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Abstract Let Λ be an Artinian algebra and F an additive subbifunctor of Ext1Λ(−,−) having enough
projectives and injectives. We prove that the dualizing subvarieties of mod Λ closed under F -extensions
have F -almost split sequences. Let T be an F -cotilting module in mod Λ and S a cotilting module over
Γ = End(T ). Then Hom(−, T ) induces a duality between F -almost split sequences in ⊥F T and almost
split sequences in ⊥S, where addΓS = HomΛ(P(F ), T ). Let Λ be an F -Gorenstein algebra, T a strong
F -cotilting module and 0 → A → B → C → 0 an F -almost split sequence in ⊥F T . If the injective
dimension of S as a Γ-module is equal to d, then C ∼= (Ω−d

CMΩdDTrA∗)∗, where (−)∗ = Hom(−, T ). In
addition, if the F -injective dimension of A is equal to d, then A ∼= Ω−d

CMF
DΩ−d

FopTrC ∼= Ω−d
CMF

Ωd
F DTrC.
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1 Introduction

Throughout this paper, all algebras are Artinian algebras over a commutative Artinian ring R

and D is the ordinary duality, that is, D = HomR(−, I(R/J(R))), where J(R) is the Jacobson
radical of R and I(R/J(R)) is the injective envelope of R/J(R). For an algebra Λ, we use
mod Λ to denote the subcategory of finitely generated left Λ-modules. A subcategory of mod
Λ means a full subcategory closed under isomorphisms, finite direct sums and summands.

It is well known that the notion of almost split sequences, which was introduced by Auslander
and Reiten in [1], is a very important research object in representation theory of Artinian
algebras. Auslander and Smalø in [2] established the existence theorem of almost split sequences
in subcategories. They proved that a subcategory C of mod Λ has almost split sequences
provided that C is functorially finite and closed under extensions.

Relative homological algebra was studied by Hochschild in [3] and Butler and Horrocks
in [4], and was applied to study systematically the representation theory of Artinian algebras
by Auslander and Solberg in [5–8]. Auslander and Solberg’s work had stimulated several further
investigations (see [9–14]). Let Λ be a Gorenstein algebra. Auslander and Reiten in [15] studied
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the structure of minimal right ⊥Λ-approximations of modules, and then gave a description of
the non-projective part of the first term in an almost split sequence in ⊥Λ, where ⊥Λ = {C ∈
mod Λ | Exti

Λ(C, Λ) = 0 for any i ≥ 1}. Huang in [12] generalized the first result of Auslander
and Reiten mentioned above to relative homology and gave the structure of minimal right F -⊥T -
approximations of modules over an F -Gorenstein algebra Λ, where F is an additive subbifunctor
of Ext1Λ(−,−) : mod Λop × mod Λ → Ab (the category of abelian groups) having enough
projectives and injectives, T is an F -cotilting module and ⊥F T = {C ∈ mod Λ | Exti

F (C, Λ) = 0
for any i ≥ 1}. Motivated by these results, we introduce in this paper the notion of F -almost
split sequences and study the relationship between F -almost split sequences and almost split
sequences. In particular, we study the structure of F -almost split sequences over F -Gorenstein
algebras.

In Section 2, we give the definition of F -almost split sequences. In Section 3, we establish
the existence theorem of F -almost split sequences in subcategories, and give the relationship
between F -almost split sequences and almost split sequences in terms of the properties of F -
cotilting modules and cotilting modules. Then in Sections 4 and 5 we apply the obtained results
to studying the structure of the last term and the first term of F -almost split sequences in ⊥F T

over an F -Gorenstein algebra Λ, respectively, where T is a strong F -cotilting Λ-module. In
particular, we remark that because the proofs of some results in this paper are analogies to
that in the standard module theory, we only list the corresponding references in the statements
of these results but omit the proofs.

2 F -Almost Split Sequences

In this section, we introduce the notion of F -almost split sequences and give some basic proper-
ties. Recall that a morphism f : B → C is called a split epimorphism if the identity homomor-
phism of C factors through f . Dually, a morphism g : A → B is called a split monomorphism
if the identity homomorphism of A factors through g. A morphism f : B → C is called right
almost split if it satisfies the following conditions: (1) It is not a split epimorphism; and (2)
Any morphism X → C which is not a split epimorphism factors through f . Dually, a morphism
g : A → B is called left almost split if it satisfies the following conditions: (1) It is not a split
monomorphism; and (2) Any morphism X → C which is not a split monomorphism factors
through g.

From now on, for an algebra Λ, we always assume that F is an additive subbifunctor of
Ext1Λ(−,−) having enough projectives and injectives. Recall from [5] that an exact sequence
η : 0 → A → B → C → 0 is called F -exact if η ∈ F (C, A). We denote by F op the subbifunctor
of Ext1Λop(−,−) such that F op(C, A) = {η : 0 → A → B → C → 0|Dη ∈ F (DA, DC)}. It
is clear that F op also has enough projectives and injectives. Denote by P(F ) and I (F ) the
classes of F -projectives and F -injectives, respectively. Then we have P(F op) = DI (F ) and
I (F op) = DP(F ). In addition, for a module A ∈ mod Λ, we denote the transpose of A

by TrA.

Lemma 2.1 [5, Proposition 1.9] (1) An indecomposable non-projective module P ∈ P(F ) if
and only if the almost split sequence 0 → DTrP → E → P → 0 is not F -exact.
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(2) An indecomposable non-injective module I ∈ I (F ) if and only if the almost split se-
quence 0 → I → E → TrDI → 0 is not F -exact.

By Lemma 2.1, we have that for an indecomposable module C �∈ P(F ), the almost split
sequence ending at C is F -exact. Dually, for an indecomposable module A /∈ I (F ), the almost
split sequence starting with A is F -exact.

Now we introduce the notion of F -almost split sequences as follows:

Definition 2.2 An exact sequence 0 → A
g→ B

f→ C → 0 is called F -almost split if it is
F -exact with g left almost split and f right almost split.

It is clear that 0 → A
g→ B

f→ C → 0 is F -almost split if and only if 0 → DC
D(f)−→ DB

D(g)−→
DA → 0 is F op-almost split.

Theorem 2.3 [16, Theorem 1.14] For an F -exact sequence 0 → A
g→ B

f→ C → 0, the
following are equivalent.

(1) The sequence is an F -almost split sequence ;
(2) f is minimal right almost split ;
(3) g is minimal left almost split ;
(4) C is indecomposable and g is left almost split ;
(5) C ∼= TrDA and g is left almost split ;
(6) A is indecomposable and f is right almost split ;
(7) A ∼= DTrC and f is right almost split.

By Theorem 2.3 and Lemma 2.1, we get the following

Theorem 2.4 (1) An indecomposable module C �∈ P(F ) if and only if there is an F -almost
split sequence with C the last term.

(2) An indecomposable module A �∈ I (F ) if and only if there is an F -almost split sequence
with A the first term.

Having proved the existence of F -almost split sequences, we now explain in what sense they
are unique.

Theorem 2.5 [17, Proposition 4.3] The following are equivalent for two F -almost split se-

quences 0 → A
g→ B

f→ C → 0 and 0 → A′ g′
→ B′ f ′

→ C ′ → 0.
(1) C ∼= C ′.
(2) A ∼= A′.
(3) The sequences are isomorphic in the sense that there is a commutative diagram :

0 �� A
g ��

∼=
��

B
f ��

∼=
��

C ��

∼=
��

0

0 �� A′ g′
�� B′ f ′

�� C ′ �� 0 .

3 F -almost Split Sequences in Subcategories

In this section, we develop a general theory for subcategories of mod Λ having F -almost split
sequences.
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Let C be a subcategory of mod Λ which is closed under F -extensions. A module C is called
F -Extprojective in C if F (C, X) = 0 for all X ∈ C . A module A is called F -Extinjective in C if
F (Y, A) = 0 for any Y ∈ C . A morphism g : B → C is called a right almost split morphism in
C if the following conditions are satisfied: (1) g is not a split epimorphism; and (2) whenever
there is a not split epimorphism h : X → C in C there exists a morphism h′ : X → B in C

such that gh′ = h. Dually a morphism f : A → B is called a left almost split morphism in C

if the following conditions are satisfied: (1) f is not a split monomorphism; and (2) whenever
there is not a split monomorphism h : A → Y in C there exists a morphism h′ : B → Y in C

such that h′f = h.
We give the definition of F -almost split sequences as follows, which is an analogy to that

given in [2].

Definition 3.1 (1) An F -exact sequence 0 → A
g→ B

f→ C → 0 in C is called F -almost split
sequence if g is a left almost split morphism and f a right almost split morphism.

(2) A subcategory C of mod Λ is said to have F -almost split sequences if it satisfies the
following conditions :

(i) If C ∈ C is indecomposable, then there are a right almost split morphism B → C and a
left almost split morphism C → B′ in C .

(ii) If A is indecomposable and non-F -Extinjective in C , then there is an F -almost split
sequence 0 → A → B → C → 0 in C .

(iii) If C is indecomposable and non-F -Extprojective in C , then there is an F -almost split
sequence 0 → A → B → C → 0 in C .

By Theorem 2.5, we also get the uniqueness of F -almost split sequence in C up to isomor-
phisms. Our main purpose in this section is to give a sufficient condition for a subcategory C of
mod Λ to have F -almost split sequences. Before giving this result, we recall some facts about
dualizing R-varieties from [18].

Let G : mod Λ → Ab be an additive functor. Then for each C ∈mod Λ, the abelian group
G(C) has a natural R-structure. Define DG : (mod Λ)op → Ab by

DG(C) = HomR(G(C), I(R/J(R))).

We have a contravariant functor D : (mod Λ, Ab) → ((mod Λ)op, Ab), where (mod Λ, Ab) and
((mod Λ)op, Ab) are the categories of covariant and contravariant functors from mod Λ to Ab,
respectively. Similarly, we have a contravariant functor D : ((mod Λ)op, Ab) → (mod Λ, Ab).

A functor F : mod Λ → Ab is called finitely presented if there is an exact sequence of
functors (C1,−) → (C2,−) → F → 0 where (Ci,−) = HomΛ(Ci,−) for i = 1, 2. We use
f.p. (mod Λ, Ab) (resp. f.p. ((mod Λ)op, Ab)) to denote the subcategories of (mod Λ, Ab) (resp.
((mod Λ)op, Ab))) consisting of finitely presented functors. We have the following properties
(see [2, p. 429]):

(1) If 0 → F1 → F2 → F3 → F4 → 0 is an exact sequence of functors with F2 and F3 finitely
presented, then F1 and F4 are finitely presented.

(2) If 0 → F1 → F2 → F3 → 0 is an exact sequence of functors with F1 and F3 finitely
presented, then F2 is finitely presented.



On F -Almost Split Sequences 1153

(3) A functor G is finitely presented if and only if DG is finitely presented.

(4) The induced contravariant functors D : f.p. (mod Λ, Ab) → f.p. ((mod Λ)op, Ab) and
D : f.p. ((mod Λ)op, Ab) → f.p. (mod Λ, Ab) are dualities which are dual inverses.

Now suppose that C is an additive subcategory of mod Λ. Then the contravariant func-
tors D : (mod Λ, Ab) → ((mod Λ)op, Ab) and D : ((mod Λ)op, Ab) → (mod Λ, Ab) induce
contravariant functors D : (C , Ab) → (C op, Ab) and D : (C op, Ab) → (C , Ab) in an obvious
way. Recall that C is called a dualizing R-subvariety of mod Λ if G : C → Ab is finitely
presented in (C , Ab), if and only if DG : C op → Ab is finitely presented in (C op, Ab), and
H : C op → Ab is finitely presented in (C op, Ab), if and only if DH : C → Ab is finitely
presented in (C , Ab). If C is a dualizing R-subvariety, then D : f.p. (C , Ab) → f.p. (C op, Ab)
and D : f.p. (C op, Ab) → f.p. (C , Ab) are dualities which are dual inverses.

The following three lemmas are analogies to [19, Chapter II, Proposition 4.2, Lemma 4.3,
Proposition 4.4], respectively. In addition, in the following three lemmas, C is a subcategory
of mod Λ closed under F -extensions.

Lemma 3.2 [19, Chapter II, Proposition 4.2] Let 0 → A
g→ B

f→ C → 0 be an F -exact
sequence in C .

(a) Suppose Coker(−, f) is simple in (C op, Ab). Then the following are equivalent :

(1) f is right minimal ;

(2) g is left almost split in C ;

(3) End(A) is local.

(b) Suppose that Coker(g,−) is simple in (C op, Ab). Then the following are equivalent :

(1) g is left minimal ;

(2) g is right almost split in C ;

(3) End(C) is local.

Lemma 3.3 [19, Chapter II, Lemma 4.2] Let 0 → A
g→ B

f→ C → 0 be a non-split F -exact
sequence in C .

(1) If End(A) is local, then f : B → C is right minimal in C .

(2) If End(C) is local, then g : A → B is left minimal in C .

Lemma 3.4 [19, Chapter II, Proposition 4.4] Let 0 → A
g→ B

f→ C → 0 be an F -exact
sequence in C . Then the following are equivalent :

(1) The sequence is an F -almost split sequence in C ;

(2) f is minimal right almost split in C ;

(3) g is minimal left almost split in C ;

(4) End(A) is local and f is right almost split in C ;

(5) End(C) is local and g is left almost split in C .

We now give the existence theorem of F -almost split sequences in dualizing R-subvarieties
of mod Λ.

Theorem 3.5 If C is a dualizing R-subvariety of mod Λ closed under F -extensions, then C

has F -almost split sequences.
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Proof It is analogous to the proof of [2, Theorem 1.1] except that the phrase “closed under
extensions” is systematically replaced with “closed under F -extensions”. But for the sake of
completeness, we give here the proof.

Since C is a dualizing R-subvariety of mod Λ, by [18, Proposition 3.2], all simple functors
in (C , Ab) and (C op, Ab) are finitely presented. In other words, if C ∈ C is indecomposable,
then there are a right almost split morphism B → C in C and a left almost split morphism
C → B′ in C .

Let A ∈ C be indecomposable and non-F -Extinjective. Then there is a non-split F -exact
sequence 0 → A

u→ B′ v→ C ′ → 0 in C , which induces the exact sequence of functors

0 → (−, A)
(−,u)−→ (−, B′)

(−,v)−→ (−, C ′) → G → 0,

where G = Coker(−, v). Since the sequence 0 → A
u→ B′ v→ C ′ → 0 is not splitting, G �= 0. So

by [18, p. 324], G contains a simple subfunctor S.

Let C be the uniquely determined indecomposable module in C such that S(C) �= 0.
Then there is a non-zero morphism (−, C) t→ S, which is an epimorphism since S is simple.
Because (−, C) is projective in (C op, Ab), there are a morphism h : C → C ′ and the following
commutative and exact diagram:

0

��
(−, C) t ��

(−,h)

��

S

��
(−, C ′) �� G �� 0,

where S → G is the inclusion of S into G. Consider the following pullback diagram:

0 �� A
g �� B

f ��

��

C ��

h

��

0

0 �� A
u �� B′ v �� C ′ �� 0.

Since C is closed under F -extensions, B ∈ C . Furthermore, it is clear that the above diagram
induces the following commutative and exact diagram:

0

��
0 �� (−, A)

g �� (−, B)
f ��

��

(−, C) t ��

(−,h)

��

S ��

��

0

0 �� (−, A) u �� (−, B′) v �� (−, C ′) �� G �� 0.

Since S is simple and End(A) is a local ring and C is closed under F -extensions, the F -exact
sequence 0 → A → B → C → 0 in C is F -almost split by Lemmas 3.2, 3.3 and 3.4 (3).
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Similarly, there is an F -almost split sequence 0 → A → B → C → 0 if C ∈ C is an
indecomposable and non-F -Extprojective. Therefore, we conclude that C has F -almost split
sequences. �

Now we recall some notions from [5]. For any A ∈ mod Λ, there is an F -exact sequence

of Λ-modules · · · → Pn
dn−→ Pn−1

dn−1−→ · · · → P1
d1−→ P0

d0−→ A → 0, where Pi ∈ P(F ) and
0 → Imdi+1 → Pi → Imdi → 0 is F -exact for any i ≥ 0. Such a sequence is called an F -
projective resolution of A. We define that the F -projective dimension of A, written as pdF A,
is the minimum (possibly infinite) such that there is an F -projective resolution 0 → Pn

dn−→
Pn−1

dn−1−→ · · · → P1
d1−→ P0

d0−→ A → 0. If all the F -exact sequences 0 → Imdi+1 → Pi →
Imdi → 0 have the property that di is a right minimal homomorphism, then we denote by Ωi

F A

the i-th F -syzygy Imdi of A. Dually we can define the notions of the F -injective resolution, the
F -injective dimension idF A and the i-th F -cosyzygy Ω−i

F A of A, respectively.
For any A, C ∈ mod Λ, the right derived functors of HomΛ(C,−) and HomΛ(−, A) using

the F -injective and F -projective resolutions, respectively, coincide. We denote Exti
F (C,−) the

i-th right derived functor of HomΛ(C,−) and by Exti
F (−, A) the i-th right derived functor

of HomΛ(−, A). It is not difficult to check that pdF A = inf{n | Extn+1
F (A, B) = 0 for any

B ∈ mod Λ} and idF A = inf{n | Extn+1
F (B, A) = 0 for any B ∈ mod Λ}. We use P∞(F ) (resp.

I ∞(F )) to denote the subcategory of mod Λ consisting of modules with finite F -projective
(resp. injective) dimension.

For any T ∈ mod Λ, denote by addΛT the full subcategory of mod Λ consisting of all
modules isomorphic to direct summands of finite sums of copies of ΛT , and denote by ⊥F T =
{X ∈ mod Λ | Exti

F (X, T ) = 0 for any i ≥ 1} and ̂addΛT = {Y ∈ mod Λ | there is an F -exact
sequence 0 → Tn → Tn−1 → · · · → T0 → Y → 0 with Ti ∈ addΛT for any 0 ≤ i ≤ n}.
Definition 3.6 [6] A module T ∈ modΛ is called F -cotilting if the following conditions are
satisfied : (1) T ∈ I ∞(F ); (2) T ∈ ⊥F T ; and (3) I (F ) ⊆ ̂addΛT. Dually, we can define the
notion of F -tilting modules.

By [18, Proposition 2.2], an additive subcategory of mod Λ is functorially finite in mod Λ
if and only if it is a dualizing R-subvariety of mod Λ with a finite cover and a finite cocover.
Recall from [6] that a subcategory D of mod Λ is called F -resolving if it satisfies the following
conditions: (1) It is closed under F -extensions; (2) If 0 → A → B → C → 0 is an F -
exact sequence with B, C ∈ D , then A ∈ D ; and (3) It contains P(F ). It is shown in [6,
Corollary 3.17] that ⊥F T is F -resolving functorially finite in mod Λ for an F -cotilting module
T . Let S be a cotilting module over Γ = EndΛ(T ) with addΓS = HomΛ(P(F ), T ). We now
give the relationship between F -almost split sequences in ⊥F T and almost split sequences in
⊥S.

Theorem 3.7 Let T be an F -cotilting module in mod Λ with Γ = End(T ) and S a cotilting
module over Γ. If addΓS =HomΛ(P(F ), T ), then (−)∗(= Hom(−, T )) induces a duality between
the class of F -almost split sequences in ⊥F T and the class of almost split sequences in ⊥S.

Proof Since (−)∗ induces inverse dualities between ⊥F T and ⊥S by [6, Corollary 3.6], we only
need to prove the following:
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(1) If 0 → A
g→ B

f→ C → 0 is an F -almost split sequence in ⊥F T , then the exact sequence

0 → C∗ f∗
→ B∗ g∗

→ A∗ → 0 is almost split in ⊥S.

(2) If 0 → A
g→ B

f→ C → 0 is an almost split sequence in ⊥S, then the exact sequence

0 → C∗ f∗
→ B∗ g∗

→ A∗ → 0 is F -almost split in ⊥F T .

Let 0 → A
g→ B

f→ C → 0 be an F -almost split sequence in ⊥F T . Since (−)∗ is an F -

exact functor in ⊥F T , the sequence 0 → C∗ f∗
→ B∗ g∗

→ A∗ → 0 is non-split exact in ⊥S. So
A∗ ∈ ⊥S is not Extprojective. Let h : X → A∗ be not a split epimorphism in ⊥S. Then
there is a non-split monomorphism h∗σA : A

∼=→ A∗∗ → X∗, where σA : A → A∗∗ is defined
by σA(f)(x) = f(x) for any f ∈ A∗ and x ∈ A is the canonical evaluation homomorphism.
Thus we get a morphism η : B → X∗ such that ηg = h∗σA and σ∗

Ah∗∗σX = g∗η∗σX . Since
h = σ−1

A∗h∗∗σX and σ∗
AσA∗ = 1A∗ by [20, Proposition 20.14], h factors through g∗. So g∗ is a

right almost split morphism in ⊥S. Since C∗ is indecomposable, we get an almost split sequence
0 → C∗ f∗

→ B∗ g∗
→ A∗ → 0 in ⊥S by Lemma 3.4. This proves (1).

Now, let 0 → A
g→ B

f→ C → 0 be an almost split sequence in ⊥S. Since ΓT ∈
HomΛ(P(F ), T ) ∼= addΓS, we get an exact sequence 0 → C∗ f∗

→ B∗ g∗
→ A∗ → 0 in ⊥F T .

Because S is a cotilting module and the sequence 0 → A
g→ B

f→ C → 0 is almost split in
⊥S, A �∈ addΓS. Then A∗ �∈ P(F ) since (−)∗ induces the inverse duality between P(F ) and
addΓS by [6, Corollary 3.6]. So any morphism P → A∗ with P ∈ P(F ) is not a split epimor-

phism. To prove 0 → C∗ f∗
→ B∗ g∗

→ A∗ → 0 is F -almost split, it suffices to prove any non-split
epimorphism h : X → A∗ factors through g∗. This can be proved by using a similar argument
to that above. �

4 Applications to F -Gorenstein Algebras

In this section, we give some characterizations of F -Gorenstein algebras and F -self-injective
algebras in terms of strong F -cotilting modules and strong F -tilting modules. Then we apply
Theorem 3.7 to F -Gorenstein algebras and study the first term in an F -almost split sequence
in ⊥F T , where T is an F -cotilting module.

Let A be a full subcategory of mod Λ. Denote by A ⊥F the subcategory of mod Λ consisting
of the modules M such that Exti

F (A, M) = 0 for any A ∈ A and i ≥ 1. Recall from [8]
that an algebra Λ is called F -Gorenstein if I ∞(F ) = P∞(F ). Moreover, Λ is called F -
selfinjective if P(F ) = I (F ) and P(F ) is of finite type. An F -cotilting module T is called
strong F -cotilting if (⊥F T )⊥F = I ∞(F ). Dually, an F -tilting module is called strong F -tilting
if ⊥F (T⊥F ) = P∞(F ).

Theorem 4.1 [8, Proposition 3.6] Let Γ = End(T ) for some F -cotilting module T over an
algebra Λ. Then the following are equivalent :

(1) Γ is Gorenstein ;

(2) T is an F -tilting module ;

(3) Λ is F -Gorenstein.

Propositon 4.2 Let Λ be an F -Gorenstein algebra. If T is an F -cotilting module with
idF T = d, then the following are equivalent :
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(1) T is a strong F -cotilting module ;

(2) P(F ) ⊆ addΛT ;

(3) P(F ) = addΛT .

Proof (1) ⇒ (2) Since Λ is an F -Gorenstein algebra and T is a strong F -cotilting module,
P(F ) ⊆ P∞(F ) = I ∞(F ) = ̂addΛT . So there is a split F -exact sequence 0 → K → T0 →
P → 0 with T0 ∈ addΛT for any P ∈ I ∞(F ), and hence P(F ) ⊆ addΛT .

(2) ⇒ (3) Since idF T = d < ∞ and Λ is F -Gorenstein, there is an F -projective resolution
of T : 0 → Pn → Pn−1 → · · · → P1 → P0 → T → 0. Let K = Ker(P0 → T ). Then by (2),
K ∈ T⊥F since T ∈ T⊥F . So T is a direct summand of P0, and hence it is F -projective.

(3) ⇒ (1) Since ̂addΛT ⊆ I ∞(F ) by [6, Theorem 3.2], we only need to prove I ∞(F ) ⊆
̂addΛT . For any M ∈ I ∞(F ), we have an F -projective resolution of M : 0 → Pn → Pn−1 →
· · · → P1 → P0 → M → 0 since I ∞(F ) = P∞(F ). So M ∈ ̂addΛT . �

For an F -Gorenstein algebra Λ, we can get the dual results of the above results for a strong
F -tilting module T ′. It is natural to ask a question: Is there a module M which is both strong
F -tilting and strong F -cotilting module in mod Λ?

Corollary 4.3 Let Λ be an F -Gorenstein algebra. Then there is a module T ∈ mod Λ such
that it is both strong F -tilting and strong F -cotilting module if and only if Λ is F -selfinjective.

Proof By Proposition 4.2 and its dual version for F -tilting modules. �

Let Λ be a Gorenstein artin algebra with self-injective dimension d. By [15], for any C ∈ ⊥Λ,
there is an exact sequence 0 → C → Pd−1 → · · · → P0 → A → 0, where Pi is projective and
A ∈ ⊥Λ and has no non-zero projective summands if d ≥ 1. We denote this uniquely determined
(up to isomorphisms) module by A = Ω−d

CMC. We use ΩiM (resp. Ω−iM) to denote the usual
i-th syzygy (resp. cosyzygy) of M ∈ mod Λ (see [21]).

Theorem 4.4 [15, Theorem 3.7] Let Λ be a Gorenstein algebra with self-injective dimension
d and 0 → τC → B → C → 0 an almost split sequence in ⊥Λ. Then τC ∼= Ω−d

CMDΩ−dTrC ∼=
Ω−d

CMΩdDTrC.

The following is the main result in this section.

Theorem 4.5 Let Λ be an F -Gorenstein algebra and T a strong F -cotilting module with
Γ = EndΛ(T ), and let 0 → A → B → ρA → 0 be an F -almost split sequence in ⊥F T . If
S is a cotilting Γ- module with injective dimension d and addΓS = HomΛ(P(F ), T ), then
ρA ∼= (Ω−d

CMΩdDTrA∗)∗, where (−)∗ = Hom(−, T ).

Proof To prove ⊥S = ⊥Γ, it suffices to prove that S and Γ have the same non-isomorphic direct
summands. Since Γ ∈ addΓS, Γ is a direct summand of Sm for some m ≥ 1. Let n1 and n2 be
the numbers of non-isomorphic direct summands for cotilting modules S and Γ, respectively,
and n3 be the number of non-isomorphic simple modules of Γ. Then we have n1 = n3 = n2 by
[22, p. 141]. Now our assertion follows from Theorems 3.7 and 4.4. �

5 The First Term of an F -almost Split Sequence in ⊥F T

In this section, we give an F -version of Theorem 4.4. Assume that Λ is an F -Gorenstein algebra
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and T is a strong F -cotilting module with idF T = n and Γ = EndΛ(T ), and S is a cotilting
module with Hom(P(F ), T ) = addΓS. We know from Theorem 3.5 that ⊥F T has F -almost
split sequences. Let 0 → τC → B → C → 0 be an F -almost split sequence in ⊥F T . We denote
Hom(−, T ) by (−)∗.

Let X be a subcategory of mod Λ. A right F -X -approximation of a module C ∈mod
Λ is an F -exact sequence 0 → Y → X

f→ C → 0 with X ∈ X such that HomΛ(X , X) →
HomΛ(X , C) → 0 is exact. The approximation is called minimal if f is a right minimal
homomorphism (see [5]). In addition, the definitions of contravariantly finite subcategories and
functorially finite subcategories are referred to [22].

Lemma 5.1 [2, Lemma 3.2] For an algebra Λ, let X be a contravariantly finite F -resolving
subcategory of mod Λ, and let C ∈ mod Λ be indecomposable and not F -projective. Then we
have the following :

(1) τC is a direct summand of the minimal right F -X -approximation XDTrC of DTrC;
(2) If XDTrC = A ⊕ B, where A is indecomposable and B is F -Extinjective in X , that is,

Ext1F (X , B) = 0, then τC = A;
(3) If XDTrC is indecomposable, then τC = A.

For any i ≥ 0, we use Ωi
F (mod Λ) to denote the subcategory of mod Λ consisting of the i-th

F -syzygy modules. The following result is an F -version of [15, Proposition 3.1].

Propositon 5.2 Let Λ be an F -Gorenstein algebra. If T ∈ mod Λ is a strong F -cotilting
module with idF T = d and Γ = End(T ), then we have the following :

(1) (−)∗ : ⊥F T → ⊥S is a duality, where S is a cotilting Γ-module such that addΓS =
P(F )∗.

(2) ⊥F T = Ωd
F (mod Λ).

(3) ⊥F T ∩ P∞(F ) = addΛT = P(F ).

Proof (1) By [6, Propositions 3.6 and 3.13].
(2) Since F has enough projectives, for any M ∈ modΛ, we have an F -projective resolution

in mod Λ:
0 → Ωd

F M → Pd−1 → Pd−2 → · · · → P1 → P0 → M → 0.

Since idF T = d, Exti
F (Ωd

F M, T ) ∼= Exti+d
F (M, T ) = 0 for any i ≥ 0 and Ωd

F (M) ⊆ ⊥F T .
Conversely, for any C ∈ ⊥F T , let · · · → Pd → Pd−1 → · · · → P1 → P0 → C∗ → 0 be a

minimal projective resolution in mod Γ. Since C∗ ∈ ⊥S and ΓT ∼= HomΛ(Λ, ΓT ) ∈ addΓS,
Exti

Γ(C∗, T ) = 0 for any i ≥ 1. So the induced sequence 0 → C∗∗ → P ∗
0 → P ∗

1 → · · · →
P ∗

d−1 → P ∗
d → · · · is F -exact, where P ∗

i ∈ addΛT = P(F ). Since (−)∗ : ⊥F T → ⊥S is a
duality, C ∈ Ωd

F (mod Λ).
(3) Since T is a strong F -cotilting module, ̂addΛT = I ∞(F ). Since Λ is F -Gorenstein,

P∞(F ) = I ∞(F ). In addition, T is a cotilting module, so ⊥F T ∩ ̂addΛT = addΛT = P(F ). �
Denote by mod Λ (resp., mod Λ) and C (resp., C ) the categories mod Λ and C modulo

F -projectives (resp., injectives), respectively. We denote the image of a Λ-module M in mod Λ
(resp., mod Λ) by M (resp., M). We use f (resp., f) to denote the image of a morphism f in
mod Λ (resp., mod Λ) (see [17]).
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In [15], Auslander and Reiten showed that Ω1 : ⊥Λ → ⊥Λ is an equivalence of categories
over a Gorenstein algebra Λ. We give an F -version of this result as follows.

Propositon 5.3 Let Λ be an F -Gorenstein algebra. If T ∈ mod Λ is a strong F -cotilting
module with idF T = d and Γ = End(T ), then Ω1

F : ⊥F T → ⊥F T is an equivalence of categories.

Proof We divide the proof into three steps:

(1) We show that Ω1
F is a functor from ⊥F T to ⊥F T . We only need to prove that for any

M ∈ ⊥F T , Ω1
F M ∈ ⊥F T . Assume that Ω1

F M = M1 ⊕ M2 with M1 = Ω1
F M and M2 ∈ P(F ).

Then we have the following commutative diagram with the bottom row splitting:

0 �� Ω1
F M

i1 ��

i

��

P0
��

g

��

M �� 0

0 �� M2
i2 ��

π

���
�
�

E ��
π2

��� � � � M �� 0,

where P0 → M is right minimal, πi = 1M2 = π2i2 and the composition of sequences of
morphisms M2

i→ Ω1
F M

i1→ P0
g→ E

π2→ M2 is the identity homomorphism of M2. Then M2 is
isomorphic to a direct summand of P0. But P0 → M is right minimal, so M2 = 0 and hence
Ω1

F M ∈ ⊥F T .

(2) We show that Ω1
F is fully faithful. That is, HomF (A, B) ∼= HomF (Ω1

F A, Ω1
F B) for any

A, B ∈ ⊥F T .

We first define the morphism Ω1
F : HomF (A, B) → HomF (Ω1

F A, Ω1
F B) via f → Ω1

F (f) =
Ω1

F (f) satisfying the following commutative and F -exact diagram:

0 �� Ω1
F A ��

Ω1
F (f)

��

P0
fA ��

g

��

A ��

f

��

0

0 �� Ω1
F B �� Q0

fB �� B �� 0.

It is not difficult to prove that Ω1
F (f) does not depend on the choice of g. If f = 0, then

Ω1
F (f) = 0. Obviously, f factors through Q0. Assume that f = fBh with h : A → Q0 and

fB : Q0 → B. Put g = hfA. Then we have the following commutative diagram with F -exact
rows and the middle row splitting:

0 �� Ω1
F A ��

Ω1
F (f)

��

P0
fA ��

iQ0g

��

A ��

h

��

0

0 �� Ω1
F B �� E

πQ0 ��

πQ0

��

Q0
iQ0

��� � �

fB

��

�� 0

0 �� Ω1
F B �� Q0

fB �� B �� 0,

where πQ0iQ0 = 1Q0 . Since the middle row splits, Ω1
F (f) factors through P0 and Ω1

F (f) = 0.

We next prove that Ω1
F is epic. That is, for any h ∈ HomF (Ω1

F A, Ω1
F B), there is an

f ∈ HomF (A, B) such that Ω1
F (f) = h.
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Since A ∈ ⊥F T , 0 → A∗ → P ∗
0 → (Ω1

F A)∗ → 0 is exact. Since P(F ) = addΛT , we have the
following commutative diagram with F -exact rows:

0 �� Ω1
F A ��

h

��

P0
��

g

��

A ��

f

��

0

0 �� Ω1
F B �� Q0

�� B �� 0.

So Ω1
F (f) = h and hence Ω1

F (f) = h.
Finally, we show that Ω1

F is monic. By the above argument, for any h, there is an f such
that Ω1

F (f) = h. So we only need to prove that h = 0 implies that f = 0. It is easy to see
that f does not depend on the choice of g. h = 0 implies clearly that h : Ω1

F A → Ω1
F B factors

through P0. Put g = iBρ. Then we have the following commutative diagram with F -exact rows
and the middle row splitting:

0 �� Ω1
F A

iA ��

fA

��

P0
��

iP0

��

A �� 0

0 �� P0

iP0 ��

ρ

��

E ��
πP0

��� � � �

gπP0

��

A

f

��

�� 0

0 �� Ω1
F B

iB �� Q0
�� B �� 0,

where πP0iP0 = 1P0 . Since the middle row splits, f = 0.
(3) We show that Ω1

F is dense. If A ∈ ⊥F T , then A is an F -syzygy by the proof of
Proposition 5.2 (2). So ⊥F T is functorially finite F -resolving in mod Λ for an F -cotilting
module by [6, Corollary 3.17]. Then for each indecomposable and non-F -projective module
C ∈ ⊥F T , we have an F -almost split sequence 0 → A → B → C → 0. �
Remark By using a similar argument to that above, we have

HomF (A, B) ∼= HomF (Ωi
F A, Ωi

F B)

for any 1 ≤ i ≤ n, A ∈ ⊥nF P(F ) and B ∈mod Λ, where

⊥nF P(F ) = {A ∈ mod Λ | Exti
F (A, C) = 0 for any C ∈ P(F ) and 1 ≤ i ≤ n}.

Lemma 5.4 [6, Theorem 3.2] Let Λ be an algebra and T an F -cotilting module. Then, for
any M ∈ mod Λ, there is a minimal right F -⊥F T -approximation of M :

0 → YM → XM → M → 0

with XM ∈ ⊥F T and YM ∈ ̂addΛT .

The following Lemmas 5.5, 5.6 and 5.7 are the F -versions of [15, Lemmas 3.3, 3.4 and 3.5],
respectively.

Lemma 5.5 Let Λ be an F -Gorenstein algebra and T be a strong F -cotilting module. For
any M ∈ mod Λ, XM is F -projective if and only if M ∈ P∞(F ).

Proof Since Λ is F -Gorenstein and T is a strong F -cotilting module, ̂addΛT = P∞(F ). So,
by Lemma 5.4, we have an F -exact sequence 0 → YM → XM → M → 0 with YM ∈ P∞(F ).
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If XM is F -projective, then pdF M ≤ pdF YM + 1 < ∞. Conversely, if M ∈ P∞(F ), then
pdF XM ≤ max{pdF YM , pdF M}, and hence M ∈ P(F ) by Proposition 5.2 (3). �
Lemma 5.6 Let Λ be an F -Gorenstein algebra, T a strong F -cotilting module and 0 → A →
B → C → 0 an F -exact sequence with B ∈ P∞(F ). Then we have the following :

(1) Ω1
F XC

∼= XA;

(2) XA is indecomposable if and only if XC is indecomposable.

Proof Because (2) follows from (1) and Proposition 5.3, we only need to prove (1).

Since ⊥F T is F -resolving, by [6, Proposition 2.7], we have the following commutative and
F -exact diagram:

0

��

0

��

0

��
0 �� YA

��

��

Y ��

��

YC
��

��

0

0 �� XA
��

��

X ��

��

XC
��

��

0

0 �� A ��

��

B ��

��

C ��

��

0

0 0 0

with X ∈ ⊥F T and Y ∈ P∞(F ). Then the map X → B is a right F -⊥F T -approximation.
Since ⊥F T ∩ P∞(F ) = P(F ), X ∈ P(F ). �
Lemma 5.7 Let Λ be an F -Gorenstein algebra, and T be a strong F -cotilting module with
idF T = d. Then we have the following :

(1) Ωd
F XΩ−d

F A
∼= XA;

(2) XA is indecomposable if and only if XΩ−d
F (A) is indecomposable ;

(3) If A ∈ ⊥F T is indecomposable and not F -projective, then XΩ−d
F A and Ω−d

F A are inde-
composable.

Proof Both (1) and (2) follow from the iterative applications of Lemma 5.6 since each term in
a minimal F -injective resolution of A has a finite F -projective dimension. So we only need to
prove (3).

Because A ∈ ⊥F T , XA = A. In addition, A �∈ P(F ), so XΩ−d
F A is indecomposable by (2).

Let addT ′ = I (F ). It is clear that T ′ is an F -cotilting module. Since Λ is F -Gorenstein, T ′

is a strong F -tilting module by the dual version of Proposition 4.2. By [8, Proposition 3.4], we
have pdF T ′ = idF T = d. Then DT ′ is a strong F op-cotilting module with idF opDT ′ = d. Since
DΩ−d

F A ∈ Ωd
F op(mod Λop), any direct summand of DΩ−d

F A with finite F op-projective dimension
is in P(F op). Hence any direct summand of Ω−d

F A with finite F -projective dimension is in
I (F ). Put Ω−d

F A = B ⊕ C, where B and C are non-zero and not F -injective. Then XB and
XC are non-zero by Lemma 5.5, which contradicts that XΩ−d

F A is indecomposable. Hence we



1162 Zhang X. J. and Huang Z. Y.

conclude that Ω−d
F A is indecomposable. �

By Proposition 5.2, for any C ∈ ⊥F T , there is an F -exact sequence 0 → C → Pd−1 → · · · →
P0 → A → 0, where all Pi are F -projective and A ∈ ⊥F T . Denote A = Ω−d

CMF
C. The following

result is cited from [12], which gives the construction of the non-F -projective part of minimal
right F -⊥F T -approximations.

Lemma 5.8 [12, Corollary 2] Let Λ be an F -Gorenstein algebra and T a strong F -cotilting
module with idF T = d. Then XC

∼= Ω−d
CMF

Ωd
F C for any C ∈ mod Λ.

For any B ∈mod Λop, we use TorF
i (B,−) to denote the left derived functor of B⊗Λ− using

F -projective resolutions in mod Λ (see [5]). We now are in a position to give the main result
in this section, which is the F -version of [15, Theorem 3.7].

Theorem 5.9 Let Λ be an F -Gorenstein algebra and T a strong F -cotilting module with
idF T = d. If 0 → τC → B → C → 0 is an F -almost split sequence in ⊥F T , then

τC ∼= Ω−d
CMF

DΩ−d
F opTrC ∼= Ω−d

CMF
Ωd

F DTrC.

Proof The case for d = 0 is trivial. Now suppose d ≥ 1. Since the F -Extinjective objects
in ⊥F T are the F -projective modules, τC �∈ P(F ). By Lemma 5.8, there is an F -projective
module Q, such that

XDTrC
∼= Ω−d

CMF
Ωd

F DTrC ⊕ Q ∼= Ω−d
CMF

DΩ−d
F opTrC ⊕ Q,

since Ωd
F DX ∼= DΩ−d

F opX clearly.
Let 0 → Pd → Pd−1 → · · · → P1 → P0 → T ′ → 0 be a minimal F -projective resolution

of the strong tilting module T ′. By applying the functor HomΛ(C,−) to the following F -exact
sequences:

0 → Pd → Pd−1 → Ωd−1
F T ′ → 0,

0 → Ωd−1
F T ′ → Pd−2 → Ωd−2

F T ′ → 0,

· · · · · ·
0 → Ω2

F T ′ → P1 → Ω1
F T ′ → 0,

0 → Ω1
F T ′ → P0 → T ′ → 0,

we have that Exti
F (C, Ωj

F T ′) = 0 for any i ≥ 1 and 1 ≤ j ≤ d − 1. On the other hand, by
applying the functor TrC⊗Λ− to the above F -exact sequences, we have that TorF

i+1(TrC, T ′) ∼=
TorF

1 (TrC, Ωi
F T ′) since DTorF

l (TrC, Pk) ∼= Extl
F op(TrC, DPk) = 0 for any l ≥ 1 and k ≥ 0 by

[5, Lemma 2.1]. So

Exti
F op(TrC, DT ′) ∼= DTorF

i (TrC, T ′) ∼= DTorF
1 (TrC, Ωi−1

F T ′) ∼= DHomP(F )(C, Ωi−1
F T ′)

by [5, Lemmas 2.1 and 2.2]. In addition, given any morphism f : C → Ωd−1
F T ′, we get the

following commutative F -exact diagram:

0 �� Pd
�� E ��

��

C ��

f

��

0

0 �� Pd
�� Pd−1

�� Ωd−1
F T ′ �� 0.
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Since C ∈ ⊥F T , the first row splits and f factors through Pd−1. For the same reason, we have

HomP(F )(C, Ωi−1
F T ′) = 0

for any 1 ≤ i ≤ d. So

TrC ∈ ⊥Fop DT ′.

It is clear that TrC �∈ P(F op). Otherwise, the F -almost split sequence 0 → DTrC → E →
C → 0 splits, a contradiction. So Ω−d

F opTrC is indecomposable by Lemma 5.7. It follows that
Ωd

F DTrC ∼= DΩ−d
F opTrC is indecomposable up to an F -projective summand and is in ⊥F T , so

Ω−d
CMF

DΩd
F opTrC is also indecomposable by Lemma 5.6. Consequently,

τC ∼= Ω−d
CMF

DΩd
F opTrC ∼= Ω−d

CMF
Ωd

F DTrC

by Lemma 5.1. �
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