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Abstract. Let R and S be semiregular rings and U a semidualizing (R,S)-

bimodule. We show that the U -codominant dimensions of RU and US are

identical. As an application, we get that the U -codominant dimension of U is
at least two if and only if the functor U ⊗S HomR(U,−) is right exact, and if

and only if the functor HomR(U,U ⊗S −) is left exact. We also get some new

equivalent characterizations of (n-)Auslander algebras.

1. Introduction

The classical theory of dominant dimension was introduced by Tachikawa [21]
to study QF-3 algebras. Later on, it has attracted interests of many authors, see
[5]–[10], [13, 15, 16, 18] and references therein. One reason is that the notion of
dominant dimension is closely related to the famous Nakayama conjecture, which
says that if an artin algebra has infinite dominant dimension then it should be
self-injective (c.f. [3]). In applied aspects, dominant dimension is used to study
double centralizer properties, which play a central role in many parts of algebraic
Lie theory ([9, 10, 16]). Also it has its values in classifying certain algebras ([8]).

Following [21], a left R-module M is said to have dominant dimension at least
n if each of the first n terms in the minimal injective resolution of M is projective.
It was showed in [21] that if R is a left and right artinian ring then the dominant
dimensions of RR and RR are identical. Colby and Fuller [5] gave some equivalent
characterizations for the dominant dimension of R being at least one or two in
terms of the exactness of the double dual functors with respect to RRR. Replacing
“projective” in the above definition with “cogenerated by U”, Kato [15] generalized
dominant dimension to U -dominant dimension where U is a fixed leftR-module, and
characterized the modules with U -dominant dimension at least one. Furthermore,
given two artin algebras R and S and a faithfully balanced self-orthogonal bimodule
(equivalently, a semidualizing bimodule) RUS , Huang [13] carried over an extensive
study of U -dominant dimensions, and proved that the U -dominant dimensions of

RU and US are identical.
On the other hand, Eerkes [6] introduced a categorically dual notion–codominant

dimension as follows. A left R-module M is said to have codominant dimension
at least n if each of the first n terms in the minimal projective resolution of M
(if exists) is injective, and proved that if R is a left and right artinian ring then
the codominant dimensions of minimal injective cogenerators for left and right R-
modules are identical. Now it is natural to ask: how can one give a dual notion
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of U -dominant dimension? The aim of this paper is to introduce the so-called U -
codominant dimension and investigate its homological behavior, especially in the
case for U being a semidualizing bimodule.

Let us briefly outline the structure of the paper. In Section 2 we give some
terminology and some preliminary results.

In Section 3, for a ring R and a given left (or right) R-module U , as a dual
of the notion of U -dominant dimension [15], we introduce the notion of the U -
codominant dimension U -codom.dimM of a left (or right) R-module M . Let R
and S be semiregular rings and U a semidualizing (R,S)-bimodule. We first prove
that the U -codominant dimension of RU (resp. US) is at least one if and only
if the functor U ⊗S HomR(U,−) preserves epimorphisms, and if and only if the
functor HomR(U,U ⊗S −) preserves monomorphisms (Theorem 3.5). Then, by
means of the (strong) cograde conditions of modules and the properties of the
functors U ⊗S HomR(−, U) and HomR(U,U ⊗S −), we get that the U -codominant
dimensions of RU and US are identical (Theorem 3.9 and Corollary 3.10). As an
application, we have that the U -codominant dimension of U is at least two if and
only if the double functor U ⊗S HomR(−, U) is right exact, and if and only if the
double functor HomR(U,U ⊗S −) is left exact (Theorem 3.12).

In Section 4, we give some new equivalent characterizations of (n-)Auslander
algebras.

2. Preliminaries

Throughout this paper, all rings are associative rings with units. For a ring
R, ModR (resp. modR) is the category of left (resp. finitely presented left) R-
modules. Let M be a module in ModR. We use AddRM (resp. addRM) to
denote the full subcategory of ModR consisting of all direct summands of direct
sums of (finite) copies of M . We say that M admits a degreewise finite R-projective
resolution if there exists an exact sequence

· · · → Pi → · · · → P1 → P0 →M → 0

in modR with all Pi projective.

Definition 2.1. ([2, 12]). Let R and S be rings. An (R,S)-bimodule RUS is called
semidualizing if the following conditions are satisfied.

(a1) RU admits a degreewise finite R-projective resolution.
(a2) US admits a degreewise finite Sop-projective resolution.
(b1) The homothety map RRR→HomSop(U,U) is an isomorphism.
(b2) The homothety map SSS→HomR(U,U) is an isomorphism.

(c1) Ext>1
R (U,U) = 0.

(c2) Ext>1
Sop(U,U) = 0.

Wakamatsu in [27] introduced and studied the so-called generalized tilting mod-
ules, which are usually called Wakamatsu tilting modules, see [4, 17]. Note that a
bimodule RUS is semidualizing if and only if it is Wakamatsu tilting ([29, Corollary
3.2]). Examples of semidualizing bimodules can be found in [12, 24, 25, 28].

Let R and S be arbitrary rings and RUS a semidualizing (R,S)-bimodule. For
convenience, we write (−)∗ := Hom(U,−). Let M ∈ ModR and N ∈ ModS.
Suppose that

0→M → I0(M)
g0−→ I1(M)
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is the minimal injective presentation of M , and

F1(N)
f0−→ F0(N)→ N → 0

is the minimal flat presentation of N .

Definition 2.2. Let n > 1.

(1) ([22]) Let M ∈ ModR. We call cTrU M := Coker g0∗ the cotranspose of M
with respect to RUS .

(2) ([24]) Let N ∈ ModS. We call acTrU N := Ker(1U ⊗ f0) the adjoint
cotranspose of N with respect to RUS .

Following [23, Definition 6.2], we recall the following notions.

Definition 2.3. Let M ∈ ModR, N ∈ ModS and n > 0.

(1) The Ext-cograde of M with respect to U is defined as E-cogradeU M :=
inf{i > 0 | ExtiR(U,M) 6= 0}; and the strong Ext-cograde of M with respect
to U , denoted by s.E-cogradeU M , is said to be at least n if E-cogradeU X >
n for any quotient module X of M .

(2) The Tor-cograde of N with respect to U is defined as T-cogradeU N :=

inf{i > 0 | TorSi (U,N) 6= 0}; and the strong Tor-cograde of N with respect
to U , denoted by s.T-cogradeU N , is said to be at least n if T-cogradeU Y >
n for any submodule Y of N .

Let M ∈ ModR. Then we have the following canonical valuation homomorphism

θM : U ⊗S M∗ →M

defined by θM (x ⊗ f) = f(x) for any x ∈ U and f ∈ M∗. If θM is epic, then M
is called U -cotorsionless; and if θM is isomorphic, then M is called U -coreflexive
([22]).

Let N ∈ ModS. Then we have the following canonical valuation homomorphism

µN : N → (U ⊗S N)∗

defined by µN (y)(c) = c⊗ y for any y ∈ N and c ∈ U .

3. U-codominant dimension

We introduce the notion of the relative codominant dimension of modules as
follows.

Definition 3.1. Let R and S be rings, and let U,M ∈ ModR (resp. ModSop)
and n > 0. We say that the U -codominant dimension of M is at least n, written
U -codom.dimM > n, if there exists a projective resolution

· · · → Pi → · · · → P1 → P0 →M → 0

of M in ModR (resp. ModSop) such that Pi is generated by U (equivalently,
Pi ∈ AddR U (resp. AddUS)) for any 0 6 i 6 n− 1.

Remark 3.2. Let U,M ∈ ModR.

(1) Let R be a left artinian ring. The dominant dimension of a finitely gen-
erated left R-module M is at least n, if each of the first n terms in the
minimal injective resolution of M is projective ([21]). Let R be a left per-
fect ring. The codominant dimension of a left R-module M is at least n,
if each of the first n terms in the minimal projective resolution of M is
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injective ([6, 7]). The notion of the codominant dimension of modules is
the dual of that of dominant dimension of modules. When R is an artinian
ring and U is injective, the U -codominant dimension of M is exactly its
codominant dimension.

(2) The U -dominant dimension of a left R-module M is at least n, if each of
the first n terms in the minimal injective resolution of M is cogenerated
by U ([15]). The notion of the U -codominant dimension of modules is the
dual of that of U -dominant dimension of modules.

(3) When M admits a minimal projective resolution, it is easy to see that U -
codom.dimM > n if and only if each of the first n terms in the minimal
projective resolution of M is in AddR U .

Recall from [19] that a ring R is called semiregular if R/J(R) is von Neumann
regular and idempotents can be lifted modulo J(R), where J(R) is the Jacobson
radical of R. The class of semiregular rings includes: (1) von Neumann regular
rings; (2) semiperfect rings; (3) left cotorsion rings; and (4) right cotorsion rings.
See [11] for the definitions of left cotorsion rings and right cotorsion rings.

If R is a semiregular ring, then any finitely presented left or right R-module has
a projective cover by [19, Theorem 2.9]. In this case, since RU admits a degreewise
finite R-projective resolution by Definition 2.1, we may assume that

· · · fi+1(U)−→ Pi(U)
fi(U)−→ · · · f2(U)−→ P1(U)

f1(U)−→ P0(U)
f0(U)−→ RU → 0 (3.1)

is the minimal projective resolution of RU in modR. Analogously, if S is a semireg-
ular ring, then we assume that

· · · gi+1(U)−→ Qi(U)
gi(U)−→ · · · g2(U)−→ Q1(U)

g1(U)−→ Q0(U)
g0(U)−→ US → 0 (3.2)

is the minimal projective resolution of US in modSop.

Remark 3.3. By Remark 3.2(3), we have that if R is a semiregular ring, then U -
codom.dimRU > n if and only if Pi(U) ∈ addRU for any 0 6 i 6 n−1; analogously,
if S is a semiregular ring, then U -codom.dimUS > n if and only if Qi(U) ∈ addUS
for any 0 6 i 6 n− 1.

In the rest of this paper, R and S are semiregular rings, and RUS is
a given semidualizing (R,S)-bimodule. We will show that the U -codominant
dimensions of RU and US are identical. Some applications of this result will be
given.

According to [20], the full subcategory of ModR (resp. ModS) consisting of
modules M (resp. N) satisfying HomR(P0(U),M) = 0 (resp. Q0(U) ⊗S N = 0)
forms a torsionfree (resp. torsion) class. Indeed, P0(U) (resp. Q0(U)) defines a
torsion theory ([20, Chapter VI, Section 2]). For a module M ∈ ModR (resp.
N ∈ ModS), we use t(M) (resp. s(N)) to denote the torsion submodule of M
(resp. N).

Lemma 3.4.
(1) For any M ∈ ModR, we have that M/t(M) ∼= Coker θM if and only if

HomR(P0(U),Coker θM ) = 0.
(2) For any N ∈ ModS, we have that s(N) = KerµN if and only if Q0(U)⊗S

KerµN = 0.
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Proof. (1) We first prove the necessity. Let M/t(M) ∼= Coker θM . Since M/t(M)
belongs to the class of torsionfree modules, we have HomR(P0(U),Coker θM ) = 0.

Now we prove the sufficiency. We claim that Im θM ⊆ t(M). Let x ∈ Im θM .
Then by the definition of θM , there exist f1, · · · , fn ∈ M∗ and c1, · · · , cn ∈ RU
such that x =

∑n
i=1 fi(ci). Since we have an epimorphism f0(U) : P0(U) � RU ,

there exists pi ∈ P0(U) such that ci = f0(U)(pi) for any 1 6 i 6 n. Note that
t(M) is the sum of the images of all homomorphisms from P0(U) to M . So x =∑n
i=1 fif0(U)(pi) ∈ t(M). The claim is proved. Thus we have the following diagram

with exact rows

0 // Im θM //

��

M // Coker θM //

f

��

0

0 // t(M) // M // M/t(M) // 0.

By the snake lemma, we have t(M)/ Im θM ∼= Ker f . Since the class of torsion
modules is closed under quotient objects, Ker f(∼= t(M)/ Im θM ) is in the torsion
class. By assumption, HomR(P0(U),Coker θM ) = 0, that is, Coker θM is torsion-
free. Since the class of torsionfree modules is closed under subobjects, Ker f is in
the torsionfree class. Thus Ker f = 0, and therefore M/t(M) ∼= Coker θM .

(2) The necessity is trivial. We will prove the sufficiency. Since there exists an
epimorphism g0(U) : Q0(U)� US , we get an epimorphism g0(U)⊗s(N) : Q0(U)⊗S
s(N) � U ⊗S s(N). Notice that Q0(U) ⊗S s(N) = 0, so U ⊗S s(N) = 0, which
implies c⊗y = 0 for any c ∈ U and y ∈ s(N). Thus s(N) ⊆ KerµN by the definition
of µN . Since s(N) is the largest submodule of N satisfying Q0(U)⊗S s(N) = 0, it
follows from the assumption that s(N) = KerµN . �

By using the above lemma, we get the following result.

Theorem 3.5. The following statements are equivalent.

(1) U -codom.dimRU > 1.
(2) U ⊗S (−)∗ preserves epimorphisms in ModR.
(3) (U ⊗S −)∗ preserves monomorphisms in ModS.
(4) M/t(M) ∼= Coker θM for every M ∈ ModR.
(5) s(N) = KerµN for any N ∈ ModS.

(1)′ U -codom.dimUS > 1.
(2)′ (−)∗ ⊗R U preserves epimorphisms in ModSop.
(3)′ (−⊗R U)∗ preserves monomorphisms in ModRop.

Proof. By [26, Theorem 4.8 and Corollary 4.9], we have (1)⇔ (2)⇔ (3)⇔ (1)′ ⇔
(2)′ ⇔ (3)′.

(1) + (1)′ ⇒ (5) By (1), we have P0(U) ∈ addR U . Let N ∈ ModS. By
[24, Proposition 3.2], we have KerµN ∼= Ext1R(U, acTrU N). It follows from [26,
Theorem 4.8] that U ⊗S KerµN ∼= U ⊗S Ext1R(U, acTrU N) = 0. By (1)′, we have
Q0(U) ∈ addUS . It follows that Q0(U) ⊗S KerµN = 0, and then the assertion
follows from Lemma 3.4(2).

(5) ⇒ (2) Let f : M1 � M2 be an epimorphism in ModR. Set M := Ker f .
It follows from [23, Corollary 6.8] that Ext1R(U,M) ∼= KerµcTrU M . From the
assumption and Lemma 3.4(2), we have Q0(U)⊗S Ext1R(U,M) = 0. Since Coker f∗
is isomorphic to a submodule of Ext1R(U,M) and Q0(U) is projective, Q0(U) ⊗S
Coker f∗ = 0. So U ⊗S Coker f∗ = 0, and hence U ⊗ f∗ is epic.
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(2)⇒ (4) Let M ∈ ModR and let M ′ be a quotient module of Coker θM . Assume
that f is the composition M � Coker θM �M ′. Then fθM = 0 and f∗(θM )∗ = 0.
But since (θM )∗ is a split epimorphism by [23, Lemma 6.1], we have f∗ = 0 and so
U⊗f∗ = 0. The assumption of (2) implies U⊗SM ′∗ = 0. SoM ′∗ = 0 by [23, Corollary
6.6(1)]. Thanks to Lemma 3.4(1), we only need to show HomR(P0(U),Coker θM ) =
0. If it is not the case, then there exists 0 6= α ∈ HomR(P0(U),Coker θM ). Pick
some modules L and L1 such that U ∼= P0(U)/L and Imα ∼= P0(U)/L1. Because
P0(U) is the projective cover of U and α 6= 0, we get L + L1 6= P0(U). Hence
there exists a nonzero natural epimorphism β : P0(U)/L→ P0(U)/(L+ L1). Note
that there are inclusions (L+L1)/L1 ⊆ P0(U)/L1 ⊆ Coker θM . Denote the natural

embedding homomorphism by i : P0(U)/(L+L1) ∼= P0(U)/L1

(L+L1)/L1
→ Coker θM

(L+L1)/L1
. Thus

we get a nonzero homomorphism iβ ∈ ( Coker θM
(L+L1)/L1

)∗, a contradiction to M ′∗ = 0.

(4) ⇒ (3) Let g : N1 � N2 be a monomorphism in ModS. Set N := Coker g.

Then Ker(U ⊗ g) is a quotient module of TorS1 (U,N). By [25, Corollary 5.3(1)], we

have TorS1 (U,N) ∼= Coker θacTrU N . Lemma 3.4(1) implies HomR(P0(U),TorS1 (U,N))
= 0, and hence HomR(P0(U),Ker(U ⊗ g)) = 0. It follows that (Ker(U ⊗ g))∗ = 0
and (U ⊗ g)∗ is monic. �

The following proposition is useful in proving the main result.

Proposition 3.6. If U -codom.dimRU > 1, then the following statements are e-
quivalent for any n > 2.

(1) U -codom.dimRU > n.
(2) For any M ∈ ModR, if M∗ = 0, then E-cogradeU M > n.

Proof. For any M ∈ ModR and i > 1, we have an exact sequence

HomR(Pi−1(U),M)→ HomR(Im fi(U),M)→ ExtiR(U,M)→ 0. (3.3)

(1) ⇒ (2) Let M ∈ ModR with M∗ = 0. For any 0 6 i 6 n − 1, since Pi(U) ∈
addRU by (1), we get HomR(Pi(U),M) = 0 and hence HomR(Im fi(U),M) = 0.
Thus ExtiR(U,M) = 0 for any 0 6 i 6 n− 1 by the exactness of (3.3).

(2)⇒ (1) Since U -codom.dimRU > 1, P0(U) is generated by RU . When n = 2,
we have to prove that P1(U) is also generated by RU . For this purpose, we establish
the following two claims.

Claim 1. HomR(U, Im f1(U)/M) 6= 0 for any nonzero proper submodule M of
Im f1(U).

If HomR(U, Im f1(U)/M) = 0 for some nonzero proper submoduleM of Im f1(U),
we obtain by assumption that ExtiR(U, Im f1(U)/M) = 0 for any i = 0, 1. Because
P0(U) ∈ addRU , HomR(P0(U), Im f1(U)/M) = 0. So from the exactness of (3.3)
we get that HomR(Im f1(U), Im f1(U)/M) = 0, which is impossible. Thus Claim 1
follows.

Claim 2. If Im f1(U) is generated by RU , then P1(U) is generated by RU .
Suppose that Im f1(U) is generated by RU . Then there is an epimorphism g :

V � Im f1(U) with V ∈ AddRU . Note that RU is a quotient module of P0(U).
Hence there exists an epimorphism h : P0(U)(I) � Im f1(U) for some index set I.
Since P1(U) is the projective cover of Im f1(U), P1(U) is isomorphic to a direct
summand of P0(U)(I). The fact that P0(U) is generated by RU implies that P1(U)
is generated by RU . Claim 2 is proved.

Since P0(U) is generated by RU , by Claim 2 the proof can be finished if Im f1(U)
is generated by P0(U). Let L =

∑
h Imh, where h runs through HomR(P0(U), Im f1(U)).
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If L = Im f1(U), then there is nothing to show. Otherwise, by Claim 1, there ex-
ists a nonzero homomorphism α ∈ HomR(U, Im f1(U)/L). Let π : Im f1(U) →
Im f1(U)/L be the natural map. Since P0(U) is projective, there exists a homo-
morphism β ∈ HomR(P0(U), Im f1(U)) such that πβ = αf0. Obviously the equality
produces a contradiction since Imβ ⊆ L and α 6= 0. Finally, the assertion follows
easily by induction on n. �

By putting m = 1 in [26, Proposition 4.7], we get the following lemma.

Lemma 3.7. The following statements are equivalent for any n > 1.

(1) U -codom.dimRU > n.
(2) s.T-cogradeU Ext1Sop(U,N ′) > n for any N ′ ∈ ModSop.

(3) s.E-cogradeU TorS1 (U,N) > n for any N ∈ ModS.

Symmetrically, we have the following result.

Lemma 3.8. The following statements are equivalent for any n > 1.

(1) U -codom.dimUS > n.
(2) s.T-cogradeU Ext1R(U,M) > n for any M ∈ ModR.

(3) s.E-cogradeU TorR1 (M ′, U) > n for any M ′ ∈ ModRop.

Now we state our main result as follows.

Theorem 3.9. The following statements are equivalent for any n > 1.

(1) U -codom.dimRU > n.
(2) Applying the functor U ⊗S (−)∗ to the minimal projective resolution (3.1)

of RU , the induced sequence

U ⊗S Pn−1(U)∗
U⊗fn−1(U)∗−→ · · · U⊗f2(U)∗−→ U ⊗S P1(U)∗

U⊗f1(U)∗−→

U ⊗S P0(U)∗
U⊗f0(U)∗−→ U ⊗S U∗ → 0

is exact.
(1)′ U -codom.dimUS > n.
(2)′ Applying the functor (−)∗ ⊗R U to the minimal projective resolution (3.2)

of US, the induced sequence

Qn−1(U)∗ ⊗R U
gn−1(U)∗⊗U−→ · · · g2(U)∗⊗U−→ Q1(U)∗ ⊗R U

g1(U)∗⊗U−→

Q0(U)∗ ⊗R U
g0(U)∗⊗U−→ U∗ ⊗R U → 0

is exact.

Proof. (1)⇔ (2) Set F := (−)∗ and G =: U ⊗S −. We have the following commu-
tative diagram with the bottom row exact

GF (Pn−1(U))
GF (fn−1(U)) //

θPn−1(U)

��

· · · // GF (P1(U))
GF (f1(U))//

θP1

��

GF (P0(U))
GF (f0(U))//

θP0

��

GF (U) //

θU

��

0

Pn−1(U)
fn−1(U) // · · · // P1(U)

f1(U) // P0(U)
f0(U) // U // 0.

If the assertion (1) holds true, that is, U -codom.dimRU > n, then Pi(U) ∈
addRU for any 0 6 i 6 n − 1. Note that RU is U -coreflexive by [22, Lemma
2.5(1)]. So Pi(U) is also U -coreflexive for any 0 6 i 6 n − 1. It follows that the
upper row in the above diagram is exact, and the assertion (2) follows.
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Conversely, suppose that the assertion (2) holds true. Then the above diagram is
an exact commutative diagram. We will proceed by induction on n. Since θU is an
isomorphism, the rightmost square in the above commutative diagram implies that
f0(U)θP0(U) = θUGF (f0(U)) is epic. But f0(U) is superfluous, it follows from [1,
Corollary 5.15] that θP0(U) is epic and P0(U) is U -cotorsionless. Then [22, Corollary
3.8] implies that P0(U) is generated by RU , that is, P0(U) ∈ addRU , and hence
θP0(U) is an isomorphism.

Now suppose n > 2. Then Pi(U) ∈ addRU for any 0 6 i 6 n−2 by the induction
hypothesis. Put K ′i := ImGF (fi(U)) and Ki := Im fi(U) for any 0 6 i 6 n − 1.
Then we have the following commutative diagram

GF (Pi(U))
GF (fi(U)) //

θPi(U)

��

K ′i

ti

��
Pi(U)

fi(U) // Ki,

where ti is an induced isomorphism by induction. Because fn−1(U)θPn−1(U) =
tn−1GF (fn−1(U)) is epic and fn−1(U) is superfluous, θPn−1(U) is epic. It implies
that Pn−1(U) is U -cotorsionless and Pn−1(U) ∈ addRU . Thus U -codom.dimRU >
n.

(1)′ ⇒ (1) We proceed by induction on n. The case for n = 1 follows from
Theorem 3.5.

Now suppose n > 2. By the induction hypothesis, we have U -codom.dimRU >
n − 1. Let N ∈ ModS. Then s.E-cogradeU TorS1 (U,N) > n − 1 by Lemma

3.7. Let M be a quotient module of TorS1 (U,N). Then E-cogradeU M > n −
1. By the dimension shifting, we have Extn−1R (U,M) ∼= Ext1R(U, coΩn−2(M)),

where coΩn−2(M) is the (n − 2)-th cosyzygy. Then by (1)′ and Lemma 3.8, we
have T-cogradeU Extn−1R (U,M) = T-cogradeU Ext1R(U, coΩn−2(M)) > n. It fol-
lows from [26, Lemma 4.11(1)] that E-cogradeU M > n. Thus we conclude that

s.E-cogradeU TorS1 (U,N) > n. Now the assertion follows from Lemma 3.7.
Symmetrically, we have (1)′ ⇔ (2)′ and (1)⇒ (1)′. �

As an immediate consequence of Theorem 3.9, we get the following corollary.

Corollary 3.10. U -codom.dimRU = U -codom.dimUS.

The following corollary is a supplement to Theorem 3.5.

Corollary 3.11. The following statements are equivalent.

(1) U -codom.dimRU > 1.
(2) The sequence

U ⊗S P0(U)∗
U⊗f0(U)∗−→ U ⊗S U∗ → 0

is exact.
(1)′ U -codom.dimUS > 1.
(2)′ The sequence

Q0(U)∗ ⊗R U
g0(U)∗⊗U−→ U∗ ⊗R U → 0

is exact.
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In the following result, we characterize when the U -codominant dimension of U
is at least two in terms of the exactness of certain functors.

Theorem 3.12. The following statements are equivalent.

(1) U -codom.dimRU > 2.
(2) The sequence

U ⊗S P1(U)∗
U⊗f1(U)∗−→ U ⊗S P0(U)∗

U⊗f0(U)∗−→ U ⊗S U∗ → 0

is exact.
(3) U ⊗S (−)∗ : ModR→ ModR is right exact.
(4) (U ⊗S −)∗ : ModS → ModS is left exact.

(1)′ U -codom.dimUS > 2.
(2)′ The sequence

Q1(U)∗ ⊗R U
g1(U)∗⊗U−→ Q0(U)∗ ⊗R U

g0(U)∗⊗U−→ U∗ ⊗R U → 0

is exact.
(3)′ (−)∗ ⊗R U : ModSop → ModSop is right exact.
(4)′ (−⊗R U)∗ : ModRop → ModRop is left exact.

Proof. By Theorem 3.9, we have (1) ⇔ (2) ⇔ (1)′ ⇔ (2)′. The implications
(3)⇒ (2) and (3)′ ⇒ (2)′ are trivial.

(1)′ ⇒ (3) Let

0→M1
α−→M2

β−→M3 → 0

be an exact sequence in ModR. Applying the functor (−)∗ to it induces an exact
sequence

0→M1∗
α∗−→M2∗

β∗−→M3∗ → Ext1R(U,M1) (3.4)

in ModS. By (1)′, we have Q0(U), Q1(U) ∈ addUS . Then

Q0(U)⊗S Ext1R(U,M1) = 0 = Q1(U)⊗S Ext1R(U,M1)

by [26, Lemma 4.6]. Because Cokerβ∗ is isomorphic to a submodule of Ext1R(U,M1),
we have

Q0(U)⊗S Cokerβ∗ = 0 = Q1(U)⊗S Cokerβ∗,

and hence

U ⊗S Cokerβ∗ = 0. (3.5)

Moreover, applying the functor −⊗S Cokerβ∗ to the minimal projective resolu-
tion (3.2) of US yields the following two exact sequences

Q1(U)⊗S Cokerβ∗ → Im g1(U)⊗S Cokerβ∗ → 0,

(0 =) TorS1 (Q0(U),Cokerβ∗)→ TorS1 (U,Cokerβ∗)→ Im g1(U)⊗S Cokerβ∗

Since Q1(U)⊗S Cokerβ∗ = 0, we have Im g1(U)⊗S Cokerβ∗ = 0, and hence

TorS1 (U,Cokerβ∗) = 0. (3.6)

By (3.5) and (3.6), applying the functor U ⊗S − to (3.4) yields the following exact
sequence

U ⊗S M1∗
U⊗α∗−→ U ⊗S M2∗

U⊗β∗−→ U ⊗S M3∗ → 0.

(1)⇒ (4) Let

0→ N1
φ−→ N2

ψ−→ N3 → 0
9
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be an exact sequence in ModS. Applying the functor U⊗S− to it induces an exact
sequence

TorS1 (U,N3)→ U ⊗S N1
U⊗φ−→ U ⊗S N2

U⊗Sψ−→ U ⊗S N3 → 0 (3.7)

in ModR. By (1), we have P0(U), P1(U) ∈ addRU . Then

HomR(P0(U),TorS1 (U,N3)) = 0 = HomR(P1(U),TorS1 (U,N3))

by [26, Lemma 4.6]. Because Ker(U ⊗ φ) is isomorphic to a factor module of

TorS1 (U,N3), we have

HomR(P0(U),Ker(U ⊗ φ)) = 0 = HomR(P1(U),Ker(U ⊗ φ)),

and hence
(Ker(U ⊗ φ))∗ = 0. (3.8)

Moreover, applying the functor HomR(−,Ker(U ⊗φ)) to the minimal projective
resolution (3.1) of RU yields the following two exact sequences

0→ HomR(Im f1(U),Ker(U ⊗ φ))→ HomR(P1(U),Ker(U ⊗ φ)),

HomR(Im f1(U),Ker(U⊗φ))→ Ext1R(U,Ker(U⊗φ))→ Ext1R(P0(U),Ker(U⊗φ))(= 0).

Since HomR(P1(U),Ker(U ⊗ φ)) = 0, we have HomR(Im f1(U),Ker(U ⊗ φ)) = 0,
and hence

Ext1R(U,Ker(U ⊗ φ)) = 0. (3.9)

By (3.8) and (3.9), applying the functor (−)∗ to (3.7) yields the following exact
sequence

0→ (U ⊗S N1)∗
(U⊗φ)∗−→ (U ⊗S N2)∗

(U⊗Sψ)∗−→ (U ⊗S N3)∗.

(4) ⇒ (1) By (4) and Theorem 3.5, we have U -codom.dimRU > 1 and U -
codom.dimUS > 1. Let M ∈ ModR with M∗ = 0. By Proposition 3.6, it suffices
to prove E-cogradeU M > 2.

Let

0→ K
f−→ Q

g−→ Ext1R(U,M)→ 0 (3.10)

be an exact sequence in ModS with Q projective. By Lemma 3.8, we have

U ⊗S Ext1R(U,M) = 0. (3.11)

By (4), the exact sequence (3.10) induces the following exact sequence

0→ (U ⊗S K)∗
(U⊗f)∗−→ (U ⊗S Q)∗

(U⊗g)∗−→ (U ⊗S Ext1R(U,M))∗(= 0),

which implies that (U ⊗ f)∗ is an isomorphism, and hence U ⊗ (U ⊗ f)∗ is also an
isomorphism. On the other hand, we have the following commutative diagram with
the bottom row exact

U ⊗S (U ⊗S K)∗
U⊗(U⊗f)∗//

θU⊗SK

��

U ⊗S (U ⊗S Q)∗.

θU⊗SQ

��
0 // TorS1 (U,Ext1R(U,M)) // U ⊗S K

U⊗f // U ⊗S Q // 0.

The equality (3.11) means that the functor U⊗SExt1R(U,−) vanishes on ModR, and
hence the functor U ⊗S Ext2R(U,−) also vanishes on ModR. Then by [26, Lemma
4.18], we have that both U⊗SK and U⊗SQ are U -coreflexive, that is, both θU⊗SK

and θU⊗SQ are isomorphisms. Then by the above commutative diagram, we have
10
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TorS1 (U,Ext1R(U,M)) = 0. Combining (3.11) yields T-cogradeU Ext1R(U,M) > 2.
It follows from [26, Lemma 4.11(1)] that E-cogradeU M > 2.

Symmetrically, we get (1)⇒ (3)′ and (1)′ ⇔ (4)′. �

4. n-Auslander algebras

For any n > 1, recall from [14] that an artin algebra R is called an n-Auslander
algebra if

gl.dimR 6 n+ 1 6 dom.dimR,

where gl.dimR and dom.dimR are the global and dominant dimensions of R re-
spectively. Note that 1-Auslander algebras are exactly classical Auslander algebras.

Let R be an artin algebra and D the usual duality between modR and modRop.
It is easy to verify the following observations:

(1) D(R) is a semidualizing (R,R)-bimodule.
(2) dom.dimRR = D(R)- codom.dimRD(R), and

dom.dimRR = D(R)- codom.dimD(R)R.

Thus, putting RUS = RD(R)R in Theorem 3.9, we get some equivalent characteri-
zations of n-Auslander algebras as follows.

Corollary 4.1. Let R be an artin algebra with gl.dimR 6 n+1. Then the following
statements are equivalent.

(1) R is an n-Auslander algebra.
(2) D(R)-codom.dimRD(R) > n+ 1.
(3) Applying the functor D(R)⊗R (−)∗ to the minimal projective resolution of

RD(R), the induced sequence

D(R)⊗R Pn(D(R))∗
D(R)⊗fn(D(R))∗−→ · · · D(R)⊗f2(D(R))∗−→ D(R)⊗R P1(D(R))∗

D(R)⊗f1(D(R))∗−→ D(R)⊗R P0(D(R))∗
D(R)⊗f0(D(R))∗−→ D(R)⊗R D(R)∗ → 0

is exact.
(2)′ D(R)-codom.dimD(R)R > n+ 1.
(3)′ Applying the functor (−)∗ ⊗RD(R) to the minimal projective resolution of

D(R)R, the induced sequence

Qn(D(R))∗ ⊗R D(R)
gn(D(R))∗⊗D(R)−→ · · · g2(D(R))∗⊗D(R)−→ Q1(D(R))∗ ⊗R D(R)

g1(D(R))∗⊗D(R)−→ Q0(D(R))∗ ⊗R D(R)
g0(D(R))∗⊗D(R)−→ D(R)∗ ⊗R D(R)→ 0

is exact.

Putting RUS = RD(R)R in Theorem 3.12, we get some equivalent characteriza-
tions of Auslander algebras as follows.

Corollary 4.2. Let R be an artin algebra with gl.dimR 6 2. Then the following
statements are equivalent.

(1) R is an Auslander algebra.
(2) D(R)-codom.dimRD(R) > 2.
(3) The sequence

D(R)⊗R P1(D(R))∗
D(R)⊗f1(D(R))∗−→ D(R)⊗R P0(D(R))∗

D(R)⊗f0(D(R))∗−→ D(R)⊗R D(R)∗ → 0
11
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is exact.
(4) D(R)⊗R (−)∗ : ModR→ ModR is right exact.
(5) (D(R)⊗R −)∗ : ModR→ ModR is left exact.

(2)′ D(R)-codom.dimD(R)R > 2.
(3)′ The sequence

Q1(D(R))∗ ⊗R D(R)
g1(D(R))∗⊗D(R)−→ Q0(D(R))∗ ⊗R D(R)

g0(D(R))∗⊗D(R)−→ D(R)∗ ⊗R D(R)→ 0

is exact.
(4)′ (−)∗ ⊗R D(R) : ModRop → ModRop is right exact.
(5)′ (−⊗R D(R))∗ : ModRop → ModRop is left exact.
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