

Journal of Algebra 268 (2003) 404-418

www.elsevier.com/locate/jalgebra

Tilting modules of finite projective dimension and a generalization of *-modules $\stackrel{\scriptscriptstyle \,\triangleleft\!}{\scriptstyle^{\scriptscriptstyle \ensuremath{\infty}}}$

Jiaqun Wei,^{*,1} Zhaoyong Huang, Wenting Tong, and Jihong Huang

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Received 30 June 2000

Communicated by Kent R. Fuller

Abstract

It is well known that tilting modules of projective dimension ≤ 1 coincide with *-modules generating all injectives. This result is extended in this paper. Namely, we generalize *-modules to so-called *^{*n*}-modules and show that tilting modules of projective dimension $\leq n$ are *^{*n*}-modules which *n*-present all injectives.

© 2003 Elsevier Inc. All rights reserved.

0. Introduction

Tilting theory may be viewed as a far-reaching generalization of the Morita theory of equivalences between module categories (see [1,2,6,7] et al.). By introducing the notion of a quasi-progenerator, Fuller showed a different way of generalization of the Morita theory [5]. Later, Menini and Orsatti found a common point by discovering the general notion of *-modules [8]. Colpi then proved that tilting modules of projective dimension ≤ 1 coincide with *-modules which generate all injectives [2], while quasi-progenerators are just the *-modules which generate all of their submodules [1]. However, tilting modules of projective dimension $\leq n$ are *-modules if and only if $n \leq 1$ (see Lemma 3.1, this fact was first inferred in [9]). Hence it's interesting to give some generalizations of *-modules and to consider the connection between them and tilting modules of finite projective dimension.

^{*} Supported by the National Natural Science Foundation of China.

^{*} Corresponding author.

E-mail address: wei7312@sina.com (J. Wei).

¹ Partially supported by the Foundation of the Ministry of Science and Technology of China.

^{0021-8693/\$ -} see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0021-8693(03)00143-1

The paper is constructed as follows. In Section 1 we introduce some notions and preliminary results. In Section 2 we generalize *-modules to $*^n$ -modules and we give some basic properties of $*^n$ -modules. As corollaries, some known results about *-modules are obtained. We also show that any $*^n$ -module defines an equivalence between two module subcategories (Theorem 2.10). In Section 3 we first show that tilting modules of projective dimension $\leq n$ are $*^n$ -modules (Proposition 3.4). Then we characterize $*^n$ -modules which *n*-present the injectives (Theorem 3.5). The main result is Theorem 3.8 where a strong connection between $*^n$ -modules and tilting modules of projective dimension $\leq n$ is given. Section 4 contains some open questions about $*^n$ -modules.

1. Preliminaries

All rings have non-zero identity and all modules are unitary. For every ring *R*, Mod-*R* (*R*-Mod) denotes the category of all right (left) *R*-modules. Let $P_R \in Mod$ -*R*. We say that a right *R*-module M_R is *n*-presented by P_R if there exists an exact sequence $P^{(X_{n-1})} \rightarrow P^{(X_{n-2})} \rightarrow \cdots \rightarrow P^{(X_1)} \rightarrow P^{(X_0)} \rightarrow M_R \rightarrow 0$ where $X_i, 0 \leq i \leq n-1$, are sets. Denote by *n*-Pres(P_R) the category of all modules *n*-presented by P_R . Of course, for every *n* we have (n + 1)-Pres(P_R) \subseteq *n*-Pres(P_R). We denote 2-Pres(P_R) by Pres(P_R) and 1-Pres(P_R) by Gen(P_R), as usual.

By taking a free resolution of B_A , one can prove the following result.

Lemma 1.1. Let $P_R \in \text{Mod-}R$ and $A = \text{End}(P_R)$. Then $B \otimes_A P \in \text{Pres}(P_R)$ for any $B_A \in \text{Mod-}A$. If moreover $\text{Tor}_i^A(B, P) = 0$ for $1 \leq i \leq n$, then $B \otimes_A P \in (n+2)$ - $\text{Pres}(P_R)$.

A right *R*-module P_R is selfsmall if, for any set *X* there is the canonical isomorphism $\operatorname{Hom}_R(P, P^{(X)}) \simeq \operatorname{Hom}_R(P, P^{(X)})$. Namely, if $\pi_x : P^{(X)} \to P$ is the canonical *x*th projection, for any $f \in \operatorname{Hom}_R(P, P^{(X)})$ it turns out that $\pi_x \circ f = 0$ for almost all *x* of *X*. Clearly, every finitely generated module is selfsmall, but the converse is generally false (see [4]). Let $P_R \in \operatorname{Mod-} R$. We say that P_R is *n*-quasi-projective if for any exact sequence $0 \to M \to P^{(X)} \to N \to 0$ in Mod-*R*, where $M_R \in (n-1)$ -Pres(P_R), the induced sequence $0 \to \operatorname{Hom}_R(P, M) \to \operatorname{Hom}_R(P, P^{(X)}) \to \operatorname{Hom}_R(P, N) \to 0$ is exact. Note that in case n = 2 it is just the familiar notion of $w \cdot \Sigma$ -quasi-projective introduced by Colpi [1].

Let *A* be a ring and $K_A \in Mod-A$. A right *A*-module N_A is *n*-copresented by K_A if there exists an exact sequence $0 \to N_A \to K^{Y_0} \to K^{Y_1} \to \cdots \to K^{Y_{n-2}} \to K^{Y_{n-1}}$ where $Y_i, 0 \leq i \leq n-1$, are sets. Denote by *n*-Copres(K_A) the category of all modules *n*-copresented by K_A . Of course, for every *n* we have (n + 1)-Copres(K_A) \subseteq *n*-Copres(K_A). We denote 2-Copres(K_A) by Copres(K_A) and 1-Copres(K_A) by Cogen(K_A), as usual.

Let *R* be a ring, $P_R \in \text{Mod-}R$ and let $A = \text{End}(P_R)$. Take an arbitrary injective cogenerator Q_R of Mod-*P* and put $K_A = \text{Hom}_R(P, Q)$. Denote by H_P the functor $\text{Hom}_R(P, -)$ and by T_P the functor $- \bigotimes_A P$. It is well known that (T_P, H_P) is a pair of adjoint functors with canonical morphisms:

$$\rho_M : T_P H_P(M_R) \to M_R, \quad \text{by } f \otimes p \mapsto f(p);$$

$$\sigma_N : N_A \to H_P T_P(N_A), \quad \text{by } n \mapsto [p \mapsto n \otimes p].$$

Lemma 1.2 [1].

(a) σ_N is a monomorphism if and only if $N_A \in \text{Cogen}(K_A)$.

(b) ρ_M is an epimorphism if and only if $M_R \in \text{Gen}(P_R)$.

It follows that $\text{Cogen}(K_A)$ does not depend on the choice of the injective cogenerator Q_R .

We say that P_R is a *-module if the pair (T_P, H_P) defines an equivalence:

$$T_P$$
: Cogen $(K_A) \rightleftharpoons$ Gen (P_R) : H_P .

In [1] the following result was proved.

Theorem 1.3. Let $P_R \in Mod-R$, $A = End(P_R)$. Then the following conditions are equivalent:

- (1) P_R is a *-module.
- (2) P_R is selfsmall, $w \cdot \Sigma$ -quasi-projective, and $\text{Gen}(P_R) = \text{Pres}(P_R)$.
- (3) P_R is selfsmall, and for any $M_R \leq P^{(X)}$, $M_R \in \text{Gen}(P_R)$ if and only if $\text{Ext}_R^1(P, M) \rightarrow \text{Ext}_R^1(P, P^{(X)})$ is canonically a monomorphism.
- (4) P_R is selfsmall and, for any exact sequence $0 \to L \to M \to N \to 0$ in Mod-R, where $M, N \in \text{Gen}(P_R)$, the induced sequence $0 \to H_P(L) \to H_P(M) \to H_P(N) \to 0$ is exact if and only if $L \in \text{Gen}(P_R)$.

2. $*^n$ -modules

Suggested by Theorem 1.3(2) and the ideas in [4], we give the following definition of $*^{n}$ -modules.

Definition 2.1. Let $P_R \in \text{Mod-}R$. P_R is a $*^n$ -module if P_R is selfsmall, (n + 1)-quasiprojective, and (n + 1)- $\text{Pres}(P_R) = n$ - $\text{Pres}(P_R)$.

Remark 1.

- (i) When n = 1, $*^n$ -modules are just the classical *-modules.
- (ii) If P_R is a $*^n$ -module, then it is a $*^m$ -module for any $m \ge n$.
- (iii) We will show in Section 3 that tilting modules of projective dimension $\leq n$ are $*^n$ -modules. Hence our generalization is not trivial.

Proposition 2.2. Let P_R be a $*^n$ -module. Then ρ_N is an isomorphism and $\operatorname{Tor}_i^A(H_P(N), P) = 0$ for any $i \ge 1$ and any $N \in n$ -Pres (P_R) .

Proof. For any $N \in n$ -Pres (P_R) , we have that $N \in (n + 1)$ -Pres (P_R) by the definition of $*^n$ -modules. Hence we have an exact sequence $0 \to M \to P^{(X)} \to N \to 0$ in Mod-R where $M \in n$ -Pres (P_R) and X is a set. Since P_R is (n + 1)-quasi-projective, the induced

406

sequence $0 \to H_P(M) \to H_P(P^{(X)}) \to H_P(N) \to 0$ is exact. We obtain the following commutative diagram with exact rows:

By Lemma 1.2, ρ_M is an epimorphism. Since $\rho_{P(X)}$ is a natural isomorphism, ρ_N is an isomorphism. So that applying the same argument as before we can conclude that ρ_M is an isomorphism too. It follows that $\operatorname{Tor}_1^A(H_P(N), P) = 0$. Similarly, $\operatorname{Tor}_1^A(H_P(M), P) = 0$. Finally, from the fact that $\operatorname{Tor}_{i+1}^A(H_P(N), P) \simeq \operatorname{Tor}_i^A(H_P(M), P)$ for any $i \ge 1$ we derive that $\operatorname{Tor}_i^A(H_P(N), P) = 0$ for any $i \ge 1$. \Box

We give now some characterizations of $*^n$ -modules which are similar to Theorem 1.3.

Theorem 2.3. Let $P_R \in Mod-R$ and $A = End(P_R)$. Then the following conditions are equivalent:

- (1) P_R is a $*^n$ -module.
- (2) P_R is selfsmall and for any exact sequence $0 \to M \to P^{(X)} \to N \to 0$ in Mod-R where $N \in n$ -Pres (P_R) and X is a set, $M \in n$ -Pres (P_R) if and only if $\operatorname{Ext}^1_R(P, M) \to \operatorname{Ext}^1_R(P, P^{(X)})$ is canonically a monomorphism.
- (3) P_R is selfsmall and for any epimorphism $\phi: P^{(X)} \to N$ where $N \in n$ -Pres (P_R) and X is a set, say $\phi = (\phi_X)_X$, we have Ker $\phi \in n$ -Pres (P_R) if and only if Hom_R $(P, N) = \sum_X \phi_X A$.

Proof. (1) \Rightarrow (2). First assume that $M \in n$ -Pres (P_R) . Since P_R is (n + 1)-quasiprojective and (n + 1)-Pres $(P_R) = n$ -Pres (P_R) , the canonical morphism $\text{Ext}_R^1(P, M) \rightarrow \text{Ext}_R^1(P, P^{(X)})$ is clearly a monomorphism.

On the other hand, assume that the canonical morphism $\operatorname{Ext}_{R}^{1}(P, M) \to \operatorname{Ext}_{R}^{1}(P, P^{(X)})$ is a monomorphism for the exact sequence $0 \to M \to P^{(X)} \to N \to 0$. It follows that the induced sequence $0 \to H_{P}(M) \to H_{P}(P^{(X)}) \to H_{P}(N) \to 0$ is exact. Now consider the commutative diagram:

By Proposition 2.2 ρ_N is an isomorphism and $\operatorname{Tor}_i^A(H_P(N), P) = 0$ for any $i \ge 1$. Therefore the above diagram is exact, so that ρ_M is an isomorphism and $\operatorname{Tor}_i^A(H_P(M), P) = 0$ for any $i \ge 1$. Hence $M \in n$ -Pres (P_R) by Lemma 1.1. $(2) \Rightarrow (3) \Rightarrow (1)$ are similar to the proof of $(5) \Rightarrow (4) \Rightarrow (3)$ in [1, Theorem 4.1]. \Box

Proposition 2.4. Let P_R be a $*^n$ -module. Then T_P is an exact functor in $H_P(n$ -Pres $(P_R))$. Moreover, $H_P(n\operatorname{-Pres}(P_R)) = \frac{1}{A}P := \{M_A \mid \operatorname{Tor}_i^A(M, P) = 0 \text{ for all } i \ge 1\}$, where A = $End(P_R).$

Proof. By Proposition 2.2 we have that $H_P(n-\operatorname{Pres}(P_R)) \subseteq \frac{\bot}{A}P$. In particular the functor T_P is exact in $H_P(n-\operatorname{Pres}(P_R))$. On the other hand, we have that $T_P(M) \in n-\operatorname{Pres}(P_R)$ for any $M_A \in \frac{1}{A}P$ by Lemma 1.1. Therefore given the exact sequence $0 \to L_A \to$ $A^{(X)} \to M_A \to 0$ where X is a set, we have $L_A \in \frac{1}{A}P$ and $T_P(L) \in n$ -Pres (P_R) . Consider the induced exact sequence $0 \to T_P(L) \to T_P(A^{(X)}) \to T_P(M) \to 0$ (note that $\operatorname{Tor}_1^A(M, P) = 0$). Since P_R is a $*^n$ -module and $T_P(L) \in n$ -Pres (P_R) , we have the following commutative diagram with exact rows:

Note that σ_M is an epimorphism since $\sigma_{A^{(X)}}$ is a natural isomorphism. The same argument proves that σ_L is an epimorphism too. It follows that σ_M is an isomorphism. Therefore $M_A \simeq H_P T_P(M) \in H_P(n-\operatorname{Pres}(P_R))$. So that the inclusion $\frac{1}{A}P \subseteq H_P(n-\operatorname{Pres}(P_R))$ is proved. \Box

As an application, we immediately obtain a new proof of the following result in [3].

Corollary 2.5. Let P_R be a *-module, $A = \text{End}(P_R)$ and let $K_A = \text{Hom}_R(P, Q)$ where Q_R is an arbitrary injective cogenerator of Mod-R. Then

(1) T_P is an exact functor in Cogen (K_A) . (2) $\operatorname{Cogen}(K_A) = {}_A^{\perp_1}P := \{M_A \mid \operatorname{Tor}_1^A(M, P) = 0\}.$

Proof. By Proposition 2.4, the functor T_P is exact in $H_P(\text{Gen}(P_R))$. Since P_R is a *module, $H_P(\text{Gen}(P_R)) = \text{Cogen}(K_A)$. Hence (1) holds true.

By [9, Lemma 2.1] the flat dimension of ${}_{A}P \leq 1$, so ${}_{A}^{\perp_1}P = \{M \mid \text{Tor}_1^A(M, P) = 0\} = \{M \mid \text{Tor}_i^A(M, P) = 0 \text{ for all } i \geq 1\} = {}_{A}^{\perp}P$. Finally, thanks to Proposition 2.4 we see that (2) holds true. \Box

Proposition 2.6. Let P_R be a $*^n$ -module, $A = \text{End}(P_R)$. Then H_P preserves any exact sequence in n-Pres (P_R) .

Proof. Consider any exact sequence $0 \to M \to N \to L \to 0$ in *n*-Pres(P_R) and the induced exact sequence $0 \to H_P(M) \to H_P(N) \to H_P(L) \to D_A \to 0$, where $D_A =$ $\operatorname{Im}(H_P(L) \to \operatorname{Ext}^1_R(P, M))$. Let $C_A = \operatorname{Im}(H_P(N) \to H_P(L))$. Applying the functor T_P

408

to the exact sequence $0 \rightarrow H_P(M) \rightarrow H_p(N) \rightarrow C \rightarrow 0$, thanks to Proposition 2.2, we obtain the following commutative diagram with exact rows:

where ρ_M and ρ_N are isomorphisms and $\operatorname{Tor}_i^A(H_P(M), P) = 0 = \operatorname{Tor}_i^A(H_P(N), P)$ for any $i \ge 1$. Then $\operatorname{Tor}_i^A(C, P) = 0$ for any $i \ge 1$, and $T_P(C) \simeq L$. By Proposition 2.4 we have $C_A = H_P(X)$ for some $X_R \in n$ -Pres (P_R) . Then

$$C_A = H_P(X) \simeq H_P(T_P H_P(X)) \simeq H_P T_P(H_P(X)) = H_P T_P(C).$$

It follows that

$$D_A = \operatorname{Coker}(C \to H_P(L)) \simeq \operatorname{Coker}(H_P T_P(C) \to H_P T_P H_P(L)) = 0$$

Hence $0 \to H_P(M) \to H_P(N) \to H_P(L) \to 0$ is exact. \Box

In particular, we obtain the following corollary.

Corollary 2.7 [1]. Let P_R be a *-module. Then H_P is an exact functor in Gen (P_R) .

Thanks to Proposition 2.6, we are able to give the following characterization of $*^n$ -modules which generalizes (4) in Theorem 1.3.

Theorem 2.8. Let $P_R \in Mod$ -R. Then the following conditions are equivalent:

- (1) P_R is a $*^n$ -module.
- (2) P_R is selfsmall and for any exact sequence $0 \to M \to N \to L \to 0$ in Mod-R where $N, L \in n$ -Pres (P_R) , we have $M \in n$ -Pres (P_R) if and only if the induced sequence $0 \to H_P(M) \to H_P(N) \to H_P(L) \to 0$ is exact.

Proof. (1) \Rightarrow (2). The necessity follows from Proposition 2.6 and the sufficiency from a similar proof as in (1) \Rightarrow (2) in Theorem 2.3.

 $(2) \Rightarrow (1)$. It follows from $(2) \Rightarrow (1)$ in Theorem 2.3. \Box

Proposition 2.9. Let P_R be a $*^n$ -module. Then n- Pres (P_R) is extension closed if and only if n- Pres $(P_R) \subseteq P_R^{\perp_1} := \{M_R \mid \text{Ext}_R^1(P, M) = 0\}.$

Proof. The necessity. For any $M \in n$ -Pres (P_R) and any extension of M by $P_R : 0 \to M \to N \to f^f P_R \to 0$, we have that $N \in n$ -Pres (P_R) by assumption. Thanks to Proposition 2.6, the induced sequence $0 \to \text{Hom}_R(P, M) \to \text{Hom}_R(P, N) \to \text{Hom}_R(P, P) \to 0$ is exact.

Hence there is a morphism $g: P_R \to N$ such that $fg = 1_{P_R}$. This proves that n-Pres $(P_R) \subseteq P_R^{\perp 1}$.

The sufficiency. For any $M, L \in n$ -Pres (P_R) and any extension of M by $L: 0 \to M \to N \to L \to 0$ we get that the induced sequence $0 \to \text{Hom}_R(P, M) \to \text{Hom}_R(P, N) \to \text{Hom}_R(P, L) \to 0$ is exact by assumption. Thank to Proposition 2.2, both ρ_M and ρ_L are isomorphisms and both $H_P(M)$ and $H_P(L)$ are in $\frac{1}{A}P$. It follows that ρ_N is an isomorphism and $H_P(N) \in \frac{1}{A}P$. Thanks to Lemma 1.1, we obtain that $N \in n$ -Pres (P_R) , i.e., n-Pres (P_R) is closed under extensions. \Box

We conclude this section with the following category-theoretical characterization of $*^{n}$ -modules.

Theorem 2.10. Let $P_R \in Mod-R$, $A = End(P_R)$. Then the following conditions are equivalent:

- (1) P_R is a $*^n$ -module.
- (2) P_R induces an equivalence: $T_P : {}^{\perp}_A P \rightleftharpoons n$ -Pres $(P_R) : H_P$, where ${}^{\perp}_A P$ is defined as in *Proposition 2.4.*

Proof. (1) \Rightarrow (2). By Propositions 2.2 and 2.4.

(2) \Rightarrow (1). Since $A \in {}^{\perp}_{A}P$, we have that $\operatorname{Hom}_{R}(P, P)^{(X)} = A^{(X)} \simeq H_{P}T_{P}(A^{(X)}) = H_{P}(T_{P}(A^{(X)})) \simeq H_{P}(P^{(X)}) = \operatorname{Hom}_{R}(P, P^{(X)})$ canonically. Hence P_{R} is selfsmall. Since $H_{P}(N) \in {}^{\perp}_{A}P$ and $T_{P}H_{P}(N) \simeq N$ for any $N \in n$ -Pres (P_{R}) , we get that $N \in (n + 1)$ -Pres (P_{R}) by Lemma 1.1. So that (n + 1)-Pres $(P_{R}) = n$ -Pres (P_{R}) . Finally, for any exact sequence $0 \rightarrow M \rightarrow P^{(X)} \rightarrow N \rightarrow 0$ where $M \in n$ -Pres (P_{R}) , we have an induced exact sequence $0 \rightarrow H_{P}(M) \rightarrow H_{P}(P^{(X)}) \rightarrow H_{P}(N) \rightarrow D_{A} \rightarrow 0$ where $D_{A} = \operatorname{Im}(H_{P}(N) \rightarrow \operatorname{Ext}^{1}_{R}(P, M))$. A similar proof as in Proposition 2.6 shows that $D_{A} = 0$, i.e., P_{R} is (n + 1)-quasi-projective. \Box

3. Tilting modules

In this section we study the connection between tilting modules of projective dimension $\leq n$ and $*^n$ -modules. In particular, we characterize tilting modules of projective dimension $\leq n$ as a subclass of $*^n$ -modules. The results in this section generalize the case n = 1 in [2,3], etc.

Following Miyashita [7], we say that P_R is a tilting module of projective dimension $\leq n$ if it satisfies the following three conditions:

- (1) P_R has a projective resolution $0 \to F_n \to \cdots \to F_0 \to P_R \to 0$ such that each F_i is finitely generated.
- (2) $\operatorname{Ext}_{R}^{l}(P, P) = 0$ if $1 \leq i \leq n$.
- (3) There exists an exact sequence $0 \to R \to P_0 \to P_1 \to \cdots \to P_n \to 0$ such that each P_i is a direct summand of a finite direct sum of copies of P_R .

Assume that P_R has a finitely generated projective resolution. Following Wakamatsu [11,12], we say that P_R is a Wakamatsu-tilting module if it satisfies the following two conditions:

- (1) $R \simeq \operatorname{End}(_A P)$ where $A = \operatorname{End}(P_R)$.
- (2) $\operatorname{Ext}_{R}^{i}(P, P) = 0 = \operatorname{Ext}_{A}^{i}(P, P)$ for all $i \ge 1$.

By [11] these conditions are equivalent to the following:

- (i) $\operatorname{Ext}_{R}^{i}(P, P) = 0$ for all $i \ge 1$.
- (ii) There is an infinite exact sequence $0 \to R \to {}^i P_0 \to {}^{f_0} P_1 \to \cdots$, where each P_i is a direct summand of a finite direct sum of copies of P_R , and $\operatorname{Ext}^1_R(\operatorname{Ker} f_i, P) = 0$ for any $i \ge 0$.

Note that both tilting modules of finite projective dimension and Wakamatsu-tilting modules are left–right symmetric [7,11].

We first prove the following fact.

Lemma 3.1. Let P_R be a tilting module of projective dimension $\leq n$. The following conditions are equivalent:

(1) P_R is a *-module. (2) $n \leq 1$.

Proof. (1) \Rightarrow (2). By [2, Theorem 3] it is sufficient to prove that the injective envelope *E* of R_R is generated by P_R . Since $\operatorname{Ext}_R^i(P, E)$ is clearly zero for all $i \ge 1$, the map ρ_E is an isomorphism by [7, Lemma 1.8]. This shows that $E \in \operatorname{Gen}(P_R)$.

 $(2) \Rightarrow (1)$ is well known. \Box

The proof of the following crucial lemma is essentially due to an idea which comes from [8, Theorem 4.3].

Lemma 3.2. Assume that P_R has a finitely generated projective resolution. The following conditions are equivalent:

- (1) $\operatorname{Ext}_{R}^{n}(P, P) = 0.$
- (2) $\operatorname{Ext}_{R}^{n}(P, P^{(X)}) = 0$ for any set X.

Proof. (1) \Rightarrow (2). By assumption we have an exact sequence $\cdots \rightarrow R^{m_{i+1}} \rightarrow f_{i+1} R^{m_i} \rightarrow f_i$ $\cdots \rightarrow R^{m_0} \rightarrow f_0 P_R \rightarrow 0$ where each $m_j \in \mathbb{N}$. Let $L_j = \text{Im } f_j$ for all $j \ge 0$. Therefore $L_0 = P_R$ and each L_j is a finitely generated right *R*-module. Note $\text{Ext}_R^k(R^{m_j}, P) = 0$ for all $k \ge 1$ and all $j \ge 1$, so that $\text{Ext}_R^1(L_{n-1}, P) \simeq \text{Ext}_R^n(P, P) = 0$. Now applying the functor $\text{Hom}_R(-, P)$ to the exact sequence $0 \rightarrow L_n \rightarrow R^{m_{n-1}} \rightarrow L_{n-1} \rightarrow 0$ we get the induced exact sequence $0 \rightarrow \text{Hom}_R(L_{n-1}, P) \rightarrow \text{Hom}_R(R^{m_{n-1}}, P) \rightarrow \text{Hom}_R(L_n, P) \rightarrow 0 = \text{Ext}_R^1(L_{n-1}, P)$. It follows that every morphism $L_n \rightarrow P_R$ can be extended to a morphism $R^{m_{n-1}} \to P_R$. Consider now a morphism $g: L_n \to P^{(X)}$. As L_n is finitely generated, g is a diagonal morphism of finite family of morphisms from L_n into P. Hence g extends to a morphism from $R^{m_{n-1}}$ into $P_R^{(X)}$. Therefore the induced sequence $0 \to \operatorname{Hom}_R(L_{n-1}, P^{(X)}) \to \operatorname{Hom}_R(R^{m_{n-1}}, P^{(X)}) \to \operatorname{Hom}_R(L_n, P^{(X)}) \to 0$ is exact. As $\operatorname{Ext}_R^1(R^{m_{n-1}}, P^{(X)}) = 0$ we get $\operatorname{Ext}_R^1(L_{n-1}, P^{(X)}) = 0$. It follows that $\operatorname{Ext}_R^n(P, P^{(X)}) \simeq$ $\operatorname{Ext}_R^1(L_{n-1}, P^{(X)}) = 0$. (2) \Rightarrow (1) is clear. \Box

To study the connection between tilting modules of projective dimension $\leq n$ and $*^n$ -modules, we need the following lemma.

Lemma 3.3. Let P_R be a selfsmall right *R*-module. Assume that n-Pres $(P_R) = P_R^{\perp} := \{M_R \mid \operatorname{Ext}_R^i(P, M) = 0 \text{ for all } i \ge 1\}$. Then P_R is a $*^n$ -module.

Proof. For any exact sequence $0 \to M \to P^{(X)} \to N \to 0$ where $N \in n$ -Pres (P_R) , the induced sequence $0 \to H_P(M) \to H_P(P^{(X)}) \to H_P(N) \to \operatorname{Ext}^1_R(P, M) \to 0$ is exact. Note that $N, P^{(X)} \in n$ -Pres $(P_R) = P_R^{\perp}$, so that $\operatorname{Ext}^i_R(P, M) = 0$ for $i \ge 2$. Therefore $\operatorname{Ext}^1_R(P, M) \to 0$ is canonically a monomorphism if and only if $\operatorname{Ext}^1_R(P, M) = 0$ if and only if $M \in P_R^{\perp} = n$ -Pres (P_R) . It follows that P_R is a $*^n$ -module by Theorem 2.3. \Box

We are now ready to prove that a tilting module of projective dimension $\leq n$ is a $*^n$ -module.

Proposition 3.4. Suppose that P_R is a tilting module of projective dimension $\leq n$. Then n-Pres $(P_R) = P_R^{\perp}$, so that P_R is a $*^n$ -module.

Proof. For any $N \in n$ -Pres (P_R) , there exists an exact sequence $0 \to M \to P^{(X_{n-1})} \to P^{(X_{n-2})} \to \cdots \to P^{(X_0)} \to N \to 0$ for some $M_R \in \text{Mod-}R$ where $X_i, 0 \leq i \leq n-1$, are sets. Thanks to Lemma 3.2, we have that $\text{Ext}_R^i(P, N) \simeq \text{Ext}_R^{i+n}(P, M) = 0$ for all $i \geq 1$ by assumption. It follows that n-Pres $(P_R) \subseteq P_R^{\perp}$.

Now let $M \in P_R^{\perp}$ and $A = \operatorname{End}(P_R)$. Let $0 \to M \to I_0 \to I_1 \to \cdots \to I_n$ be an injective resolution of M. Then the induced sequence $0 \to H_P(M) \to H_P(I_0) \to H_P(I_1) \to \cdots \to H_P(I_n) \to C \to 0$ is exact for some $C \in \operatorname{Mod-}A$. Moreover, $\operatorname{Tor}_i^A(H_P(I), P) = 0$ for all $i \ge 1$ and any injective module $I \in \operatorname{Mod-}R$ by [7, Lemma 1.7]. It follows that $\operatorname{Tor}_i^A(H_P(M), P) \simeq \operatorname{Tor}_{i+n}^A(C, P) = 0$ for all $i \ge 1$. By [7, Lemma 1.8] $T_P H_P(M) \simeq M$. Thus $M \in n$ -Pres (P_R) by Lemma 1.1. \Box

In fact, the condition n-Pres $(P_R) = P_R^{\perp}$ characterizes the $*^n$ -modules P_R such that every injective module is n-presented by P_R , as the following theorem shows.

Theorem 3.5. Let P_R be a right *R*-module. Denote by Inj. the class of all injective right *R*-modules. Then the following conditions are equivalent:

(1) P_R is a $*^n$ -module and $Inj. \subseteq n$ -Pres (P_R) .

(2) P_R is selfsmall and n-Pres $(P_R) = P_R^{\perp}$.

Proof. (1) \Rightarrow (2). P_R is clearly selfsmall. For any $M \in n$ -Pres (P_R) , let E be the injective envelope of M with the exact sequence $0 \rightarrow M \rightarrow E \rightarrow N \rightarrow 0$. We derive the induced exact sequence $0 \rightarrow H_P(M) \rightarrow H_P(E) \rightarrow H_P(N) \rightarrow \text{Ext}^1_R(P, M) \rightarrow 0$. Let $X_A = \text{Im}(H_P(E) \rightarrow H_P(N))$, where $A = \text{End}(P_R)$. Applying T_P to the exact sequence $0 \rightarrow H_P(M) \rightarrow H_P(E) \rightarrow X \rightarrow 0$, we have the following commutative diagram with exact rows:

By assumption, both ρ_M and ρ_E are isomorphisms, and $\operatorname{Tor}_i^A(H_P(M), P) = 0 = \operatorname{Tor}_i^A(H_P(E), P)$ for all $i \ge 1$, thanks to Proposition 2.2. It follows that $\operatorname{Tor}_i^A(X, P) = 0$ for all $i \ge 1$ and that $T_P(X) \simeq N$. Hence $N \simeq T_P(X) \in n$ -Pres (P_R) by Lemma 1.1. Therefore the induced sequence $0 \to H_P(M) \to H_P(E) \to H_P(N) \to 0$ is exact by Proposition 2.6. So that $\operatorname{Ext}_R^1(P, M) = 0$. Similarly, $\operatorname{Ext}_R^1(P, N) = 0$. Since $\operatorname{Ext}_R^i(P, N) \simeq \operatorname{Ext}_R^{i+1}(P, M)$ for all $i \ge 1$, from the arbitrarity of $M \in n$ -Pres (P_R) it follows that $\operatorname{Ext}_R^i(P, M) = 0$ for all $i \ge 1$. This proves that n-Pres $(P_R) \subseteq P_R^{\perp}$. The opposite inclusion can be proved by an argument similar to the second part of the proof 3.4.

 $(2) \Rightarrow (1)$. It follows from Lemma 3.3. \Box

Proposition 3.6. Assume that one of the conditions in Theorem 3.5 holds and that P_R has a finitely generated projective resolution. Then P_R is a Wakamatsu-tilting module.

Proof. Let *E* be the injective envelope of R_R . Since $E \in n$ -Pres (P_R) and *R* is projective, we obtain the following commutative diagram where *X* is a set:

This shows that P_R is faithful. Hence there is an exact sequence $0 \to R \to \text{Hom}_A(P, P) \to X \to 0$ for some $X_R \in \text{Mod-}R$, where $A = \text{End}(P_R)$. Let E(X) be the injective envelope of X. Then the induced sequence $0 \to \text{Hom}_R(X, E(X)) \to \text{Hom}_R(\text{Hom}_A(P, P), E(X)) \to \text{Hom}_R(R, E(X)) \to 0$ is exact. Since P_R has a finitely generated projective resolution, $\text{Hom}_R(R, E(X)) \simeq E(X) \simeq T_P H_P(E(X)) = \text{Hom}_R(P, E(X)) \otimes_A P \simeq \text{Hom}_R(\text{Hom}_A(P, P), E(X))$ canonically. It follows that $\text{Hom}_R(X, E(X)) = 0$, i.e., X = 0. Hence $R \simeq \text{End}(_A P)$.

It is clear that $\operatorname{Ext}_{R}^{i}(P, P) = 0$ for all $i \ge 1$. Moreover, by Proposition 2.4 we have $\operatorname{Tor}_{i}^{A}(H_{P}(I), P) = 0$ for all $i \ge 1$ and any injective module $I \in \operatorname{Mod}-R$. It follows that $\operatorname{Ext}_{A}^{i}(P, P) = 0$ for all $i \ge 1$ by [7, Lemma 1.7]. \Box

Lemma 3.7. Assume that P_R has a finitely generated projective resolution. Denote by $P_R^{\perp_n} := \{M_R \mid \operatorname{Ext}_R^n(P, M) = 0\}.$

(1) If $\operatorname{Ext}_{R}^{n}(P, P) = 0$ and $\operatorname{projdim}(P_{R}) \leq n$, then $\operatorname{Gen}(P_{R}) \subseteq P_{R}^{\perp_{n}}$. (2) If $\operatorname{Inj.} \subseteq \operatorname{Gen}(P_{R}) \subseteq P_{R}^{\perp_{n}}$, then $\operatorname{projdim}(P_{R}) \leq n$.

Proof. (1) For any $M \in \text{Gen}(P_R)$, from an exact sequence $0 \to N \to P^{(X)} \to M \to 0$ we get the induced exact sequence $\text{Ext}_R^n(P, P^{(X)}) \to \text{Ext}_R^n(P, M) \to \text{Ext}_R^{n+1}(P, N)$. By assumption and Lemma 3.2 we get $\text{Ext}_R^n(P, P^{(X)}) = 0 = \text{Ext}_R^{n+1}(P, N)$. Hence $\text{Ext}_R^n(P, M) = 0$. This proves the thesis.

(2) For any $M \in \text{Mod-}R$, consider the exact sequence $0 \to M \to E \to L \to 0$ where *E* is the injective envelope of *M*. By assumption $E \in \text{Gen}(P_R)$, so $L \in \text{Gen}(P_R)$ too. Hence $\text{Ext}_R^n(P, L) = 0$ by assumption. From the induced exact sequence $0 = \text{Ext}_R^n(P, L) \to \text{Ext}_R^{n+1}(P, M) \to \text{Ext}_R^{n+1}(P, E) = 0$ we derive that $\text{Ext}_R^{n+1}(P, M) = 0$. This proves the thesis. \Box

We give now a characterization of tilting modules of projective dimension $\leq n$ in term of $*^n$ -modules.

Theorem 3.8. Assume that P_R has a finitely generated projective resolution. Then the following conditions are equivalent:

- (1) P_R is a tilting module of projective dimension $\leq n$.
- (2) n-Pres $(P_R) = P_R^{\perp}$ and Gen $(P_R) \subseteq P_R^{\perp_n}$.
- (3) P_R is a $*^n$ -module, $Inj. \subseteq n$ $\operatorname{Pres}(P_R)$ and $\operatorname{Gen}(P_R) \subseteq P_R^{\perp_n}$.

Proof. We already know that $(1) \Rightarrow (2) \Rightarrow (3)$ hold true.

 $(2) \Rightarrow (1)$. It remains to be proved that there is an exact sequence $0 \rightarrow R \rightarrow P_0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_n \rightarrow 0$ where each P_i , $0 \le i \le n$, is a direct summand of a finite direct sum of copies of P_R . By Proposition 3.6 P_R is a Wakamatsu-tilting module, so that there is an infinite exact sequence $0 \rightarrow R \rightarrow^i P_0 \rightarrow^{f_0} P_1 \rightarrow^{f_1} \cdots$, where P_i 's are finite direct sums of copies of P_R and $\operatorname{Ext}^1_R(\operatorname{Ker} f_i, P) = 0$ for all $i \ge 0$. Let $X = \operatorname{Ker} f_n$. Then $X \in n$ -Pres (P_R) . Note that (n + 1)-Pres $(P_R) = n$ -Pres (P_R) , so that we have an exact sequence $P^{(X_{-1})} \rightarrow^{g_{-1}} P^{(X_0)} \rightarrow^{g_0} \cdots \rightarrow^{g_{n-2}} P^{(X_{n-1})} \rightarrow^{g_{n-1}} X \rightarrow 0$ where $\operatorname{Ker} g_i \in n$ -Pres (P_R) and all $X_i, -1 \le i \le n-1$, are finite sets. We claim that $\operatorname{Ext}^1_R(X, \operatorname{Ker} g_{n-1}) = 0$. Therefore X is just a summand of $P^{(X_{n-1})}$ and the result follows.

In fact, we can show, by induction on k, that $\operatorname{Ext}_R^1(\operatorname{Ker} f_k, \operatorname{Ker} g_{k-1}) = 0$ for $k \ge 1$. In case k = 1, note that $\operatorname{Ker} g_i \in n$ - $\operatorname{Pres}(P_R)$, so that $\operatorname{Ext}_R^1(P_j, \operatorname{Ker} g_i) = 0$ for $-1 \le i \le n-1$ and $j \ge 0$. It follows that $\operatorname{Ext}_R^1(\operatorname{Ker} f_1, \operatorname{Ker} g_0) = 0$ if and only if

 $\operatorname{Hom}_{R}(P_{0}, \operatorname{Ker} g_{0}) \rightarrow^{\sigma} \operatorname{Hom}_{R}(R, \operatorname{Ker} g_{0}) \rightarrow 0$

is exact. To show that σ is epic, let $h \in \text{Hom}_R(R, \text{Ker } g_0)$. Consider the following diagram:

Since *R* is projective, there exists $j \in \text{Hom}_R(R, P^{(X_{-1})})$ such that $h = g_{-1} \circ j$. Then the induced sequence

$$0 \to \operatorname{Hom}_{R}(\operatorname{Ker} f_{1}, P^{(X_{-1})}) \to \operatorname{Hom}_{R}(P_{0}, P^{(X_{-1})})$$
$$\to \operatorname{Hom}_{R}(R, P^{(X_{-1})}) \to \operatorname{Ext}_{R}^{1}(\operatorname{Ker} f_{1}, P^{(X_{-1})}) = 0$$

is exact. Hence there exists $l \in \text{Hom}_R(P_0, P^{(X_{-1})})$ such that $j = l \circ i$. Let $\theta = g_{-1} \circ l \in \text{Hom}_R(P_0, \text{Ker } g_0)$. Note that $\theta \circ i = g_{-1} \circ l \circ i = g_{-1} \circ j = h$, so that σ is epic. Now we show that $\text{Ext}_R^1(X, \text{Ker } g_{n-1}) = 0$, just proving that

$$\operatorname{Hom}_{R}(P_{n-1},\operatorname{Ker} g_{n-1}) \to^{\sigma'} \operatorname{Hom}_{R}(\operatorname{Ker} f_{n-1},\operatorname{Ker} g_{n-1}) \to 0$$

is exact. For any $h' \in \text{Hom}_R(\text{Ker } f_{n-1}, \text{Ker } g_{n-1})$, consider the following diagram:

Since

$$\operatorname{Ext}_{R}^{1}(\operatorname{Ker} f_{n-1}, \operatorname{Ker} g_{n-2}) = 0$$

by assumption, applying the functor $\text{Hom}_R(\text{Ker } f_{n-1}, -)$ to the second row in the previous diagram, we see that the sequence

$$\operatorname{Hom}_{R}(\operatorname{Ker} f_{n-1}, P^{(X_{n-2})}) \to \operatorname{Hom}_{R}(\operatorname{Ker} f_{n-1}, \operatorname{Ker} g_{n-1}) \to 0$$

is exact. It follows that there exists $j' \in \text{Hom}_R(\text{Ker } f_{n-1}, P^{(X_{n-2})})$ such that $h' = g_{n-2} \circ j'$. Then the induced sequence

$$0 \to \operatorname{Hom}_{R}(X, P^{(X_{n-2})}) \to \operatorname{Hom}_{R}(P_{n-1}, P^{(X_{n-2})}) \to \operatorname{Hom}_{R}(\operatorname{Ker} f_{n-1}, P^{(X_{n-2})})$$
$$\to \operatorname{Ext}_{R}^{1}(X, P^{(X_{n-2})}) = 0$$

is exact. Therefore there exists $l' \in \text{Hom}_R(P_{n-1}, P^{(X_{n-2})})$ such that $j' = l' \circ i'$. Let $\theta' = g_{n-2} \circ l' \in \text{Hom}_R(P_{n-1}, \text{Ker } g_{n-2})$. Then $\theta' \circ i' = g_{n-2} \circ l' \circ i' = g_{n-2} \circ j' = h'$. This proves that σ' is epic. \Box

Remark 2. Clearly the condition $\text{Gen}(P_R) \subseteq P_R^{\perp n}$ in the previous theorem can be removed in case n = 1. It can also be removed in case n = 2. To see this, it is sufficient to show that $\text{Pres}(P_R) = P_R^{\perp}$ implies $\text{Gen}(P_R) \subseteq P_R^{\perp 2}$. In fact, for any $N \in \text{Gen}(P_R)$, let $0 \to N \to E \to X \to 0$ bean exact sequence where *E* is the injective envelope of *N*. We have an induced exact sequence $0 \to H_P(N) \to H_P(E) \to C \to 0$ for some $C \in \text{Mod-}A$, where $A = \text{End}(P_R)$. Now consider the following commutative diagram with exact rows:

Note that ρ_N is an epimorphism and ρ_E is an isomorphism, so that we have $T_P(C) \simeq X$. By Lemma 1.1 $X \in \operatorname{Pres}(P_R)$. Hence $\operatorname{Ext}^2_R(P, N) \simeq \operatorname{Ext}^1_R(P, X) = 0$.

In particular we can conclude that tilting modules of projective dimension ≤ 2 are just $*^2$ -modules which admit a finitely generated projective resolution and which present all injectives.

4. Questions

In [4], the authors studied $*_{\lambda}$ -modules as generalizations of *-modules, where λ is a cardinal. Following [4], a right *R*-module *P* is a $*_{\lambda}$ -module for some cardinal λ provided *P* is finitely generated and *P* satisfies the condition *C*(*k*) for all *k* < *A*. Here *C*(*k*) denotes the following assertion:

"For every submodule *M* of $P^{(k)}$, the condition $M \in \text{Gen}(P)$ is equivalent to the injective of the canonical group homomorphism $\text{Ext}_R^1(P, M) \to \text{Ext}_R^1(P, P^{(k)})$."

It should be noted that C(k) implies C(k') for all $k' \leq k$ [4, Lemma 2.1], and that $*_{\lambda}$ -modules are just finitely generated modules in case $\lambda = 1$.

The following example shows that $*^n$ -modules and $*_{\lambda}$ -modules are different generalizations of *-modules. **Example.** Let P_R be a right *R*-module which is finitely generated and quasi-projective. Let $A = \text{End}(P_R)$. Assume that the flat dimension of $_AP$ is finite and that P_R is not a quasi-progenerator. Such modules exist clearly (see, for instance, [5, Example 4.6]). By [13, Corollary 3.3] P_R is a $*^n$ -module for some $n \ge 2$. But P_R is never a $*_\lambda$ -module for any $\lambda \ge 2$. Otherwise, we have that P_R is a self-generator since P_R is quasi-projective and P_R satisfies the condition C(2). Therefore P_R must be a quasi-progenerator, which is a contradiction.

Let STAR(*n*), STAR(λ) and STAR be the class of all **n*-modules, all * $_{\lambda}$ -modules and all *-modules respectively. We have the following question.

Question 1. Is it true that $STAR(n) \cap STAR(\lambda) = STAR$?

As we see, there are many properties of $*^n$ -modules similar to that of *-modules. Note that an important fact of *-modules is that they are finitely generated (see [10]), our second question is:

Question 2. Are all $*^n$ -modules finitely generated?

Let P_R be a *-module and $A = \text{End}(P_R)$. Then the flat dimension of ${}_AP$ is not more than 1 [9]. It seems natural to consider the following:

Question 3. Does it happen that the flat dimension of ${}_{A}P$ is not more than *n* for any $*^{n}$ -module P_{R} with $A = \text{End}(P_{R})$?

A new result in [13] by the first author may be helpful to the third question. It claims that for any $*^n$ -module P_R with $A = \text{End}(P_R)$, $\frac{\perp}{A}P := \{M_A \mid \text{Tor}_i^A(M, P) = 0$ for all $i \ge 1\} = \frac{\perp_1 \le i \le n}{A}P := \{M_A \mid \text{Tor}_i^A(M, P) = 0$ for all $1 \le i \le n\}$.

Acknowledgment

The authors are greatly indebted to the referee for his/her help in improving this paper.

References

- R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra 18 (1990) 1935– 1951.
- [2] R. Colpi, Tilting modules and *-modules, Comm. Algebra 21 (1993) 1095–1102.
- [3] R. Colpi, C. Menini, On the structure of *-modules, J. Algebra 158 (1993) 400-419.
- [4] R. Colpi, J. Trlifaj, Classes of generalized *-modules, Comm. Algebra 22 (1994) 3985–3995.
- [5] K.R. Fuller, Density and equivalence, J. Algebra 29 (1974) 528–550.
- [6] Z.Y. Huang, On a generalization of the Auslander–Bridger transpose, Comm. Algebra 27 (1999) 5791–5812.
- [7] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986) 113-146.
- [8] C. Menini, A. Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 82 (1989) 203–231.

J. Wei et al. / Journal of Algebra 268 (2003) 404-418

- [9] J. Trlifaj, Dimension estimates for representable equivalences of module categories, J. Algebra 193 (1997) 660–676.
- [10] J. Trlifaj, *-modules are finitely generated, J. Algebra 169 (1994) 392-398.
- [11] T. Wakamatsu, On modules with trivial self-extension, J. Algebra 114 (1988) 106–114.
- [12] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990) 298–325.
- [13] J.Q. Wei, On equivalences of module categories, J. Algebra, revised.