
H. H. LI AND Z. Y. HUANG
KODAI MATH. J.
43 (2020), 431–453

RELATIVE SINGULARITY CATEGORIES II

Huanhuan Li and Zhaoyong Huang
†

Abstract

Let A be an abelian category with enough projective objects and C an additive

and full subcategory of A, and let GðCÞ be the Gorenstein category of C. We study

the properties of the C-derived category Db
CðAÞ, C-singularity category DC-sgðAÞ and

GðCÞ-defect category DGðCÞ-defectðAÞ of A. Let C be admissible in A. We show that

DGðCÞ-defectðAÞFDC-sgðAÞ if and only if C ¼ GðCÞ; and DGðCÞ-defectðAÞ ¼ 0 if and only

if the stable category GðCÞ of GðCÞ is triangle-equivalent to DC-sgðAÞ, and if and only

if every object in A has finite C-proper GðCÞ-dimension. Then we apply these results

to module categories. We prove that under some condition, the Gorenstein derived

equivalence of artin algebras induces the Gorenstein singularity equivalence. Finally,

for an artin algebra A, we establish the stability of Gorenstein defect categories of A.

1. Introduction

Throughout this paper, A is an abelian category with enough projective
objects, all subcategories are additive, full and closed under isomorphisms, P is
the subcategory of A consisting of projective objects and CðAÞ is the category
of complexes of objects in A. For a subcategory C of A, we use K �ðCÞ to
denote the homotopy category of C and we use D�ðAÞ to denote the usual
derived category of A by inverting the quasi-isomorphisms in K �ðAÞ, where � A
fblank;�; bg.

It is known that KbðPÞ is a thick triangulated subcategory of DbðAÞ. So
one can consider the Verdier quotient DsgðAÞ :¼ DbðAÞ=KbðPÞ. This category
was first introduced by Buchweitz in [12] under the name of stabilized derived
category of A. Note that DsgðAÞ ¼ 0 if and only if every object of A has finite
projective dimension. In view of this viewpoint, DsgðAÞ measures the homologi-
cal singularity of A, and we call it the singularity category of A after Orlov [34].
We refer to [7, 10, 12, 15, 17, 24, 31, 34, 36, 40] and references therein for more
details on this topic.
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The notion of modules of G-dimension zero over left and right noetherian
rings was first introduced by Auslander and Bridger in [4]. Then Enochs and
Jenda generalized it in [19] to that of Gorenstein projective modules (resp. objects)
over arbitrary rings (resp. abelian categories). Since then, Gorenstein projective
modules and objects have been deeply studied in the relative homological theory,
representation theory and algebraic geometry, see [6, 18, 19, 25, 26, 27], and so
on. Denote by GðPÞ the subcategory of A consisting of Gorenstein projective
objects. It is known that GðPÞ is a Frobenius category with P the subcat-
egory of (relative) projective-injective objects and the stable category GðPÞ of
GðPÞ modulo P is a triangulated category, see [23]. In particular, there exists
a canonical fully faithful triangle functor F : GðPÞ ! DsgðAÞ and we have the
following

Theorem (Buchweitz [12, Theorem 4.4.1] and Happel [24, Theorem 4.6]).
The canonical functor F : GðPÞ ! DsgðAÞ is a triangle-equivalence provided that

every object in A has finite Gorenstein projective dimension.

Following Zhang [40], we call this theorem Buchweitz-Happel Theorem.
This theorem has maken a great use in the representation theory, homological
theory and singularity theory. Recently, Bergh, Oppermann and Jorgensen
proved in [10, Theorem 3.6] that if A is either a left and right artin ring or a
commutative noetherian local ring, A ¼ mod A (the category of finitely generated
left A-modules) and P ¼ proj A (the subcategory of mod A consisting of projec-
tive modules), then the converse of the Buchweitz-Happel theorem holds true.
Moreover, they called the Verdier quotient DGðAÞ-defectðmod AÞ :¼ Dsgðmod AÞ=
Im F the Gorenstein defect category of A, and concluded that DGðAÞ-defectðmod AÞ
measures the Gorensteinness of A in the sense that DGðAÞ-defectðmod AÞ ¼ 0 if
and only if A is Gorenstein. Later on, Kong and Zhang described in [30] the
Gorenstein defect category DGðPÞ-defectðAÞ :¼ DsgðAÞ=Im F as DGðPÞ-defectðAÞF
K�;bðPÞ=K�;b

G ðPÞ, where K�;bðPÞ is the homotopy category of upper bounded
complexes of P with bounded cohomologies and K

�;b
G ðPÞ is the subcategory of

K�;bðPÞ consisting of complexes P� A K�;bðPÞ such that there exists n A Z with
HmðP�Þ ¼ 0 for any ma n and ZnðP�Þ A GðPÞ.

Let C be a subcategory of A closed under direct summands. Chen intro-
duced in [14] the relative derived category D�

CðAÞ of A with respect to C for � A
fblank;�; bg. It can be viewed as a generalization of the usual derived category
and the Gorenstein derived category in [22]. When C is admissible in A, D�

CðAÞ
is the derived category of some exact category in the sense of Neeman [33].
Asadollahi, Hafezi and Vahed reconsidered in [2] this category and they pointed
out that for the bounded case, KbðCÞ is a triangulated subcategory of Db

CðAÞ.
Then it is natural to consider the Verdier quotient DC-sgðAÞ :¼ Db

CðAÞ=KbðCÞ,
which was called the C-singularity category of A in [31]. If C is admissible
in A, then there exists a canonical fully faithful triangle functor y 0

C : GðCÞ !
DC-sgðAÞ, where GðCÞ is the stable category of the Gorenstein category GðCÞ
modulo C; furthermore, y 0

C is a triangle-equivalence provided that every object in
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A has finite C-proper GðCÞ-dimension, see [31, Section 4]. This can be viewed
as a relative version of the Buchweitz-Happel theorem. As a continuation of
[31], in this paper we further study the properties of the C-derived category,
C-singularity category and so-called GðCÞ-defect category of A.

In Section 2, we give some terminology and some preliminary results.
In Section 3, we show that if C is closed under direct summands, then KbðCÞ

is a thick triangulated subcategory of Db
CðAÞ. We introduce the notion of com-

plexes in Db
CðAÞ having finite C-proper GðCÞ-dimension, and show that the sub-

category Db
CðAÞfCGðCÞd of Db

CðAÞ consisting of complexes having finite C-proper
GðCÞ-dimension is a triangulated subcategory of Db

CðAÞ.
Let C be a subcategory of A closed under direct summands. In Section 4,

we first introduce the notion of C-singularity category of A, and then prove that
if every object in A has finite C-proper C-dimension, then DC-sgðAÞ ¼ 0; and the
converse holds true provided that any C-acyclic complex is acyclic. Assume
further that C is admissible in A. Let y 0

C : GðCÞ ! DC-sgðAÞ be the functor

induced by the composition functor GðCÞ ,! A ,! Db
CðAÞ ����!quotient

DC-sgðAÞ. We
call the quotient triangulated category DGðCÞ-defectðAÞ :¼ DC-sgðAÞ=Im y 0

C the
GðCÞ-defect category of A. We first prove that Im y 0

C ¼ Db
CðAÞfCGðCÞd=KbðCÞ.

Then we get the following result, in which the third assertion is a generalization
of [10, Theorem 3.6].

Theorem 1.1. Let C be an admissible subcategory of A. Then we have
(1) There exists a triangle-equivalence DGðCÞ-defectðAÞFDb

CðAÞ=Db
CðAÞfCGðCÞd .

(2) DGðCÞ-defectðAÞFDC-sgðAÞ if and only if C ¼ GðCÞ.
(3) DGðCÞ-defectðAÞ ¼ 0 if and only if GðCÞ F

y 0
C
DC-sgðAÞ, and if and only if

every object in A has finite C-proper GðCÞ-dimension.

We remark that the equivalence in Theorem 1.1(2) between the defect and
singularity categories is induced by the quotient functor. In Section 5, we apply
the results obtained in Section 4 to module categories. Let A be an artin algebra
over a commutative artin ring. We use GðAÞ to denote the subcategory of
mod A consisting of Gorenstein projective modules. As an application of The-
orem 1.1, we get that DGðAÞ-defectðmod AÞ ¼ 0 if and only if DGðAÞ-sgðmod AÞ ¼ 0,
and if and only if A is Gorenstein; and DGðAÞ-defectðmod AÞFDsgðmod AÞ if and
only if A is CM-free. Then we prove that under some condition, the Gorenstein
derived equivalence of algebras induces the Gorenstein singularity equivalence.
Finally, we establish the stability of Gorenstein defect categories as follows.

Theorem 1.2. There exists a triangle-equivalence

DGðGðMod AÞÞ-defectðMod AÞFDGðMod AÞ-defectðMod AÞ;
where Mod A is the category of left A-modules. Furthermore, if GðAÞ is contra-
variantly finite in mod A, then there exists a triangle-equivalence

DGðGðAÞÞ-defectðmod AÞFDGðAÞ-defectðmod AÞ:
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2. Preliminaries

Let

X � :¼ � � � �! X n�1 �!
d n�1
X

X n �!
d n
X

X nþ1 �! � � �

be a complex in CðAÞ. The n-th cycle (resp. boundary, homology) of X � is
defined as Ker d n

X (resp. Im d n�1
X , Ker d n

X=Im d n�1
X ), and denoted by ZnðX �Þ

(resp. BnðX �Þ, HnðX �Þ). Recall that X � is called acyclic (or exact) if HiðX �Þ ¼
0 for any i A Z (the ring of integers). Let f : X � ! Y � be a cochain map in
CðAÞ. Then f is called a quasi-isomorphism if Hið f Þ is an isomorphism for any
i A Z. We use Conð f Þ to denote the mapping cone of f . Then we have that f
is a quasi-isomorphism if and only if Conð f Þ is acyclic.

Definition 2.1 ([5, 14, 20, 31]). Let C be a subcategory of A.
(1) A complex X � in CðAÞ is called C-acyclic (or HomAðC;�Þ-exact) if

the complex HomAðC;X �Þ is acyclic for any C A C. A cochain map
f : X � ! Y � in CðAÞ is called a C-quasi-isomorphism if HomAðC; f Þ is
a quasi-isomorphism for any C A C (equivalently, Conð f Þ is C-acyclic).

(2) Let D be a subcategory of A containing C. A morphism f : C ! D
in A with C A C and D A D is called a right C-approximation (or
C-precover) of D if f induces a C-acyclic (but not necessarily acyclic)
complex

0 ! Ker f ! C !f D ! 0:

If each object of D has a right C-approximation, then C is called contra-
variantly finite (or precovering) in D.

(3) Let D be a subclass of objects in A and M A A. A C-proper
D-resolution of M is a C-quasi-isomorphism f : D� ! M, where D�

is a complex of objects in D with Dn ¼ 0 for any n > 0, that is, it has
an associated HomAðC;�Þ-exact complex

� � � ! D�n ! D�nþ1 ! � � � ! D0 !f M ! 0:

The C-proper D-dimension of M, written CD-dim M, is defined as
the infimum of integers n such that there exists a HomAðC;�Þ-exact
complex

0 ! D�n ! D�nþ1 ! � � � ! D0 !f M ! 0

in A with all Di in D. If no such an integer exists, then set CD-
dim M ¼ y.

It should be remarked that all the above notions have dual versions.

Lemma 2.2 ([18, Lemma 2.4 and Proposition 2.6]).
(1) Let X � be a complex in KðAÞ. Then X � is C-acyclic if and only if the

complex HomAðC �;X �Þ is acyclic for any C � A K�ðCÞ.
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(2) Let X �, Y � be complexes in KðAÞ. Then f : X � ! Y � is a C-quasi-
isomorphism if and only if HomAðC �; f Þ is a quasi-isomorphism for any
C � A K�ðCÞ.

Lemma 2.3.
(1) Let C � be a complex in K�ðCÞ and f : X � ! C � a C-quasi-isomorphism

in CðAÞ. Then there exists a C-quasi-isomorphism g : C � ! X � such
that fg is homotopic to idC � .

(2) Any C-quasi-isomorphism between two complexes in K�ðCÞ is a homotopy
equivalence.

Proof. (1) Consider the distinguished triangle

X � !f C � ! Conð f Þ ! X �½1�
in KðAÞ with Conð f Þ C-acyclic. By applying the functor HomKðAÞðC �;�Þ to it,
we get an exact sequence

HomKðAÞðC �;X �Þ ���������!
HomKðAÞðC �; f Þ

HomKðAÞðC �;C �Þ ����! HomKðAÞðC �;Conð f ÞÞ:
By Lemma 2.2, we have

HomKðAÞðC �;Conð f ÞÞGH 0 HomAðC �;Conð f ÞÞ ¼ 0:

So there exists a morphism g : C � ! X � such that fg is homotopic to idC � .
Notice that both f and fg are C-quasi-isomorphisms, so is g.

(2) It is a consequence of (1). r

The following definition is cited from [13], see also [35] and [29].

Definition 2.4. Let B be an additive category. A kernel-cokernel pair
ði; pÞ in B is a pair of composable morphisms

L !i M !p N

such that i is a kernel of p and p is a cokernel of i. Let e be a class of kernel-
cokernel pairs on B closed under isomorphisms, a kernel-cokernel pair ði; pÞ is
called a short exact sequence (or conflation) if ði; pÞ A e, and we denote it by

L g
i
M !p! N:

We call i an admissible monic (or inflation) and p an admissible epic (or deflation).
The pair ðB; eÞ (or simply B) is called an exact category if it satisfies the

following conditions.
[E0] For any object B in B, the identity morphism idB is both an admissible

monic and an admissible epic.
[E1] The class of admissible monics is closed under compositions.
[E1op] The class of admissible epics is closed under compositions.
[E2] The push-out of an admissible monic along an arbitrary morphism

exists and yields an admissible monic.
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[E2op] The pull-back of an admissible epic along an arbitrary morphism
exists and yields an admissible epic.

Definition 2.5 ([13]). Let ðB; eÞ be an exact category and E a subcategory
of B. E is called closed under extensions if for any short exact sequence

L g M !! N

in B, L;N A E implies M A E; and E is called an exact subcategory of B if it is
closed under extensions and equipped with the exact structure of B with all terms
lie in E.

Let C � D be subcategories of A such that C is contravariantly finite in D.
Recall from [14] that C is called admissible in D if any right C-approximation
of D A D is epic. It is trivial that if C is admissible in A, then every C-acyclic
complex in CðAÞ is acyclic.

Denote by e the class of all HomAðC;�Þ-exact sequences of the form

0 ! L !i M !p N ! 0

in A. Note that this sequence itself is not necessarily exact. However, if C is
admissible in A, then any sequence in e is exact.

Lemma 2.6. If C is admissible in A, then ðA; eÞ is an exact category.

Proof. Both [E0] and [E1op] are trivial, and [E2] and [E2op] follow from
[32, Lemma 2.3(1)]. Now we only need to prove [E1].

Let

0 ! L !f M ! N ! 0 and

0 ! M !g P ! Q ! 0

lie in e. Consider the following push-out diagram

0 0?
?
?
y

?
?
?
y

0 ���! L ���!f M ���! N ���! 0�
�
�
�

?
?
?
yg

?
?
?
y

0 ���! L ���!gf
P ���! K ���! 0?
?
?
y

?
?
?
y

Q Q
?
?
?
y

?
?
?
y

0 0:
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By [E2], the rightmost column lies in e. For any C A C, applying the functor
ðC;�Þ :¼ HomAðC;�Þ to the above commutative diagram we get the following
commutative diagram with exact columns and rows

0 0?
?
?
y

?
?
?
y

0 ���! ðC;LÞ ���!
ðC; f Þ ðC;MÞ ���! ðC;NÞ ���! 0

�
�
�
�

?
?
?
yðC;gÞ

?
?
?
y

0 ���! ðC;LÞ ðC;PÞ ðC;KÞ
?
?
?
y

?
?
?
y

ðC;QÞ ðC;QÞ
?
?
?
y

?
?
?
y

0 0:

����!
ðC;gf Þ

����!

By the snake lemma, the morphism ðC;PÞ ! ðC;KÞ is epic. Then we have that

0 ! L !gf P ! K ! 0

lies in e, and [E1] follows. r

Let T 0 be a triangulated subcategory of a triangulated category T and S
the compatible multiplicative system determined by T 0. In the Verdier quotient
T=T 0 (see [39]), each morphism f : X ! Y is given by an equivalence class

of right fractions f =s or left fractions sn f as presented by X (
s
Z !f Y or

X !f Z (
s
Y , where the doubled arrow means s A S.

3. C-derived categories and Gorenstein categories

In this section, C is a subcategory of A. It is known that K �ðAÞ is a
triangulated category for � A fblank;�; bg. We use K �

C-acðAÞ to denote the full
triangulated subcategory of K �ðAÞ consisting of C-acyclic complexes. It is easy
to check that K �

C-acðAÞ is a thick triangulated subcategory of K �ðAÞ.

Definition 3.1 ([2, 14]). The Verdier quotient D�
CðAÞ :¼ K �ðAÞ=K �

C-acðAÞ
is called the relative derived category of A with respect to C (the C-derived
category of A for short), where � A fblank;�; bg.

Example 3.2.
(1) If C ¼ P, then D�

CðAÞ is the usual derived category D�ðAÞ.
(2) If C ¼ GðPÞ (the subcategory of A consisting of Gorenstein projective

objects), then D�
CðAÞ is the Gorenstein derived category D�

GðPÞðAÞ
defined in [22].
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(3) Let R be an arbitrary ring and A ¼ Mod R (the category of left
R-modules). If C ¼ PPðRÞ (the subcategory of Mod R consisting of
pure projective modules), then D�

CðAÞ is the pure derived category
D�

purðAÞ introduced and studied in [41].

Proposition 3.3 ([2, Remark 3.2]).
(1) D�

C ðAÞ is a triangulated subcategory of DCðAÞ, and Db
CðAÞ is a triangu-

lated subcategory of D�
C ðAÞ.

(2) For any C � A K�ðCÞ and X � A CðAÞ, there exists an isomorphism of abe-
lian groups

HomKðAÞðC �;X �ÞGHomDCðAÞðC �;X �Þ:
(3) If C is admissible in A, then the composition functor

A ! KbðAÞ ! Db
CðAÞ

is fully faithful, where the former functor is the inclusion functor and the
latter one is the quotient functor.

Recall that an additive category D is called idempotent complete if any idem-
potent morphism e : X ! X has a kernel.

Definition 3.4 ([1, 28]). Let T be a triangulated category with [1] the shift
functor. A subcategory S of T is called silting if the following conditions are
satisfied.

(1) HomTðS1;S2½i�Þ ¼ 0 for any S1;S2 A S and i > 0.
(2) T ¼ thickðSÞ, where thickðSÞ denotes the smallest thick triangulated sub-

category of T containing S.

Lemma 3.5 ([28, Theorem 2.9]). Let T be a triangulated category. If T
has an idempotent complete silting subcategory, then T is idempotent complete.

By Proposition 3.3(1)(2), we have that KbðCÞ is a triangulated subcategory
of Db

CðAÞ. It is of great interest to study whether or when KbðCÞ is a thick
triangulated subcategory of Db

CðAÞ. For triangulated categories T 0 � T, it is
easy to see that if T 0 is idempotent complete, then T 0 is a thick triangulated
subcategory of T. However, it is still a non-trivial problem whether a trian-
gulated category is idempotent complete or not. By Lemma 3.5, we have the
following

Proposition 3.6. If C is closed under direct summands, then K bðCÞ is idem-
potent complete; in this case, K bðCÞ is a thick triangulated subcategory of Db

CðAÞ.

Proof. It is clear that C is a silting subcategory of KbðCÞ. Since C is
closed under direct summands by assumption, we have that C is idempotent
complete. It follows from Lemma 3.5 that KbðCÞ is also idempotent complete.

r
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Set K�;CbðCÞ :¼ fX � A K�ðCÞ j there exists n A Z such that HiðHomAðC;
X �ÞÞ ¼ 0 for any C A C and ia ng.

Lemma 3.7 ([2, Theorem 3.5]). If C is contravariantly finite in A, then
we have a triangle-equivalence K�;CbðCÞFDb

CðAÞ.

Put

C :¼ fX A A jX admits a C-proper C-resolutiong:
For any M A C, choose a C-proper C-resolution C � ! M of M. Put

ExtnCðM;NÞ :¼ Hn HomAðC �
M ;NÞ

for any N A A and n A Z. Note that C �
M is isomorphic to M in DCðAÞ. By

Proposition 3.3(1)(2), we have

ExtnCðM;NÞ ¼ Hn HomAðC �
M ;NÞ

¼ HomKðAÞðC �
M ;N½n�Þ

GHomDCðAÞðC �
M ;N½n�Þ

GHomDb
C
ðAÞðM;N½n�Þ:

The following is cited from [20, Section 8.2].

Lemma 3.8.
(1) For any M A C, the functor ExtnCðM;�Þ does not depend on the choices

of C-proper C-resolutions of M.
(2) For any M A C and n < 0, ExtnCðM;�Þ ¼ 0 and there exists a natural

equivalence HomAðM;�ÞGExt0CðM;�Þ whenever C is admissible in C.
(3) Let

0 ! L ! M ! N ! 0

be a HomAðC;�Þ-exact complex in C. Then it induces a long exact
sequence

0 ! Ext0CðN;�Þ ! Ext0CðM;�Þ ! Ext0CðL;�Þ ! � � � ! ExtnCðN;�Þ

! ExtnCðM;�Þ ! ExtnCðL;�Þ ! Extnþ1
C ðN;�Þ ! � � � :

In the rest of this section, C is a subcategory of A closed under direct
summands.

Definition 3.9 ([38]). The Gorenstein category GðCÞ of C is defined as the
subcategory of A consisting of objects M such that there exists a HomAðC;�Þ-
exact and HomAð�;CÞ-exact exact sequence

� � � ! C�1 ! C0 ! C 1 ! � � �ð3:1Þ
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in A with all terms in C with MG ImðC�1 ! C0Þ. In this case, (3.1) is called
a complete C-resolution of M.

Remark 3.10.
(1) The definition above unifies the following notions: modules of Gorenstein

dimension zero ([4]), Gorenstein projective modules, Gorenstein injective
modules ([19]), V -Gorenstein projective modules, V -Gorenstein injective
modules ([21]), and so on. In particular, if C ¼ P, the objects in GðCÞ
are called Gorenstein projective.

(2) By the definition of GðCÞ, we have that GðCÞ � C and for any G A GðCÞ
and C A C, there exists a natural equivalence Ext0CðG;�ÞGHomAðG;�Þ
and Extb1

C ðG;CÞ ¼ 0.
(3) Every boundary (or cycle) of (3.1) lies in GðCÞ.

Lemma 3.11 ([27, Theorem 4.6(2) and Proposition 4.7(5)]).
(1) GðCÞ is closed under direct summands.
(2) Let

0 ! L ! M ! N ! 0ð3:2Þ
be an exact sequence in A. If (3.2) is both HomAðC;�Þ-exact and
HomAð�;CÞ-exact and any two of L, M and N lie in GðCÞ, then so does
the third one.

Definition 3.12. A complex X � A Db
CðAÞ is said to have finite C-proper

GðCÞ-dimension if X � GG � in Db
CðAÞ for some G � A KbðGðCÞÞ.

We use Db
CðAÞfCGðCÞd to denote the subcategory of Db

CðAÞ consisting of

complexes having finite C-proper GðCÞ-dimension. Inspired by [30, 6.2], we have
the following description for Db

CðAÞfCGðCÞd .

Lemma 3.13. Let C be admissible in A. Then the following statements are
equivalent.

(1) X � A Db
CðAÞfCGðCÞd .

(2) There exists a C-quasi-isomorphism C � ! X � with C � A K�;CbðCÞ, such
that for some n A Z, HiðHomAðC;C �ÞÞ ¼ 0 and ZiðC �Þ A GðCÞ for any
C A C and ia n.

Proof. ð1Þ ) ð2Þ Let X � A Db
CðAÞfCGðCÞd . Then X � GG � in Db

CðAÞ for

some G � A KbðGðCÞÞ. By Lemma 3.7, there exists a C-quasi-isomorphism

C � ! X � with C � A K�;CbðCÞ. So C � GG � in Db
CðAÞ. Let f =s : C � (

s
Z � !f

G � be an isomorphism in Db
CðAÞ, where s is a C-quasi-isomorphism. Then f is

a C-quasi-isomorphism. By Lemma 2.3(1), there exists a C-quasi-isomorphism
s 0 : C � ! Z �. Then fs 0 : C � ! G � is also a C-quasi-isomorphism.

Put

G � :¼ 0 ! Gm ! Gmþ1 ! � � � ! Gn ! 0:
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Then we get the following C-acyclic complex

Conð fs 0Þ :¼ � � � ! Cm�1 ! Cm ! Cmþ1 lGm ! � � � ! Cn lGn�1

! Cnþ1 lGn ! Cnþ2 ! � � � :

Note that Conð fs 0Þ is bounded above. Put l :¼ supfi jConð fs 0Þ i 0 0g. Then
the sequence

0 ! Zl�1ðConð fs 0ÞÞ ! Conð fs 0Þ l�1 ! Conð fs 0Þ l ! 0ð3:3Þ
is HomAðC;�Þ-exact. By Lemma 3.8, for any C A C, there exists an exact
sequence

HomAðConð fs 0Þ l�1;CÞ ! HomAðZl�1ðConð fs 0ÞÞ;CÞ ! Ext1CðConð fs 0Þ
l ;CÞ:

Because Conð fs 0Þ l A GðCÞ, by Remark 3.10(2) we have that Ext1CðConð fs 0Þ
l ;CÞ ¼

0 and (3.3) is HomAð�;CÞ-exact. So Zl�1ðConð fs 0ÞÞ A GðCÞ by Lemma 3.11(2).
Iterating this process, we get that ZiðConð fs 0ÞÞ lies in GðCÞ for any ia l � 1.

Note that ZiðConð fs 0ÞÞGZiþ1ðC �Þ for any iam� 2, that is, ZiðC �Þ A
GðCÞ for any iam� 1. Since C � A K�;CbðCÞ, there exists n0 A Z such that
HiðHomAðC;C �ÞÞ ¼ 0 for any C A C and ia n0. Put n :¼ minfm� 1; n0g.
Then we have that HiðHomAðC;C �ÞÞ ¼ 0 and ZiðC �Þ A GðCÞ for any C A C
and ia n.

ð2Þ ) ð1Þ Assume that there exists a C-quasi-isomorphism C � ! X � with
C � A K�;CbðCÞ, such that for some n A Z, HiðHomAðC;C �ÞÞ ¼ 0 and ZiðC �Þ A
GðCÞ for any C A C and ia n. Then C � is isomorphic to the complex

G � :¼ 0 ! ZnðC �Þ ! Cn !
d n
C
Cnþ1 ! � � �

in Db
CðAÞ. Because G � A KbðGðCÞÞ, we have X � A Db

CðAÞfCGðCÞd . r

We now are in a position to prove the following result (compare with [30,
Proposition 6.6]).

Theorem 3.14. Let C be admissible in A. Then Db
CðAÞfCGðCÞd is a trian-

gulated subcategory of Db
CðAÞ.

Proof. Clearly, Db
CðAÞfCGðCÞd is closed under isomorphisms and shift func-

tors [1] and [�1]. Now let

X � !u Y � !v Z � !w X �½1�
be a distinguished triangle in Db

CðAÞ with X �;Y � A Db
CðAÞfCGðCÞd . By Lemma

3.13, there exist C-quasi-isomorphisms C �
X !fX X � and C �

Y !fY Y � with C �
X ;C

�
Y A

K�;CbðCÞ such that for some n A Z, we have that

HiðHomAðC;C �
X ÞÞ ¼ 0 ¼ HiðHomAðC;C �

Y ÞÞ
and ZiðC �

X Þ;ZiðC �
Y Þ A GðCÞ for any C A C and ia n. Since there exists a

triangle-equivalence F : K�;CbðCÞ ! Db
CðAÞ, there exists f A HomKðAÞðC �

X ;C
�
Y Þ
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such that u ¼ Fð f Þ. Embed f into a distinguished triangle

C �
X !f C �

Y ! Conð f Þ ! X �½1�ð3:4Þ

in KðAÞ. Then Conð f Þ A K�;CbðCÞ and

X � !u Y � !v Z � !w X �½1�

is the image of (3.4) under F . So Conð f ÞGZ � in Db
CðAÞ. Then by an argu-

ment similar to that in the proof of Lemma 3.13, there exists a C-quasi-
isomorphism fZ : Conð f Þ ! Z �.

In the following, we will show that there exists n 0 A Z such that
HiðHomAðC;Conð f ÞÞÞ ¼ 0 and ZiðConð f ÞÞ A GðCÞ for any C A C and ia n 0.
Note that f : C �

X ! C �
Y induces a morphism

G �
X :¼ � � � ���! Cn�2

X ���! Cn�1
X ���! ZnðC �

X Þ ���! 0
?
?
?
y

~ff

?
?
?
y f n�2

?
?
?
y f n�1

?
?
?
y

~ff n

G �
Y :¼ � � � ���! Cn�2

Y ���! Cn�1
Y ���! ZnðC �

Y Þ ���! 0

in KðAÞ, where ~ff n is the restriction of f n on ZnðC �
X Þ. Since both G �

X and
G �

Y are C-acyclic and ZnðC �
X Þ;ZnðC �

Y Þ A GðCÞ, we have that ~ff is a C-quasi-
isomorphism. We have the following C-acyclic complex

Conð ~ff Þ :¼ � � � ! Cn�1
X lCn�2

Y ! ZnðC �
X ÞlCn�1

Y ! ZnðC �
Y Þ ! 0:

Since C is admissible, Conð ~ff Þ is acyclic. By Lemmas 3.8 and 3.11, we have
ZiðConð ~ff ÞÞ A GðCÞ for any ia n� 1. Because ZiðConð ~ff ÞÞ coincides with
ZiðConð f ÞÞ for any ia n� 2, by putting n 0 ¼ n� 2 we have that HiðHomAðC;
Conð f ÞÞÞ ¼ 0 and ZiðConð f ÞÞ A GðCÞ for any C A C and ia n 0. r

Remind that e is the class of all HomAðC;�Þ-exact sequences 0 ! L !i
M !p N ! 0 in A. We use e 0 to denote the subclass of e with all terms in GðCÞ.

Proposition 3.15. Let C be admissible in A. Then ðGðCÞ; e 0Þ is an exact
subcategory of ðA; eÞ with C the subcategory of (relative) projective and injective
objects. In other words, ðGðCÞ; e 0Þ is a Frobenius category.

Proof. By Lemma 2.6, we have that ðA; eÞ is an exact category. Now let

0 ! G 0 !i G !p G 00 ! 0ð3:5Þ

lie in e. Then by Lemma 3.8, for any C A C we have the following exact
sequence

0 ������! HomAðG 00;CÞ ������!HomAðp;CÞ
HomAðG;CÞð3:6Þ

������!HomAði;CÞ
HomAðG 0;CÞ ������! Ext1CðG 00;CÞ:
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If G 0;G 00 A GðCÞ, then Ext1CðG 00;CÞ ¼ 0 and (3.5) is HomAð�;CÞ-exact. It fol-
lows from Lemma 3.11(2) that G A GðCÞ and ðGðCÞ; e 0Þ is an exact subcategory of
ðA; eÞ.

It is trivial that C is the subcategory of (relative) projective objects of
ðGðCÞ; e 0Þ. Now assume that (3.5) lies in e 0. Then for any morphism f : G 0 !
C, from (3.6) we get that there exists g : G ! C such that f ¼ gi. It implies that
C is the subcategory of (relative) injective objects of ðGðCÞ; e 0Þ. r

We use GðCÞ to denote stable category of GðCÞ modulo C.

Remark 3.16. Let C be admissible in A. By [23], we have that GðCÞ is a

triangulated category and every short exact sequence in e 0 induces a distinguished
triangle of GðCÞ as follows.

Let

0 ! G 0 !i G !p G 00 ! 0

be in e 0. Then we have the following commutative diagram

0 ���! G 0 G G 00 0�
�
�
�

�
�
!

�
�
! w

0 ���! G 0 ���! CG 0 ���! TG 0 ���! 0;

����!i
����!p

����!

where

0 ! G 0 ! CG 0 ! TG 0 ! 0

lies in e 0 with CG 0 A C and TG 0 A GðCÞ. It induces a distinguished triangle

G 0 �!
i

G �!
p

G 00 �!
�w

TG 00

in GðCÞ. For more details, we refer to [23, Chapter I].

4. C-singularity categories and GðCÞ-defect categories

In this section, C is a subcategory of A closed under direct summands. By
Proposition 3.6, we have that KbðCÞ is a thick triangulated subcategory of
Db

CðAÞ. It is of interest to consider the Verdier quotient Db
CðAÞ=KbðCÞ. Com-

pare the following definition with [31, Definition 4.1], in which A is a finite-
dimensional algebra over a field, A ¼ mod A and C � A is a subcategory which
is admissible in A and closed under direct summands.

Definition 4.1. We call the Verdier quotient

DC-sgðAÞ :¼ Db
CðAÞ=KbðCÞ

the relative singularity category of A with respect to C (the C-singularity category
of A for short).
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Example 4.2.
(1) If C ¼ P, then the C-singularity category of A is the classical singularity

category DsgðAÞ ¼ DbðAÞ=KbðPÞ introduced in [12].
(2) If C ¼ GðPÞ, then the C-singularity category of A is Db

GðPÞðAÞ=
KbðGðPÞÞ, which is called the Gorenstein singularity category of A in [7].

Given a complex X � and an integer i A Z, we use sbiX � to denote the com-
plex with X j in the jth degree whenever jb i and 0 elsewhere, and set s>iX � :¼
sbiþ1X �. Dually, saiX � and s<iX � are defined. Recall that the width of X �,
written oðX �Þ, is defined to be the cardinal of the set fX i 0 0 j i A Zg.

It is known that DsgðAÞ reflects the homological singularity of A in sense
that DsgðAÞ ¼ 0 if and only if every object in A has finite projective dimension.
Analogically, we have the following result for DC-sgðAÞ.

Proposition 4.3. If CC-dim M < y for any M A A, then DC-sgðAÞ ¼ 0.
The converse holds true provided that any C-acyclic complex is acyclic.

Proof. Assume that CC-dim M < y for any M A A. We claim that for
every X � A KbðAÞ, there exists a C-quasi-isomorphism C �

X ! X � such that C �
X A

KbðCÞ. We proceed by induction on the width oðX �Þ of X �.
If oðX �Þ ¼ 1, then the claim follows directly.
Let oðX �Þb 2 with X j 0 0 and X i ¼ 0 for any i < j. Put

X �
1 :¼ X j½�j � 1�; X �

2 :¼ s>jX � and g ¼ d
j
X ½�j � 1�:

We have a distinguished triangle

X �
1 !g X �

2 ! X � ! X �
1 ½1�

in KbðAÞ. By the induction hypothesis, there exist C-quasi-isomorphisms
fX1

: C �
X1

! X �
1 and fX2

: C �
X2

! X �
2 with C �

X1
;C �

X2
A KbðCÞ. Then by Lemma

2.2, fX2
induces an isomorphism

HomK bðAÞðC �
X1
;C �

X2
ÞGHomK bðAÞðC �

X1
;X �

2 Þ:
So there exists a morphism f � : C �

X1
! C �

X2
, which is unique up to homotopy,

such that fX2
f � ¼ gfX1

. Put C �
X :¼ Conð f �Þ. We have the following distin-

guished triangle

C �
X1

!f
�

C �
X2

! C �
X ! C �

X1
½1�

in KbðCÞ. Then there exists a morphism fX : C �
X ! X � such that the following

diagram commutes

C �
X1

���!f �

C �
X2

���! C �
X ���! C �

X1
½1�

?
?
?
y fX1

?
?
?
y fX2

�
�
! fX

?
?
?
y fX1 ½1�

X �
1 X �

2 X � X �
1 ½1�:����!g ���! ���!
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For any C A C and n A Z, we have the following commutative diagram with exact
rows

ðC;C �
X1
½n�Þ �! ðC;C �

X2
½n�Þ �! ðC;C �

X ½n�Þ �! ðC;C �
X1
½nþ 1�Þ �! ðC;C �

X2
½nþ 1�Þ

?
?
?
yðC; fX1 ½n�Þ

?
?
?
yðC; fX2 ½n�Þ

�
�
! ðC; fX ½n�Þ

?
?
?
yðC; fX1 ½nþ1�Þ

?
?
?
yðC; fX2 ½nþ1�Þ

ðC;X �
1 ½n�Þ ðC;X �

2 ½n�Þ ðC;X �½n�Þ ðC;X �
1 ½nþ 1�Þ ðC;X �

2 ½nþ 1�Þ;��! ��! ��! ��!
where ðC;�Þ denotes the functor HomKðAÞðC;�Þ. Since fX1

and fX2
are C-

quasi-isomorphisms, ðC; fX1
½n�Þ and ðC; fX2

½n�Þ are isomorphisms, and hence so is
ðC; fX ½n�Þ for each n, that is, fX is a C-quasi-isomorphism. The claim is proved.

It follows from the claim that every object X � of Db
CðAÞ is isomorphic to

some C �
X of KbðCÞ in Db

CðAÞ. Thus DC-sgðAÞ ¼ 0.
Conversely, assume that DC-sgðAÞ ¼ 0 and any C-acyclic complex is acyclic.

Let M A A. Then M ¼ 0 in DC-sgðAÞ and MGC � in Db
CðAÞ for some C � A

KbðCÞ. Let f =s : C � (
s
Z � !f M be an isomorphism in Db

CðAÞ, where s is a
C-quasi-isomorphism. Then f is a C-quasi-isomorphism. By Lemma 2.3(1),
there exists a C-quasi-isomorphism s 0 : C � ! Z �. So fs 0 : C � ! M is also a C-
quasi-isomorphism, and hence Hi HomAðC;C �Þ ¼ 0 whenever C A C and i0 0.
Consider the truncation

C 0 � :¼ � � � ! C�2 ! C�1 ! Z0ðC �Þ ! 0

of C �. Then the composition

C 0 � ,! C � !fs
0

M

is a C-quasi-isomorphism. Notice that C � A KbðCÞ, so we may suppose Cn 0 0
and Ci ¼ 0 whenever i > n. Then we have a C-acyclic complex

C 00 � :¼ 0 ! Z0ðC �Þ ! C0 !
d 0
C
C1 ! � � � ! Cn ! 0

with all Ci in C. By assumption, C 00 � is acyclic and hence split exact. Because
C is closed under direct summands, Z0ðC �Þ A C and CC-dim M < y. r

In the rest of this section, assume further that C is admissible in A to make
sure that GðCÞ is a triangulated category.

Let yC : GðCÞ ! DC-sgðAÞ be the composition of following three functors:
the embedding functors: GðCÞ ,! A, A ,! Db

CðAÞ and the quotient functor
Db

CðAÞ ! DC-sgðAÞ. Then yC induces a functor y 0
C : GðCÞ ! DC-sgðAÞ. The

following result is a slight generalization of [31, Propositions 4.9 and 4.10 and
Theorem 4.12].

Theorem 4.4.
(1) y 0

C : GðCÞ ! DC-sgðAÞ is a fully faithful triangle functor.

(2) If CGðCÞ-dim M < y for any M A A, then

y 0
C : GðCÞ ! DC-sgðAÞ

is a triangle-equivalence.
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Proof. The arguments in [31] remain valid in the setting here, so we omit
them. r

Put

Im y 0
C :¼ fY A DC-sgðAÞ jY G y 0

CðX Þ for X A GðCÞg:
By Theorem 4.4, y 0

C is full and Im y 0
C is a triangulated subcategory of DC-sgðAÞ.

Motivated by Bergh, Oppermann and Jorgensen [10], we introduce the following

Definition 4.5. We call the quotient triangulated category

DGðCÞ-defectðAÞ :¼ DC-sgðAÞ=Im y 0
C

the GðCÞ-defect category of A.

By Theorem 4.4(2), we have that if CGðCÞ-dim M < y for any M A A, then
DGðCÞ-defectðAÞ ¼ 0. In general, we have the following result (cf. [30, Remark
6.8]).

Proposition 4.6. Im y 0
C ¼ Db

CðAÞfCGðCÞd=KbðCÞ.

Proof. It is clear that yCðGÞ A Db
CðAÞfCGðCÞd for any G A GðCÞ. So we

have

Im y 0
C � Db

CðAÞfCGðCÞd=KbðCÞ:
Now let X � A Db

CðAÞfCGðCÞd . Then by Lemma 3.13, there exists a C-quasi-

isomorphism C � ! X � with C � A K�;CbðCÞ such that for some n A Z,
HiðHomAðC;C �ÞÞ ¼ 0 and ZiðC �Þ A GðCÞ for any C A C and ia n. So C � is
isomorphic to the complex

0 ! ZnðC �Þ ! Cn ! Cnþ1 ! � � �
in Db

CðAÞ. It induces a distinguished triangle in DC-sgðAÞ of the following form

ZnðC �Þ½�n� ! sbnðC �Þ ! C � ! ZnðC �Þ½�nþ 1�:
Then C � GZnðC �Þ½�nþ 1� in DC-sgðAÞ. We may assume nf 0. Because
ZnðC �Þ A GðCÞ, we have a HomAðC;�Þ-exact exact sequence

0 ! ZnðC �Þ ! C 0 ! C1 ! � � � ! C�n ! G ! 0

with G A GðCÞ and all Ci A C. It follows that GGZnðC �Þ½�nþ 1� and

X � GC � GZnðC �Þ½�nþ 1�GG

in DC-sgðAÞ. So X � G y 0
CðGÞ and

Db
CðAÞfCGðCÞd=KbðCÞ � Im y 0

C: r

By Proposition 4.6 and Theorem 3.14, we have the following result, which
can be viewed as a generalization of [30, Theorem 6.7(1)].
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Theorem 4.7. There exists a commutative diagram

GðCÞ DC-sgðAÞ DGðCÞ-defectðAÞ
?
?
?
yF

�
�
�
�

?
?
?
yF

Db
CðAÞfCGðCÞd=KbðCÞ �����!embedding

DC-sgðAÞ �����!quotient
Db

CðAÞ=Db
CðAÞfCGðCÞd

������������!
y 0
C

��������!quotient

of triangulated categories with all columns triangle-equivalences.

By definition, we have that DGðCÞ-defectðAÞ is a Verdier quotient of DC-sgðAÞ.
The extreme case is DGðCÞ-defectðAÞFDC-sgðAÞ or DGðCÞ-defectðAÞ ¼ 0. In the
following, we will characterize when one of these two extreme cases happens.
We first give the following

Theorem 4.8. DGðCÞ-defectðAÞFDC-sgðAÞ if and only if C ¼ GðCÞ.

Proof. The su‰ciency is trivial. Conversely, let DGðCÞ-defectðAÞF
DC-sgðAÞ. It follows that Im y 0

C ¼ 0. As y 0
C is fully faithful, we get GðCÞF

Im y 0
C ¼ 0, and hence C ¼ GðCÞ as desired. r

To characterize when DGðCÞ-defectðAÞ ¼ 0, we need the following

Lemma 4.9. Let M A A be an object. Then M A Db
CðAÞfCGðCÞd if and only

if CGðCÞ-dim M < y.

Proof. The su‰ciency is trivial. Conversely, let M A Db
CðAÞfCGðCÞd . Then

MGG � in Db
CðAÞ for some G � A KbðGðCÞÞ. Let C � ! M be a C-proper

C-resolution of M. Then C � GG � in Db
CðAÞ and there exists a C-quasi-

isomorphism f : C � ! G �. By an argument similar to that in the proof of
Lemma 3.13, there exists n > 0 such that Z�nþ1ðC �Þ A GðCÞ. Thus the complex

0 ! Z�nþ1ðC �Þ ! C�nþ1 ! � � � ! C�1 ! C0 ! M ! 0

is C-acyclic, and therefore CGðCÞ-dim M < y. r

We now are in a position to prove the following result, which means that
the converse of Theorem 4.4(2) holds true.

Theorem 4.10. The following statements are equivalent.
(1) DGðCÞ-defectðAÞ ¼ 0.
(2) y 0

C : GðCÞ ! DC-sgðAÞ is a triangle-equivalence.

(3) CGðCÞ-dim M < y for any M A A.

Proof. The equivalence ð1Þ , ð2Þ is trivial. The implication ð3Þ ) ð1Þ
follows from Theorem 4.4(2). In the following, we prove ð1Þ ) ð3Þ.
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Let M A A. Because DGðCÞ-defectðAÞ ¼ 0 by (1), we have M A Db
CðAÞfCGðCÞd

by Theorem 4.7. Then we have CGðCÞ-dim M < y by Lemma 4.9. r

For an object M A A, the GðCÞ-dimension of M, denoted by GðCÞ-dim M, is
defined as the infimum of integers n such that there exists an exact sequence

0 ! G�n ! G�nþ1 ! � � � ! G0 ! M ! 0

in A with all Gi in GðCÞ. Set GðCÞ-dim M ¼ y if no such an integer exists.
As an immediate consequence of Theorem 4.10, we get the Buchweitz-Happel
theorem and its converse.

Corollary 4.11 ([12, Theorem 4.4.1], [24, Theorem 4.6] and [10, Theorem
3.6]). The following statements are equivalent.

(1) DGðPÞ-defectðAÞ ¼ 0.
(2) y 0

P : GðPÞ ! DsgðAÞ is a triangle-equivalence.

(3) GðPÞ-dim M < y for any M A A.

For an object M in A, we use GGðCÞ-dim M to denote the GðCÞ-proper
GðCÞ-dimension of M. The following result generalizes [6, Proposition 4.8],
which states that under some condition, the C-proper GðCÞ-dimension, GðCÞ-
proper GðCÞ-dimension and GðCÞ-dimension of an object in A are identical.

Proposition 4.12. If C is self-orthogonal, then for any M A A, we have

CGðCÞ-dim M ¼ GGðCÞ-dim M ¼ GðCÞ-dim M:

Proof. Let M A A. Because C � GðCÞ, we have CGðCÞ-dim MaGGðCÞ-
dim M. Notice that C is admissible, so any C-acyclic complex is acyclic. Thus
we have GðCÞ-dim MaCGðCÞ-dim M.

In the following, we will prove GGðCÞ-dim MaGðCÞ-dim M. Without loss
of generality, assume GðCÞ-dim M ¼ n < y. Then by [27, Theorem 5.8], there
exists an exact sequence

0 ! C�n ! C�nþ1 ! � � � ! C�1 ! G0 ! M ! 0ð4:2Þ
in A with G0 A GðCÞ and all Ci A C. Because C is self-orthogonal by assump-
tion, it follows from [27, Lemma 5.7] that (4.2) is GðCÞ-acyclic and GGðCÞ-
dim Ma n. r

5. Some applications to module categories

In this section, A is an artin algebra over a commutative artin ring, Mod A
is the category of left A-modules and mod A is the category of finitely gen-
erated left A-modules. We use Proj A (resp. proj A) to denote the subcategory of
Mod A (resp. mod A) consisting of projective modules. For the sake of sim-
plicity, we write GðAÞ :¼ Gðmod AÞ.
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Recall from [10, 7] that

DGðAÞ-defectðmod AÞ :¼ Dsgðmod AÞ=Im y 0
proj A and

DGðMod AÞ-defectðMod AÞ :¼ DsgðMod AÞ=Im y 0
Proj A

are called the Gorenstein defect categories of A. Recall that A is called
Gorenstein if the left and right self-injective dimensions of A are finite. For
a module M A mod A, we use GGðAÞ-dim M to denote the GðAÞ-proper GðAÞ-
dimension of M. The following result gives some equivalent characterizations
for A being Gorenstein.

Corollary 5.1. The following statements are equivalent.
(1) A is Gorenstein.
(2) DGðAÞ-sgðmod AÞ ¼ 0.
(3) DGðAÞ-defectðmod AÞ ¼ 0.
(4) y 0

proj A : GðAÞ ! Dsgðmod AÞ is a triangle-equivalence.

Proof. It follows from [26, Theorem] that A is Gorenstein if and only if
GðAÞ-dim M < y for any M A mod A. So by Corollary 4.11, we have ð1Þ ,
ð3Þ , ð4Þ.

By [6, Proposition 4.8] (cf. Proposition 4.12), we have GðAÞ-dim M ¼
GGðAÞ-dim M for any M A mod A. Then it follows from [26, Theorem] again
that A is Gorenstein if and only if GGðAÞ-dim M < y for any M A mod A.
Because any GðAÞ-acyclic complex is acyclic, the equivalence ð1Þ , ð2Þ follows
from Proposition 4.3. r

Recall from [16] that A is called CM-free if GðAÞ ¼ proj A. We have the
following

Corollary 5.2. DGðAÞ-defectðmod AÞFDsgðmod AÞ if and only if A is CM-
free.

Proof. Putting A ¼ mod A and C ¼ proj A in Theorem 4.8, the assertion
follows. r

Recall from [9] that A is said to be of finite Cohen-Macaulay type, CM-
finite for short, if GðAÞ is of finite representation type. Let A be CM-finite and
fG1;G2; . . . ;Gng the set of all pairwise non-isomorphic indecomposable Goren-
stein projective modules in mod A. Put

AG :¼ G1 lG2 l � � �lGn:

Then GðAÞ ¼ add AG (the full subcategory of mod A consisting of direct sum-
mands of finite direct sums of AG). Recall from [2] that the opposite of the
endomorphism algebra GA :¼ EndðAGÞop of AG is called the Gorenstein Auslander
algebra of A; and two artin algebras A and B are called Gorenstein derived equiv-

449relative singularity categories ii



alent if there exists a triangle-equivalence

Db
GðAÞðmod AÞFDb

GðBÞðmod BÞ:

The following result shows that under some condition, the Gorenstein derived
equivalence of algebras induces the Gorenstein singularity equivalence.

Corollary 5.3. Let A and B be two CM-finite artin algebras. If A and B
are Gorenstein derived equivalent, then there exists a triangle-equivalence

DGðAÞ-sgðmod AÞFDGðBÞ-sgðmod BÞ:

In this case, we call A and B Gorenstein singularity equivalent.

Proof. Let A and B be two CM-finite artin algebras. Then there exist

AG A GðAÞ and BH A GðBÞ such that GðAÞ ¼ add AG and GðBÞ ¼ add BH. Let
GA and GB be the Gorenstein Auslander algebras of A and B respectively. If
A and B are Gorenstein derived equivalent, then we have that GA and GB are
derived equivalent by [2, Corollary 3.7]. It follows from [37, Theorem 6.4] that
there exists a triangle-equivalence

Kbðproj GAÞFKbðproj GBÞ:
Note that

add AGF proj GA and add BHF proj GB

are equivalences of additive categories by [3, Chapter VI, Lemma 3.1(b)]. So
there exists a triangle-equivalence

KbðGðAÞÞFKbðGðBÞÞ;
and hence there exists a triangle-equivalence

DGðAÞ-sgðmod AÞFDGðBÞ-sgðmod BÞ: r

As an application of Corollaries 5.1 and 5.3, we have the following

Corollary 5.4 ([2, Proposition 5.1.3]). Let A and B be two CM-finite artin
algebras. If A and B are Gorenstein derived equivalent, then A is Gorenstein if
and only if so is B.

Proof. Let A and B be two CM-finite artin algebras. If A and B are
Gorenstein derived equivalent, then there exists a triangle-equivalence

DGðAÞ-sgðmod AÞFDGðBÞ-sgðmod BÞ
by Corollary 5.3. Now the assertion follows from Corollary 5.1. r

Putting C ¼ GðAÞ and C ¼ GðMod AÞ in Definition 4.5 respectively, then
we have
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DGðGðAÞÞ-defectðmod AÞ ¼ DGðAÞ-sgðmod AÞ=Im y 0
GðAÞ and

DGðGðMod AÞÞ-defectðMod AÞ ¼ DGðMod AÞ-sgðMod AÞ=Im y 0
GðMod AÞ:

Inspired by the stability of Gorenstein categories (see [27, Theorem 4.1]), we get
the stability of Gorenstein defect categories as follows.

Theorem 5.5.
(1) There exists a triangle-equivalence

DGðGðMod AÞÞ-defectðMod AÞFDGðMod AÞ-defectðMod AÞ:

(2) If GðAÞ is contravariantly finite in mod A, then there exists a triangle-
equivalence

DGðGðAÞÞ-defectðmod AÞFDGðAÞ-defectðmod AÞ:

Proof. Because GðGðMod AÞÞ ¼ GðMod AÞ and GðGðAÞÞ ¼ GðAÞ by [27,
Theorem 4.1], we have

DGðGðMod AÞÞ-defectðMod AÞFDGðMod AÞ-sgðMod AÞ and

DGðGðAÞÞ-defectðmod AÞFDGðAÞ-sgðmod AÞ

by Theorem 4.8. On the other hand, note that GðMod AÞ is contravariantly
finite in Mod A by [8, Theorem 3.5] (or cf. [11, Proposition 8.10]). So there exist
triangle-equivalences

DGðMod AÞ-sgðMod AÞFDGðMod AÞ-defectðMod AÞ and

DGðAÞ-sgðmod AÞFDGðAÞ-defectðmod AÞ

by [7, Theorem 4.3] and assumption, and hence we have

DGðGðMod AÞÞ-defectðmod AÞFDGðMod AÞ-defectðMod AÞ and

DGðGðAÞÞ-defectðmod AÞFDGðAÞ-defectðmod AÞ: r
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