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Abstract. The principle “Every result in classical homological algebra should
have a counterpart in Gorenstein homological algebra” was given by Henrik

Holm. There is a remarkable body of evidence supporting this claim. Perhaps
one of the most glaring exceptions is provided by the fact that tensor products
of Gorenstein projective modules need not be Gorenstein projective, even over
Gorenstein rings. So perhaps it is surprising that tensor products of Gorenstein
injective modules over Gorenstein rings of finite Krull dimension are Gorenstein
injective.

Our main result is in support of the principle. Over commutative, noether-
ian rings injective modules have direct sum decompositions into indecompos-
able modules. We will show that Gorenstein injective modules over Gorenstein
rings of finite Krull dimension have filtrations analogous to those provided by
these decompositions. This result will then provide us with the tools to prove
that all tensor products of Gorenstein injective modules over these rings are
Gorenstein injective.

1. Introduction

Throughout this paper R will denote a commutative and noetherian ring and
Spec(R) will denote the set of its prime ideals. The term module will then mean an
R-module. An injective envelope of the module M will be denoted by E(M) and

0 → M → E0(M) → · · · → En(M) → · · ·
will denote a minimal injective resolution of M .

We will now give several definitions and results. For ease in referring to these
later in the paper they will be numbered.

(1) Every injective module is uniquely up to isomorphism the direct sum of
modules, each of which is isomorphic to E(R/P ) for some P ∈ Spec(R) [6,
Theorem 2.5 and Proposition 3.1].

(2) We say R is a Gorenstein ring if inj, dimRP
RP < ∞ for each P ∈ Spec(R).

If in fact inj.dimRR < ∞, then R is Gorenstein and the Krull dimension
of R equals inj.dimRR [1, Corollary 3.4].

(3) In inj.dimRR < ∞ (and so R is Gorenstein) and if 0 → R → E0(R) →
· · ·En(R) → 0 is a minimal injective resolution of R as a module, then for
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0 ≤ k ≤ n, Ek(R) =
⊕

ht(P )=k E(R/P ), where these P are in Spec(R) [1,

Proposition 3.6]. Furthermore when ht(P ) = k, we have fl.dimE(R/P ) =
k [7, Theorem 5.1.2].

(4) If R is Gorenstein and E,E′ are injective modules, then for any k ≥ 0 the
module Tork(E,E′) is injective. More precisely, if P,Q ∈ Spec(R), then
Tork(E(R/P ), E(R/Q)) = 0 unless both P = Q and k = ht(P ). Also in
this case we have that Tork(E(R/P ), E(R/P )) ∼= E(R/P ) [5, Lemma 2.1
and Theorem 4.1]. So using (1) we see that Tork(E(R/P ), E) = 0 when E
is injective and k �= ht(P ).

(5) If P ∈ Spec(R) a module S will be said to have property t(P ) if for each

r ∈ R− P we have that S
r→ S is an isomorphism and if for each x ∈ S we

have that Pmx = 0 for some m ≥ 1. If S has property t(P ) and property
t(Q) with P �= Q, then it is easy to see that S = 0. If S has property
t(P ) and if N is any module, then Tork(S,N) has property t(P ) for all
k ≥ 0. This can be seen by using a projective resolution of N to compute
this Tor. Consequently, if S has property t(P ) and T has property t(Q)
where P �= Q, we get Tork(S, T ) = 0 for all k ≥ 0. For any P ∈ Spec(R)
the module E(R/P ) has property t(P ) [6, Lemma 3.2].

(6) We now argue that if S has property t(P ), then so does E(S). By (1)
above E(S) is a direct sum of copies of E(R/Q) for various Q ∈ Spec(R).

If r ∈ R−P , then since S
r→ S is an isomorphism, then so is E(S)

r→ E(S).
Now assume that E(R/Q) is a summand of E(S). Then for r ∈ R − P we

have that E(R/Q)
r→ E(R/Q) is an isomorphism. Hence r ∈ R − Q. So

we get Q ⊂ P . We want to argue that Q = P . If not, let r ∈ P −Q. The
extension S → E(S) is essential, so the module S′ = E(R/Q) ∩ S is non-
zero. Let x ∈ S′, x �= 0. Then since x ∈ S and since S has property t(P ),
we get Pmx = 0 for some m ≥ 1. So rmx = 0. But E(R/Q) has property

t(Q) and r ∈ R − Q. Hence E(R/Q)
r→ E(R/Q) is an isomorphism. But

then since S′ ⊂ E(R/Q) we get that S′ r→ S′ is an injection. But this is
not possible if rmx = 0, where x ∈ S′ and x �= 0. So we get Q = P .

So E(S) is a direct sum of copies of E(R/P ), and so by (5) we see that
E(S) has property t(P ). But then the quotient module E(S)/S will have
property t(P ). So continuing we see that all the terms Ei(S) (i ≥ 1) in a
minimal injective resolution of S have property t(P ).

(7) If S has property t(P ) and T has property t(Q) and if P �⊂ Q, then
Hom(S, T ) = 0. If r ∈ P − Q and if f(x) = y for some f ∈ Hom(S, T ),
we have rnx = 0 for some n ≥ 1, and so rny = 0. But since r �∈ Q this is
possible only if y = 0. So we get f = 0.

(8) We recall that a module G is said to be Gorenstein injective if and only if
there is an exact sequence

· · · → E2 → E1 → E0 → E0 → E1 → E2 → · · ·

of injective modules with G = Ker(E0 → E1) and such that Hom(E,−)
leaves the sequence exact whenever E is an injective module. For the rest
of (8) we assume that R is a Gorenstein ring of finite Krull dimension n. If
n ≥ 1, a module G is Gorenstein injective if and only if there is an exact
sequence

En−1 → · · · → E1 → E0 → G → 0
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with En−1, . . . , E0 injective modules. This result gives that the class of
Gorenstein injective modules over such R is closed under arbitrary direct
sums. Also if n = 0, then every module G is Gorenstein injective (see [4,
Theorem 4.2] for both these claims). As a consequence we get that if P is a
minimal prime ideal of R and if G is an RP -module, then G is a Gorenstein
injective R-module. This follows from the observation that RP is a flat R-
module, so any injective Rp module is also an injective R-module. Hence
an exact sequence · · ·E2 → E1 → E0 → G → 0 of RP -modules with the
Ek injective RP -modules gives us an exact sequence of R-modules with the
Ek injective R-modules.

We need a slightly stronger version of the result above. So again we
suppose R is Gorenstein and of Krull dimension n but with n ≥ 1. We
claim that if G is such that there is an exact sequence

Gn−1 → · · · → G0 → G → 0

with Gn−1, . . . , G0 all Gorenstein injective, then G is Gorenstein injec-
tive. By [6, Proposition 1.11], G is Gorenstein injective if and only if
Ext1(L,G) = 0 whenever proj.dimL < ∞. By [4, Corollary 4.4], we have
that proj.dimL < ∞ implies proj.dimL ≤ n. So now using dimension
shifting and these results we get that G is Gorenstein injective.

(9) If G is Gorenstein injective over any Gorenstein R and r ∈ R is R-regular,
then proj.dimR/(r) = 1. So Ext1(R/(r), G) = 0 by (8). This gives that

Hom(R,G)
r→ Hom(R,G) → 0 is exact. This means that G

r→ G is
surjective. So for every x ∈ G there is a y ∈ G with ry = x. Consequently
we get that G ⊗ T = 0 if T has property t(P ) and if r ∈ P . Also, if
x ∈ G and y ∈ T and n ≥ 1 we have that x = rnx for some x ∈ G. So
x⊗ y = rnx ⊗ y = x ⊗ rny. But if n is sufficiently large we have rny = 0.
Hence x⊗ y = 0.

Now if P ∈ X and if ht(P ) ≥ 1, then since R is Gorenstein (and so
Cohen-Macaulay) there is an R-regular r ∈ P . Consequently we get that
G ⊗ T = 0 whenever G is Gorenstein injective and when T has property
t(P ) with ht(P ) ≥ 1.

2. Torsion products of injective

and Gorenstein injective modules

In this section R will be a Gorenstein ring of finite Krull dimension n. We let
X = Spec(R). When we refer to (1),(2),. . . ,(9) we mean the corresponding result
in the preceding section.

Lemma 2.1. If P ∈ X and ht(P ) ≥ 1, then for any Gorenstein injective module
G we have E(R/P )⊗G = 0.

Proof. By (5) we know that E(R/P ) has property t(P ). So this result is a special
case of (9). �
Proposition 2.2. If G is Gorenstein injective and P ∈ X, then Tork(E(R/P ), G)
= 0 if ht(P ) �= k.

Proof. By (3) we know that fl.dimE(R/P ) = ht(P ), so Tork(E(R/P ),−) = 0 if
k > ht(P ). Therefore, we only need prove that Tork(E(R/P ), G) = 0 when G is
Gorenstein injective and k < ht(P ). We prove this by induction on k. If k = 0, then
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Tork(E(R/P ), G) = E(R/P ) ⊗ G = 0 if ht(P ) ≥ 1 and G is Gorenstein injective
by Lemma 2.1.

So now we make an induction hypothesis and let ht(P ) > k and let G be Goren-
stein injective. We have an exact sequence 0 → H → E → G → 0 with E injec-
tive and H Gorenstein injective. We have the exact sequence Tork(E(R/P ), E) →
Tork(E(R/P ), G) → Tork−1(E(R/P ), H). By the induction hypothesis and
the fact that ht(P ) > k > k − 1, we have that Tork−1(E(R/P ), H) = 0. But
Tork(E(R/P ), E) = 0 by (4), and so Tork(E(R/P ), G) = 0. �

Corollary 2.3. If 0 → G′ → G → G′′ → 0 is an exact sequence of Gorenstein
injective modules and if E is an injective module, then for any k ≥ 0 the sequence
0 → Tork(E,G′) → Tork(E,G) → Tork(E,G′′) → 0 is exact.

Proof. By (1) E is a direct sum of submodules isomorphic to E(R/P ) with P ∈ X;
it suffices to prove the claim when E = E(R/P ) for any P . In this case the claim
follows by considering the long exact sequence of Tor(E(R/P ),−) associated with
0 → G′ → G → G′′ → 0 and Proposition 2.2. �

Proposition 2.4. If G is Gorenstein injective and E is injective, then for any
k ≥ 0 the module Tork(E,G) is a Gorenstein injective module.

Proof. By (8) we have an exact sequence · · · → E2 → E1 → E0 → G → 0 with
all the Ei injective modules, where the kernels of E0 → G, E1 → E0, . . . are
Gorenstein injective. Therefore, we can split the exact sequence into short exact
sequences 0 → G1 → E0 → G → 0, 0 → G2 → E1 → G1 → 0, . . . with each Gk

and G Gorenstein injective. We then apply Corollary 2.3 and splice the resulting
short exact sequences together to get the exact sequence · · · → Tork(E,E1) →
Tork(E,E0) → Tork(E,G) → 0. Since each Tork(E,En) is injective we get that
Tork(E,G) is Gorenstein injective by the Proposition (8). �

3. Filtrations of Gorenstein injective modules

We again let R be a Gorenstein ring of finite Krull dimension n and let X =
Spec(R) and let Xk ⊂ X for k ≥ 0 consist of the P ∈ X such that ht(P ) = k. In
this section we will also appeal to the results (1) , . . . , (9) of the first section.

The main contribution of this paper is the following result.

Theorem 3.1. If G is a Gorenstein injective module, then G has a filtration
0 = Gn+1 ⊂ Gn ⊂ · · · ⊂ G2 ⊂ G1 ⊂ G0 = G where each Gk/Gk+1 (0 ≤ k ≤ n) is
Gorenstein injective and has a direct sum decomposition indexed by P ∈ Xk such
that the summand, say S, corresponding to P has the property t(P ) (see (5)). Fur-
thermore, such filtrations and direct sum decompositions are unique and functorial
in G.

Proof. We first comment that “functorial in G” means that if H is another Goren-
stein injective module with such a filtration 0 = Hn+1 ⊂ Hn ⊂ · · · ⊂ H1 ⊂ H0 = H
where T is the summand of Hk/Hk+1 corresponding to P ∈ Xk and if f : G → H
is linear, then f(Gk) ⊂ Hk for each k and the induced map Gk/Gk+1 → Hk/Hk+1

maps S (as in the theorem) into T .
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Now let 0 → R → E0(R) → · · · → En(R) → 0 be the minimal injective
resolution of R and let · · · → P2 → P1 → P0 → G → 0 be a projective resolution
of G. We form the double complex

0 0
�
⏐
⏐

�
⏐
⏐

0 −−−−→ E0(R)⊗ P0 −−−−→ · · · · · · · · · −−−−→ En(R)⊗ P0 −−−−→ 0
�
⏐
⏐

�
⏐
⏐

0 −−−−→ E0(R)⊗ P1 −−−−→ · · · · · · · · · −−−−→ En(R)⊗ P1 −−−−→ 0
�
⏐
⏐

�
⏐
⏐

...
...

We now use a simple spectral sequence argument. First we note that this double
complex can be regarded as a third quadrant double complex (using a shift in
indices). This will guarantee convergence of our spectral sequences. For the E1

term of our first spectral sequence we compute homology of this double complex
by using the horizontal arrows. Since each Pn is projective, and so flat, we now get
the transpose of the diagram

· · · → R⊗ P1 → R ⊗ P0 → 0,

where all the missing terms are 0. But now when we compute homology we just
get G (in the (0, 0) position).

We now first use the vertical arrows to compute homology. The terms we get will
all be of the form Tori(E

j(R), G). By Proposition 2.2 and (3) these are 0 unless i =
j. Therefore, we get a diagonal double complex. Hence the horizontal differentials
will be 0, and when we compute homology again we get

⊕n
k=0 Tork(E

k(R), G).
This means that G has a filtration 0 = Gn+1 ⊂ Gn ⊂ · · · ⊂ G1 ⊂ G0 = G with
Gk/Gk+1

∼= Tork(E
k(R), G) for 0 ≤ k ≤ n. By Proposition 2.4 we know that each

of these terms is Gorenstein injective.
By (3) Ek(R) =

⊕
P∈Xk

E(R/P ) and so we have that Tork(E
k(R), G)

=
⊕

P∈Xk
Tork(E(R/P ), G). Since each E(R/P ) has property t(P ) by (5), so

does Tork(E(R/P ), G).
The uniqueness and functoriality will now follow from (7); i.e. if P,Q are prime

ideals of R with P �⊂ Q, then Hom(S, T ) = 0 whenever S and T have properties
t(P ) and t(Q) respectively.

We now indicate how this observation gives us the functoriality and uniqueness.
Let 0 ⊂ Gn ⊂ · · ·G1 ⊂ G and 0 ⊂ Hn ⊂ · · · ⊂ H1 ⊂ H be filtrations of the
Gorenstein injective modules G and H satisfying the conclusion of the theorem.
Let S ⊂ Gn be the summand of Gn corresponding to a given maximal ideal P of
R. Assume n ≥ 1. Then we use the observation that Hom(S,U) = 0 if U ⊂ H/H1

is the summand corresponding to some Q ∈ X0. Since this holds for all such U we
get that S ↪→ G → H/H1 is 0. Therefore, f(S) ⊂ H1. Since this is true for all the
summands S of Gn, we get that f(Gn) ⊂ H1. But then we use this argument to
get f(Gn) ⊂ H2, . . . and finally that f(Gn) ⊂ Hn.
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Repeating the argument but applied to G/Gn → H/Hn with the induced fil-
tration, we get that f(Gn−1) ⊂ Hn−1 and then by the induction hypothesis that
f(Gk) ⊂ Hk for 0 ≤ k ≤ n.

Now if P ∈ Xk and if S and T are the summands of Gk/Gk+1 and Hk/Hk+1 cor-
responding to P respectively, then the same type of argument gives thatGk/Gk+1 →
Hk/Hk+1 maps S into T .

The uniqueness of the filtrations and direct sum decompositions can be argued by
assuming G = H (with possibly different filtrations and direct sum decompositions)
and letting f = 1G. So the above would give Gk ⊂ Hk. Then similarly we get
Hk ⊂ Gk, and so Gk = Hk for all k. Likewise we get the uniqueness of the direct
sum decompositions. �

Remark 3.2. We would like to thank the referee for help in writing this paper.
The referee has pointed out that the Gk of Theorem 3.1 can be described by the
formulas Gk/Gk+1 =

⊕
P∈Xk

ΓP (G/Gk+1) for k = 0, . . . , n, where for a module M

we have that ΓP (M) consists of all x ∈ M such that Pnx = 0 for some n ≥ 1. The
referee also suggested that Theorem 3.1 might hold when we assume only the ring
R is Cohen-Macaulay, admitting a canonical module. We do not know if this is the
case.

4. Tensor products of Gorenstein injective modules

We let R be a Gorenstein ring of finite Krull dimension n. We want to show that
over such an R all tensor products of Gorenstein injective modules are Gorenstein
injective. If G (or H) is a Gorenstein injective module and 0 ≤ k ≤ n+1, then Gk

(or Hk) will denote the k-th submodule of G (or H) that is part of the filtration
provided by Theorem 3.1.

Theorem 4.1. If G and H are Gorenstein injective modules, then so is G⊗H.

Proof. If S and T are Gorenstein injective R-modules having properties t(P ) and
t(Q) respectively, then S⊗T = 0 if P �= Q (by (5)) and if P = Q and ht(P ) ≥ 1 (by
(9)). We use this to argue that G⊗H = G/G1⊗H/H1. This claim is trivial if n = 0,
since then G1 = H1 = 0. So suppose n ≥ 1. Then using the above and Theorem 3.1
we see that Gn⊗Hk/Hk+1 = 0 for k = 0, . . . , n. Hence Gn⊗H = 0. Then tensoring
the exact 0 → Gn → G → G/Gn → 0 with H we get that G⊗H = G/Gn ⊗H.

If n ≥ 2 (i.e. n− 1 ≥ 1), then the same argument gives that Gn−1/Gn ⊗H = 0
and then that G⊗H = G/Gn−1⊗H. Continuing, we get that G⊗H = G/G1⊗H.
But then the same type argument gives that G/G1 ⊗ H = G/G1 ⊗H/H1 and so
that G⊗H = G/G1 ⊗H/H1.

Now by Theorem 3.1 and (5) we see that G ⊗ H = G/G1 ⊗ H/H1 will be a
direct sum of modules of the form S ⊗ T , where S and T both have property t(P )
for a minimal prime ideal P of R. But such an S and T are naturally modules
over RP , and hence S ⊗ T is an RP -module. Then by (8) S ⊗ T is a Gorenstein
injective R-module. So finally noting that the class of Gorenstein injective modules
is closed under direct sums (by (8)), we get that G ⊗ H is a Gorenstein injective
R-module. �

Remark 4.2. With the same hypothesis as in Theorem 4.1, we do not know if each
Tork(G,H) is also Gorenstein injective when k > 0.
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