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Abstract Let R and S be semiregular rings and U a semidualizing (R,S)-bimodule.

We show that theU -codominant dimensions ofRU andUS are identical. As an applica-

tion, we get that theU -codominant dimension ofU is at least two if and only if the func-

torU⊗S HomR(U,−) is right exact and if and only if the functorHomR(U,U⊗S −) is

left exact.We also get some new equivalent characterizations of (n-)Auslander algebras.

1. Introduction

The classical theory of dominant dimension was introduced by Tachikawa [21] to

study QF-3 algebras. Later on, it attracted the interest of many authors (see [5]–

[10], [13], [15], [16], [18], and references therein). One reason is that the notion of

dominant dimension is closely related to the famous Nakayama conjecture, which

says that if an artin algebra has infinite dominant dimension, then it should be

self-injective (cf. [3]). In applied aspects, dominant dimension is used to study

double centralizer properties, which play a central role in many parts of algebraic

Lie theory (see [9], [10], [16]). Also, it has its values in classifying certain algebras

[8].

Following [21], a left R-module M is said to have dominant dimension at

least n if each of the first n terms in the minimal injective resolution of M is

projective. It was shown in [21] that if R is a left and right artinian ring, then the

dominant dimensions of RR and RR are identical. Colby and Fuller [5] gave some

equivalent characterizations for the dominant dimension of R being at least one

or two in terms of the exactness of the double dual functors with respect to RRR.

Replacing “projective” in the above definition with “cogenerated by U ,” Kato [15]

generalized dominant dimension to U -dominant dimension, where U is a fixed left

R-module, and characterized the modules with U -dominant dimension at least

one. Furthermore, given two artin algebras R and S and a faithfully balanced

self-orthogonal bimodule (equivalently, a semidualizing bimodule) RUS , Huang

[13] carried over an extensive study of U -dominant dimensions and proved that

the U -dominant dimensions of RU and US are identical.

On the other hand, Eerkes [6] introduced a categorically dual notion-

codominant dimension as follows. A left R-module M is said to have codominant
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dimension at least n if each of the first n terms in the minimal projective

resolution of M (if existing) is injective and proved that if R is a left and right

artinian ring, then the codominant dimensions of minimal injective cogenerators

for left and right R-modules are identical. Now it is natural to ask, how can

one give a dual notion of U -dominant dimension? The aim of this paper is to

introduce the so-called U -codominant dimension and investigate its homological

behavior, especially in the case for U being a semidualizing bimodule.

Let us briefly outline the structure of the paper. In Section 2, we give some

terminology and some preliminary results.

In Section 3, for a ring R and a given left (or right) R-module U , as a dual

of the notion of U -dominant dimension [15], we introduce the notion of the U -

codominant dimension U -codom.dimM of a left (or right) R-module M . Let

R and S be semiregular rings and U a semidualizing (R,S)-bimodule. We first

prove that the U -codominant dimension of RU (resp. US) is at least one if and

only if the functor U ⊗S HomR(U,−) preserves epimorphisms, and if and only if

the functor HomR(U,U ⊗S −) preserves monomorphisms (Theorem 3.5). Then,

by means of the (strong) cograde conditions of modules and the properties of the

functors U⊗SHomR(−,U) and HomR(U,U⊗S−), we get that the U -codominant

dimensions of RU and US are identical (Theorem 3.9 and Corollary 3.10). As an

application, we have that the U -codominant dimension of U is at least two if and

only if the double functor U ⊗S HomR(−,U) is right exact, and if and only if the

double functor HomR(U,U ⊗S −) is left exact (Theorem 3.12).

In Section 4, we give some new equivalent characterizations of (n-)Auslander

algebras.

2. Preliminaries

Throughout this paper, all rings are associative rings with units. For a ring

R, ModR (resp. modR) is the category of left (resp. finitely presented left)

R-modules. Let M be a module in ModR. We use AddRM (resp. addRM )

to denote the full subcategory of ModR consisting of all direct summands of

direct sums of (finite) copies of M . We say that M admits a degreewise finite

R-projective resolution if there exists an exact sequence

· · · → Pi → · · · → P1 → P0 →M → 0

in modR with all Pi projective.

DEFINITION 2.1 ([2], [12])

Let R and S be rings. An (R,S)-bimodule RUS is called semidualizing if the

following conditions are satisfied:

(a1) RU admits a degreewise finite R-projective resolution.

(a2) US admits a degreewise finite Sop-projective resolution.

(b1) The homothety map RRR→HomSop(U,U) is an isomorphism.

(b2) The homothety map SSS→HomR(U,U) is an isomorphism.
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(c1) Ext�1
R (U,U) = 0.

(c2) Ext�1
Sop(U,U) = 0.

Wakamatsu in [27] introduced and studied the so-called generalized tilting mod-

ules, which are usually called Wakamatsu tilting modules (see [4], [17]). Note

that a bimodule RUS is semidualizing if and only if it is Wakamatsu tilting [29,

Corollary 3.2]. Examples of semidualizing bimodules can be found in [12], [23],

[24], and [28].

Let R and S be arbitrary rings and RUS a semidualizing (R,S)-bimodule.

For convenience, we write (−)∗ := Hom(U,−). Let M ∈ModR and N ∈ModS.

Suppose that

0→M → I0(M)
g0

−→ I1(M)

is the minimal injective presentation of M , and

F1(N)
f0−→ F0(N)→N → 0

is the minimal flat presentation of N .

DEFINITION 2.2

Let n � 1.

(1) Let M ∈ModR. We call cTrU M := Cokerg0∗ the cotranspose of M with

respect to RUS [22].

(2) Let N ∈ModS. We call acTrU N := Ker(1U ⊗f0) the adjoint cotranspose

of N with respect to RUS [24].

Following [25, Definition 6.2], we recall the following notions.

DEFINITION 2.3

Let M ∈ModR, N ∈ModS, and n � 0.

(1) The Ext-cograde of M with respect to U is defined as E-cogradeU M :=

inf{i � 0 | ExtiR(U,M) �= 0}, and the strong Ext-cograde of M with respect to U ,

denoted by s.E-cogradeU M , is said to be at least n if E-cogradeU X � n for any

quotient module X of M .

(2) The Tor-cograde of N with respect to U is defined as T-cogradeU N :=

inf{i � 0 | TorSi (U,N) �= 0}, and the strong Tor-cograde of N with respect to U ,

denoted by s.T-cogradeU N , is said to be at least n if T-cogradeU Y � n for any

submodule Y of N .

Let M ∈ ModR. Then we have the following canonical evaluation homomor-

phism:

θM : U ⊗S M∗ →M



746 Song, Tang, and Huang

defined by θM (x⊗ f) = f(x) for any x ∈ U and f ∈M∗. If θM is epic, then M

is called U -cotorsionless, and if θM is isomorphic, then M is called U -coreflexive

[22].

Let N ∈ModS. Then we have the following canonical evaluation homomor-

phism:

μN :N → (U ⊗S N)∗

defined by μN (y)(c) = c⊗ y for any y ∈N and c ∈ U .

3. U -codominant dimension

We introduce the notion of the relative codominant dimension of modules as

follows.

DEFINITION 3.1

Let R and S be rings, and let U,M ∈ModR (resp. ModSop) and n � 0. We say

that the U -codominant dimension of M is at least n, written U -codom.dimM �
n, if there exists a projective resolution

· · · → Pi → · · · → P1 → P0 →M → 0

of M in ModR (resp. ModSop) such that Pi is generated by U (equivalently,

Pi ∈AddRU (resp. AddUS)) for any 0� i � n− 1.

REMARK 3.2

Let U,M ∈ModR.

(1) Let R be a left artinian ring. The dominant dimension of a finitely

generated left R-module M is at least n if each of the first n terms in the

minimal injective resolution of M is projective [21]. Let R be a left perfect ring.

The codominant dimension of a left R-module M is at least n if each of the

first n terms in the minimal projective resolution of M is injective (see [6],

[7]). The notion of the codominant dimension of modules is the dual of that of

dominant dimension of modules. When R is an artinian ring and U is injective,

the U -codominant dimension of M is exactly its codominant dimension.

(2) The U -dominant dimension of a left R-module M is at least n if each

of the first n terms in the minimal injective resolution of M is cogenerated by U

[15]. The notion of the U -codominant dimension of modules is the dual of that

of U -dominant dimension of modules.

(3) When M admits a minimal projective resolution, it is easy to see that U -

codom.dimM � n if and only if each of the first n terms in the minimal projective

resolution of M is in AddRU .

Recall from [19] that a ring R is called semiregular if R/J(R) is von Neumann

regular and idempotents can be lifted modulo J(R), where J(R) is the Jacobson

radical of R. The class of semiregular rings includes (1) von Neumann regular
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rings, (2) semiperfect rings, (3) left cotorsion rings, and (4) right cotorsion rings

(see [11] for the definitions of left cotorsion rings and right cotorsion rings).

If R is a semiregular ring, then any finitely presented left or right R-module

has a projective cover by [19, Theorem 2.9]. In this case, since RU admits a

degreewise finite R-projective resolution by Definition 2.1, we may assume that

(1) · · · fi+1(U)−→ Pi(U)
fi(U)−→ · · · f2(U)−→ P1(U)

f1(U)−→ P0(U)
f0(U)−→ RU → 0

is the minimal projective resolution of RU in modR. Analogously, if S is a

semiregular ring, then we assume that

(2) · · · gi+1(U)−→ Qi(U)
gi(U)−→ · · · g2(U)−→ Q1(U)

g1(U)−→ Q0(U)
g0(U)−→ US → 0

is the minimal projective resolution of US in modSop.

REMARK 3.3

ByRemark 3.2(3), we have that ifR is a semiregular ring, then U -codom.dimRU �
n if and only if Pi(U) ∈ addRU for any 0 � i � n − 1; analogously, if S is a

semiregular ring, then U -codom.dimUS � n if and only if Qi(U) ∈ addUS for

any 0� i � n− 1.

In the rest of this paper, R and S are semiregular rings, and RUS is a given

semidualizing (R,S)-bimodule. We will show that the U -codominant dimensions

of RU and US are identical. Some applications of this result will be given.

According to [20], the full subcategory of ModR (resp. ModS) consisting of

modules M (resp. N ) satisfying HomR(P0(U),M) = 0 (resp. Q0(U)⊗S N = 0)

forms a torsion-free (resp. torsion) class. Indeed, P0(U) (resp. Q0(U)) defines

a torsion theory [20, Chapter VI, Section 2]. For a module M ∈ ModR (resp.

N ∈ModS), we use t(M) (resp. s(N)) to denote the torsion submodule of M

(resp. N ).

LEMMA 3.4

(1) For any M ∈ ModR, we have that M/t(M) ∼= CokerθM if and only if

HomR(P0(U),CokerθM ) = 0.

(2) For any N ∈ModS, we have that s(N) = KerμN if and only if Q0(U)⊗S

KerμN = 0.

Proof

(1) We first prove the necessity. Let M/t(M)∼=CokerθM . Since M/t(M) belongs

to the class of torsion-free modules, we have HomR(P0(U),CokerθM ) = 0.

Now we prove the sufficiency. We claim that ImθM ⊆ t(M). Let x ∈ ImθM .

Then by the definition of θM , there exist f1, . . . , fn ∈ M∗ and c1, . . . , cn ∈ RU

such that x=
∑n

i=1 fi(ci). Since we have an epimorphism f0(U) : P0(U) � RU ,

there exists pi ∈ P0(U) such that ci = f0(U)(pi) for any 1 � i � n. Note that

t(M) is the sum of the images of all homomorphisms from P0(U) to M . So

x=
∑n

i=1 fif0(U)(pi) ∈ t(M). The claim is proved. Thus, we have the following



748 Song, Tang, and Huang

diagram with exact rows:

0 ImθM M CokerθM

f

0

0 t(M) M M/t(M) 0

By the snake lemma, we have t(M)/ ImθM ∼= Kerf . Since the class of torsion

modules is closed under quotient objects, Kerf(∼= t(M)/ Im θM ) is in the torsion

class. By assumption, HomR(P0(U),CokerθM ) = 0; that is, CokerθM is torsion-

free. Since the class of torsion-free modules is closed under subobjects, Kerf is

in the torsion-free class. Thus, Kerf = 0; therefore, M/t(M)∼=CokerθM .

(2) The necessity is trivial. We will prove the sufficiency. Since there exists

an epimorphism g0(U) : Q0(U) � US , we get an epimorphism g0(U) ⊗ s(N) :

Q0(U)⊗S s(N) � U ⊗S s(N). Notice that Q0(U)⊗S s(N) = 0, so U ⊗S s(N) =

0, which implies c ⊗ y = 0 for any c ∈ U and y ∈ s(N). Thus, s(N) ⊆ KerμN

by the definition of μN . Since s(N) is the largest submodule of N satisfying

Q0(U)⊗S s(N) = 0, it follows from the assumption that s(N) = KerμN . �

By using the above lemma, we get the following result.

THEOREM 3.5

The following statements are equivalent:

(1) U -codom.dimRU � 1.

(2) U ⊗S (−)∗ preserves epimorphisms in ModR.

(3) (U ⊗S −)∗ preserves monomorphisms in ModS.

(4) M/t(M)∼=CokerθM for every M ∈ModR.

(5) s(N) = KerμN for any N ∈ModS.

(1)′ U -codom.dimUS � 1.

(2)′ (−)∗ ⊗R U preserves epimorphisms in ModSop.

(3)′ (−⊗R U)∗ preserves monomorphisms in ModRop.

Proof

By [26, Theorem 4.8 and Corollary 4.9], we have (1)⇔ (2)⇔ (3)⇔ (1)′ ⇔ (2)′ ⇔
(3)′.

(1) + (1)′ ⇒ (5): By (1), we have P0(U) ∈ addRU . Let N ∈ModS. By [24,

Proposition 3.2], we have KerμN
∼=Ext1R(U,acTrU N). It follows from [26, The-

orem 4.8] that U ⊗S KerμN
∼= U ⊗S Ext1R(U,acTrU N) = 0. By (1)′, we have

Q0(U) ∈ addUS . It follows that Q0(U) ⊗S KerμN = 0, and then the assertion

follows from Lemma 3.4(2).

(5)⇒ (2): Let f :M1 � M2 be an epimorphism in ModR. Set M := Kerf .

It follows from [25, Corollary 6.8] that Ext1R(U,M) ∼= KerμcTrU M . From the

assumption and Lemma 3.4(2), we have Q0(U) ⊗S Ext1R(U,M) = 0. Since
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Cokerf∗ is isomorphic to a submodule of Ext1R(U,M) and Q0(U) is projective,

Q0(U)⊗S Cokerf∗ = 0. So U ⊗S Cokerf∗ = 0; hence, U ⊗ f∗ is epic.

(2)⇒ (4): Let M ∈ModR, and let M ′ be a quotient module of CokerθM .

Assume that f is the composition M � CokerθM � M ′. Then fθM = 0 and

f∗(θM )∗ = 0. But since (θM )∗ is a split epimorphism by [25, Lemma 6.1], we

have f∗ = 0, and so U ⊗ f∗ = 0. The assumption of (2) implies U ⊗S M ′
∗ = 0,

so M ′
∗ = 0 by [25, Corollary 6.6(1)]. Thanks to Lemma 3.4(1), we need only to

show that HomR(P0(U),CokerθM ) = 0. If it is not the case, then there exists

0 �= α ∈ HomR(P0(U),CokerθM ). Pick some modules L and L1 such that U ∼=
P0(U)/L and Imα ∼= P0(U)/L1. Because P0(U) is the projective cover of U

and α �= 0, we get L + L1 �= P0(U). Hence, there exists a nonzero natural epi-

morphism β : P0(U)/L→ P0(U)/(L+ L1). Note that there are inclusions (L+

L1)/L1 ⊆ P0(U)/L1 ⊆CokerθM . Denote the natural embedding homomorphism

by i : P0(U)/(L+ L1)∼= P0(U)/L1

(L+L1)/L1
→ CokerθM

(L+L1)/L1
. Thus, we get a nonzero homo-

morphism iβ ∈ ( CokerθM
(L+L1)/L1

)∗, which is a contradiction to M ′
∗ = 0.

(4)⇒ (3): Let g :N1 �N2 be a monomorphism in ModS. Set N := Cokerg.

Then Ker(U ⊗ g) is a quotient module of TorS1 (U,N). By [23, Corollary

5.3(1)], we have TorS1 (U,N) ∼= CokerθacTrU N . Lemma 3.4(1) implies that

HomR(P0(U),TorS1 (U,N)) = 0; hence, HomR(P0(U),Ker(U ⊗ g)) = 0. It fol-

lows that (Ker(U ⊗ g))∗ = 0 and (U ⊗ g)∗ is monic. �

The following proposition is useful in proving the main result.

PROPOSITION 3.6

If U -codom.dimRU � 1, then the following statements are equivalent for any

n � 2:

(1) U -codom.dimRU � n.

(2) For any M ∈ModR, if M∗ = 0, then E-cogradeU M � n.

Proof

For any M ∈ModR and i � 1, we have an exact sequence,

(3) HomR

(
Pi−1(U),M

)
→HomR

(
Imfi(U),M

)
→ ExtiR(U,M)→ 0.

(1)⇒ (2): Let M ∈ModR with M∗ = 0. For any 0 � i � n− 1, since Pi(U) ∈
addRU by (1), we get HomR(Pi(U),M) = 0; hence, HomR(Imfi(U),M) = 0.

Thus, ExtiR(U,M) = 0 for any 0 � i � n− 1 by the exactness of the sequence (3).

(2) ⇒ (1): Since U -codom.dimRU � 1, P0(U) is generated by RU . When

n= 2, we have to prove that P1(U) is also generated by RU . For this purpose,

we establish the following two claims.

Claim 1. HomR(U, Imf1(U)/M) �= 0 for any nonzero proper submodule M

of Imf1(U).

If HomR(U, Imf1(U)/M) = 0 for some nonzero proper submodule M of

Imf1(U), we obtain by assumption that ExtiR(U, Imf1(U)/M) = 0 for any
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i = 0,1. Because P0(U) ∈ addRU , HomR(P0(U), Imf1(U)/M) = 0. So from the

exactness of the sequence (3), we get that HomR(Imf1(U), Imf1(U)/M) = 0,

which is impossible. Thus, Claim 1 is proved.

Claim 2. If Imf1(U) is generated by RU , then P1(U) is generated by RU .

Suppose that Imf1(U) is generated by RU . Then there exists an epimorphism

g : V � Imf1(U) with V ∈AddRU . Note that RU is a quotient module of P0(U).

Hence, there exists an epimorphism h : P0(U)(I) � Imf1(U) for some index set

I . Since P1(U) is the projective cover of Imf1(U), P1(U) is isomorphic to a

direct summand of P0(U)(I). The fact that P0(U) is generated by RU implies

that P1(U) is generated by RU . Claim 2 is proved.

Since P0(U) is generated by RU , by Claim 2 the proof can be fin-

ished if Imf1(U) is generated by P0(U). Let L =
∑

h Imh, where h runs

through HomR(P0(U), Imf1(U)). If L = Imf1(U), then there is nothing to

show. Otherwise, by Claim 1 there exists a nonzero homomorphism α ∈
HomR(U, Imf1(U)/L). Let π : Imf1(U)→ Imf1(U)/L be the natural map. Since

P0(U) is projective, there exists a homomorphism β ∈ HomR(P0(U), Imf1(U))

such that πβ = αf0. Obviously the equality produces a contradiction since

Imβ ⊆ L and α �= 0. Finally, the assertion follows easily by induction on n. �

By putting m= 1 in [26, Proposition 4.7], we get the following lemma.

LEMMA 3.7

The following statements are equivalent for any n� 1:

(1) U -codom.dimRU � n.

(2) s.T-cogradeU Ext1Sop(U,N ′)� n for any N ′ ∈ModSop.

(3) s.E-cogradeU TorS1 (U,N)� n for any N ∈ModS.

Symmetrically, we have the following result.

LEMMA 3.8

The following statements are equivalent for any n� 1:

(1) U -codom.dimUS � n.

(2) s.T-cogradeU Ext1R(U,M) � n for any M ∈ModR.

(3) s.E-cogradeU TorR1 (M
′,U) � n for any M ′ ∈ModRop.

Now we state our main result as follows.

THEOREM 3.9

The following statements are equivalent for any n� 1:

(1) U -codom.dimRU � n.

(2) Applying the functor U ⊗S (−)∗ to the minimal projective resolution (1)

of RU , the induced sequence



On U -codominant dimension 751

U ⊗S Pn−1(U)∗
U⊗fn−1(U)∗−→ · · · U⊗f2(U)∗−→ U ⊗S P1(U)∗

U⊗f1(U)∗−→

U ⊗S P0(U)∗
U⊗f0(U)∗−→ U ⊗S U∗ → 0

is exact.

(1)′ U -codom.dimUS � n.

(2)′ Applying the functor (−)∗⊗RU to the minimal projective resolution (2)

of US , the induced sequence

Qn−1(U)∗ ⊗R U
gn−1(U)∗⊗U−→ · · · g2(U)∗⊗U−→ Q1(U)∗ ⊗R U

g1(U)∗⊗U−→

Q0(U)∗ ⊗R U
g0(U)∗⊗U−→ U∗ ⊗R U → 0

is exact.

Proof

(1)⇔ (2): Set F := (−)∗ and G=: U ⊗S −. We have the following commutative

diagram with the bottom row exact:

GF(Pn−1(U))
GF(fn−1(U))

θPn−1(U)

· · · GF(P1(U))
GF(f1(U))

θP1

GF(P0(U))
GF(f0(U))

θP0

GF(U)

θU

0

Pn−1(U)
fn−1(U)

· · · P1(U)
f1(U)

P0(U)
f0(U)

U 0

If the assertion (1) holds true—that is, U -codom.dimRU � n—then Pi(U) ∈
addRU for any 0 � i � n − 1. Note that RU is U -coreflexive by [22, Lemma

2.5(1)]. So Pi(U) is also U -coreflexive for any 0 � i � n− 1. It follows that the

upper row in the above diagram is exact, and assertion (2) follows.

Conversely, suppose that assertion (2) holds true. Then the above diagram is

an exact commutative diagram. We will proceed by induction on n. Since θU is

an isomorphism, the rightmost square in the above commutative diagram implies

that f0(U)θP0(U) = θU GF(f0(U)) is epic. But f0(U) is superfluous, so it follows

from [1, Corollary 5.15] that θP0(U) is epic and P0(U) is U -cotorsionless. Then [22,

Corollary 3.8] implies that P0(U) is generated by RU ; that is, P0(U) ∈ addRU ;

hence, θP0(U) is an isomorphism.

Now suppose n � 2. Then Pi(U) ∈ addRU for any 0 � i � n − 2 by the

induction hypothesis. Put K ′
i := ImGF(fi(U)) and Ki := Imfi(U) for any 0 �

i � n− 1. Then we have the following commutative diagram:

GF(Pi(U))
GF(fi(U))

θPi(U)

K ′
i

ti

Pi(U)
fi(U)

Ki

where ti is an induced isomorphism by induction. Because fn−1(U)θPn−1(U) =

tn−1GF(fn−1(U)) is epic and fn−1(U) is superfluous, θPn−1(U) is epic. It
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implies that Pn−1(U) is U -cotorsionless and Pn−1(U) ∈ addRU . Thus, U -

codom.dimRU � n.

(1)′ ⇒ (1): We proceed by induction on n. The case for n= 1 follows from

Theorem 3.5.

Now suppose n� 2. By the induction hypothesis, we have U -codom.dimRU �
n − 1. Let N ∈ ModS. Then s.E-cogradeU TorS1 (U,N) � n − 1 by Lemma 3.7.

Let M be a quotient module of TorS1 (U,N). Then E-cogradeU M � n − 1. By

the dimension shifting, we have Extn−1
R (U,M) ∼= Ext1R(U, coΩ

n−2(M)), where

coΩn−2(M) is the (n − 2)th cosyzygy. Then by (1)′ and Lemma 3.8, we have

T-cogradeU Extn−1
R (U,M) = T-cogradeU Ext1R(U, coΩ

n−2(M)) � n. It follows

from [26, Lemma 4.11(1)] that E-cogradeU M � n. Thus, we conclude that

s.E-cogradeU TorS1 (U,N)� n. Now the assertion follows from Lemma 3.7.

Symmetrically, we have (1)′ ⇔ (2)′ and (1)⇒ (1)′. �

As an immediate consequence of Theorem 3.9, we get the following corollary.

COROLLARY 3.10

U -codom.dimRU = U -codom.dimUS .

The following corollary is a supplement to Theorem 3.5.

COROLLARY 3.11

The following statements are equivalent:

(1) U -codom.dimRU � 1.

(2) The sequence

U ⊗S P0(U)∗
U⊗f0(U)∗−→ U ⊗S U∗ → 0

is exact.

(1)′ U -codom.dimUS � 1.

(2)′ The sequence

Q0(U)∗ ⊗R U
g0(U)∗⊗U−→ U∗ ⊗R U → 0

is exact.

In the following result, we characterize when the U -codominant dimension of U

is at least two in terms of the exactness of certain functors.

THEOREM 3.12

The following statements are equivalent:

(1) U -codom.dimRU � 2.

(2) The sequence

U ⊗S P1(U)∗
U⊗f1(U)∗−→ U ⊗S P0(U)∗

U⊗f0(U)∗−→ U ⊗S U∗ → 0
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is exact.

(3) U ⊗S (−)∗ : ModR→ModR is right exact.

(4) (U ⊗S −)∗ : ModS →ModS is left exact.

(1)′ U -codom.dimUS � 2.

(2)′ The sequence

Q1(U)∗ ⊗R U
g1(U)∗⊗U−→ Q0(U)∗ ⊗R U

g0(U)∗⊗U−→ U∗ ⊗R U → 0

is exact.

(3)′ (−)∗ ⊗R U : ModSop →ModSop is right exact.

(4)′ (−⊗R U)∗ : ModRop →ModRop is left exact.

Proof

By Theorem 3.9, we have (1) ⇔ (2) ⇔ (1)′ ⇔ (2)′. The implications (3) ⇒ (2)

and (3)′ ⇒ (2)′ are trivial.

(1)′ ⇒ (3): Let

0→M1
α−→M2

β−→M3 → 0

be an exact sequence in ModR. Applying the functor (−)∗ to it induces an exact

sequence

(4) 0→M1∗
α∗−→M2∗

β∗−→M3∗ → Ext1R(U,M1)

in ModS. By (1)′, we have Q0(U),Q1(U) ∈ addUS . Then

Q0(U)⊗S Ext1R(U,M1) = 0 =Q1(U)⊗S Ext1R(U,M1)

by [26, Lemma 4.6]. Because Cokerβ∗ is isomorphic to a submodule of

Ext1R(U,M1), we have

Q0(U)⊗S Cokerβ∗ = 0=Q1(U)⊗S Cokerβ∗;

hence,

(5) U ⊗S Cokerβ∗ = 0.

Moreover, applying the functor − ⊗S Cokerβ∗ to the minimal projective

resolution (2) of US yields the following two exact sequences:

Q1(U)⊗S Cokerβ∗ → Img1(U)⊗S Cokerβ∗ → 0,

(0 =)TorS1
(
Q0(U),Cokerβ∗

)
→TorS1 (U,Cokerβ∗)→ Img1(U)⊗S Cokerβ∗.

Since Q1(U)⊗S Cokerβ∗ = 0, we have Img1(U)⊗S Cokerβ∗ = 0; hence,

(6) TorS1 (U,Cokerβ∗) = 0.

By the equalities (5) and (6), applying the functor U ⊗S − to the exact sequence

(4) yields the following exact sequence:

U ⊗S M1∗
U⊗α∗−→ U ⊗S M2∗

U⊗β∗−→ U ⊗S M3∗ → 0.

(1)⇒ (4): Let
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0→N1
φ−→N2

ψ−→N3 → 0

be an exact sequence in ModS. Applying the functor U ⊗S − to it induces an

exact sequence

(7) TorS1 (U,N3)→ U ⊗S N1
U⊗φ−→ U ⊗S N2

U⊗Sψ−→ U ⊗S N3 → 0

in ModR. By (1), we have P0(U), P1(U) ∈ addRU . Then

HomR

(
P0(U),TorS1 (U,N3)

)
= 0=HomR

(
P1(U),TorS1 (U,N3)

)

by [26, Lemma 4.6]. Because Ker(U ⊗ φ) is isomorphic to a factor module of

TorS1 (U,N3), we have

HomR

(
P0(U),Ker(U ⊗ φ)

)
= 0=HomR

(
P1(U),Ker(U ⊗ φ)

)
;

hence,

(8)
(
Ker(U ⊗ φ)

)
∗ = 0.

Moreover, applying the functor HomR(−,Ker(U ⊗ φ)) to the minimal pro-

jective resolution (1) of RU yields the following two exact sequences:

0→HomR

(
Imf1(U),Ker(U ⊗ φ)

)
→HomR

(
P1(U),Ker(U ⊗ φ)

)
,

HomR

(
Imf1(U),Ker(U ⊗ φ)

)
→ Ext1R

(
U,Ker(U ⊗ φ)

)

→ Ext1R
(
P0(U),Ker(U ⊗ φ)

)
(= 0).

Since HomR(P1(U),Ker(U ⊗ φ)) = 0, we have HomR(Imf1(U),Ker(U ⊗ φ)) = 0;

hence,

(9) Ext1R
(
U,Ker(U ⊗ φ)

)
= 0.

By the equalities (8) and (9), applying the functor (−)∗ to the exact sequence

(7) yields the following exact sequence

0→ (U ⊗S N1)∗
(U⊗φ)∗−→ (U ⊗S N2)∗

(U⊗Sψ)∗−→ (U ⊗S N3)∗.

(4)⇒ (1): By (4) and Theorem 3.5, we have U -codom.dimRU � 1 and U -

codom.dimUS � 1. Let M ∈ModR with M∗ = 0. By Proposition 3.6, it suffices

to prove E-cogradeU M � 2.

Let

(10) 0→K
f−→Q

g−→ Ext1R(U,M)→ 0

be an exact sequence in ModS with Q projective. By Lemma 3.8, we have

(11) U ⊗S Ext1R(U,M) = 0.

By (4), the exact sequence (10) induces the following exact sequence:

0→ (U ⊗S K)∗
(U⊗f)∗−→ (U ⊗S Q)∗

(U⊗g)∗−→
(
U ⊗S Ext1R(U,M)

)
∗(= 0),

which implies that (U ⊗ f)∗ is an isomorphism; hence, U ⊗ (U ⊗ f)∗ is also an

isomorphism. On the other hand, we have the following commutative diagram
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with the bottom row exact:

U ⊗S (U ⊗S K)∗
U⊗(U⊗f)∗

θU⊗SK

U ⊗S (U ⊗S Q)∗.

θU⊗SQ

0 TorS1 (U,Ext
1
R(U,M)) U ⊗S K

U⊗f
U ⊗S Q 0

The equality (11) means that the functor U ⊗S Ext1R(U,−) vanishes on ModR;

hence, the functor U⊗SExt
2
R(U,−) also vanishes on ModR. Then by [26, Lemma

4.18], we have that both U ⊗S K and U ⊗S Q are U -coreflexive—that is, both

θU⊗SK and θU⊗SQ are isomorphisms. Then by the above commutative dia-

gram, we have TorS1 (U,Ext
1
R(U,M)) = 0. Combining it with the equality (11)

yields T-cogradeU Ext1R(U,M) � 2. It follows from [26, Lemma 4.11(1)] that

E-cogradeU M � 2.

Symmetrically, we get (1)⇒ (3)′ and (1)′ ⇔ (4)′. �

4. n-Auslander algebras

For any n � 1, recall from [14] that an artin algebra R is called an n-Auslander

algebra if

gl.dimR � n+ 1 � dom.dimR,

where gl.dimR and dom.dimR are the global and dominant dimensions of R,

respectively. Note that 1-Auslander algebras are exactly classical Auslander alge-

bras.

Let R be an artin algebra and D the usual duality between modR and

modRop. It is easy to verify the following observations:

(1) D(R) is a semidualizing (R,R)-bimodule.

(2) dom.dimRR = D(R)- codom.dimRD(R), and dom.dimRR = D(R)-

codom.dimD(R)R.

Thus, putting RUS = RD(R)R in Theorem 3.9, we get some equivalent charac-

terizations of n-Auslander algebras as follows.

COROLLARY 4.1

Let R be an artin algebra with gl.dimR � n+ 1. Then the following statements

are equivalent:

(1) R is an n-Auslander algebra.

(2) D(R)-codom.dimRD(R) � n+ 1.

(3) Applying the functor D(R)⊗R (−)∗ to the minimal projective resolution

of RD(R), the induced sequence

D(R)⊗R Pn

(
D(R)

)
∗

D(R)⊗fn

(
D(R)

)
∗−→ · · ·

D(R)⊗f2

(
D(R)

)
∗−→ D(R)⊗R P1

(
D(R)

)
∗

D(R)⊗f1

(
D(R)

)
∗−→ D(R)⊗R P0

(
D(R)

)
∗

D(R)⊗f0

(
D(R)

)
∗−→ D(R)⊗R D(R)∗ → 0
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is exact.

(2)′ D(R)-codom.dimD(R)R � n+ 1.

(3)′ Applying the functor (−)∗⊗RD(R) to the minimal projective resolution

of D(R)R, the induced sequence

Qn

(
D(R)

)
∗ ⊗R D(R)

gn

(
D(R)

)
∗
⊗D(R)

−→ · · ·
g2

(
D(R)

)
∗
⊗D(R)

−→ Q1

(
D(R)

)
∗ ⊗R D(R)

g1

(
D(R)

)
∗
⊗D(R)

−→ Q0

(
D(R)

)
∗ ⊗R D(R)

g0

(
D(R)

)
∗
⊗D(R)

−→ D(R)∗ ⊗R D(R)→ 0

is exact.

Putting RUS = RD(R)R in Theorem 3.12, we get some equivalent characteriza-

tions of Auslander algebras as follows.

COROLLARY 4.2

Let R be an artin algebra with gl.dimR � 2. Then the following statements are

equivalent:

(1) R is an Auslander algebra.

(2) D(R)-codom.dimRD(R) � 2.

(3) The sequence

D(R)⊗R P1

(
D(R)

)
∗

D(R)⊗f1

(
D(R)

)
∗−→ D(R)⊗R P0

(
D(R)

)
∗

D(R)⊗f0

(
D(R)

)
∗−→ D(R)⊗R D(R)∗ → 0

is exact.

(4) D(R)⊗R (−)∗ : ModR→ModR is right exact.

(5) (D(R)⊗R −)∗ : ModR→ModR is left exact.

(2)′ D(R)-codom.dimD(R)R � 2.

(3)′ The sequence

Q1

(
D(R)

)
∗ ⊗R D(R)

g1

(
D(R)

)
∗
⊗D(R)

−→ Q0

(
D(R)

)
∗ ⊗R D(R)

g0

(
D(R)

)
∗
⊗D(R)

−→ D(R)∗ ⊗R D(R)→ 0

is exact.

(4)′ (−)∗ ⊗R D(R) : ModRop →ModRop is right exact.

(5)′ (−⊗R D(R))∗ : ModRop →ModRop is left exact.
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