

[1] R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra 18 (1990) 19351951.
[2] R. Colpi, Tilting modules and $*$-modules, Comm. Algebra 21 (1993) 1095-1102.
[3] R. Colpi, C. Menini, On the structure of $*$-modules, J. Algebra 158 (1993) 400-419.
[4] R. Colpi, J. Trlifaj, Classes of generalized *-modules, Comm. Algebra 22 (1994) 3985-3995.
[5] K.R. Fuller, Density and equivalence, J. Algebra 29 (1974) 528-550.
[6] Z.Y. Huang, On a generalization of the Auslander-Bridger transpose, Comm. Algebra 27 (1999) 5791-5812.
[7] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986) 113-146.
[8] C. Menini, A. Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 82 (1989) 203-231.
[9] J. Trlifaj, Dimension estimates for representable equivalences of module categories, J. Algebra 193 (1997) 660-676.
[10] J. Trlifaj, *-modules are finitely generated, J. Algebra 169 (1994) 392-398.
[11] T. Wakamatsu, On modules with trivial self-extension, J. Algebra 114 (1988) 106-114.
[12] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990) 298-325.
[13] J.Q. Wei, On equivalences of module categories, J. Algebra, revised.

[^0]: *) Supported by the National Natural Science Foundation of China.

 * Corresponding author.

 E-mail address: wei7312@sina.com (J. Wei).
 ${ }^{1}$ Partially supported by the Foundation of the Ministry of Science and Technology of China.
 0021-8693/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
 doi:10.1016/S0021-8693(03)00143-1

