Cograde Conditions and Cotorsion Pairs

by
Xi Tang and Zhaoyong Huang

Abstract

Let R and S be rings and ${ }_{R} \omega_{S}$ a semidualizing bimodule. We investigate when the double functor $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms and the double functor $\operatorname{Ext}_{R}^{i}(\omega$, $\left.\operatorname{Tor}_{i}^{S}(\omega,-)\right)$ preserves monomorphisms in terms of the (strong) cograde conditions of modules. Under certain cograde condition of modules, we construct two complete cotorsion pairs. In addition, we establish the relation between some relative finitistic dimensions of rings and the right and left projective dimensions of ω.

2010 Mathematics Subject Classification: Primary 18G25; Secondary 16E10, 16E30.
Keywords: Semidualizing bimodules, (strong) Ext-cograde, (strong) Tor-cograde, double functors, $n-\mathcal{X}$-(co)syzygy, (adjoint) n-cotorsionfree modules, cotorsion pairs, finitistic dimensions.

§1. Introduction

Let R be a left and right Noetherian ring and $n \geqslant 1$. It was proved by Auslander that the flat dimension of the i th term in the minimal injective resolution of R_{R} is at most i for any $0 \leqslant i<n$ if and only if the strong grade of $\operatorname{Ext}_{R}^{i}(M, R)$ is at least i for any finitely generated left R-module M and $1 \leqslant i \leqslant n$; this result is left-right symmetric ([FGR, Thm. 3.7]). In this case, R is called Auslander n-Gorenstein. If R is Auslander n-Gorenstein for all n, then it is said to satisfy the Auslander condition. This condition is a noncommutative version of commutative Gorenstein rings. It is known that Auslander n-Gorenstein rings and the Auslander condition play a crucial role in homological algebra, representation theory of artin algebras and noncommutative algebraic geometry; see [AR1, AR2, B, CSS, EHIS, FGR, H1, H3, HI, HQ, IS, IY1, IY2] and references therein. In particular, Auslander

[^0]n-Gorenstein rings and some generalized versions were characterized in terms of the properties of the double functor $\operatorname{Ext}_{R^{\text {op }}}^{i}\left(\operatorname{Ext}_{R}^{i}(-, R), R\right)$ and certain (strong) grade conditions of Ext-modules, and a series of cotorsion pairs were constructed under the Auslander condition ([HI]).

It is well known that the (Auslander) transpose is one of the most powerful tools in representation theory of artin algebras and Gorenstein homological algebra; see [AB, ARS, EJ]. To dualize this important and useful notion, we introduced in [TH1] the notion of the cotranspose of modules and then obtained many dual counterparts of interesting results ([TH1, TH2, TH3, TH4]). As a dual of the notion of the (strong) grade of modules, we introduced in [TH1, TH4] the notion of the (strong) cograde of modules, and obtained the dual versions of some results about the (strong) grade of modules. Let R and S be rings and ${ }_{R} \omega_{S}$ a semidualizing bimodule. In this paper, we will study when the double functor $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms and the double functor $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega,-)\right)$ preserves monomorphisms in terms of the (strong) cograde conditions of modules and some related properties of the cotranspose of modules, and also investigate the relationship between certain cograde conditions of modules and complete cotorsion pairs. This paper is organized as follows.

In Section 2 we give some terminology and some preliminary results.
Let R and S be rings and ${ }_{R} \omega_{S}$ a semidualizing bimodule. In Section 3 we investigate when $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms and $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega,-)\right)$ preserves monomorphisms in terms of the (strong) cograde conditions of modules. Let $n, k \geqslant 0$. We prove that the Tor-cograde of $\operatorname{Ext}_{R}^{i+k}(\omega, M)$ with respect to ω is at least i for any left R-module M and $1 \leqslant i \leqslant n$ if and only if $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any epimorphism of left R-modules $f: B \rightarrow C$ with B, C being a $(k+1)$-cosyzygy and $0 \leqslant i \leqslant n-1$ (Theorem 3.5), and that the Extcograde of $\operatorname{Tor}_{i+k}^{S}(\omega, N)$ with respect to ω is at least i for any left S-module N and $1 \leqslant i \leqslant n$ if and only if $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any monomorphism of left S-modules $g: B^{\prime} \rightharpoondown C^{\prime}$ with B^{\prime}, C^{\prime} being a $(k+1)$-yoke and $0 \leqslant i \leqslant n-1$ (Theorem 3.7).

Moreover, we prove that the strong Tor-cograde of $\operatorname{Ext}_{R}^{i+k}(\omega, M)$ with respect to ω is at least i for any left R-module M and $1 \leqslant i \leqslant n$ if and only if for any exact sequence of left R-modules $0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0$ with A an $(i-1)$ - $\mathcal{P}_{\omega}(R)$ syzygy of an $(i+k-1)$-cosyzygy, $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$ (Theorem 3.8), and that the strong Ext-cograde of $\operatorname{Tor}_{i+k}^{S}(\omega, N)$ with respect to ω is at least i for any left S-module N and $1 \leqslant i \leqslant n$ if and only if for any exact sequence of left S-modules $0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0$ with C an (i-1)-
$\mathcal{I}_{\omega}(S)$-cosyzygy of an $(i+k-1)$-yoke, $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$ (Theorem 3.9).

In Section 4 we introduce the notion of ω satisfying the (quasi) n-cograde condition in terms of the properties of the strong cograde of modules. By using the results obtained in Section 3 we give some equivalent characterizations for ω satisfying such conditions (Theorems 4.8 and 4.14). In particular, the n-cograde condition is left-right symmetric, but the quasi n-cograde condition is not. In addition, we prove that the Tor-cograde of $\operatorname{Ext}_{R}^{i}(\omega, M)$ with respect to ω is at least $i-1$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$ if and only if the Ext-cograde of $\operatorname{Tor}_{i}^{S}(\omega, N)$ with respect to ω is at least $i-1$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$ (Theorem 4.19).

In Section 5 we prove that if one of the equivalent conditions in Theorem 4.19 mentioned above is satisfied, then the right S-projective dimension $\operatorname{pd}_{S^{\text {op }}} \omega$ of ω is at most $n-1$ if and only if (\mathcal{P}_{ω} - $\mathrm{id}{ }^{\leqslant n-1}(R),{ }_{R} \omega^{\perp_{n}}$) forms a complete cotorsion pair, and that the left R-projective dimension $\operatorname{pd}_{R} \omega$ of ω is at most $n-1$ if and only if $\left(\omega_{S}{ }^{\top}, \mathcal{I}_{\omega^{-}}\right.$pd $\left.{ }^{\leqslant n-1}(S)\right)$ forms a complete cotorsion pair (Theorem 5.6); see Sections 2 and 5 for the details of this notation.

In Section 6 we introduce the finitistic $\mathcal{P}_{\omega}(R)$-injective dimension $\mathrm{FP}_{\omega^{-}}$id R of R and the $\mathcal{I}_{\omega}(S)$-projective dimension $\mathrm{F} \mathcal{I}_{\omega}$ - $\operatorname{pd} S$ of S. We prove that if the Torcograde of $\operatorname{Ext}_{R}^{i+k}(\omega, M)$ with respect to ω is at least i for any $M \in \operatorname{Mod} R$ and $i \geqslant 1$, then $\mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R \leqslant \operatorname{pd}_{R} \omega \leqslant \mathrm{~F} \mathcal{P}_{\omega}-\mathrm{id} R+k$. Further, we prove that if the Extcograde of $\operatorname{Tor}_{i+k}^{S}(\omega, N)$ with respect to ω is at least i for any $N \in \operatorname{Mod} S$ and $i \geqslant 1$, then $\mathrm{F} \mathcal{I}_{\omega^{-}} \operatorname{pd} S \leqslant \operatorname{pd}_{S^{\text {op }}} \omega \leqslant \mathrm{FI}_{\omega^{-}} \operatorname{pd} S+k$ (Theorem 6.3). As an application, we get that for an artin algebra R, if R satisfies the Auslander condition then FPD $R^{\mathrm{op}}=$ FID $R^{\mathrm{op}}=\operatorname{id}_{R^{\text {op }}} R=\operatorname{id}_{R} R=\operatorname{FPD} R=$ FID R, and if R satisfies the right quasi Auslander condition then FPD $R \leqslant$ FID $R=\operatorname{id}_{R^{\text {op }}} R=\operatorname{id}_{R} R \leqslant \operatorname{FPD} R+1$, where FID R, FPD $R, \operatorname{id}_{R^{\text {op }}} R$ and $\operatorname{id}_{R} R$ are the finitistic injective dimension, the finitistic projective dimension, the right and left self-injective dimensions of R respectively (Corollary 6.9).

§2. Preliminaries

Throughout this paper, all rings are associative rings with units. For a ring R, $\operatorname{Mod} R(\operatorname{resp} . \bmod R)$ are the class of left (resp. finitely generated left) R-modules. Let $M \in \operatorname{Mod} R$; we use $\operatorname{Add}_{R} M$ to denote the subclass of $\operatorname{Mod} R$ consisting of modules consisting of direct summands of direct sums of copies of M, and use $\operatorname{pd}_{R} M, \mathrm{fd}_{R} M$ and $\mathrm{id}_{R} M$ to denote the projective, flat and injective dimensions of M respectively.

Definition 2.1 ([ATY, HW]). Let R and S be rings. An $(R-S)$-bimodule ${ }_{R} \omega_{S}$ is called semidualizing if the following conditions are satisfied:
(a1) ${ }_{R} \omega$ admits a degreewise finite R-projective resolution.
(a2) ω_{S} admits a degreewise finite S-projective resolution.
(b1) The homothety map $R_{R} R_{R} \xrightarrow{R \gamma} \operatorname{Hom}_{S^{\text {op }}}(\omega, \omega)$ is an isomorphism.
(b2) The homothety map $S_{S} S_{S} \xrightarrow{\gamma_{S}} \operatorname{Hom}_{R}(\omega, \omega)$ is an isomorphism.
(c1) $\operatorname{Ext}_{R}^{\geqslant 1}(\omega, \omega)=0$.
(c2) $\operatorname{Ext}_{S \text { 아 }}^{\geqslant 1}(\omega, \omega)=0$.
Wakamatsu in [W1] introduced and studied the so-called generalized tilting modules, which are usually called Wakamatsu tilting modules; see [BR, MR]. Note that a bimodule ${ }_{R} \omega_{S}$ is semidualizing if and only if it is Wakamatsu tilting ([W3, Cor. 3.2]). Examples of semidualizing bimodules are given in [HW, S, TH2, TH4, W2].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule ${ }_{R} \omega_{S}$. For convenience, we write

$$
\begin{aligned}
(-)_{*} & :=\operatorname{Hom}(\omega,-) \quad \text { and }(-)^{*}:=\operatorname{Hom}(-, \omega), \\
{ }_{R} \omega^{\perp} & :=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{\geqslant 1}(\omega, M)=0\right\}, \\
\omega_{S}^{\top} & :=\left\{N \in \operatorname{Mod} S \mid \operatorname{Tor}_{\geqslant 1}^{S}(\omega, N)=0\right\} .
\end{aligned}
$$

For any $n \geqslant 1$ we write

$$
\begin{aligned}
R^{L_{n}} & :=\left\{M \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1 \leqslant i \leqslant n}(\omega, M)=0\right\} \\
\omega_{S}{ }^{\top_{n}} & :=\left\{N \in \operatorname{Mod} S \mid \operatorname{Tor}_{1 \leqslant i \leqslant n}^{S}(\omega, N)=0\right\}
\end{aligned}
$$

in particular, $R_{R} \omega^{\perp_{0}}=\operatorname{Mod} R$ and $\omega_{S}{ }^{\top_{0}}=\operatorname{Mod} S$. We define $\omega_{S}{ }^{\perp_{n}}$ and ${ }_{R} \omega^{\top_{n}}$ symmetrically. Following [HW] set

$$
\begin{aligned}
\mathcal{F}_{\omega}(R) & :=\left\{\omega \otimes_{S} F \mid F \text { is flat in } \operatorname{Mod} S\right\} \\
\mathcal{P}_{\omega}(R) & :=\left\{\omega \otimes_{S} P \mid P \text { is projective in } \operatorname{Mod} S\right\}, \\
\mathcal{I}_{\omega}(S) & :=\left\{I_{*} \mid I \text { is injective in } \operatorname{Mod} R\right\} .
\end{aligned}
$$

The modules in $\mathcal{F}_{\omega}(R), \mathcal{P}_{\omega}(R)$ and $\mathcal{I}_{\omega}(S)$ are called ω-flat, ω-projective and ω injective respectively. Note that $\mathcal{P}_{\omega}(R)=\operatorname{Add}_{R} \omega$ ([TH4, Prop. 3.4(2)]). The classes of $\mathcal{F}_{\omega}\left(S^{\mathrm{op}}\right), \mathcal{P}_{\omega}\left(S^{\mathrm{op}}\right)$ and $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)$ are defined symmetrically.

Let $M \in \operatorname{Mod} R$ and $N \in \operatorname{Mod} S$. Then we have the following two canonical valuation homomorphisms:

$$
\theta_{M}: \omega \otimes_{S} M_{*} \rightarrow M
$$

defined by $\theta_{M}(x \otimes f)=f(x)$ for any $x \in \omega$ and $f \in M_{*}$, and

$$
\mu_{N}: N \rightarrow\left(\omega \otimes_{S} N\right)_{*}
$$

defined by $\mu_{N}(y)(x)=x \otimes y$ for any $y \in N$ and $x \in \omega$. Recall that a module $M \in \operatorname{Mod} R$ is called ω-cotorsionless (resp. ω-coreflexive) if θ_{M} is an epimorphism (resp. an isomorphism) ([TH1]), and a module $N \in \operatorname{Mod} S$ is called adjoint ω-cotorsionless (resp. adjoint ω-coreflexive) if μ_{N} is a monomorphism (resp. an isomorphism) ([TH3]).

Definition 2.2 ([HW]). (1) The Auslander class $\mathcal{A}_{\omega}(S)$ with respect to ω consists of all left S-modules N satisfying the following conditions:
(A1) $N \in \omega_{S}{ }^{\top}$.
(A2) $\omega \otimes_{S} N \in{ }_{R} \omega^{\perp}$.
(A3) μ_{N} is an isomorphism in $\operatorname{Mod} S$.
(2) The Bass class $\mathcal{B}_{\omega}(R)$ with respect to ω consists of all left R-modules M satisfying the following conditions:
(B1) $M \in{ }_{R} \omega^{\perp}$.
(B2) $M_{*} \in \omega_{S}{ }^{\top}$.
(B3) θ_{M} is an isomorphism in $\operatorname{Mod} R$.
For a module $M \in \operatorname{Mod} R$ we use

$$
\begin{equation*}
0 \rightarrow M \rightarrow I^{0}(M) \xrightarrow{g^{0}} I^{1}(M) \xrightarrow{g^{1}} \cdots \xrightarrow{g^{i-1}} I^{i}(M) \xrightarrow{g^{i}} \cdots \tag{2.1}
\end{equation*}
$$

to denote the minimal injective resolution of M. For any $n \geqslant 1, \operatorname{co} \Omega^{n}(M):=$ $\operatorname{Im} g^{n-1}$ is called the n-cosyzygy of M; in particular, $\operatorname{co} \Omega^{0}(M)=M$. We use $\operatorname{co} \Omega^{n}(R)$ to denote the subclass of $\operatorname{Mod} R$ consisting of n-cosyzygy modules. We defined $\operatorname{co} \Omega^{n}\left(S^{\mathrm{op}}\right)$ symmetrically.

Definition 2.3 ([TH1]). Let $M \in \operatorname{Mod} R$ and $n \geqslant 1$.
(1) $\operatorname{cTr}_{\omega} M:=\operatorname{Coker}\left(g^{0}{ }_{*}\right)$ is called the cotranspose of M with respect to ${ }_{R} \omega_{S}$, where g^{0} is as in (2.1).
(2) M is called n - ω-cotorsionfree if $\operatorname{cTr}_{\omega} M \in \omega_{S}{ }^{\top_{n}}$ and is called $\infty-\omega$-cotorsionfree if it is n - ω-cotorsionfree for all n.

We use $c \mathcal{T}_{\omega}^{n}(R)$ (resp. $\left.\mathrm{c} \mathcal{T}_{\omega}(R)\right)$ to denote the subclass of $\operatorname{Mod} R$ consisting of n - ω-cotorsionfree modules (resp. ∞ - ω-cotorsionfree modules). We define $c \mathcal{T}_{\omega}^{n}\left(S^{\mathrm{op}}\right)$ symmetrically. By [TH1, Prop. 3.2] we have that a module in $\operatorname{Mod} R$ is ω-cotorsionless (resp. ω-coreflexive) if and only if it is in $\mathrm{c} \mathcal{T}_{\omega}^{1}(R)\left(\right.$ resp. $\mathrm{c} \mathcal{T}_{\omega}^{2}(R)$).

Recall from [E] that a homomorphism $f: F \rightarrow N$ in $\operatorname{Mod} S$ with F flat is called a flat cover of N if $\operatorname{Hom}_{S}\left(F^{\prime}, f\right)$ is epic for any flat module F^{\prime} in $\operatorname{Mod} S$, and an endomorphism $h: F \rightarrow F$ is an automorphism whenever $f=f h$. Let $N \in \operatorname{Mod} S$. Bican, El Bashir and Enochs proved in [BBE] that N has a flat cover. We use

$$
\begin{equation*}
\cdots \xrightarrow{f_{n}} F_{n}(N) \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{1}} F_{1}(N) \xrightarrow{f_{0}} F_{0}(N) \rightarrow N \rightarrow 0 \tag{2.2}
\end{equation*}
$$

to denote the minimal flat resolution of N in $\operatorname{Mod} S$, where each $F_{i}(N) \rightarrow \operatorname{Coker} f_{i}$ is a flat cover of Coker f_{i}. For any $n \geqslant 1, \Omega_{\mathcal{F}}^{n}(N):=\operatorname{Im} f_{n-1}$ is called the n-yoke of N; in particular, $\Omega_{\mathcal{F}}^{0}(N)=N$. We use $\Omega_{\mathcal{F}}^{n}(S)$ to denote the subclass of $\operatorname{Mod} S$ consisting of n-yoke modules. We define $\Omega_{\mathcal{F}}^{n}\left(R^{\mathrm{op}}\right)$ symmetrically.

Definition $2.4([\mathrm{TH} 3])$. Let $N \in \operatorname{Mod} S$ and $n \geqslant 1$.
(1) $\operatorname{acTr}_{\omega} N:=\operatorname{Ker}\left(1_{\omega} \otimes f_{0}\right)$ is called the adjoint cotranspose of N with respect to ${ }_{R} \omega_{S}$, where f_{0} is as in (2.2).
(2) N is called adjoint n - ω-cotorsionfree if $\operatorname{acTr}_{\omega} N \in{ }_{R} \omega^{\perp_{n}}$ and is called adjoint $\infty-\omega$-cotorsionfree if it is adjoint n - ω-cotorsionfree for all n.

We use $\operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$ (resp. ac $\left.\mathcal{T} \omega(S)\right)$ to denote the subclass of $\operatorname{Mod} S$ consisting of adjoint n - ω-cotorsionfree modules (resp. adjoint ∞ - ω-cotorsionfree modules). We define $\operatorname{ac} \mathcal{T}_{\omega}^{n}\left(R^{\text {op }}\right)$ symmetrically. By [TH3, Prop. 3.2] we have that a module in $\operatorname{Mod} S$ is adjoint ω-cotorsionless (resp. adjoint ω-coreflexive) if and only if it is in $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)\left(\right.$ resp. $\left.\operatorname{ac}^{2}{ }_{\omega}^{2}(S)\right)$.

Definition 2.5 ([TH4]). (1) Let $M \in \operatorname{Mod} R$ and $n \geqslant 0$. The Ext-cograde of M with respect to ω is defined as E-cograde ${ }_{\omega} M:=\inf \left\{i \geqslant 0 \mid \operatorname{Ext}_{R}^{i}(\omega, M) \neq 0\right\}$ and the strong Ext-cograde of M with respect to ω, denoted by s.E-cograde $\omega_{\omega} M$, is said to be at least n if E-cograde ${ }_{\omega} X \geqslant n$ for any quotient module X of M. The (strong) Ext-cograde of a module in Mod S^{op} is defined symmetrically.
(2) Let $N \in \operatorname{Mod} S$ and $n \geqslant 0$. The Tor-cograde of N with respect to ω is defined as T-cograde $\omega_{\omega} N:=\inf \left\{i \geqslant 0 \mid \operatorname{Tor}_{i}^{S}(\omega, N) \neq 0\right\}$ and the strong Tor-cograde of N with respect to ω, denoted by s.T-cograde ${ }_{\omega} N$, is said to be at least n if T-cograde $\omega \geqslant n$ for any submodule Y of N. The (strong) Tor-cograde of a module in $\operatorname{Mod} R^{\mathrm{op}}$ is defined symmetrically.

Let \mathcal{X} be a subclass of $\operatorname{Mod} R$ and $M \in \operatorname{Mod} R$. An exact sequence (of finite or infinite length)

$$
\cdots \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow M \rightarrow 0
$$

in $\operatorname{Mod} R$ is called an \mathcal{X}-resolution of M if all X_{i} are in \mathcal{X}. The \mathcal{X}-projective dimension $\mathcal{X}-\operatorname{pd}_{R} M$ of M is defined as $\inf \{n \mid$ there exists an \mathcal{X}-resolution

$$
0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow M \rightarrow 0
$$

of M in $\operatorname{Mod} R\}$. The notions of an \mathcal{X}-coresolution and the \mathcal{X}-injective dimension $\mathcal{X}-\operatorname{id}_{R} M$ of M are defined dually.

Let \mathcal{F} be a subclass of $\operatorname{Mod} R$. A module $M \in \operatorname{Mod} R$ is said to have special \mathcal{F}-precover if there exists an exact sequence

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

in $\operatorname{Mod} R$ with $F \in \mathcal{F}$ and $\operatorname{Ext}_{R}^{1}\left(F^{\prime}, K\right)=0$ for any $F^{\prime} \in \mathcal{F}$. The class \mathcal{F} is called a special precovering if any module in $\operatorname{Mod} R$ has a special \mathcal{F}-precover. The notions of special \mathcal{F}-preenvelopes and special preenveloping classes are defined dually (see [EJ]).

Definition 2.6 ([GT]). Let \mathcal{U}, \mathcal{V} be subclasses of $\operatorname{Mod} R$. The pair $(\mathcal{U}, \mathcal{V})$ is called a cotorsion pair if $\mathcal{U}={ }^{\perp_{1}} \mathcal{V}:=\left\{U \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1}(U, V)=0\right.$ for any $\left.V \in \mathcal{V}\right\}$ and $\mathcal{V}=\mathcal{U}^{\perp_{1}}:=\left\{V \in \operatorname{Mod} R \mid \operatorname{Ext}_{R}^{1}(U, V)=0\right.$ for any $\left.U \in \mathcal{U}\right\}$.

The following is Salce's lemma.
Lemma 2.7 (Cf. [GT, Lem. 2.2.6]). Let $(\mathcal{U}, \mathcal{V})$ be a cotorsion pair in $\operatorname{Mod} R$. Then the following statements are equivalent:
(1) Any module in $\operatorname{Mod} R$ has a special \mathcal{U}-precover.
(2) Any module in $\operatorname{Mod} R$ has a special \mathcal{V}-preenvelope.

In this case, the cotorsion pair $(\mathcal{U}, \mathcal{V})$ is called complete.
Definition 2.8. Let \mathcal{X} be a subcategory of an abelian category \mathcal{E} and $n \geqslant 1$. If there exists an exact sequence

$$
0 \rightarrow N \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow M \rightarrow 0
$$

in \mathcal{E} with all X_{i} in \mathcal{X}, then N is called an $n-\mathcal{X}$-syzygy of M and M is called an $n-\mathcal{X}$-cosyzygy of N.

For subcategories \mathcal{X}, \mathcal{Y} of an abelian category \mathcal{E} and $n \geqslant 1$, we write

$$
\begin{aligned}
\Omega_{\mathcal{X}}^{n}(\mathcal{Y}) & :=\{N \in \mathcal{A} \mid N \text { is an } n \text { - } \mathcal{X} \text {-syzygy of some object in } \mathcal{Y}\}, \\
\operatorname{co} \Omega_{\mathcal{X}}^{n}(\mathcal{Y}) & :=\{M \in \mathcal{A} \mid M \text { is an } n \text { - } \mathcal{X} \text {-cosyzygy of some object in } \mathcal{Y}\} .
\end{aligned}
$$

In particular, $\Omega_{\mathcal{X}}^{0}(\mathcal{Y})=\mathcal{Y}=\cos _{\mathcal{X}}^{0}(\mathcal{Y})$ and $\Omega_{\mathcal{X}}^{-1}(\mathcal{Y})=0=\cos _{\mathcal{X}}^{-1}(\mathcal{Y})$. For convenience, we write

$$
\begin{gathered}
\Omega_{\mathcal{A}}^{n}(S):=\Omega_{\mathcal{A}_{\omega}(S)}^{n}(\operatorname{Mod} S), \quad \Omega_{\mathcal{I}_{\omega}}^{n}(S):=\Omega_{\mathcal{I}_{\omega}(S)}^{n}(\operatorname{Mod} S), \\
\Omega_{\mathcal{I}_{\omega}}^{n}\left(R^{\mathrm{op}}\right):=\Omega_{\mathcal{I}_{\omega}\left(R^{\mathrm{op})}\right.}^{n}\left(\operatorname{Mod} R^{\mathrm{op}}\right), \\
\operatorname{co} \Omega_{\mathcal{B}}^{n}(R):=\operatorname{co} \Omega_{\mathcal{B}_{\omega}(R)}^{n}(\operatorname{Mod} R), \quad \cos \Omega_{\mathcal{F}_{\omega}}^{n}(R):=\operatorname{co} \Omega_{\mathcal{F}_{\omega}(R)}^{n}(\operatorname{Mod} R), \\
\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}(R):=\operatorname{co} \Omega_{\mathcal{P}_{\omega}(R)}^{n}(\operatorname{Mod} R), \quad \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}\left(S^{\mathrm{op}}\right):=\operatorname{co} \Omega_{\mathcal{P}_{\omega}\left(S^{\mathrm{op})}\right.}^{n}\left(\operatorname{Mod} S^{\mathrm{op}}\right) .
\end{gathered}
$$

Lemma 2.9. We have
(1) $\Omega_{\mathcal{I}_{\omega}}^{1}(S)=\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$;
(2) $\cos _{\mathcal{P}_{\omega}}^{1}(R)=c \mathcal{T}_{\omega}^{1}(R)$.

Proof. (1) By [TH3, Prop. 3.8] we have ac $\mathcal{T}_{\omega}^{1}(S) \subseteq \Omega_{\mathcal{I}_{\omega}}^{1}(S)$. Now let $N \in \Omega_{\mathcal{I}_{\omega}}^{1}(S)$ and let $f^{0}: N \mapsto I^{0}$ be a monomorphism in $\operatorname{Mod} S$ with $I^{0} \in \mathcal{I}_{\omega}(S)$. Then from the commutative diagram

with $\mu_{I^{0}}$ an isomorphism, we get that μ_{N} is a monomorphism and $N \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$. It implies $\Omega_{\mathcal{I}_{\omega}}^{1}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$.
(2) By [TH1, Prop. 3.7] we have $c \mathcal{T}_{\omega}^{1}(R) \subseteq \cos _{\mathcal{P}_{\omega}}^{1}(R)$. Now let $M \in \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{1}(R)$ and let $f_{0}: W_{0} \rightarrow M$ be an epimorphism in $\operatorname{Mod} R$ with $W_{0} \in \mathcal{P}_{\omega}(R)$. Then from the commutative diagram

with $\theta_{W_{0}}$ an isomorphism, we get that θ_{M} is an epimorphism and $M \in \mathrm{c} \mathcal{T}_{\omega}^{1}(R)$. It implies $\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{1}(R) \subseteq c \mathcal{T}_{\omega}^{1}(R)$.

Let \mathcal{C}, \mathcal{E} be abelian categories and $\Delta: \mathcal{C} \rightarrow \mathcal{E}$ a functor. Recall that a sequence \mathbb{T} in \mathcal{C} is called Δ-exact if $\Delta(\mathbb{T})$ is exact in \mathcal{E}.

§3. (Strong) cograde conditions and double homological functors

In this section we investigate when $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms and $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}(-, \omega)\right)$ preserves monomorphisms in terms of the (strong) cograde conditions of modules.

§3.1. Cograde conditions

We begin with the following lemma.
Lemma 3.1. (1) Let $M \in \operatorname{Mod} R$ with the minimal injective resolution as (2.1). Then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{R}^{1}(\omega, M) \xrightarrow{\lambda} \operatorname{cTr}_{\omega} M \xrightarrow{\pi} I^{1}(M)_{*} / \cos ^{1}(M)_{*} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

in $\operatorname{Mod} S$ such that $1_{\omega} \otimes \pi$ is an isomorphism.
(2) Let $N \in \operatorname{Mod} S$ with the minimal flat resolution as (2.2). Then there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{1}\right) \xrightarrow{\sigma} \operatorname{acTr}_{\omega} N \xrightarrow{\tau} \operatorname{Tor}_{1}^{S}(\omega, N) \rightarrow 0 \tag{3.2}
\end{equation*}
$$

in $\operatorname{Mod} R$ such that σ_{*} is an isomorphism.
Proof. (1) Let $g^{0}=\alpha \cdot \beta$ (where $\beta: I^{0}(M) \rightarrow \operatorname{co} \Omega^{1}(M)\left(=\operatorname{Im} g^{0}\right)$ and $\alpha: \operatorname{co} \Omega^{1}(M)$ $\left.\mapsto I^{1}(M)\right)$ be the natural epic-monic decomposition of g^{0}. Then we have the commutative diagram with exact columns and rows

in $\operatorname{Mod} S$, where $C=I^{1}(M)_{*} / \cos \Omega^{1}(M)_{*}, \pi_{1}$ is the natural epimorphism, λ and π are induced homomorphisms. The rightmost column in the above diagram is
exactly the exact sequence (3.1). Notice that

$$
0 \rightarrow \operatorname{co} \Omega^{1}(M)_{*} \xrightarrow{\alpha_{*}} I^{1}(M)_{*} \xrightarrow{g^{1}} I^{2}(M)_{*}
$$

is exact, so there exists a homomorphism $\delta: C \rightarrow I^{2}(M)_{*}$ in $\operatorname{Mod} S$ such that $g^{1}{ }_{*}=\delta \cdot \pi_{1}$, and hence $g^{1}{ }_{*}=\delta \cdot \pi_{1}=\delta \cdot \pi \cdot \gamma$.

By [HW, Lem. 4.1], for any injective module $I \in \operatorname{Mod} R$ we have $\omega \otimes_{S} I_{*} \cong I$ canonically. So the upper row in the commutative diagram

is exact. Let $x \in \operatorname{Ker}\left(1_{\omega} \otimes \pi\right)$. Then there exists $y \in \omega \otimes_{S} I^{1}(M)_{*}$ such that $x=\left(1_{\omega} \otimes \gamma\right)(y)$. It follows that

$$
\left(1_{\omega} \otimes g^{1}{ }_{*}\right)(y)=\left(1_{\omega} \otimes \delta\right) \cdot\left(1_{\omega} \otimes \pi\right) \cdot\left(1_{\omega} \otimes \gamma\right)(y)=\left(1_{\omega} \otimes \delta\right) \cdot\left(1_{\omega} \otimes \pi\right)(x)=0 .
$$

So $y \in \operatorname{Ker}\left(1_{\omega} \otimes g^{1}{ }_{*}\right)=\operatorname{Im}\left(1_{\omega} \otimes g^{0}{ }_{*}\right)$, and hence there exists $z \in \omega \otimes_{S} I^{0}(M)_{*}$ such that $y=\left(1_{\omega} \otimes g^{0}{ }_{*}\right)(z)$. Thus

$$
x=\left(1_{\omega} \otimes \gamma\right)(y)=\left(1_{\omega} \otimes \gamma\right) \cdot\left(1_{\omega} \otimes g_{*}^{0}\right)(z)=\left(1_{\omega} \otimes\left(\gamma \cdot g_{*}^{0}\right)\right)(z)=0,
$$

which implies that $1_{\omega} \otimes \pi$ is a monomorphism, and hence an isomorphism.
(2) Let $f_{0}=\alpha^{\prime} \cdot \beta^{\prime}\left(\right.$ where $\beta^{\prime}: F_{1}(N) \rightarrow \Omega_{\mathcal{F}}^{1}(N)\left(=\operatorname{Im} f_{0}\right)$ and $\alpha^{\prime}: \Omega_{\mathcal{F}}^{1}(N) \longrightarrow$ $F_{0}(N)$) be the natural epic-monic decomposition of f_{0}. Then we have the commutative diagram with exact columns and rows

in $\operatorname{Mod} R$, where σ and τ are induced homomorphisms. The leftmost column in the above diagram is exactly the exact sequence (3.2). Notice that

$$
\omega \otimes_{S} F_{2}(N) \xrightarrow{1_{\omega} \otimes f_{1}} \omega \otimes_{S} F_{1}(N) \xrightarrow{1_{\omega} \otimes \beta^{\prime}} \omega \otimes_{S} \Omega_{\mathcal{F}}^{1}(N) \rightarrow 0
$$

is exact, so there exists a homomorphism $\phi: \omega \otimes_{S} F_{2}(N) \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{1}\right)$ in $\operatorname{Mod} R$ such that $1_{\omega} \otimes f_{1}=\sigma_{1} \cdot \phi$, and hence $1_{\omega} \otimes f_{1}=\sigma_{1} \cdot \phi=\eta \cdot \sigma \cdot \phi$.

By [HW, Lem. 4.1], for any flat module $F \in \operatorname{Mod} S$ we have $F \cong\left(\omega \otimes_{S} F\right)_{*}$ canonically. So the upper row in the following commutative diagram is exact:

Let $x \in\left(\operatorname{acTr}_{\omega} N\right)_{*}$. Since $\left(\left(1_{\omega} \otimes f_{0}\right)_{*} \cdot \eta_{*}\right)(x)=\left(\left(\left(1_{\omega} \otimes f_{0}\right) \cdot \eta\right)_{*}\right)(x)=0$, we have that $\eta_{*}(x) \in \operatorname{Ker}\left(1_{\omega} \otimes f_{0}\right)_{*}=\operatorname{Im}\left(1_{\omega} \otimes f_{1}\right)_{*}$ and there exists $y \in\left(\omega \otimes_{S} F_{2}(N)\right)_{*}$ such that $\eta_{*}(x)=\left(1_{\omega} \otimes f_{1}\right)_{*}(y)$. Thus

$$
\eta_{*}(x)=\left(1_{\omega} \otimes f_{1}\right)_{*}(y)=\left(\eta_{*} \cdot \sigma_{*} \cdot \phi_{*}\right)(y)
$$

As η^{*} is monic we have $x=\sigma_{*}\left(\phi_{*}(y)\right)$. It means that σ_{*} is an epimorphism, and hence an isomorphism.

The following two lemmas are useful in this section.
Lemma 3.2. Assume that $\cos ^{n}(R) \subseteq c \mathcal{T}_{\omega}^{m}(R)$ with $m, n \geqslant 0$. Then the following statements are equivalent:
(1) T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{n+1}(\omega, M) \geqslant m$ for any $M \in \operatorname{Mod} R$.
(2) $\cos ^{n+1}(R) \subseteq c \mathcal{T}_{\omega}^{m+1}(R)$.

Proof. Because any injective module in $\operatorname{Mod} R$ is $\operatorname{in} \mathcal{T}_{\omega}^{1}(R)$ by [TH1, Lem. 2.5(2)], we have $\operatorname{co} \Omega^{n+1}(R) \subseteq c \mathcal{T}_{\omega}^{1}(R)$ for any $n \geqslant 0$, and the case for $m=0$ follows. Now suppose that $m \geqslant 1$ and $M \in \operatorname{Mod} R$. By Lemma 3.1(1) there exists an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{1}\left(\omega, \operatorname{co} \Omega^{n}(M)\right) \xrightarrow{\lambda} \operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n}(M) \xrightarrow{\pi} C \rightarrow 0
$$

in $\operatorname{Mod} S$ such that $1_{\omega} \otimes \pi$ is an isomorphism, where $C=I^{n+1}(M)_{*} / \operatorname{co} \Omega^{n+1}(M)_{*}$. Because $\cos ^{n}(R) \subseteq c \mathcal{T}_{\omega}^{m}(R)$ by assumption, we have that both $\operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n}(M)$ and $\operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n+1}(M)$ are in $\omega_{S}{ }^{\top}{ }_{m}$. It yields that

$$
\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{n+1}(\omega, M)\right) \cong \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{1}\left(\omega, \cos ^{n}(M)\right)\right) \cong \operatorname{Tor}_{i+1}^{S}(\omega, C)
$$

for any $0 \leqslant i \leqslant m-1$. In addition, we also have an exact sequence

$$
0 \rightarrow C \rightarrow I^{n+2}(M)_{*} \rightarrow c \operatorname{Tr}_{\omega} \cos ^{n+1}(M) \rightarrow 0
$$

in $\operatorname{Mod} S$. By [HW, Cor. 6.1] we have $I^{n+2}(M)_{*} \in \omega_{S}{ }^{\top}$. So

$$
\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{n+1}(\omega, M)\right) \cong \operatorname{Tor}_{i+1}^{S}(\omega, C) \cong \operatorname{Tor}_{i+2}^{S}\left(\omega, \operatorname{Tr}_{\omega} \cos ^{n+1}(M)\right)
$$

for any $0 \leqslant i \leqslant m-1$. Thus we conclude that $\operatorname{Tor}_{0 \leqslant i \leqslant m-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{n+1}(\omega, M)\right)=$ 0 if and only if $\operatorname{cTr}_{\omega} \cos \Omega^{n+1}(M) \in \omega_{S}{ }^{T_{m+1}}$, and if and only if $\cos \Omega^{n+1}(M) \in$ $c \mathcal{T}_{\omega}^{m+1}(R)$. The proof is finished.

Lemma 3.3. Assume that $\Omega_{\mathcal{F}}^{n}(S) \subseteq \operatorname{ac}_{\omega}^{m}(S)$ with $m, n \geqslant 0$. Then the following statements are equivalent:
(1) $\mathrm{E}-\mathrm{cograde}_{\omega} \operatorname{Tor}_{n+1}^{S}(\omega, N) \geqslant m$ for any $N \in \operatorname{Mod} S$.
(2) $\Omega_{\mathcal{F}}^{n+1}(S) \subseteq \operatorname{ac\mathcal {T}}_{\omega}^{m+1}(S)$.

Proof. Because any flat module in $\operatorname{Mod} S$ is in $\operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ by [TH3, Cor. 3.5(1)], we have $\Omega_{\mathcal{F}}^{n+1}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ for any $n \geqslant 0$, and the case for $m=0$ follows. Now suppose that $m \geqslant 1$ and $N \in \operatorname{Mod} S$. By Lemma 3.1(2), there exists an exact sequence

$$
0 \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{n+1}\right) \xrightarrow{\sigma} \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}(N) \xrightarrow{\tau} \operatorname{Tor}_{1}^{S}\left(\omega, \Omega_{\mathcal{F}}^{n}(N)\right) \rightarrow 0
$$

in $\operatorname{Mod} R$ such that σ_{*} is an isomorphism. Because $\Omega_{\mathcal{F}}^{n}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{m}(S)$ by assumption, we have that both $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}(N)$ and $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n+1}(N)$ are in ${ }_{R} \omega^{\perp_{m}}$. It yields that
$\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{n+1}^{S}(\omega, N)\right) \cong \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{1}^{S}\left(\omega, \Omega_{\mathcal{F}}^{n}(N)\right)\right) \cong \operatorname{Ext}_{R}^{i+1}\left(\omega, \operatorname{Im}\left(1_{\omega} \otimes f_{n+1}\right)\right)$
for any $0 \leqslant i \leqslant m-1$. In addition, we also have an exact sequence

$$
0 \rightarrow \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n+1}(N) \rightarrow \omega \otimes_{S} F_{n+2}(N) \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{n+1}\right) \rightarrow 0
$$

in $\operatorname{Mod} R$. By [HW, Cor. 6.1] we have $\omega \otimes_{S} F_{n+2}(N) \in{ }_{R} \omega^{\perp}$. So
$\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{n+1}^{S}(\omega, N)\right) \cong \operatorname{Ext}_{R}^{i+1}\left(\omega, \operatorname{Im}\left(1_{\omega} \otimes f_{n+1}\right)\right) \cong \operatorname{Ext}_{R}^{i+2}\left(\omega, \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n+1}(N)\right)$ for any $0 \leqslant i \leqslant m-1$. Thus we conclude that $\operatorname{Ext}_{R}^{0 \leqslant i \leqslant m-1}\left(\omega, \operatorname{Tor}_{n+1}^{S}(\omega, N)\right)=0$ if and only if $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n+1}(N) \in{ }_{R} \omega^{\perp_{m+1}}$, and if and only if $\Omega_{\mathcal{F}}^{n+1}(N) \in \operatorname{ac} \mathcal{T}_{\omega}^{m+1}(S)$. The proof is finished.

Let $\mathcal{T} \subseteq \mathcal{W}$ be subcategories of an abelian category \mathcal{E}. Recall that \mathcal{T} is called a generator (resp. cogenerator) for \mathcal{W} if for any $W \in \mathcal{W}$, there exists an exact
sequence

$$
0 \rightarrow W^{\prime} \rightarrow T \rightarrow W \rightarrow 0 \quad\left(\text { resp. } 0 \rightarrow W \rightarrow T \rightarrow W^{\prime} \rightarrow 0\right)
$$

in \mathcal{E} with $T \in \mathcal{T}$ and $W^{\prime} \in \mathcal{W}$.
Lemma 3.4. (1) $\mathcal{P}_{\omega}(R)$ is a generator for $\mathcal{B}_{\omega}(R)$.
(2) $\operatorname{co} \Omega^{n}(R) \subseteq \operatorname{co} \Omega_{\mathcal{B}}^{n}(R)=\operatorname{co} \Omega_{\mathcal{F}_{\omega}}^{n}(R)=\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}(R)$ for any $n \geqslant 1$.

Proof. (1) Let $M \in \mathcal{B}_{\omega}(R)$. Then by [TH1, Thm. $3.9 \&$ Prop. 3.7] there exists an exact sequence

$$
\cdots \rightarrow W_{2} \rightarrow W_{1} \rightarrow W_{0} \rightarrow M \rightarrow 0
$$

in $\operatorname{Mod} R$ with all $W_{i} \in \mathcal{P}_{\omega}(R)$ such that it remains exact after applying the functor $\operatorname{Hom}_{R}(\omega,-)$. Put $M_{1}:=\operatorname{Im}\left(W_{1} \rightarrow W_{0}\right)$. Then $M_{1} \in \mathrm{c} \mathcal{T}_{\omega}(R)$ by [TH1, Prop. 3.7]. Because both M and W_{0} are in ${ }_{R} \omega^{\perp}$, we have $M_{1} \in{ }_{R} \omega^{\perp}$. So $M_{1} \in \mathcal{B}_{\omega}(R)$ by [TH1, Thm. 3.9].
(2) Let $n \geqslant 1$. By [HW, Lem. 4.1] we have that $\mathcal{B}_{\omega}(R)$ contains all injective left R-modules, which yields $\operatorname{co} \Omega^{n}(R) \subseteq \operatorname{co}_{\mathcal{B}}^{n}(R)$. Because $\mathcal{B}_{\omega}(R) \supseteq \mathcal{F}_{\omega}(R) \supseteq \mathcal{P}_{\omega}(R)$ by [HW, Cor. 6.1], we have $\operatorname{co} \Omega_{\mathcal{B}}^{n}(R) \supseteq \operatorname{co}^{\mathcal{F}_{\omega}}{ }^{n}(R) \supseteq \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}(R)$. Because $\mathcal{B}_{\omega}(R)$ is closed under extensions by [HW, Thm. 6.2], we have $\operatorname{co} \Omega_{\mathcal{B}}^{n}(R)=\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}(R)$ by (1) and [H4, Cor. 5.4(2)].

In the following result, we characterize when the double functor $\operatorname{Tor}_{i}^{S}(\omega$, $\left.\operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms in terms of the Tor-cograde conditions of Ext-modules.

Theorem 3.5. Conditions (1)-(3) below are equivalent for any $n, k \geqslant 0$. If $k \geqslant 1$ then (1)-(4) are equivalent.
(1) T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i+k}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(2) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any epimorphism $f: B \rightarrow C$ in $\operatorname{Mod} R$ with $B, C \in \operatorname{co}_{\mathcal{P}_{\omega}}^{k+1}(R)$ and $0 \leqslant i \leqslant n-1$.
(3) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any epimorphism $f: B \rightarrow C$ in $\operatorname{Mod} R$ with $B, C \in \cos ^{k+1}(R)$ and $0 \leqslant i \leqslant n-1$.
(4) $\operatorname{co}^{i+k}(R) \subseteq c \mathcal{T}_{\omega}^{i+1}(R)$ for any $1 \leqslant i \leqslant n$.

Proof. By using induction on $i,(1) \Leftrightarrow(4)$ follows from Lemma 3.2.
$(1) \Rightarrow(2)$ Let $f: B \rightarrow C$ be an epimorphism in $\operatorname{Mod} R$ with $B, C \in \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{k+1}(R)$. Then $C=\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{k+1}\left(C^{\prime}\right)$ for some $C^{\prime} \in \operatorname{Mod} R$. By (1) we have

$$
\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, C)\right) \cong \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i+k+1}\left(\omega, C^{\prime}\right)\right)=0
$$

for any $1 \leqslant i \leqslant n-1$. Thus $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is epic. In the following we will show that $1_{\omega} \otimes f_{*}$ is epic.

If $k \geqslant 1$ then $\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{k}(R) \subseteq c \mathcal{T}_{\omega}^{1}(R)$ by Lemma 2.9(2). So $\operatorname{co}^{\Omega_{\mathcal{P}_{\omega}}^{k+1}(R) \subseteq c \mathcal{T}_{\omega}^{2}(R)}$ by Lemma 3.2, and hence $B, C \in \mathrm{c} \mathcal{T}_{\omega}^{2}(R)$. It follows that $1_{\omega} \otimes f_{*} \cong f$ and $1_{\omega} \otimes f_{*}$ is epic.

Now suppose $k=0$. We have an epimorphism $p: W \rightarrow B$ in $\operatorname{Mod} R$ with $W \in \operatorname{Add}_{R} \omega$. From the exact sequence

$$
0 \rightarrow M_{1} \rightarrow W \xrightarrow{f \cdot p} C \rightarrow 0
$$

in $\operatorname{Mod} R$ with $M_{1}=\operatorname{Ker}(f \cdot p)$, we get the exact sequence

$$
W_{*} \xrightarrow{(f \cdot p)_{*}} C_{*} \rightarrow \operatorname{Ext}_{R}^{1}\left(\omega, M_{1}\right) \rightarrow 0
$$

in $\operatorname{Mod} S$. By (1), $\omega \otimes_{S} \operatorname{Ext}_{R}^{1}\left(\omega, M_{1}\right)=0$. So $\left(1_{\omega} \otimes f_{*}\right) \cdot\left(1_{\omega} \otimes p_{*}\right)=1_{\omega} \otimes(f \cdot p)_{*}$ is epic, which implies that $1_{\omega} \otimes f_{*}$ is also epic.

By Lemma 3.4(2), we have (2) \Rightarrow (3).
$(3) \Rightarrow(1)$ Let $M \in \operatorname{Mod} R$. From the exact sequence

$$
0 \rightarrow \operatorname{co}^{k}(M) \rightarrow I^{k}(M) \xrightarrow{f} \operatorname{co} \Omega^{k+1}(M) \rightarrow 0
$$

in $\operatorname{Mod} R$, we get the exact sequence

$$
I^{k}(M)_{*} \xrightarrow{f_{*}} \cos ^{k+1}(M)_{*} \rightarrow \operatorname{Ext}_{R}^{k+1}(\omega, M) \rightarrow 0
$$

in $\operatorname{Mod} S$. Since $1_{\omega} \otimes f_{*}$ is an epimorphism by (2), we have $\omega \otimes_{S} \operatorname{Ext}_{R}^{k+1}(\omega, M)=0$ and T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{k+1}(\omega, M) \geqslant 1$. In addition, for any $1 \leqslant i \leqslant n-1$,

$$
0=\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}\left(\omega, I^{k}(M)\right)\right) \xrightarrow{\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)} \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{co}^{k+1}(M)\right)\right)
$$

is epic by (3), so we have

$$
\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i+k+1}(\omega, M)\right) \cong \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}\left(\omega, \cos ^{k+1}(M)\right)\right)=0
$$

Thus T-cograde ${ }_{\omega} \operatorname{Ext}_{R}^{i+k+1}(\omega, M) \geqslant i+1$ for any $0 \leqslant i \leqslant n-1$.
Lemma 3.6. (1) $\mathcal{I}_{\omega}(S)$ is a cogenerator for $\mathcal{A}_{\omega}(S)$.
(2) $\Omega_{\mathcal{F}}^{n}(S) \subseteq \Omega_{\mathcal{A}}^{n}(S)=\Omega_{\mathcal{I}_{\omega}}^{n}(S)$ for any $n \geqslant 1$.

Proof. (1) Let $N \in \mathcal{A}_{\omega}(S)$. Then by [TH3, Thm. 3.11(1)] there exists an $\left(\omega \otimes_{S}-\right)$ exact exact sequence

$$
0 \rightarrow N \rightarrow U^{0} \rightarrow U^{1} \rightarrow U^{2} \rightarrow \cdots
$$

in $\operatorname{Mod} S$ with all $U^{i} \in \mathcal{I}_{\omega}(S)$. Put $N^{1}:=\operatorname{Im}\left(U^{0} \rightarrow U^{1}\right)$. Then $N^{1} \in \operatorname{ac} \mathcal{T}_{\omega}(S)$ by [TH3, Cor. 3.9]. Because both N and U^{0} are in $\omega_{S}{ }^{\top}$ we have $N^{1} \in \omega_{S}{ }^{\top}$. So $N^{1} \in \mathcal{A}_{\omega}(S)$ by [TH3, Thm. 3.11(1)] again.
(2) Let $n \geqslant 1$. By [HW, Lem. 4.1] we have that $\mathcal{A}_{\omega}(S)$ contains all flat left S modules, which yields $\Omega_{\mathcal{F}}^{n}(S) \subseteq \Omega_{\mathcal{A}}^{n}(S)$. Because $\mathcal{A}_{\omega}(S)$ is closed under extensions by [HW, Thm. 6.2], we have $\Omega_{\mathcal{A}}^{n}(S)=\Omega_{\mathcal{I}_{\omega}}^{n}(S)$ by (1) and [H4, Cor. 5.4(1)].

In the following result we characterize when the double functor $\operatorname{Ext}_{R}^{i}(\omega$, $\left.\operatorname{Tor}_{i}^{S}(\omega,-)\right)$ preserves monomorphisms in terms of the Ext-cograde conditions of Tor-modules.

Theorem 3.7. Conditions (1)-(3) below are equivalent for any $n, k \geqslant 0$. If $k \geqslant 1$ then (1)-(4) are equivalent.
(1) $\mathrm{E}^{-c o g r a d e} \omega_{\omega} \operatorname{Tor}_{i+k}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(2) $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any monomorphism $g: B^{\prime} \hookrightarrow C^{\prime}$ in $\operatorname{Mod} S$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{I}_{\omega}}^{k+1}(S)$ and $0 \leqslant i \leqslant n-1$.
(3) $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any monomorphism $g: B^{\prime} \mapsto C^{\prime}$ in $\operatorname{Mod} S$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{F}}^{k+1}(S)$ and $0 \leqslant i \leqslant n-1$.
(4) $\Omega_{\mathcal{F}}^{i+k}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i+1}(S)$ for any $1 \leqslant i \leqslant n$.

Proof. By using induction on $i,(1) \Leftrightarrow(4)$ follows from Lemma 3.3.
$(1) \Rightarrow(2)$ Let $g: B^{\prime} \mapsto C^{\prime}$ be a monomorphism in $\operatorname{Mod} S$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{I}_{\omega}}^{k+1}(S)$. Then $B^{\prime}=\Omega_{\mathcal{I}_{\omega}}^{k+1}\left(B^{\prime \prime}\right)$ for some $B^{\prime \prime} \in \operatorname{Mod} S$. By (1) we have

$$
\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}\left(\omega, B^{\prime}\right)\right) \cong \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i+k+1}^{S}\left(\omega, B^{\prime \prime}\right)\right)=0
$$

for any $1 \leqslant i \leqslant n-1$. Thus $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is monic. In the following we will show that $\left(1_{\omega} \otimes g\right)_{*}$ is monic.

If $k \geqslant 1$ then $\Omega_{\mathcal{I}_{\omega}}^{k}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ by Lemma 2.9(1). So $\Omega_{\mathcal{I}_{\omega}}^{k+1}(S) \subseteq \operatorname{ac}^{2}{ }_{\omega}(S)$ by Lemma 3.3, and hence $B^{\prime}, C^{\prime} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$. It follows that $\left(1_{\omega} \otimes g\right)_{*} \cong g$ and $\left(1_{\omega} \otimes g\right)_{*}$ is monic.

Now suppose $k=0$. We have a monomorphism $i: C^{\prime} \rightharpoondown U$ in $\operatorname{Mod} S$ with $U \in \mathcal{I}_{\omega}(S)$. From the exact sequence

$$
0 \rightarrow B^{\prime} \xrightarrow{i \cdot g} U \rightarrow L_{1} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $L_{1}=\operatorname{Coker}(i \cdot g)$, we get the exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{S}\left(\omega, L_{1}\right) \rightarrow \omega \otimes_{S} B^{\prime} \xrightarrow{1_{\omega} \otimes(i \cdot g)} \omega \otimes_{S} U
$$

in $\operatorname{Mod} R$. By (1), $\left(\operatorname{Tor}_{1}^{S}\left(\omega, L_{1}\right)\right)_{*}=0$. So $\left(1_{\omega} \otimes i\right)_{*} \cdot\left(1_{\omega} \otimes g\right)_{*}=\left(1_{\omega} \otimes(i \cdot g)\right)_{*}$ is monic, which implies that $\left(1_{\omega} \otimes g\right)_{*}$ is also monic.

By Lemma 3.6(2) we have $(2) \Rightarrow(3)$.
$(3) \Rightarrow(1)$ Let $N \in \operatorname{Mod} S$. From the exact sequence

$$
0 \rightarrow \Omega_{\mathcal{F}}^{k+1}(N) \xrightarrow{g} F_{k}(N) \rightarrow \Omega_{\mathcal{F}}^{k}(N) \rightarrow 0
$$

in $\operatorname{Mod} S$, we get the exact sequence

$$
0 \rightarrow \operatorname{Tor}_{k+1}^{S}(\omega, N) \rightarrow \omega \otimes_{S} \Omega_{\mathcal{F}}^{k+1}(N) \xrightarrow{1_{\omega} \otimes g} \omega \otimes_{S} F_{k}(N)
$$

in $\operatorname{Mod} R$. Since $\left(1_{\omega} \otimes g\right)_{*}$ is a monomorphism by (2), we have $\left(\operatorname{Tor}_{k+1}^{S}(\omega, N)\right)_{*}=0$ and E-cograde $\omega \operatorname{Tor}_{k+1}^{S}(\omega, N) \geqslant 1$. In addition, for any $1 \leqslant i \leqslant n-1$,

$$
\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}\left(\omega, \Omega_{\mathcal{F}}^{k+1}(N)\right)\right) \xrightarrow{\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{r}^{S}(\omega, g)\right)} \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}\left(\omega, F_{k}(N)\right)\right)=0
$$

is monic by (3), so we have

$$
\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i+k+1}^{S}(\omega, N)\right) \cong \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}\left(\Omega_{\mathcal{F}}^{k+1}(\omega, N)\right)\right)=0
$$

Thus we conclude that E-cograde $\omega_{\omega} \operatorname{Tor}_{i+k+1}^{S}(\omega, N) \geqslant i+1$ for any $0 \leqslant i \leqslant n-1$.

§3.2. Strong cograde conditions

Compare the following result with Theorem 3.5.
Theorem 3.8. For any $n \geqslant 1$ and $k \geqslant 0$, the following three statements are equivalent:
(1) s.T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i+k}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(2) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} R$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\operatorname{co}^{i+k-1}(R)\right), \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(3) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} R$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\cos ^{i+k-1}(R)\right), \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.

Moreover, if $k=0$ then any of the above statements is equivalent to the following one:
(4) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} R, \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
Proof. (1) \Rightarrow (2) Let $A=\Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\operatorname{co}_{\mathcal{P}_{\omega}}^{i+k-1}\left(A^{\prime}\right)\right)$ with $A^{\prime} \in \operatorname{Mod} R$. For any $i \geqslant 0$, by dimension shifting we have an exact sequence

$$
\operatorname{Ext}_{R}^{i+k}\left(\omega, A^{\prime}\right) \xrightarrow{g} \operatorname{Ext}_{R}^{i}(\omega, B) \xrightarrow{\operatorname{Ext}_{R}^{i}(\omega, f)} \operatorname{Ext}_{R}^{i}(\omega, C) \rightarrow \operatorname{Ext}_{R}^{i+k+1}\left(\omega, A^{\prime}\right)
$$

in $\operatorname{Mod} S$, which induces exact sequences
$\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, B)\right) \xrightarrow{a} \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Im}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right)\right) \rightarrow \operatorname{Tor}_{i-1}^{S}\left(\omega, \operatorname{Ker}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right)\right)$
and
$\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Im}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right)\right) \xrightarrow{b} \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, C)\right) \rightarrow \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Coker}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right)\right)$
in $\operatorname{Mod} R$. Since $\operatorname{Coker}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right) \subseteq \operatorname{Ext}_{R}^{i+k+1}\left(\omega, A^{\prime}\right)$, by (1) we have

$$
\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Coker}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right)\right)=0
$$

for any $0 \leqslant i \leqslant n-1$. Moreover, it follows from (1) and the exact sequence

$$
0 \rightarrow \operatorname{Ker} g \rightarrow \operatorname{Ext}_{R}^{i+k}\left(\omega, A^{\prime}\right) \rightarrow \operatorname{Ker}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right) \rightarrow 0
$$

in $\operatorname{Mod} S$ that $\operatorname{Tor}_{i-1}^{S}\left(\omega, \operatorname{Ker}\left(\operatorname{Ext}_{R}^{i}(\omega, f)\right)\right)=0$ for any $0 \leqslant i \leqslant n-1$. Thus $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)=b \cdot a$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.

By Lemma 3.4(2) we have (2) \Rightarrow (3).
(3) \Rightarrow (1) Let $M \in \operatorname{Mod} R$. Fix $i(1 \leqslant i \leqslant n)$ and an S-submodule L of $\operatorname{Ext}_{R}^{i+k}(\omega, M)$. Take an epimorphism $a: P \rightarrow L$ in $\operatorname{Mod} S$ with P projective and a^{\prime} the composition

$$
P \xrightarrow{a} L \hookrightarrow \operatorname{Ext}_{R}^{i+k}(\omega, M) .
$$

Then a^{\prime} can be lifted to $b: P \rightarrow \operatorname{co} \Omega^{i+k}(M)_{*}$. Take the pull-back diagram

where b^{\prime} is the composition

$$
\omega \otimes_{S} P \xrightarrow{1_{\omega} \otimes b} \omega \otimes_{S} \cos \Omega^{i+k}(M)_{*} \xrightarrow{\theta_{\cos }{ }^{i+k}(M)} \cos ^{i+k}(M) .
$$

It induces the following commutative diagram with exact rows:

In the following we will proceed by induction on i. Let $i=1$. Since $1_{\omega} \otimes c_{*}$ is epic by (3), we have $\omega \otimes_{S} L=0$ and s.T-cograde ${ }_{\omega} \operatorname{Ext}_{R}^{1+k}(\omega, M) \geqslant 1$.

Assume that statement (1) holds for any $1 \leqslant i \leqslant n-1$. Now consider the case for $i=n$. By the induction hypothesis we have s.T-cograde $\operatorname{Ext}_{R}^{i+k}(\omega, M) \geqslant i$ for any $1 \leqslant i \leqslant n-1$ and s.T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{n+k}(\omega, M) \geqslant n-1$. Then $\cos ^{n+k-1}(M) \in$ $c \mathcal{T}_{\omega}^{n-1}(R)$ by Lemma 3.2. Because $\omega \otimes_{S} P \in \mathrm{c} \mathcal{T}_{\omega}^{n-1}(R)$ by [TH1, Prop. 3.7], it follows from [TH5, Lem. 4.3] that X in the (3.3) is in $c \mathcal{T}_{\omega}^{n-1}(R)$. By [TH1, Prop. 3.7] again, there exist $\operatorname{Hom}_{R}\left(\operatorname{Add}_{R} \omega,-\right)$-exact exact sequences

$$
0 \rightarrow Y^{\prime} \rightarrow W_{n-2}^{\prime} \rightarrow \cdots \rightarrow W_{0}^{\prime} \rightarrow \operatorname{co}^{n+k-1}(M) \rightarrow 0
$$

and

$$
0 \rightarrow Y \rightarrow W_{n-2} \rightarrow \cdots \rightarrow W_{0} \rightarrow X \rightarrow 0
$$

in $\operatorname{Mod} R$ with all W_{j}^{\prime}, W_{j} in $\operatorname{Add}_{R} \omega$. Then both Y and Y^{\prime} are in ${ }_{R} \omega^{\perp_{n-1}}$ and we get the commutative diagram

We can guarantee that g is a monomorphism by adding a direct summand in $\operatorname{Add}_{R} \omega$ (for example W_{n-2}^{\prime}) to Y and W_{n-2}. Thus we get an exact sequence

$$
0 \rightarrow Y^{\prime} \xrightarrow{g} Y \xrightarrow{h} Z \rightarrow 0
$$

in $\operatorname{Mod} R$ with $Z=$ Coker g. Since

$$
\operatorname{Coker}\left(\operatorname{Ext}_{R}^{n-1}(\omega, h)\right) \cong \operatorname{Ker}\left(\operatorname{Ext}_{R}^{n}(\omega, g)\right) \cong \operatorname{Ker}\left(\operatorname{Ext}_{R}^{1}(\omega, d)\right) \cong \operatorname{Coker} c_{*} \cong L
$$

we obtain $L \cong \operatorname{Ext}_{R}^{n-1}(\omega, Z)$. Since $Y^{\prime} \in \Omega_{\mathcal{P}_{\omega}}^{n-1}\left(\operatorname{co} \Omega^{n+k-1}(R)\right)$, by (3) we get that $\operatorname{Tor}_{n-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{n-1}(\omega, h)\right)$ is epic. So $\operatorname{Tor}_{n-1}^{S}(\omega, L)=0$ and s.T-cograde $\omega \operatorname{Ext}_{R}^{n+k}(\omega$, $M) \geqslant n$.

When $k=0$ the proof of $(3) \Rightarrow(1) \Rightarrow(2)$ is in fact that of $(4) \Leftrightarrow(1)$ by just removing the first sentence and putting $A^{\prime}=A$ at the beginning of the proof of $(1) \Rightarrow(2)$.

Compare the following result with Theorem 3.7.
Theorem 3.9. For any $n \geqslant 1$ and $k \geqslant 0$, the following three statements are equivalent:
(1) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i+k}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(2) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{I}_{\omega}}^{i+k-1}(S)\right)$, $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
(3) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{F}}^{i+k-1}(S)\right), \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.

Moreover, if $k=0$, then any of the above statements is equivalent to the following one:
(4) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S, \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
Proof. (1) \Rightarrow (2) Let $C=\operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{I}_{\omega}}^{i+k-1}\left(C^{\prime}\right)\right)$ with $C^{\prime} \in \operatorname{Mod} S$. For any $i \geqslant 0$, by dimension shifting we have an exact sequence

$$
\operatorname{Tor}_{i+k+1}^{S}\left(\omega, C^{\prime}\right) \rightarrow \operatorname{Tor}_{i}^{S}(\omega, A) \xrightarrow{\operatorname{Tor}_{i}^{S}(\omega, g)} \operatorname{Tor}_{i}^{S}(\omega, B) \xrightarrow{f} \operatorname{Tor}_{i+k}^{S}\left(\omega, C^{\prime}\right)
$$

in $\operatorname{Mod} R$, which induces exact sequences

$$
\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Ker}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)\right) \rightarrow \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, A)\right) \xrightarrow{a} \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Im}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)\right)
$$

and
$\operatorname{Ext}_{R}^{i-1}\left(\omega, \operatorname{Coker}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)\right) \rightarrow \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Im}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)\right) \xrightarrow{b} \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, B)\right)$
in $\operatorname{Mod} S$. Since $\operatorname{Ker}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is an R-quotient module of $\operatorname{Tor}_{i+k+1}^{S}\left(\omega, C^{\prime}\right)$, by (1) we have

$$
\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Ker}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)\right)=0
$$

Moreover, it follows from (1) and the exact sequence

$$
0 \rightarrow \operatorname{Coker}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right) \rightarrow \operatorname{Tor}_{i+k}^{S}\left(\omega, C^{\prime}\right) \rightarrow \operatorname{Coker} f \rightarrow 0
$$

in $\operatorname{Mod} R$ that $\operatorname{Ext}_{R}^{i-1}\left(\omega, \operatorname{Coker}\left(\operatorname{Tor}_{i}^{S}(\omega, g)\right)\right)=0$ for any $0 \leqslant i \leqslant n-1$. Thus $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)=b \cdot a$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
By Lemma 3.6(2) we have (2) \Rightarrow (3).
(3) \Rightarrow (1) Let $N \in \operatorname{Mod} S$. Fix $i(1 \leqslant i \leqslant n)$ and an R-quotient module H of $\operatorname{Tor}_{i+k}^{S}(\omega, N)$. Take a monomorphism $a: H \rightharpoondown I$ in $\operatorname{Mod} R$ with I injective and a^{\prime} the composition

$$
\operatorname{Tor}_{i+k}^{S}(\omega, N) \rightarrow H \stackrel{a}{\mapsto} I
$$

Then a^{\prime} can be extended to $b: \omega \otimes_{S} \Omega_{\mathcal{F}}^{i+k}(N) \rightarrow I$. Take the push-out diagram

where b^{\prime} is the composition

$$
\Omega_{\mathcal{F}}^{i+k}(N) \xrightarrow{\mu_{\Omega_{\mathcal{F}}}^{i+k}(N)}\left(\omega \otimes_{S} \Omega_{\mathcal{F}}^{i+k}(N)\right)_{*} \xrightarrow{b_{*}} I_{*} .
$$

It induces the following commutative diagram with exact rows:

In the following we will proceed by induction on i. Let $i=1$. Since $\left(1_{\omega} \otimes c\right)_{*}$ is monic by (2), we have $H_{*}=0$ and s.E-cograde ${ }_{\omega} \operatorname{Tor}_{1+k}^{S}(\omega, N) \geqslant 1$.

Assume that statement (1) holds for any $1 \leqslant i \leqslant n-1$. Now consider the case for $i=n$. By the induction hypothesis we have s.E-cograde ${ }_{\omega} \operatorname{Tor}_{i+k}^{S}(\omega, N) \geqslant i$ for any $1 \leqslant i \leqslant n-1$ and s.E-cograde $\omega_{\omega} \operatorname{Tor}_{n+k}^{S}(\omega, N) \geqslant n-1$. Then $\Omega_{\mathcal{F}}^{n+k-1}(N) \in$ $\operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$ by Lemma 3.3. Because $I_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$ by [TH3, Prop. 3.8], it follows from the dual result of [TH5, Lem. 4.3] that Y in diagram (3.4) is in $\operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$. By [TH3, Prop. 3.8] again, there exist ($\omega \otimes_{S}-$)-exact exact sequences

$$
0 \rightarrow Y \rightarrow U^{0} \rightarrow \cdots \rightarrow U^{n-2} \rightarrow X \rightarrow 0
$$

and

$$
0 \rightarrow \Omega_{\mathcal{F}}^{n+k-1}(L) \rightarrow V^{0} \rightarrow \cdots \rightarrow V^{n-2} \rightarrow X^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with all U^{i}, V^{i} in $\mathcal{I}_{\omega}(S)$. Then both X and X^{\prime} are in $\omega_{S}{ }^{{ }^{n-1}}$ and we get the following commutative diagram:

We can guarantee that f is an epimorphism by adding a direct summand in $\mathcal{I}_{\omega}(S)$ (for example V^{n-2}) to X and U^{n-2}. Thus we get an exact sequence

$$
0 \rightarrow Z \xrightarrow{h} X \xrightarrow{f} X^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $Z=\operatorname{Ker} f$. Since

$$
\operatorname{Ker}\left(\operatorname{Tor}_{n-1}^{S}(\omega, h)\right) \cong \operatorname{Coker}\left(\operatorname{Tor}_{n}^{S}(\omega, f)\right) \cong \operatorname{Coker}\left(\operatorname{Tor}_{1}^{S}(\omega, d)\right) \cong \operatorname{Ker}\left(1_{\omega} \otimes c\right)
$$

we obtain $H \cong \operatorname{Tor}_{n-1}^{S}(\omega, Z)$. Since $X^{\prime} \in \operatorname{co}_{\mathcal{I}_{\omega}}^{n-1}\left(\Omega_{\mathcal{F}}^{n+k-1}(S)\right)$, by (3) we get that $\operatorname{Ext}_{R}^{n-1}\left(\omega, \operatorname{Tor}_{n-1}^{S}(\omega, h)\right)$ is a monomorphism. So $\operatorname{Ext}_{R}^{n-1}(\omega, H)=0$ and s.E-cograde $\omega_{\omega} \operatorname{Tor}_{n+k}^{S}(\omega, N) \geqslant n$.

When $k=0$, the proof of $(3) \Rightarrow(1) \Rightarrow(2)$ is in fact that of $(4) \Leftrightarrow(1)$ by just removing the first sentence and putting $C^{\prime}=C$ at the beginning of the proof of $(1) \Rightarrow(2)$.

§4. (Quasi) n-cograde condition

In this section, we introduce and study the (quasi) n-cograde condition of semidualizing bimodules.

§4.1. The n-cograde condition

Definition 4.1. For any $n \geqslant 1, \omega$ is said to satisfy the right n-cograde condition if s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$ and ω is said to satisfy the left n-cograde condition if s.E-cograde $\operatorname{cor}_{i}^{R}\left(M^{\prime}, \omega\right) \geqslant i$ for any $M^{\prime} \in \operatorname{Mod} R^{\mathrm{op}}$ and $1 \leqslant i \leqslant n$.

As a consequence of Theorems 3.8 and 3.9, we get the following equivalent characterizations for ω satisfying the right n-cograde condition.

Corollary 4.2. For any $n \geqslant 1$ the following statements are equivalent:
(1) s.T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(2) s.E-cograde $\operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(3) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms in $\operatorname{Mod} R$ for $0 \leqslant i \leqslant n-1$.
(4) $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega,-)\right)$ preserves monomorphisms in $\operatorname{Mod} S$ for $0 \leqslant i \leqslant n-1$.
(5) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} R$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{i-1}(R)\right), \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(6) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} R$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\cos ^{i-1}(R)\right), \operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(7) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{I}_{\omega}}^{i-1}(S)\right), \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
(8) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{F}}^{i-1}(S)\right), \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.

Proof. By [TH4, Thm. 6.9] we have (1) $\Leftrightarrow(2)$. By Theorems 3.8 and 3.9 we have $(1) \Leftrightarrow(3) \Leftrightarrow(5) \Leftrightarrow(6)$ and $(2) \Leftrightarrow(4) \Leftrightarrow(7) \Leftrightarrow(8)$ respectively.

Symmetrically, we have the following equivalent characterizations for ω satisfying the left n-cograde condition.

Corollary 4.3. For any $n \geqslant 1$ the following statements are equivalent:
(1) s.T-cograde ${ }_{\omega} \operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, N^{\prime}\right) \geqslant i$ for any $N^{\prime} \in \operatorname{Mod} S^{\text {op }}$ and $1 \leqslant i \leqslant n$.
(2) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i}^{R}\left(M^{\prime}, \omega\right) \geqslant i$ for any $M^{\prime} \in \operatorname{Mod} R^{\text {op }}$ and $1 \leqslant i \leqslant n$.
(3) $\operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\text {op }}}^{i}(\omega,-), \omega\right)$ preserves epimorphisms in $\operatorname{Mod} S^{\mathrm{op}}$ for $0 \leqslant i \leqslant n-1$.
(4) $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}(-, \omega)\right)$ preserves monomorphisms in $\operatorname{Mod} R^{\text {op }}$ for $0 \leqslant i \leqslant$ $n-1$.
(5) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} S^{\mathrm{op}}$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\cos _{\mathcal{P}_{\omega}}^{i-1}\left(S^{\mathrm{op}}\right)\right), \operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\mathrm{op}}}^{i}(\omega, f), \omega\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(6) For any exact sequence

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

in $\operatorname{Mod} S^{\mathrm{op}}$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\cos ^{i-1}\left(S^{\mathrm{op}}\right)\right), \operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\mathrm{op}}}^{i}(\omega, f), \omega\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(7) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} R^{\mathrm{op}}$ with $C \in \cos _{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{I}_{\omega}}^{i-1}\left(R^{\mathrm{op}}\right)\right)$, $\operatorname{Ext}_{S^{\mathrm{op}}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}(g, \omega)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
(8) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} R^{\mathrm{op}}$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{F}}^{i-1}\left(R^{\mathrm{op}}\right)\right), \operatorname{Ext}_{S^{\mathrm{op}}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}(g, \omega)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.

In the following we will establish the left-right symmetry of the n-cograde condition.

Lemma 4.4. Let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} R$ such that A is superfluous in B. Then the following assertions hold:
(1) Let $L \in \operatorname{Mod} R^{\mathrm{op}}$. If $L^{\prime} \otimes_{R} C=0$ for any submodule L^{\prime} of L, then $L \otimes_{R} B=0$.
(2) Let $M \in \operatorname{Mod} R$. If $\operatorname{Hom}_{R}\left(C, M^{\prime}\right)=0$ for any quotient module M^{\prime} of M, then $\operatorname{Hom}_{R}(B, M)=0$.

Proof. (1) If $L \otimes_{R} B \neq 0$ then there exists $x \in L$ such that $x R \otimes_{R} B \neq 0$. Since $x R \cong R / I$ for some right ideal I of R, we have

$$
B / I B \cong R / I \otimes_{R} B \cong x R \otimes_{R} B \neq 0
$$

and $I B \nsupseteq B$. In view of the assumption that A is superfluous in B, it follows that $I B+A \varsubsetneqq B$ and

$$
x R \otimes_{R} C \cong R / I \otimes_{R} C \cong R / I \otimes_{R} B / A \cong \frac{B / A}{(I B+A) / A} \cong B /(I B+A) \neq 0
$$

which contradicts the assumption.
(2) If $\operatorname{Hom}_{R}(B, M) \neq 0$ then there exists a nonzero homomorphism $f \in \operatorname{Hom}_{R}(B$, $M)$. Pick the kernel L of f such that $\operatorname{Im} f \cong B / L$. Because A is superfluous in B and $f \neq 0$, we have $A+L \supsetneqq B$. Then there exists a nonzero natural epimorphism $\pi: B / A(\cong C) \rightarrow B /(A+L)$. Note that the inclusions $(A+L) / L \subseteq B / L \subseteq M$ induce an embedding homomorphism

$$
i: \frac{B / L}{(A+L) / L}(\cong B /(A+L)) \hookrightarrow \frac{M}{(A+L) / L} .
$$

Then $0 \neq i \cdot \pi \in \operatorname{Hom}_{R}\left(C, \frac{M}{(A+L) / L}\right)$, which contradicts the assumption.
It is straightforward to verify the following observation.
Lemma 4.5. (1) If $P \in \operatorname{Mod} R$ is finitely generated projective then $\operatorname{pd}_{S^{\circ \mathrm{P}}} P^{*}=$ $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} P$.
(2) If $Q \in \operatorname{Mod} S^{\text {op }}$ is finitely generated projective then $\operatorname{pd}_{R} Q^{*}=\mathcal{P}_{\omega}\left(S^{\mathrm{op}}\right)$ $\mathrm{id}_{S^{\text {op }}} Q$.

Lemma 4.6. Let $P \in \operatorname{Mod} R$ be finitely generated projective and $t \geqslant 0$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{S_{\text {op }}} P^{*} \leqslant t$.
(2) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} P \leqslant t$.
(3) $\operatorname{Ext}_{S^{\text {op }}}^{t+1}(\omega, H) \otimes_{R} P=0$ for any $H \in \operatorname{Mod} S^{\text {op }}$.
(4) $\operatorname{Hom}_{R}\left(P, \operatorname{Tor}_{t+1}^{S}(\omega, N)\right)=0$ for any $N \in \operatorname{Mod} S$.

Proof. By Lemma 4.5(1), we have (1) \Leftrightarrow (2).
$(1) \Leftrightarrow(3)$ Let $H \in \operatorname{Mod} S^{\circ \mathrm{p}}$ and

$$
\mathbf{I}:=0 \rightarrow H \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots \rightarrow I^{i} \rightarrow \cdots
$$

be an injective resolution of H in $\operatorname{Mod} S^{\mathrm{op}}$. Because $P \in \operatorname{Mod} R$ is finitely generated projective by assumption, the functor $-\otimes_{R} P$ is exact. Then we have

$$
\begin{aligned}
\operatorname{Ext}_{S^{\text {op }}}^{t+1}\left(P^{*}, H\right) & \cong H^{t+1}\left(\operatorname{Hom}_{S^{\text {op }}}\left(P^{*}, \mathbf{I}\right)\right) \\
& \cong H^{t+1}\left(\operatorname{Hom}_{S^{\text {op }}}(\omega, \mathbf{I}) \otimes_{R} P\right) \\
& \cong H^{t+1}\left(\operatorname{Hom}_{S^{\text {op }}}(\omega, \mathbf{I})\right) \otimes_{R} P \quad(\text { by }[\text { EJ, p. 30, Exer. 2] }) \\
& \cong \operatorname{Ext}_{S^{\text {op }}}^{t+1}(\omega, H) \otimes_{R} P
\end{aligned}
$$

Now the assertion follows easily.
$(1) \Leftrightarrow(4)$ Since $\operatorname{pd}_{S^{\text {op }}} P^{*}=\mathrm{fd}_{S^{\text {op }}} P^{*}$, the assertion follows from [TH2, Lem. 7.6].

Recall from [N$]$ that a ring R is called semiregular if $R / J(R)$ is von Neumann regular and idempotents can be lifted modulo $J(R)$, where $J(R)$ is the Jacobson radical of R. The class of semiregular rings includes (1) von Neumann regular rings, (2) semiperfect rings, (3) left cotorsion rings and (4) right cotorsion rings. See [GH] for the definitions of left cotorsion rings and right cotorsion rings.

If R is a semiregular ring then any finitely presented left or right R-module has a projective cover by [$\mathrm{N}, \mathrm{Thm} .2 .9]$. In this case, since ${ }_{R} \omega$ admits a degreewise finite R-projective resolution by Definition 2.1, we may assume that

$$
\cdots \rightarrow P_{i}(\omega) \rightarrow \cdots \rightarrow P_{1}(\omega) \rightarrow P_{0}(\omega) \rightarrow_{R} \omega \rightarrow 0
$$

is the minimal projective resolution of ${ }_{R} \omega$ in $\bmod R$. Put $\omega_{i}:=\operatorname{Im}\left(P_{i}(\omega) \rightarrow\right.$ $\left.P_{i-1}(\omega)\right)$ for any $i \geqslant 1$ and $\omega_{0}:=\omega$. Analogously, if S is a semiregular ring then we assume that

$$
\cdots \rightarrow Q_{i}(\omega) \rightarrow \cdots \rightarrow Q_{1}(\omega) \rightarrow Q_{0}(\omega) \rightarrow \omega_{S} \rightarrow 0
$$

is the minimal projective resolution of ω_{S} in $\bmod S^{\text {op }}$. By Lemma 4.6 we have the following proposition.

Proposition 4.7. Let R be a semiregular ring and $m, n \geqslant 1$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{S_{\text {op }}} P_{i}(\omega)^{*} \leqslant m-1$ for any $0 \leqslant i \leqslant n-1$.
(2) $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} P_{i}(\omega) \leqslant m-1$ for any $0 \leqslant i \leqslant n-1$.
(3) s.T-cograde $\omega \operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \geqslant n$ for any $N^{\prime} \in \operatorname{Mod} S^{\text {op }}$.
(4) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{m}^{S}(\omega, N) \geqslant n$ for any $N \in \operatorname{Mod} S$.

Proof. By [TH2, Prop. 7.7] and Lemma 4.6, we have (4) $\Leftrightarrow(1) \Leftrightarrow(2)$.
$(3) \Rightarrow(1)$ We proceed by induction on n. Let $N^{\prime} \in \operatorname{Mod} S^{\text {op }}$. Suppose $n=1$. Because s.T-cograde $\omega \operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \geqslant 1$ by (3), we have $L^{\prime} \otimes_{R} \omega=0$ for any submodule L^{\prime} of $\operatorname{Ext}_{S^{\mathrm{op}}}^{m}\left(\omega, N^{\prime}\right)$ in Mod R^{op}. It follows from Lemma 4.4(1) that $\operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \otimes_{R} P_{0}(\omega)=0$. Therefore by Lemma 4.6 we get $\operatorname{pd}_{S^{\text {op }}} P_{0}(\omega)^{*} \leqslant m-1$ and the case for $n=1$ is proved.

Now suppose $n \geqslant 2$. Let X be a submodule of $\operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right)$ in $\operatorname{Mod} R^{\text {op }}$. By (3) we have $\operatorname{Tor}_{0 \leqslant i \leqslant n-1}^{R}(X, \omega)=0$. Then for any $0 \leqslant i \leqslant n-2$ we have

$$
\operatorname{Tor}_{1}^{R}\left(X, \omega_{i}\right) \cong \operatorname{Tor}_{i+1}^{R}(X, \omega)=0
$$

For any $i \geqslant 0$, from the exact sequence

$$
0 \rightarrow \omega_{i+1} \rightarrow P_{i}(\omega) \rightarrow \omega_{i} \rightarrow 0
$$

we get the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Tor}_{1}^{R}\left(X, \omega_{i}\right) \rightarrow X \otimes_{R} \omega_{i+1} \rightarrow X \otimes_{R} P_{i}(\omega) \tag{4.1}
\end{equation*}
$$

By the induction hypothesis we have $\operatorname{pd}_{S_{\text {op }}} P_{i}(\omega)^{*} \leqslant m-1$ for any $0 \leqslant i \leqslant n-2$. Then it follows from Lemma 4.6 that $\operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \otimes_{R} P_{n-2}(\omega)=0$ and hence $X \otimes_{R} P_{n-2}(\omega)=0$. So it is derived from (4.1) that $X \otimes_{R} \omega_{n-1}=0$. Notice that $P_{n-1}(\omega)$ is the projective cover of ω_{n-1}, so $\operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \otimes_{R} P_{n-1}(\omega)=0$ by Lemma 4.4(1). It follows from Lemma 4.6 that $\operatorname{pd}_{S_{\text {op }}} P_{n-1}(\omega)^{*} \leqslant m-1$.
(1) $\Rightarrow(3)$ Let X be a submodule of $\operatorname{Ext}_{S^{\mathrm{op}}}^{m}\left(\omega, N^{\prime}\right)$ in $\operatorname{Mod} R^{\mathrm{op}}$. Then by (1) and Lemma 4.6, we have $\operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \otimes_{R}\left(\oplus_{i=0}^{n-1} P_{i}(\omega)\right)=0$, and hence $X \otimes_{R}$ $\left(\oplus_{i=0}^{n-1} P_{i}(\omega)\right)=0$. Since ω_{i} is a quotient module of $P_{i}(\omega)$ for any $i \geqslant 0$, we then have $X \otimes_{R}\left(\oplus_{i=0}^{n-1} \omega_{i}\right)=0$.

If $n=1$ then $X \otimes_{R} \omega=0$ and s.T-cograde ${ }_{\omega} \operatorname{Ext}_{S_{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \geqslant 1$. If $n \geqslant 2$ then from (4.1) we get $\operatorname{Tor}_{1}^{R}\left(X, \oplus_{i=0}^{n-2} \omega_{i}\right)=0$. Since $\operatorname{Tor}_{i+1}^{R}(X, \omega) \cong \operatorname{Tor}_{1}^{R}\left(X, \omega_{i}\right)$ for any $i \geqslant 0$, we have $\operatorname{Tor}_{0 \leqslant i \leqslant n-1}^{R}(X, \omega)=0$ and s.T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{\text {op }}}^{m}\left(\omega, N^{\prime}\right) \geqslant n$.

The following result means that the n-cograde condition is left-right symmetric.

Theorem 4.8. Let R be semiregular and $n \geqslant 1$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{S \text { oр }} P_{i}(\omega)^{*} \leqslant i$ for any $0 \leqslant i \leqslant n-1$.
(2) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} P_{i}(\omega) \leqslant i$ for any $0 \leqslant i \leqslant n-1$.
(3) s.T-cograde $\omega \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(4) s.E-cograde $\operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(5) s.T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, N^{\prime}\right) \geqslant i$ for any $N^{\prime} \in \operatorname{Mod} S^{\mathrm{op}}$ and $1 \leqslant i \leqslant n$.
(6) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i}^{R}\left(M^{\prime}, \omega\right) \geqslant i$ for any $M^{\prime} \in \operatorname{Mod} R^{\text {op }}$ and $1 \leqslant i \leqslant n$.
(7) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega,-)\right)$ preserves epimorphisms in $\operatorname{Mod} R$ for $0 \leqslant i \leqslant n-1$.
(8) $\operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega,-)\right)$ preserves monomorphisms in $\operatorname{Mod} S$ for $0 \leqslant i \leqslant n-1$.
(9) $\operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\text {op }}}^{i}(\omega,-), \omega\right)$ preserves epimorphisms in $\operatorname{Mod} S^{\text {op }}$ for $0 \leqslant i \leqslant n-1$.
(10) $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}(-, \omega)\right)$ preserves monomorphisms in $\operatorname{Mod} R^{\text {op }}$ for $0 \leqslant i \leqslant$ $n-1$.

Proof. By Proposition 4.7 we have (1) $\Leftrightarrow(2) \Leftrightarrow(4) \Leftrightarrow(5)$. By Corollaries 4.2 and 4.3 we have $(3) \Leftrightarrow(4) \Leftrightarrow(7) \Leftrightarrow(8)$ and $(5) \Leftrightarrow(6) \Leftrightarrow(9) \Leftrightarrow(10)$.

As a consequence, we get the following corollary.

Corollary 4.9. Let R and S be semiregular and $n \geqslant 1$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{S \text { ор }} P_{i}(\omega)^{*} \leqslant i$ for any $0 \leqslant i \leqslant n-1$.
(2) $\operatorname{pd}_{R} Q_{i}(\omega)^{*} \leqslant i$ for any $0 \leqslant i \leqslant n-1$.
(3) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} P_{i}(\omega) \leqslant i$ for any $0 \leqslant i \leqslant n-1$.
(4) $\mathcal{P}_{\omega}\left(S^{\mathrm{op}}\right)-\operatorname{id}_{S^{\text {op }}} Q_{i}(\omega) \leqslant i$ for any $0 \leqslant i \leqslant n-1$.

Proof. By the symmetric version of Proposition 4.7 we have
$(2) \Leftrightarrow(4) \Leftrightarrow$ s.T-cograde $\operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i \quad$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
Now the assertion follows from Theorem 4.8.

$\S 4.2$. The quasi n-cograde condition

Definition 4.10. For any $n \geqslant 1, \omega$ is said to satisfy the right quasi n-cograde condition if s.E-cograde $\operatorname{Tor}_{i+1}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$ and ω is said to satisfy the left quasi n-cograde condition if s.E-cograde ${ }_{\omega} \operatorname{Tor}_{i+1}^{R}\left(M^{\prime}, \omega\right) \geqslant$ i for any $M^{\prime} \in \operatorname{Mod} R^{\text {op }}$ and $1 \leqslant i \leqslant n$.

It is trivial that ω satisfies the right (resp. left) quasi n-cograde conditions if it satisfies the right (resp. left) n-cograde condition. But the converse does not hold true in general, see Section 4.4 below.

The following lemma is useful in the sequel.
Lemma 4.11. For any $n \geqslant 0$, the following assertions hold:
(1) Let $M \in \operatorname{Mod} R$. If E-cograde $\omega \geqslant n$ and $T-\operatorname{cograde}{ }_{\omega} \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n+1$, then E-cograde $\omega \geqslant n+1$.
(2) Let $N \in \operatorname{Mod} S$. If T-cograde $\omega \geqslant n$ and E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n+1$, then T-cograde ${ }_{\omega} N \geqslant n+1$.

Proof. We proceed by induction on n.
(1) If $n=0$ then $\omega \otimes_{S} M_{*}=0$ by assumption. It follows from [TH4, Lem. 6.1(1)] that $M_{*}=0$ and E-cograde $\omega \geqslant 1$.

Let $n \geqslant 1$. Consider an injective resolution

$$
0 \rightarrow M \rightarrow I^{0} \rightarrow \cdots \rightarrow I^{n} \rightarrow \cdots
$$

of M in $\operatorname{Mod} R$. Put $M^{\prime}=\operatorname{Im}\left(I^{n-1} \rightarrow I^{n}\right)$. Since E-cograde ${ }_{\omega} M \geqslant n$ by the induction hypothesis, applying the functor $(-)_{*}$ to the above exact sequence yields the exact sequence

$$
0 \rightarrow I_{*}^{0} \rightarrow \cdots \rightarrow I^{n-1} * \xrightarrow{g} M^{\prime}{ }_{*} \rightarrow \operatorname{Ext}_{R}^{n}(\omega, M) \rightarrow 0
$$

in $\operatorname{Mod} S$. Because T-cograde $\operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n+1$ by assumption, we have $\operatorname{Tor}_{0 \leqslant i \leqslant n}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right)=0$. Then by [CE, Prop. VI.5.1] we have

$$
\operatorname{Ext}_{S}^{i}\left(\operatorname{Ext}_{R}^{n}(\omega, M), I^{j}{ }_{*}\right) \cong \operatorname{Hom}_{R}\left(\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right), I^{j}\right)=0
$$

for any $0 \leqslant i \leqslant n$ and $j \geqslant 0$, and hence

$$
\operatorname{Ext}_{S}^{1}\left(\operatorname{Ext}_{R}^{n}(\omega, M), \operatorname{Im} g\right) \cong \operatorname{Ext}_{S}^{n}\left(\operatorname{Ext}_{R}^{n}(\omega, M), I_{*}^{0}\right)=0
$$

It implies that the exact sequence

$$
0 \rightarrow \operatorname{Im} g \rightarrow M^{\prime}{ }_{*} \rightarrow \operatorname{Ext}_{R}^{n}(\omega, M) \rightarrow 0
$$

splits and hence $\operatorname{Ext}_{R}^{n}(\omega, M)$ is a direct summand of $M^{\prime}{ }_{*}$. Since $M^{\prime}{ }_{*}$ is adjoint $1-\omega$-cotorsionfree, so is $\operatorname{Ext}_{R}^{n}(\omega, M)$. Thus, applying [TH3, Prop. 3.2], the T-cograde condition on $\operatorname{Ext}_{R}^{n}(\omega, M)$ proves $\operatorname{Ext}_{R}^{n}(\omega, M)=0$. Consequently we have E-cograde ${ }_{\omega} M \geqslant n+1$ and the assertion follows.
(2) If $n=0$ then $\left(\omega \otimes_{S} N\right)_{*}=0$ by assumption. It follows from [TH4, Lem. 6.1(2)] that $\omega \otimes_{S} N=0$ and T-cograde $\omega \geqslant 1$.

Let $n \geqslant 1$. Consider a projective resolution

$$
\cdots \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow N \rightarrow 0
$$

of N in $\operatorname{Mod} S$. Put $N^{\prime}=\operatorname{Im}\left(P_{n} \rightarrow P_{n-1}\right)$. Since T-cograde $\omega_{\omega} N \geqslant n$ by the induction hypothesis, applying the functor $\omega \otimes_{S}$ - to the above exact sequence yields the exact sequence

$$
0 \rightarrow \operatorname{Tor}_{n}^{S}(\omega, N) \rightarrow \omega \otimes_{S} N^{\prime} \xrightarrow{f} \omega \otimes_{S} P_{n-1} \rightarrow \cdots \rightarrow \omega \otimes_{S} P_{0} \rightarrow 0
$$

in $\operatorname{Mod} R$. Because E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n+1$ by assumption, we have $\operatorname{Ext}_{R}^{0 \leqslant i \leqslant n}\left(\omega, \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0$. Notice that $\omega \otimes_{S} P \in \operatorname{Add}_{R} \omega$ for any projective module P in $\operatorname{Mod} S$, so $\operatorname{Ext}_{R}^{0 \leqslant i \leqslant n}\left(\omega \otimes_{S} P_{j}, \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0$ for any $j \geqslant 0$, and hence

$$
\operatorname{Ext}_{R}^{1}\left(\operatorname{Im} f, \operatorname{Tor}_{n}^{S}(\omega, N)\right) \cong \operatorname{Ext}_{R}^{n}\left(\omega \otimes_{S} P_{0}, \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0
$$

It induces an exact sequence

$$
\operatorname{Hom}_{R}\left(\omega \otimes_{S} N^{\prime}, \operatorname{Tor}_{n}^{S}(\omega, N)\right) \rightarrow \operatorname{Hom}_{R}\left(\operatorname{Tor}_{n}^{S}(\omega, N), \operatorname{Tor}_{n}^{S}(\omega, N)\right) \rightarrow 0
$$

Because $\omega \otimes_{S} N^{\prime} \in c \mathcal{T}_{\omega}^{1}(R)$ by [TH4, Lem. 6.1(2)], there exists an epimorphism $U \rightarrow \omega \otimes_{S} N^{\prime}$ in $\operatorname{Mod} R$ with $U \in \operatorname{Add}_{R} \omega$ by [TH1, Lem. 3.6(1)]. Because $\left(\operatorname{Tor}_{n}^{S}(\omega, N)\right)_{*}=0$ we have $\operatorname{Hom}_{R}\left(U, \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0$. It follows that $\operatorname{Hom}_{R}\left(\omega \otimes_{S}\right.$ $\left.N^{\prime}, \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0$ and $\operatorname{Hom}_{R}\left(\operatorname{Tor}_{n}^{S}(\omega, N), \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0$, which implies $\operatorname{Tor}_{n}^{S}(\omega, N)=0$. So T-cograde $\omega \geqslant n+1$ and the assertion follows.

We have the following equivalent characterizations for ω satisfying the right quasi n-cograde condition.

Proposition 4.12. For any $n \geqslant 1$, the following statements are equivalent:
(1) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i+1}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(2) T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(3) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{I}_{\omega}}^{i}(S)\right), \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
(4) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \cos \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{F}}^{i}(S)\right), \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
(5) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any epimorphism $f: B \rightarrow C$ in $\operatorname{Mod} R$ with $B, C \in \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{1}(R)$ and $0 \leqslant i \leqslant n-1$.
(6) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any epimorphism $f: B \rightarrow C$ in $\operatorname{Mod} R$ with $B, C \in \cos ^{1}(R)$ and $0 \leqslant i \leqslant n-1$.
(7) $\cos ^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i+1}(R)$ for any $1 \leqslant i \leqslant n$.

Proof. By Theorems 3.9 and 3.5 we have (1) $\Leftrightarrow(3) \Leftrightarrow(4)$ and $(2) \Leftrightarrow(5) \Leftrightarrow(6) \Leftrightarrow$ (7) respectively. In the following we will prove $(1) \Leftrightarrow(2)$ by induction on n.
$(1) \Rightarrow(2)$ Let $M \in \operatorname{Mod} R$. By Lemma $3.1(1)$, for any $n \geqslant 1$ there exist exact sequences

$$
\begin{align*}
& 0 \rightarrow \operatorname{Ext}_{R}^{n}(\omega, M) \xrightarrow{\lambda} \operatorname{cTr}_{\omega} \cos ^{n-1}(M) \xrightarrow{\pi} C \rightarrow 0, \tag{4.2}\\
& 0 \rightarrow C \rightarrow I^{n+1}(M)_{*} \rightarrow \operatorname{cTr}_{\omega} \cos ^{n}(M) \rightarrow 0 \tag{4.3}
\end{align*}
$$

in $\operatorname{Mod} S$ such that $1_{\omega} \otimes \pi$ is an isomorphism, where $C=I^{n}(M)_{*} / \operatorname{co} \Omega^{n}(M)_{*}$. Because $I^{n+1}(M)_{*} \in \omega_{S}^{\top}$ by [HW, Cor. 6.1], it follows from the exact sequence (4.3) that $\operatorname{Tor}_{i}^{S}(\omega, C) \cong \operatorname{Tor}_{i+1}^{S}\left(\omega, \operatorname{cTr}_{\omega} \cos ^{n}(M)\right)$ for any $i \geqslant 1$.

If $n=1$ then from the exact sequence (4.2) we get an exact sequence

$$
\operatorname{Tor}_{2}^{S}\left(\omega, \operatorname{cTr}_{\omega} \cos ^{1}(M)\right)\left(\cong \operatorname{Tor}_{1}^{S}(\omega, C)\right) \rightarrow \omega \otimes_{S} \operatorname{Ext}_{R}^{1}(\omega, M) \rightarrow 0
$$

in $\operatorname{Mod} R$. Because s.E-cograde $\omega \operatorname{Tor}_{2}^{S}\left(\omega, \operatorname{cr}_{\omega} \operatorname{co} \Omega^{1}(M)\right) \geqslant 1$ by assumption, we have $\left.\operatorname{E-cograde}{ }_{\omega} \omega \otimes_{S} \operatorname{Ext}_{R}^{1}(\omega, M)\right) \geqslant 1$. It is derived from Lemma 4.11(2) that T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{1}(\omega, M) \geqslant 1$.

Now suppose $n \geqslant 2$. Then T-cograde $\operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i$ for any $1 \leqslant i \leqslant$ $n-1$ and T-cograde $\omega \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n-1$ by the induction hypothesis. It follows from Theorem 3.5 that $\operatorname{co} \Omega^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i}(R)$ for any $1 \leqslant i \leqslant n$. So $\operatorname{co} \Omega^{n-1}(M) \in$ $c \mathcal{T}_{\omega}^{n-1}(R)$, and hence $\operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n-1}(M) \in \omega_{S}{ }^{\top_{n-1}}$. Thus from the exact sequences (4.2) and (4.3) we get the exact sequence

$$
\operatorname{Tor}_{n+1}^{S}\left(\omega, \operatorname{cTr}_{\omega} \cos ^{n}(M)\right) \rightarrow \operatorname{Tor}_{n-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right) \rightarrow 0
$$

By (1) we have E-cograde $\omega_{\omega} \operatorname{Tor}_{n-1}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right) \geqslant n$. From Lemma 4.11(2) it follows that T-cograde $\omega \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n$.
(2) \Rightarrow (1) Let $N \in \operatorname{Mod} S$ and X be a quotient module of $\operatorname{Tor}_{n+1}^{S}(\omega, N)$ in $\operatorname{Mod} R$, and let $\beta: \operatorname{Tor}_{1}^{S}\left(\omega, \Omega_{\mathcal{F}}^{n}(N)\right)\left(\cong \operatorname{Tor}_{n+1}^{S}(\omega, N)\right) \rightarrow X$ be an epimorphism in $\operatorname{Mod} R$. By Lemma 3.1(2) we have an exact sequence

$$
0 \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{n+1}\right) \xrightarrow{\sigma} \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}(N) \xrightarrow{\tau} \operatorname{Tor}_{n+1}^{S}(\omega, N) \rightarrow 0
$$

in $\operatorname{Mod} R$ such that σ_{*} is an isomorphism. Then we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ker} f \xrightarrow{\eta} \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}(N) \xrightarrow{f} X \rightarrow 0 \tag{4.4}
\end{equation*}
$$

in $\operatorname{Mod} R$, where $f=\beta \cdot \tau$. It is easy to see that η_{*} is an isomorphism.
Let $n=1$. Because $\Omega_{\mathcal{F}}^{1}(N) \in \operatorname{ac} \mathcal{T}_{\omega}^{1}(S)$ by [TH3, Cor. 3.5(1)], we have $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{1}(N) \in{ }_{R} \omega^{\perp_{1}}$. Then the exact sequence (4.4) gives $X_{*} \cong \operatorname{Ext}_{R}^{1}(\omega, \operatorname{Ker} f)$. So T-cograde ${ }_{\omega} X_{*} \geqslant 1$ by (2), and hence E-cograde ${ }_{\omega} X \geqslant 1$ by Lemma 4.11(1). The case for $n=1$ is proved.

Now suppose $n \geqslant 2$. Then s.E-cograde ${ }_{\omega} \operatorname{Tor}_{i+1}^{S}(\omega, N) \geqslant i$ for any $1 \leqslant i \leqslant$ $n-1$ and s.E-cograde $\omega \operatorname{Tor}_{n+1}^{S}(\omega, N) \geqslant n-1$ by the induction hypothesis. So E-cograde ${ }_{\omega} X \geqslant n-1$.

By Theorem 3.7 we have $\Omega_{\mathcal{F}}^{i}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i}(S)$ for any $1 \leqslant i \leqslant n$. So $\Omega_{\mathcal{F}}^{n}(N) \in$ $\operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$ and $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}(N) \in{ }_{R} \omega^{\perp_{n}}$. It follows from the exact sequence (4.4) that $\operatorname{Ext}_{R}^{n-1}(\omega, X) \cong \operatorname{Ext}_{R}^{n}(\omega, \operatorname{Ker} f)$. Then by (2) we have T-cograde $\operatorname{Ext}_{R}^{n-1}(\omega, X)=$ T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{n}(\omega, \operatorname{Ker} f) \geqslant n$. Thus E-cograde $\omega_{\omega} X \geqslant n$ by Lemma 4.11(1).

We also have the following proposition.
Proposition 4.13. For any $n \geqslant 1$ the following statements are equivalent:
(1) s.T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{\circ} \mathrm{op}}^{i+1}\left(\omega, N^{\prime}\right) \geqslant i$ for any $N^{\prime} \in \operatorname{Mod} S^{\text {op }}$ and $1 \leqslant i \leqslant n$.
(2) E-cograde $\omega_{\omega} \operatorname{Tor}_{i}^{R}\left(M^{\prime}, \omega\right) \geqslant i$ for any $M^{\prime} \in \operatorname{Mod} R^{\mathrm{op}}$ and $1 \leqslant i \leqslant n$.
(3) For any exact sequence

$$
0 \rightarrow A^{\prime} \rightarrow B^{\prime} \xrightarrow{f^{\prime}} C^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S^{\mathrm{op}}$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\cos _{\mathcal{P}_{\omega}}^{i}\left(S^{\mathrm{op}}\right)\right), \operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, f^{\prime}\right), \omega\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(4) For any exact sequence

$$
0 \rightarrow A^{\prime} \rightarrow B^{\prime} \xrightarrow{f^{\prime}} C^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S^{\mathrm{op}}$ with $A \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\cos ^{i}\left(S^{\mathrm{op}}\right)\right)$, $\operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\mathrm{op}}}^{i}\left(\omega, f^{\prime}\right), \omega\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(5) $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}\left(g^{\prime}, \omega\right)\right)$ is a monomorphism for any monomorphism $g^{\prime}: B^{\prime} \rightarrow$ C^{\prime} in $\operatorname{Mod} R^{\mathrm{op}}$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{I}_{\omega}}^{1}\left(R^{\mathrm{op}}\right)$ and $0 \leqslant i \leqslant n-1$.
(6) $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}\left(g^{\prime}, \omega\right)\right)$ is a monomorphism for any monomorphism $g^{\prime}: B^{\prime} \mapsto$ C^{\prime} in $\operatorname{Mod} R^{\mathrm{op}}$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{F}}^{1}\left(R^{\mathrm{op}}\right)$ and $0 \leqslant i \leqslant n-1$.
(7) $\Omega_{\mathcal{F}}^{i}\left(R^{\mathrm{op}}\right) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i+1}\left(R^{\mathrm{op}}\right)$ for any $1 \leqslant i \leqslant n$.

Proof. By the symmetric versions of Theorems 3.8 and 3.7 we have $(1) \Leftrightarrow(3) \Leftrightarrow(4)$ and $(2) \Leftrightarrow(5) \Leftrightarrow(6) \Leftrightarrow(7)$ respectively. In the following, we will prove (1) $\Leftrightarrow(2)$ by induction on n.
$(1) \Rightarrow(2)$ Let $M^{\prime} \in \operatorname{Mod} R^{\mathrm{op}}$ and let

$$
\cdots \rightarrow F_{i+1}\left(M^{\prime}\right) \xrightarrow{f_{i}} F_{i}\left(M^{\prime}\right) \rightarrow \cdots \xrightarrow{f_{0}} F_{0}\left(M^{\prime}\right) \rightarrow M^{\prime} \rightarrow 0
$$

be the minimal flat resolution of M^{\prime} in $\operatorname{Mod} R^{\mathrm{op}}$. By Lemma 3.1(2), for any $n \geqslant 1$, there exist exact sequences

$$
\begin{align*}
& 0 \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{n}\right) \xrightarrow{\sigma} \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n-1}\left(M^{\prime}\right) \xrightarrow{\tau} \operatorname{Tor}_{n}^{R}\left(M^{\prime}, \omega\right) \rightarrow 0, \tag{4.5}\\
& 0 \rightarrow \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}\left(M^{\prime}\right) \rightarrow F_{n+1}\left(M^{\prime}\right) \otimes_{R} \omega \rightarrow \operatorname{Im}\left(1_{\omega} \otimes f_{n}\right) \rightarrow 0 \tag{4.6}
\end{align*}
$$

in $\operatorname{Mod} S^{\text {op }}$ such that σ_{*} is an isomorphism. Because $F_{n+1}\left(M^{\prime}\right) \otimes_{R} \omega \in \omega_{S}{ }^{\perp}$ by [HW, Cor. 6.1], it follows from the exact sequence (4.6) that $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Im}\left(1_{\omega} \otimes\right.\right.$ $\left.\left.f_{n}\right)\right) \cong \operatorname{Ext}_{S^{\text {op }}}^{i+1}\left(\omega, \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}\left(M^{\prime}\right)\right)$ for any $i \geqslant 1$.

If $n=1$ then from the exact sequence (4.5) we get an exact sequence

$$
0 \rightarrow\left(\operatorname{Tor}_{1}^{R}\left(M^{\prime}, \omega\right)\right)_{*} \rightarrow \operatorname{Ext}_{S^{\mathrm{op}}}^{2}\left(\omega, \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{1}\left(M^{\prime}\right)\right)\left(\cong \operatorname{Ext}_{S^{\mathrm{op}}}^{1}\left(\omega, \operatorname{Im}\left(1_{\omega} \otimes f_{n}\right)\right)\right)
$$

in $\operatorname{Mod} R^{\mathrm{op}}$. Because s.T-cograde ${ }_{\omega} \operatorname{Ext}_{S^{\mathrm{op}}}^{2}\left(\omega, \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{1}\left(M^{\prime}\right)\right) \geqslant 1$ by assumption, we have T-cograde $\omega\left(\operatorname{Tor}_{1}^{R}\left(M^{\prime}, \omega\right)\right)_{*} \geqslant 1$. It is derived from Lemma 4.11(1) that E-cograde ${ }_{\omega} \operatorname{Tor}_{1}^{R}\left(M^{\prime}, \omega\right) \geqslant 1$.

Now suppose $n \geqslant 2$. Then E-cograde $\operatorname{Tor}_{i}^{R}\left(M^{\prime}, \omega\right) \geqslant i$ for any $1 \leqslant i \leqslant n-1$ and E-cograde $\omega \operatorname{Tor}_{n}^{R}\left(M^{\prime}, \omega\right) \geqslant n-1$ by the induction hypothesis. It follows from Theorem 3.7 that $\Omega_{\mathcal{F}}^{i}\left(R^{\mathrm{op}}\right) \subseteq \operatorname{ac}_{\mathcal{\omega}}^{i}\left(R^{\mathrm{op}}\right)$ for any $1 \leqslant i \leqslant n$. So $\Omega_{\mathcal{F}}^{n-1}\left(M^{\prime}\right) \in$
$\operatorname{ac} \mathcal{T}_{\omega}^{n-1}\left(R^{\mathrm{op}}\right)$ and $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n-1}\left(M^{\prime}\right) \in \omega_{S}{ }^{\perp_{n-1}}$. Thus from the exact sequences (4.5) and (4.6) we get the exact sequence

$$
0 \rightarrow \operatorname{Ext}_{S_{\text {op }}}^{n-1}\left(\omega, \operatorname{Tor}_{n}^{R}\left(M^{\prime}, \omega\right)\right) \rightarrow \operatorname{Ext}_{S^{\text {op }}}^{n+1}\left(\omega, \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}\left(M^{\prime}\right)\right)
$$

By (1) we have T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{\text {op }}}^{n-1}\left(\omega, \operatorname{Tor}_{n}^{R}\left(M^{\prime}, \omega\right)\right) \geqslant n$. From Lemma 4.11(1) it follows that E-cograde ${ }_{\omega} \operatorname{Tor}_{n}^{R}\left(M^{\prime}, \omega\right) \geqslant n$.
$(2) \Rightarrow(1)$ Let $N^{\prime} \in \operatorname{Mod} S^{\mathrm{op}}$ and Y be a submodule of $\operatorname{Ext}_{S^{\mathrm{op}}}^{n+1}\left(\omega, N^{\prime}\right)$ in $\operatorname{Mod} R^{\mathrm{op}}$, and let $\alpha: Y \multimap \operatorname{Ext}_{S^{\text {op }}}^{1}\left(\omega, \cos ^{n}\left(N^{\prime}\right)\right)\left(\cong \operatorname{Ext}_{S^{\text {op }}}^{n+1}\left(\omega, N^{\prime}\right)\right)$ be a monomorphism in $\operatorname{Mod} R^{\mathrm{op}}$. By Lemma 3.1(1) we have an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{S^{\mathrm{op}}}^{n+1}\left(\omega, N^{\prime}\right) \xrightarrow{\lambda} \operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n}\left(N^{\prime}\right) \xrightarrow{\pi} I^{n+1}\left(N^{\prime}\right)_{*} / \operatorname{co}^{n+1}\left(N^{\prime}\right)_{*} \rightarrow 0
$$

in $\operatorname{Mod} R^{\mathrm{op}}$ such that $\pi \otimes 1_{\omega}$ is an isomorphism. Then we get an exact sequence

$$
\begin{equation*}
0 \rightarrow Y \xrightarrow{g} \operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n}\left(N^{\prime}\right) \xrightarrow{\rho} \text { Coker } g \rightarrow 0 \tag{4.7}
\end{equation*}
$$

in $\operatorname{Mod} R^{\text {op }}$, where $g=\lambda \cdot \alpha$. It is easy to see that $\rho \otimes 1_{\omega}$ is an isomorphism.
Let $n=1$. Because $\operatorname{co} \Omega^{1}\left(N^{\prime}\right) \in \mathrm{c} \mathcal{T}_{\omega}^{1}\left(S^{\mathrm{op}}\right)$ by [TH1, Lem. 2.5(2)], we have $\mathrm{c} \operatorname{Tr}_{\omega} \cos ^{1}\left(N^{\prime}\right) \in \omega_{S}{ }^{\top_{1}}$. Then the exact sequence (4.7) gives $Y \otimes_{R} \omega \cong \operatorname{Tor}_{1}^{R}$ (Coker g, $\omega)$. So E-cograde $\omega_{\omega} Y \otimes_{R} \omega \geqslant 1$ by (2), and hence by Lemma 4.11(2) T-cograde ${ }_{\omega} Y \geqslant$ 1. The case for $n=1$ is proved.

Now suppose $n \geqslant 2$. Then s.T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{\text {op }}}^{i+1}\left(\omega, N^{\prime}\right) \geqslant i$ for any $1 \leqslant i \leqslant$ $n-1$ and s.T-cograde $\omega \operatorname{Ext}_{S^{\text {op }}}^{n+1}\left(\omega, N^{\prime}\right) \geqslant n-1$ by the induction hypothesis. So T-cograde ${ }_{\omega} Y \geqslant n-1$.

By Theorem 3.5 we have $\operatorname{co} \Omega^{i}\left(R^{\mathrm{op}}\right) \subseteq \mathrm{c} \mathcal{T}_{\omega}^{i}\left(R^{\mathrm{op}}\right)$ for any $1 \leqslant i \leqslant n$. So $\operatorname{co} \Omega^{n}\left(N^{\prime}\right) \in \mathrm{c} \mathcal{T}_{\omega}^{i}\left(R^{\mathrm{op}}\right)$ and $\operatorname{cTr}_{\omega} \operatorname{co} \Omega^{n}\left(N^{\prime}\right) \in{ }_{R} \omega^{\top_{n}}$. It follows from the exact sequence (4.7) that $\operatorname{Tor}_{n-1}^{R}(Y, \omega) \cong \operatorname{Tor}_{n}^{R}(\operatorname{Coker} g, \omega)$. Then by (2) we have E-cograde $\omega_{\omega} \operatorname{Tor}_{n-1}^{R}(Y, \omega)=$ E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{R}(\operatorname{Coker} g, \omega) \geqslant n$. Thus T-cograde ${ }_{\omega} Y$ $\geqslant n$ by Lemma 4.11(2).

Now we are in a position to state the following proposition.
Theorem 4.14. Let R be semiregular and $n \geqslant 1$. Then the following statements are equivalent:
(1) $\operatorname{pd}_{S_{\text {op }}} P_{i}(\omega)^{*} \leqslant i+1$ for any $0 \leqslant i \leqslant n-1$.
(2) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} P_{i}(\omega) \leqslant i+1$ for any $0 \leqslant i \leqslant n-1$.
(3) s.T-cograde $\omega_{\omega} \operatorname{Ext}_{S^{\text {op }}}^{i+1}\left(\omega, N^{\prime}\right) \geqslant i$ for any $N^{\prime} \in \operatorname{Mod} S^{\text {op }}$ and $1 \leqslant i \leqslant n$.
(4) s.E-cograde $\omega_{\omega} \operatorname{Tor}_{i+1}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(5) T -cograde ${ }_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(6) E-cograde $\omega_{\omega} \operatorname{Tor}_{i}^{R}\left(M^{\prime}, \omega\right) \geqslant i$ for any $M^{\prime} \in \operatorname{Mod} R^{\text {op }}$ and $1 \leqslant i \leqslant n$.
(7) $\operatorname{Tor}_{i}^{S}\left(\omega, \operatorname{Ext}_{R}^{i}(\omega, f)\right)$ is an epimorphism for any epimorphism $f: B \rightarrow C$ in $\operatorname{Mod} R$ with $B, C \in \cos ^{1}(R)$ and $0 \leqslant i \leqslant n-1$.
(8) $\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, \operatorname{Tor}_{i}^{R}\left(f^{\prime}, \omega\right)\right)$ is a monomorphism for any monomorphism $f^{\prime}: B^{\prime} \rightarrow$ C^{\prime} in $\operatorname{Mod} R^{\mathrm{op}}$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{F}}^{1}\left(R^{\mathrm{op}}\right)$ and $0 \leqslant i \leqslant n-1$.
(9) For any exact sequence

$$
0 \rightarrow A^{\prime} \rightarrow B^{\prime} \xrightarrow{g^{\prime}} C^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S^{\text {op }}$ with $A^{\prime} \in \Omega_{\mathcal{P}_{\omega}}^{i-1}\left(\operatorname{co} \Omega^{i}\left(S^{\mathrm{op}}\right)\right)$, $\operatorname{Tor}_{i}^{R}\left(\operatorname{Ext}_{S^{\text {op }}}^{i}\left(\omega, g^{\prime}\right), \omega\right)$ is an epimorphism for any $0 \leqslant i \leqslant n-1$.
(10) For any exact sequence

$$
0 \rightarrow A \xrightarrow{g} B \rightarrow C \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C \in \operatorname{co} \Omega_{\mathcal{I}_{\omega}}^{i-1}\left(\Omega_{\mathcal{F}}^{i}(S)\right), \operatorname{Ext}_{R}^{i}\left(\omega, \operatorname{Tor}_{i}^{S}(\omega, g)\right)$ is a monomorphism for any $0 \leqslant i \leqslant n-1$.
(11) $\cos ^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i+1}(R)$ for any $1 \leqslant i \leqslant n$.
(12) $\Omega_{\mathcal{F}}^{i}\left(R^{\mathrm{op}}\right) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i+1}\left(R^{\mathrm{op}}\right)$ for any $1 \leqslant i \leqslant n$.

Proof. By Proposition 4.7 we have (1) $\Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$. By Propositions 4.12 and 4.13 we have $(4) \Leftrightarrow(5) \Leftrightarrow(7) \Leftrightarrow(10) \Leftrightarrow(11)$ and $(3) \Leftrightarrow(6) \Leftrightarrow(8) \Leftrightarrow(9) \Leftrightarrow$ (12) respectively.

For the right quasi 1-cograde condition, we have some additional interesting equivalent characterizations.

Proposition 4.15. Let R be a semiregular ring. Then the following statements are equivalent:
(1) $\mathrm{pd}_{S^{\text {op }}} P_{0}(\omega)^{*} \leqslant 1$.
(2) s.E-cograde $\omega \operatorname{Tor}_{2}^{S}(\omega, N) \geqslant 1$ for any $N \in \operatorname{Mod} S$.
(3) θ_{M} is a superfluous epimorphism for any $M \in \cos ^{1}(R)$.
(4) $\mu_{M^{\prime}}$ is an essential monomorphism for any $M^{\prime} \in \Omega_{\mathcal{F}}^{1}\left(R^{\mathrm{op}}\right)$.

Proof. By Theorem 4.14 we have (1) $\Leftrightarrow(2)$.
$(1) \Rightarrow(3)$ Let $M \in \operatorname{co} \Omega^{1}(R)$. By [TH1, Lem. 2.5(2)] we have $\operatorname{co}^{1}(R) \subseteq c \mathcal{T}_{\omega}^{1}(R)$. So $M \in c \mathcal{T}_{\omega}^{1}(R)$ and θ_{M} is an epimorphism. Because $\operatorname{Ker} \theta_{M} \cong \operatorname{Tor}_{2}^{S}\left(\omega, \operatorname{cr}_{\omega} M\right)$ by [TH1, Prop. 3.2], we have

$$
\operatorname{Hom}_{R}\left(P_{0}(\omega), \operatorname{Ker} \theta_{M}\right) \cong \operatorname{Hom}_{R}\left(P_{0}(\omega), \operatorname{Tor}_{2}^{S}\left(\omega, \operatorname{cr}_{\omega} M\right)\right)=0
$$

by (1) and Lemma 4.6. It follows easily that $X_{*}=0$ for any quotient module X of $\operatorname{Ker} \theta_{M}$. Let A be a submodule of $\omega \otimes_{S} M_{*}$ in $\operatorname{Mod} R$ such that $\operatorname{Ker} \theta_{M}+A=$
$\omega \otimes_{S} M_{*}$. Then $\left(\operatorname{Ker} \theta_{M}+A\right) / A\left(\cong \operatorname{Ker} \theta_{M} /\left(A \cap \operatorname{Ker} \theta_{M}\right)\right)$ is isomorphic to a quotient module of $\operatorname{Ker} \theta_{M}$, and so $\left(\left(\operatorname{Ker} \theta_{M}+A\right) / A\right)_{*}=0$. Since $\omega \otimes_{S} M_{*} \in$ $\mathrm{c} \mathcal{T}_{\omega}^{1}(R)$ by [TH4, Lem. $\left.6.1(2)\right],\left(\operatorname{Ker} \theta_{M}+A\right) / A \in \mathrm{c} \mathcal{T}_{\omega}^{1}(R)$ by [TH1, Cor. 3.8]. It follows that $\theta_{\left(\operatorname{Ker} \theta_{M}+A\right) / A}: \omega \otimes_{S}\left(\left(\operatorname{Ker} \theta_{M}+A\right) / A\right)_{*} \rightarrow\left(\operatorname{Ker} \theta_{M}+A\right) / A$ is epic and $\left(\operatorname{Ker} \theta_{M}+A\right) / A=0$. It induces that $A=\operatorname{Ker} \theta_{M}+A=\omega \otimes_{S} M_{*}$ and θ_{M} is a superfluous epimorphism.
$(3) \Rightarrow(2)$ Let $f: B \rightarrow C$ be an epimorphism in $\operatorname{Mod} R$ with $B, C \in \cos ^{1}(R)$ $\left(\subseteq c \mathcal{T}_{\omega}^{1}(R)\right)$. Then $\theta_{C} \cdot\left(1_{\omega} \otimes f_{*}\right)=f \cdot \theta_{B}$ is epic. Because θ_{C} is a superfluous epimorphism by (3), it follows from [AF, Cor. 5.15] that $1_{\omega} \otimes f_{*}$ is epic. Now the assertion follows from Theorem 4.14.
$(1) \Rightarrow(4)$ Let $M^{\prime} \in \Omega_{\mathcal{F}}^{1}\left(R^{\mathrm{op}}\right)$. By [TH3, Cor. 3.5(1)] we have $\Omega_{\mathcal{F}}^{1}\left(R^{\mathrm{op}}\right) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{1}\left(R^{\mathrm{op}}\right)$. So $M^{\prime} \in \operatorname{ac} \mathcal{T}_{\omega}^{1}\left(R^{\mathrm{op}}\right)$ and $\mu_{M^{\prime}}$ is a monomorphism. Because Coker $\mu_{M^{\prime}} \cong \operatorname{Ext}_{S^{\text {op }}}^{2}(\omega$, $\operatorname{acTr}_{\omega} M^{\prime}$) by [TH3, Prop. 3.2], we have

$$
\operatorname{Coker} \mu_{M^{\prime}} \otimes_{R} P_{0}(\omega) \cong \operatorname{Ext}_{S^{\text {op }}}^{2}\left(\omega, \operatorname{acTr}_{\omega} M^{\prime}\right) \otimes_{R} P_{0}(\omega)=0
$$

by (1) and Lemma 4.6. It follows easily that $Y \otimes_{R} \omega=0$ for any submodule Y of Coker $\mu_{M^{\prime}}$. Let A^{\prime} be a submodule of $\left(M^{\prime} \otimes_{R} \omega\right)_{*}$ in $\operatorname{Mod} R^{\text {op }}$ with $A^{\prime} \cap M^{\prime}=0$. Then $A^{\prime} \cong A^{\prime} / A^{\prime} \cap M^{\prime} \cong\left(A^{\prime}+M^{\prime}\right) / M^{\prime}$ is isomorphic to a submodule of Coker $\mu_{M^{\prime}}$, and so $A^{\prime} \otimes_{R} \omega=0$. Since $\left(M^{\prime} \otimes_{R} \omega\right)_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{1}\left(R^{\mathrm{op}}\right)$ by [TH4, Lem. 6.1(1)], $A^{\prime} \in \operatorname{ac} \mathcal{T}_{\omega}^{1}\left(R^{\mathrm{op}}\right)$ by [TH3, Cor. 3.3(1)]. It follows that $\mu_{A^{\prime}}: A^{\prime} \rightarrow\left(A^{\prime} \otimes_{R} \omega\right)_{*}$ is monic. It induces that $A^{\prime}=0$ and $\mu_{M^{\prime}}$ is an essential monomorphism.
(4) \Rightarrow (2) Let $g: B^{\prime} \rightarrow C^{\prime}$ be a monomorphism in $\operatorname{Mod} R^{\mathrm{op}}$ with $B^{\prime}, C^{\prime} \in \Omega_{\mathcal{F}}^{1}\left(R^{\mathrm{op}}\right)$ $\left(\subseteq \operatorname{ac} \mathcal{T}_{\omega}^{1}\left(R^{\mathrm{op}}\right)\right)$. Then $\left(g \otimes 1_{\omega}\right)_{*} \cdot \mu_{B^{\prime}}=\mu_{C^{\prime}} \cdot g$ is monic. Because $\mu_{B^{\prime}}$ is an essential monomorphism by (4), it follows from [AF, Cor. 5.13] that $\left(g \otimes 1_{\omega}\right)_{*}$ is monic. Now the assertion follows from Theorem 4.14.

§4.3. The equivalence of certain cograde condition of modules

We have the following facts: for the strong Tor-cograde condition of modules in Theorem 3.8(1) and the strong Ext-cograde condition of modules in Theorem $3.9(1)$, they are equivalent when $k=0$ by Theorem 4.8 , but they are not equivalent when $k=1$ by Theorem 4.14 and Section 4.4 below. Also from Theorem 4.14 and Section 4.4 below, we know that the Tor-cograde condition of modules in Theorem 3.5(1) and the Ext-cograde condition of modules in Theorem 3.7(1) are not equivalent when $k=0$. In this subsection we will show that these two cograde conditions of modules are equivalent when $k=1$.

For any $i \geqslant 1$, by [TH3, Prop. 3.8] we have $\operatorname{ac}^{i}{ }_{\omega}^{i}(S) \subseteq \Omega_{\mathcal{I}_{\omega}}^{i}(S)$. The following result characterizes when they are identical.

Proposition 4.16. For any $n \geqslant 1$, the following statements are equivalent:
(1) $\mathrm{E}^{-c o g r a d e} \omega_{\omega} \operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i-1$ for any $N \in \operatorname{co}_{\mathcal{A}}^{i}(S)$ and $1 \leqslant i \leqslant n$.
(2) $\mathrm{E}-\operatorname{cograde}_{\omega} \operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i-1$ for any $N \in \operatorname{co}_{\mathcal{I}_{\omega}}^{i}(S)$ and $1 \leqslant i \leqslant n$.
(3) $\operatorname{ac}^{i}{ }_{\omega}^{i}(S)=\Omega_{\mathcal{A}}^{i}(S)$ for any $1 \leqslant i \leqslant n$.
(4) $\operatorname{ac}^{i}{ }_{\omega}^{i}(S)=\Omega_{\mathcal{I}_{\omega}}^{i}(S)$ for any $1 \leqslant i \leqslant n$.

Proof. Because $\mathcal{I}_{\omega}(S) \subseteq \mathcal{A}_{\omega}(S)$ we have (1) $\Rightarrow(2)$. By Lemma 3.6(2) we have $(3) \Leftrightarrow(4)$.
$(2) \Rightarrow(4) \mathrm{By}\left[\mathrm{TH} 3\right.$, Prop. 3.8] it suffices to prove $\Omega_{\mathcal{I}_{\omega}}^{i}(S) \subseteq \operatorname{ac} \mathcal{T}_{\omega}^{i}(S)$ for any $1 \leqslant i \leqslant n$. We proceed by induction on n. The case for $n=1$ follows from Lemma 2.9(1).

Now let $N \in \Omega_{\mathcal{I}_{\omega}}^{n}(S)$ with $n \geqslant 2$ and let

$$
\begin{equation*}
0 \longrightarrow N \xrightarrow{f^{0}} I^{0} \xrightarrow{f^{1}} \cdots \xrightarrow{f^{n-1}} I^{n-1} \tag{4.8}
\end{equation*}
$$

be an exact sequence in $\operatorname{Mod} S$ with all I^{i} in $\mathcal{I}_{\omega}(S)$. By the induction hypothesis we have $\operatorname{Im} f^{1} \in \operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$. Applying the functor $\omega \otimes_{S}-$ to (4.8) gives an exact sequence
(4.9) $\quad 0 \rightarrow \operatorname{Tor}_{n}^{S}\left(\omega\right.$, Coker $\left.f^{n-1}\right) \longrightarrow \omega \otimes_{S} N \xrightarrow{1 \omega \otimes f^{0}} \omega \otimes_{S} I^{0} \longrightarrow \omega \otimes_{S} \operatorname{Im} f^{1} \rightarrow 0$
in $\operatorname{Mod} R$. Set $M:=\operatorname{Im}\left(1_{\omega} \otimes f^{0}\right)$ and let $1_{\omega} \otimes f^{0}:=\alpha \cdot \pi\left(\right.$ where $\pi: \omega \otimes_{S} N \rightarrow M$ and $\alpha: M \hookrightarrow \omega \otimes_{S} I^{0}$) be the natural epic-monic decomposition of $1_{\omega} \otimes f^{0}$. Then we have the following commutative diagram with exact rows:

Since $\mu_{\operatorname{Im} f^{1}}$ is a monomorphism by the above argument, it follows from the snake lemma that g is an epimorphism. On the other hand, we have

$$
\alpha_{*} \cdot \pi_{*} \cdot \mu_{N}=(\alpha \cdot \pi)_{*} \cdot \mu_{N}=\left(1_{\omega} \otimes f^{0}\right)_{*} \cdot \mu_{N}=\mu_{I^{0}} \cdot f^{0}=\alpha_{*} \cdot g
$$

As α_{*} is monic we get that $\pi_{*} \cdot \mu_{N}=g$ and π_{*} is epic. Consider the following commutative diagram with exact rows

Because $\left(\operatorname{Tor}_{n}^{S}\left(\omega, \operatorname{Coker} f^{n-1}\right)\right)_{*}=0$ by assumption, we have that π_{*} is an isomorphism. So μ_{N} is epic by diagram (4.11), and hence an isomorphism. Thus $N \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ and the case for $n=2$ follows.

Now suppose $n \geqslant 3$. By the induction hypothesis we have that $\operatorname{Im} f^{1} \in$ $\operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$ and $\mu_{\operatorname{Im} f^{1}}$ is an isomorphism. So $\operatorname{Ext}_{R}^{1}(\omega, M)=0$ by diagram (4.10). In addition, we have $\omega \otimes_{S} \operatorname{Im} f^{1} \in{ }_{R} \omega^{\perp_{n-3}}$ by [TH3, Cor. 3.3(3)]. Because E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}\left(\omega\right.$, Coker $\left.f^{n-1}\right) \geqslant n-1$ (by assumption) and $\omega \otimes_{S} I^{0} \in{ }_{R} \omega^{\perp}$, applying the dimension shifting to (4.9) we obtain $\omega \otimes_{S} N \in{ }_{R} \omega^{\perp_{n-2}}$. Therefore we conclude that $N \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$ by [TH3, Cor. 3.3(3)] again.
$(3) \Rightarrow(1)$ We proceed by induction on n. The case for $n=1$ is trivial. Let $N \in \cos _{\mathcal{A}}^{n}(S)$ with $n \geqslant 2$. Then there exists an exact sequence

$$
0 \rightarrow H \rightarrow A_{n-1} \xrightarrow{f} A_{n-2} \rightarrow \cdots \rightarrow A_{0} \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with all A_{i} in $\mathcal{A}_{\omega}(S)$. By (3) we have $H \in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)$. By the induction hypothesis we have E-cograde $\operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i-1$ for any $1 \leqslant i \leqslant n-1$ and E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n-2$.

Put $M:=\operatorname{Ker}\left(1_{\omega} \otimes f\right)$. Because $A_{i} \in \operatorname{ac} \mathcal{T}_{\omega}(S)$ by [TH3, Thm. 3.11(1)], we obtain $M_{*} \cong H\left(\in \operatorname{ac} \mathcal{T}_{\omega}^{n}(S)\right)$ and $M \in{ }_{R} \omega^{\perp_{n-2}}$. By [TH2, Prop. 5.1] we have the exact sequences

$$
\begin{align*}
& 0 \rightarrow \operatorname{Tor}_{n}^{S}(\omega, N)\left(\cong \operatorname{Tor}_{2}^{S}(\omega, \operatorname{Coker} f)\right) \rightarrow \omega \otimes_{S} M_{*} \xrightarrow{\pi} \operatorname{Im} \theta_{M} \rightarrow 0, \tag{4.12}\\
& 0 \rightarrow \operatorname{Im} \theta_{M} \xrightarrow{\lambda} M \rightarrow \operatorname{Tor}_{n-1}^{S}(\omega, N)\left(\cong \operatorname{Tor}_{1}^{S}(\omega, \operatorname{Coker} f)\right) \rightarrow 0 \tag{4.13}
\end{align*}
$$

such that $\theta_{M}=\lambda \cdot \pi$. Since $\mu_{M_{*}}$ is an isomorphism, it follows from [TH4, Lem. 6.1(1)] that $\left(\theta_{M}\right)_{*}$ is also an isomorphism. Then both λ_{*} and π_{*} are isomorphisms.

From the exact sequence (4.13) we get $\operatorname{Im} \theta_{M} \in{ }_{R} \omega^{\perp_{n-2}}$. Because $\omega \otimes_{S}$ $M_{*} \in{ }_{R} \omega^{\perp_{n-2}}$ by [TH3, Cor. 3.3], from the exact sequence (4.12) it yields that $\operatorname{Ext}_{R}^{n-2}\left(\omega, \operatorname{Tor}_{n}^{S}(\omega, N)\right)=0$. Thus we have E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n-1$.

For any $i \geqslant 1$, by [TH1, Prop. 3.7] we have $\mathcal{T}_{\omega}^{i}(R) \subseteq \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{i}(R)$. The following result characterizes when they are identical.

Proposition 4.17. For any $n \geqslant 1$ the following statements are equivalent:
(1) T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i-1$ for any $M \in \Omega_{\mathcal{B}}^{i}(R)$ and $1 \leqslant i \leqslant n$.
(2) T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i-1$ for any $M \in \Omega_{\mathcal{F}_{\omega}}^{i}(R)$ and $1 \leqslant i \leqslant n$.
(3) T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i-1$ for any $M \in \Omega_{\mathcal{P}_{\omega}}^{i}(R)$ and $1 \leqslant i \leqslant n$.
(4) $c \mathcal{T}_{\omega}^{i}(R)=\operatorname{co} \Omega_{\mathcal{B}}^{i}(R)$ for any $1 \leqslant i \leqslant n$.
(5) $\mathrm{c} \mathcal{T}_{\omega}^{i}(R)=\operatorname{co} \Omega_{\mathcal{F}_{\omega}}^{i}(R)$ for any $1 \leqslant i \leqslant n$.
(6) $\mathrm{c} \mathcal{T}_{\omega}^{i}(R)=\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{i}(R)$ for any $1 \leqslant i \leqslant n$.

Proof. Because $\mathcal{B}_{\omega}(R) \supseteq \mathcal{F}_{\omega}(R) \supseteq \mathcal{P}_{\omega}(R)$, we have (1) $\Rightarrow(2) \Rightarrow$ (3). By Lemma $3.4(2)$ we have $(4) \Leftrightarrow(5) \Leftrightarrow(6)$.
$(3) \Rightarrow(6)$ By [TH1, Prop. 3.7], it suffices to prove $\cos _{\mathcal{P}_{\omega}}^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i}(R)$ for any $1 \leqslant i \leqslant n$. We proceed by induction on n. The case for $n=1$ follows from Lemma 2.9(2).

Now let $M \in \operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{n}(R)$ with $n \geqslant 2$ and let

$$
\begin{equation*}
W_{n-1} \xrightarrow{f_{n-1}} \cdots \rightarrow W_{1} \xrightarrow{f_{1}} W_{0} \xrightarrow{f_{0}} M \rightarrow 0 \tag{4.14}
\end{equation*}
$$

be an exact sequence in $\operatorname{Mod} R$ with all W_{i} in $\mathcal{P}_{\omega}(R)$. By the induction hypothesis we have $\operatorname{Im} f_{1} \in c \mathcal{T}_{\omega}^{n-1}(R)$. Applying the functor $(-)_{*}$ to (4.14) gives an exact sequence

$$
\begin{equation*}
0 \rightarrow\left(\operatorname{Im} f_{1}\right)_{*} \rightarrow W_{0 *} \xrightarrow{f_{0 *}} M_{*} \rightarrow \operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{Ker} f_{n-1}\right) \rightarrow 0 . \tag{4.15}
\end{equation*}
$$

Set $N:=\operatorname{Im}\left(f_{0_{*}}\right)$ and let $f_{0_{*}}:=\alpha \cdot \pi$ (where $\pi: W_{0 *} \rightarrow N$ and $\alpha: N \hookrightarrow M_{*}$) be the natural epic-monic decompositions of $f_{0 *}$. Then we have the following commutative diagram with exact rows:

So we have

$$
\theta_{M} \cdot\left(1_{\omega} \otimes \alpha\right) \cdot\left(1_{\omega} \otimes \pi\right)=\theta_{M} \cdot\left(1_{\omega} \otimes f_{0_{*}}\right)=f_{0} \cdot \theta_{W_{0}}=g \cdot\left(1_{\omega} \otimes \pi\right)
$$

Because $1_{\omega} \otimes \pi$ is epic, we have $\theta_{M} \cdot\left(1_{\omega} \otimes \alpha\right)=g$ and the following commutative diagram with exact rows:

Since $\theta_{\operatorname{Im} f_{1}}$ is an epimorphism by the above argument, it follows from the snake lemma that g is an isomorphism. Thus $1_{\omega} \otimes \alpha$ is a monomorphism. Because $\omega \otimes_{S}$ $\operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{Ker} f_{n-1}\right)=0$ by assumption, we have that θ_{M} is an isomorphism and $M \in \mathrm{c} \mathcal{T}_{\omega}^{2}(R)$ by diagram (4.17). It means that the assertion holds true for $n=2$.

If $n \geqslant 3$ then the fact that $\operatorname{Im} f_{1} \in c \mathcal{T}_{\omega}^{n-1}(R)$ implies $\theta_{\operatorname{Im} f_{1}}$ is an isomorphism. So $\operatorname{Tor}_{1}^{S}(\omega, N)=0$ by diagram (4.16). In addition, we have $\left(\operatorname{Im} f_{1}\right)_{*} \in \omega_{S}{ }^{\top_{n-3}}$ by [TH1, Cor. 3.4(3)]. Because T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{Ker} f_{n-1}\right) \geqslant n-1$ by assumption, applying the dimension shifting to (4.15) we obtain $M_{*} \in \omega_{S}{ }^{\top_{n-2}}$. Therefore we conclude that $M \in \mathcal{c}_{\omega}^{n}(R)$ by [TH1, Cor. 3.4(3)] again.
(4) \Rightarrow (1) We proceed by induction on n. The case for $n=1$ is trivial. Let $M \in \Omega_{\mathcal{B}}^{n}(R)$ with $n \geqslant 2$ and let

$$
0 \rightarrow M \rightarrow B_{n-1} \rightarrow \cdots \rightarrow B_{1} \xrightarrow{f} B_{0} \rightarrow L \rightarrow 0
$$

be an exact sequence with all B_{i} in $\mathcal{B}_{\omega}(R)$. By (4) we have $L \in \mathrm{c} \mathcal{T}_{\omega}^{n}(R)$. By the induction hypothesis we have T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i-1$ for any $1 \leqslant i \leqslant n-1$ and T-cograde $\omega \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n-2$.

Put $N:=\operatorname{cTr}_{\omega} \operatorname{Ker} f$. Because $B_{i} \in c \mathcal{T}_{\omega}(R)$ by [TH1, Thm. 3.9], we obtain that $\omega \otimes_{S} N \cong L\left(\in \mathrm{c} \mathcal{T}_{\omega}^{n}(R)\right)$ and $N \in \omega_{S}{ }^{{ }^{n-2}}$. By [TH4, Prop. 6.7] we have the exact sequences

$$
\begin{align*}
& 0 \rightarrow \operatorname{Ext}_{R}^{n-1}(\omega, M) \rightarrow N \xrightarrow{\pi} \operatorname{Im} \mu_{N} \rightarrow 0 \tag{4.18}\\
& 0 \rightarrow \operatorname{Im} \mu_{N} \xrightarrow{\lambda}\left(\omega \otimes_{S} N\right)_{*} \rightarrow \operatorname{Ext}_{R}^{n}(\omega, M) \rightarrow 0 \tag{4.19}
\end{align*}
$$

such that $\mu_{N}=\lambda \cdot \pi$. Since $\theta_{\omega \otimes_{S} N}$ is an isomorphism, it follows from [TH4, Lem. 6.1(2)] that $1_{\omega} \otimes \mu_{N}$ is also an isomorphism. Then both $1_{\omega} \otimes \lambda$ and $1_{\omega} \otimes \pi$ are isomorphisms.

From the exact sequence (4.18) we get $\operatorname{Im} \mu_{N} \in \omega_{S}{ }^{{ }^{n-2}}$. Because $\left(\omega \otimes_{S}\right.$ $N)_{*} \in \omega_{S}{ }^{T_{n-2}}$ by [TH1, Cor. 3.4], from the exact sequence (4.19) it yields that $\operatorname{Tor}_{n-2}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right)=0$. Thus we have T-cograde $\operatorname{Lext}_{R}^{n}(\omega, M) \geqslant n-1$.

Lemma 4.18. For any $n \geqslant 0$, the following statements are equivalent:
(1) $\omega \otimes \operatorname{Ext}_{R}^{2}(\omega,-)$ vanishes on $\operatorname{Mod} R$.
(2) $\left(\operatorname{Tor}_{2}^{S}(\omega,-)\right)_{*}$ vanishes on $\operatorname{Mod} S$.
(3) $M_{*} \in \operatorname{ac} \mathcal{T}_{\omega}^{2}(S)$ for any $M \in \operatorname{Mod} R$.
(4) $\omega \otimes_{S} N \in c \mathcal{T}_{\omega}^{2}(R)$ for any $N \in \operatorname{Mod} S$.

Proof. By [TH2, Cor. 6.6] we have (3) $\Leftrightarrow(4)$.
(1) \Leftrightarrow (4) Assume that (1) holds true. Let $N \in \operatorname{Mod} S$. By [TH4, Lem. 6.1(2)] we have

$$
\theta_{\omega \otimes_{S} N} \cdot\left(1_{\omega} \otimes \mu_{N}\right)=1_{\omega \otimes_{S} N}
$$

It follows that $\theta_{\omega \otimes_{S} N}$ is a split epimorphism and

$$
\begin{array}{rlrl}
\operatorname{Ker} \theta_{\omega \otimes_{S} N} & \cong \operatorname{Coker}\left(1_{\omega} \otimes \mu_{N}\right) \cong \omega \otimes_{S} \text { Coker } \mu_{N} & \\
& \cong \omega \otimes_{S} \operatorname{Ext}_{R}^{2}\left(\omega, \operatorname{acTr}_{\omega} N\right) & & (\text { by }[\text { TH2, Cor. } 5.2(2)]) \\
& =0 & \text { by }(1)) .
\end{array}
$$

So $\theta_{\omega \otimes_{S} N}$ is a monomorphism, and hence an isomorphism.
Conversely, assume that (4) holds true. Let $M \in \operatorname{Mod} R$. By [TH4, Lem. 6.1(2)] again, we have

$$
\theta_{\omega \otimes_{S} c \operatorname{Tr}_{\omega} M} \cdot\left(1_{\omega} \otimes \mu_{\operatorname{cTr}_{\omega} M}\right)=1_{\omega \otimes_{S} C T_{\omega} M} .
$$

It follows that

$$
\begin{aligned}
\omega \otimes_{S} \operatorname{Ext}_{R}^{2}(\omega, M) & \cong \omega \otimes_{S} \operatorname{Coker} \mu_{\mathrm{c} \operatorname{Tr}_{\omega} M} \quad \text { (by [TH2, Cor. 5.3(2)]) } \\
& \cong \operatorname{Coker}\left(1_{\omega} \otimes \mu_{\mathrm{c} \operatorname{Tr}_{\omega} M}\right) \cong \operatorname{Ker} \theta_{\omega \otimes_{S} c \operatorname{Tr}_{\omega} M} \\
& =0
\end{aligned}
$$

(2) \Leftrightarrow (3) Assume that (2) holds true. Let $M \in \operatorname{Mod} R$. By [TH4, Lem. 6.1(1)] we have

$$
\left(\theta_{M}\right)_{*} \cdot \mu_{M_{*}}=1_{M_{*}} .
$$

It follows that $\mu_{M_{*}}$ is a split monomorphism and

$$
\begin{aligned}
\text { Coker } \mu_{M_{*}} & \cong \operatorname{Ker}\left(\theta_{M}\right)_{*} \cong\left(\operatorname{Ker} \theta_{M}\right)_{*} & & \\
& \cong\left(\operatorname{Tor}_{2}^{S}\left(\omega, \operatorname{cTr}_{\omega} M\right)\right)_{*} & & (\text { by }[\mathrm{TH} 1, \text { Prop. } 3.2]) \\
& =0 & & (\text { by }(2)) .
\end{aligned}
$$

So $\mu_{M_{*}}$ is an epimorphism, and hence an isomorphism.
Conversely, assume that (3) holds true. Let $N \in \operatorname{Mod} S$. By [TH4, Lem. 6.1(1)] again, we have

$$
\left(\theta_{\operatorname{acTr}_{\omega} N}\right)_{*} \cdot \mu_{\left(\operatorname{acTr}_{\omega} N\right)_{*}}=1_{\left(\operatorname{acTr} T_{\omega} N\right)_{*}} .
$$

It follows that

$$
\begin{aligned}
\left(\operatorname{Tor}_{2}^{S}(\omega, N)\right)_{*} & \cong\left(\operatorname{Ker} \theta_{\operatorname{acTr}_{\omega} N}\right)_{*} \\
& \cong \operatorname{Ker}\left(\theta_{\left.\operatorname{acTr}_{\omega} N\right)_{*}} \cong \operatorname{Coker} \mu_{\left(\operatorname{acTr}_{\omega} N\right)_{*}} \quad\right. \text { (by [TH2, Cor. 5.3(1)]) } \\
& =0
\end{aligned}
$$

The following result establishes the left-right symmetry of certain cograde conditions of modules.

Theorem 4.19. For any $n \geqslant 1$, the following statements are equivalent:
(1) T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i-1$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n$.
(2) E-cograde $\operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i-1$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n$.
(3) $\operatorname{co} \Omega^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i}(R)=\operatorname{co} \Omega_{\mathcal{B}}^{i}(R)$ for any $1 \leqslant i \leqslant n$.
(4) $\cos ^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i}(R)=\operatorname{co} \Omega_{\mathcal{F}_{\omega}}^{i}(R)$ for any $1 \leqslant i \leqslant n$.
(5) $\operatorname{co} \Omega^{i}(R) \subseteq c \mathcal{T}_{\omega}^{i}(R)=\operatorname{co} \Omega_{\mathcal{P}_{\omega}}^{i}(R)$ for any $1 \leqslant i \leqslant n$.
(6) $\Omega_{\mathcal{F}}^{i}(S) \subseteq \operatorname{ac}^{i}{ }_{\omega}^{i}(S)=\Omega_{\mathcal{A}}^{i}(S)$ for any $1 \leqslant i \leqslant n$.
(7) $\Omega_{\mathcal{F}}^{i}(S) \subseteq \operatorname{ac}^{i}{ }_{\omega}^{i}(S)=\Omega_{\mathcal{I}_{\omega}}^{i}(S)$ for any $1 \leqslant i \leqslant n$.

Proof. By Theorem 3.5 and Proposition 4.17 we have $(1) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5)$. By Theorem 3.7 and Proposition $4.16,(2) \Leftrightarrow(6) \Leftrightarrow(7)$.

In the following, we will prove (1) $\Leftrightarrow(2)$ by induction on n. The case for $n=1$ is trivial and the case for $n=2$ follows from Lemma 4.18. Now suppose $n \geqslant 3$.
$(1) \Rightarrow(2)$ Let $N \in \operatorname{Mod} S$. By the induction hypothesis we have E-cograde $\omega_{\omega} \operatorname{Tor}_{i}^{S}(\omega$, $N) \geqslant i-1$ for any $1 \leqslant i \leqslant n-1$ and $\mathrm{E}-\operatorname{cograde}_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n-2$. By Lemma $3.1(2)$ there exists an exact sequence

$$
0 \rightarrow \operatorname{Im}\left(f_{n} \otimes 1_{\omega}\right) \xrightarrow{\sigma} \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n-1}(N) \xrightarrow{\tau} \operatorname{Tor}_{n}^{S}(\omega, N) \rightarrow 0
$$

in $\operatorname{Mod} R$ such that σ_{*} is an isomorphism. By Theorem 3.7 we have $\Omega_{\mathcal{F}}^{n-1}(N) \in$ $\operatorname{ac} \mathcal{T}_{\omega}^{n-1}(S)$ and $\operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n-1}(N) \in{ }_{R} \omega^{\perp_{n-1}}$. So

$$
\begin{aligned}
\operatorname{Ext}_{R}^{n-2}\left(\omega, \operatorname{Tor}_{n}^{S}(\omega, N)\right) & \cong \operatorname{Ext}_{R}^{n-1}\left(\omega, \operatorname{Im}\left(f_{n} \otimes 1_{\omega}\right)\right) \\
& \cong \operatorname{Ext}_{R}^{n}\left(\omega, \operatorname{acTr}_{\omega} \Omega_{\mathcal{F}}^{n}(N)\right)
\end{aligned}
$$

Then T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{n-2}\left(\omega, \operatorname{Tor}_{n}^{S}(\omega, N)\right) \geqslant n-1$ by (1). It follows from Lemma 4.11(1) that E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n-1$.
$(2) \Rightarrow(1)$ Let $M \in \operatorname{Mod} R$. By the induction hypothesis we have T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i}(\omega$, $M) \geqslant i-1$ for any $1 \leqslant i \leqslant n-1$ and T-cograde $\omega \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n-2$. By Lemma $3.1(1)$ there exists an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{n+1}(\omega, M) \xrightarrow{\lambda} \operatorname{cTr}_{\omega} \cos ^{n}(M) \xrightarrow{\pi} I^{n+1}(M)_{*} / \cos ^{n+1}(M)_{*} \rightarrow 0
$$

in $\operatorname{Mod} S$ such that $1_{\omega} \otimes \pi$ is an isomorphism. By Theorem 3.5 we have $\operatorname{co} \Omega^{n-1}(M) \in$ $c \mathcal{T}_{\omega}^{n-1}(R)$ and $\operatorname{cTr}_{\omega} \operatorname{co}^{n-1}(M) \in \omega_{S}{ }^{T_{n-1}}$. So

$$
\begin{aligned}
\operatorname{Tor}_{n-2}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right) & \cong \operatorname{Tor}_{n-1}^{S}\left(\omega, I^{n}(M)_{*} / \cos ^{n}(M)_{*}\right) \\
& \cong \operatorname{Tor}_{n}^{S}\left(\omega, \operatorname{cTr}_{\omega} \cos ^{n}(M)\right)
\end{aligned}
$$

Then E-cograde ${ }_{\omega} \operatorname{Tor}_{n-2}^{S}\left(\omega, \operatorname{Ext}_{R}^{n}(\omega, M)\right) \geqslant n-1$ by (2). It follows from Lemma 4.11(2) that T-cograde $\omega \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n-1$.

§4.4. Examples

In this subsection we give some examples for ω satisfying the (quasi) n-cograde condition.

Let R be an artin algebra. Recall that R is called Auslander n-Gorenstein if $\operatorname{pd}_{R^{\text {op }}} I^{i}\left(R_{R}\right) \leqslant i$ for any $0 \leqslant i \leqslant n-1$, or equivalently $\operatorname{pd}_{R} I^{i}\left({ }_{R} R\right) \leqslant i$ for any $0 \leqslant i \leqslant n-1$ ([FGR, IS]), and R is called left (resp. right) quasi n-Gorenstein if $\operatorname{pd}_{R} I^{i}\left({ }_{R} R\right)\left(\right.$ resp. $\operatorname{pd}_{R^{\text {op }}} I^{i}\left(R_{R}\right) \leqslant i+1$ for any $\left.0 \leqslant i \leqslant n-1 ;[\mathrm{H} 3]\right)$.

Let D be the ordinary duality between $\bmod R$ and $\bmod R^{\mathrm{op}}$. Then $D(R)$ is a semidualizing (R, R)-bimodule. Because

$$
\operatorname{pd}_{R} I^{i}\left({ }_{R} R\right)=\operatorname{id}_{R^{\circ \mathrm{\circ}}} P_{i}\left(D\left({ }_{R} R\right)\right)=\operatorname{pd}_{R} \operatorname{Hom}_{R^{\circ \mathrm{p}}}\left(P_{i}\left(D\left({ }_{R} R\right)\right), D(R)\right)
$$

and

$$
\operatorname{pd}_{R^{\text {op }}} I^{i}\left(R_{R}\right)=\operatorname{id}_{R} P_{i}\left(D\left(R_{R}\right)\right)=\operatorname{pd}_{R^{\text {op }}} \operatorname{Hom}_{R}\left(P_{i}\left(D\left(R_{R}\right)\right), D(R)\right),
$$

we have the following example.
Example 4.20. (1) R is Auslander n-Gorenstein if and only if $D(R)$ satisfies the n-cograde condition.
(2) R is left (resp. right) quasi n-Gorenstein if and only if $D(R)$ satisfies the left (resp. right) quasi n-cograde condition.

So, putting ${ }_{R} \omega_{S}={ }_{R} D(R)_{R}$ in Theorem 4.8 (resp. Theorem 4.14), then all the conditions there are equivalent to R being Auslander n-Gorenstein (resp. right quasi n-Gorenstein). Note that the notion of quasi n-Gorenstein algebras is not left-right symmetric ([AR1, p.11]). So contrary to the n-cograde condition, the quasi n-cograde condition is not left-right symmetric.

Example 4.21. Let Q be the quiver

and $R=K Q /\langle\beta \alpha-\delta \gamma, \varepsilon \gamma\rangle$ with K a field. Take

By [ASS, Exa. VI.2.8(a)] we have that ω_{R} is a noninjective tilting module with $\operatorname{pd}_{R} \omega=1$. Thus it is a semidualizing $\left(R, \operatorname{End}_{R}(\omega)\right.$-bimodule. It is straightforward to verify that the projective cover $P_{0}(\omega)$ of ω is $P(1) \oplus P(4)^{2} \oplus P(5)^{2}$. So $\mathcal{P}_{\omega}(R)$ $\operatorname{id}_{R} P_{0}(\omega)=0$, and hence ω satisfies the left and right 1-cograde conditions by Theorem 4.8. Since $\operatorname{pd}_{R} \omega=1$ we have $\operatorname{Ext}_{R}^{\geqslant 2}(\omega, M)=0$ for any $M \in \operatorname{Mod} R$. By Theorem 4.8 again, we have that ω satisfies the left and right n-cograde conditions for any $n \geqslant 1$.

§5. Two cotorsion pairs

In this section we will construct two complete cotorsion pairs under any of the equivalent conditions in Theorem 4.19.

For any $n \geqslant 0$, set $\mathcal{P}_{\omega^{-}} \operatorname{id} \leqslant n(R):=\left\{M \in \operatorname{Mod} R \mid \mathcal{P}_{\omega}(R)-\operatorname{id}_{R} M \leqslant n\right\}$.
Lemma 5.1. Let $M \in{ }_{R} \omega^{\perp_{n-1}}$ with $n \geqslant 1$. If $\mathrm{T}-\operatorname{cograde}_{\omega} \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n-1$, then there exists an exact sequence

$$
0 \rightarrow M \rightarrow X \rightarrow Y \rightarrow 0
$$

in $\operatorname{Mod} R$ with $X \in{ }_{R} \omega^{\perp_{n}}$ and $Y \in \mathcal{P}_{\omega}-\mathrm{id}^{\leqslant n-1}(R)$.
Proof. Let $M \in{ }_{R} \omega^{\perp_{n-1}}$. From the exact sequence

$$
0 \rightarrow M \rightarrow I^{0}(M) \rightarrow \cdots \rightarrow I^{n-1}(M) \rightarrow \operatorname{co} \Omega^{n}(M) \rightarrow 0
$$

in $\operatorname{Mod} R$, we get the following commutative diagram with exact rows,

where the upper sequence is a projective resolution of $\operatorname{Ext}_{R}^{n}(\omega, M)$ in $\operatorname{Mod} S$. Taking the mapping cone of diagram (5.1) we get an exact sequence

$$
\begin{equation*}
I^{0}(M)_{*} \oplus P_{n-1} \rightarrow \cdots \rightarrow I^{n-1}(M)_{*} \oplus P_{0} \rightarrow \cos ^{n}(M)_{*} \rightarrow 0 \tag{5.2}
\end{equation*}
$$

Since T-cograde ${ }_{\omega} \operatorname{Ext}_{R}^{n}(\omega, M) \geqslant n-1$ we get an exact sequence
$\omega \otimes_{S} P_{n-1} \rightarrow \cdots \rightarrow \omega \otimes_{S} P_{1} \rightarrow \omega \otimes_{S} P_{0} \rightarrow 0$
in $\operatorname{Mod} R$. Then we get the following commutative diagram with exact columns and rows

where

$$
X=\operatorname{Ker}\left(I^{0}(M) \oplus\left(\omega \otimes_{S} P_{n-1}\right) \rightarrow I^{1}(M) \oplus\left(\omega \otimes_{S} P_{n-2}\right)\right)
$$

and

$$
Y=\operatorname{Ker}\left(\omega \otimes_{S} P_{n-1} \rightarrow \omega \otimes_{S} P_{n-2}\right) .
$$

Then $Y \in \mathcal{P}_{\omega^{-}} \mathrm{id}^{\leqslant n-1}(R)$. From the exactness of (5.2) and the middle column in diagram (5.3) we know that $X \in{ }_{R} \omega^{\perp_{n}}$. So the top row in diagram (5.3) is the desired exact sequence.

For any $n \geqslant 0$, set $\mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n}(S):=\left\{N \in \operatorname{Mod} S \mid \mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} N \leqslant n\right\}$.
Lemma 5.2. Let $N \in \omega_{S}{ }^{{ }_{n-1}}$ with $n \geqslant 1$. If $\operatorname{E-cograde}{ }_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n-1$ then there exists an exact sequence

$$
0 \rightarrow Y^{\prime} \rightarrow X^{\prime} \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$ with $X^{\prime} \in \omega_{S}{ }^{\top_{n}}$ and $Y^{\prime} \in \mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant n-1}(S)$.

Proof. Let $N \in \omega_{S}{ }^{\top}{ }_{n-1}$. From the exact sequence

$$
0 \rightarrow \Omega_{\mathcal{F}}^{n}(N) \rightarrow F_{n-1}(N) \rightarrow \cdots \rightarrow F_{0}(N) \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$, we get the following commutative diagram with exact rows
(5.4)

where the lower sequence is an injective resolution of $\operatorname{Tor}_{n}^{S}(\omega, N)$ in $\operatorname{Mod} R$. Taking the mapping cone of diagram (5.4), we get an exact sequence

$$
\begin{equation*}
\omega \otimes_{S} \Omega_{\mathcal{F}}^{n}(N) \rightarrow I^{0} \oplus\left(\omega \otimes_{S} F_{n-1}(N)\right) \rightarrow \cdots \rightarrow I^{n-1} \oplus\left(\omega \otimes_{S} F_{0}(N)\right) \tag{5.5}
\end{equation*}
$$

Since E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}(\omega, N) \geqslant n-1$ we get an exact sequence

$$
0 \rightarrow I^{0}{ }_{*} \rightarrow I^{1}{ }_{*} \rightarrow \cdots \rightarrow I^{n-1}{ }_{*}
$$

in $\operatorname{Mod} S$. Then we get the following commutative diagram with exact columns and rows

where

$$
X^{\prime}=\operatorname{Coker}\left(I^{n-2} * \oplus F_{1}(N) \rightarrow I^{n-1} \oplus F_{0}(N)\right)
$$

and

$$
Y^{\prime}=\operatorname{Coker}\left(I_{*}^{n-2} \rightarrow I_{*}^{n-1}\right) .
$$

Then $Y^{\prime} \in \mathcal{I}_{\omega^{-}} \operatorname{pd}^{\leqslant n-1}(S)$. From the exactness of (5.5) and the middle column in diagram (5.6) we know that $X^{\prime} \in \omega_{S}{ }^{{ }^{n}}$. So the bottom row in diagram (5.6) is the desired exact sequence.

Lemma 5.3. For any $n \geqslant 0$, we have
(1) $\mathcal{P}_{\omega}-\mathrm{id}{ }^{\leqslant n}(R)$ is closed under direct summands and closed under extensions;
(2) $\mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant n}(S)$ is closed under direct summands and closed under extensions.

Proof. (1) By [TH4, Lem. 4.6], $\mathcal{P}_{\omega^{-}} \mathrm{id}^{\leqslant n}(R)$ is closed under direct summands. Let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} R$ with $A, C \in \mathcal{P}_{\omega^{-}} \mathrm{id}^{\leqslant n}(R)$. It is easy to see that it is $\operatorname{Hom}_{R}\left(-, \mathcal{P}_{\omega}(R)\right)$-exact. Then $B \in \mathcal{P}_{\omega}$ - $\mathrm{id}^{\leqslant n}(R)$ by the generalized horseshoe lemma (cf. [H4, Lem. 3.1(2)]).
(2) By [TH3, Lem. 4.7], $\mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n}(S)$ is closed under direct summands. Let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with $A, C \in \mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n}(S)$. It is easy to see that it is $\left(\omega \otimes_{S}-\right)$-exact; equivalently it is $\operatorname{Hom}_{R}\left(-, \mathcal{I}_{\omega}(S)\right)$-exact by [TH3, p. 298, Obs.]. Then $B \in \mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n}(S)$ by the generalized horseshoe lemma (cf. [H4, Lem. 3.1(1)]).

Proposition 5.4. Let $n, k \geqslant 1$ and T -cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i+k}(\omega, M) \geqslant i$ for any $M \in$ $\operatorname{Mod} R$ and $1 \leqslant i \leqslant n-1$. Then for any $M \in \operatorname{Mod} R$ and $0 \leqslant i \leqslant n-1$ there exists an exact sequence

$$
0 \rightarrow \cos ^{k-1}(M) \rightarrow X \rightarrow Y \rightarrow 0
$$

in $\operatorname{Mod} R$ with $X \in{ }_{R} \omega^{\perp_{i+1}}$ and $Y \in \mathcal{P}_{\omega}-\mathrm{id}{ }^{\leqslant i}(R)$.
Proof. We proceed by induction on n. The case for $n=1$ follows from Lemma 5.1. Now suppose $n \geqslant 2$. By the induction hypothesis for any $0 \leqslant i \leqslant n-2$ there exists an exact sequence

$$
0 \rightarrow \cos ^{k-1}(M) \rightarrow X_{i} \rightarrow Y_{i} \rightarrow 0
$$

in $\operatorname{Mod} R$ with $X_{i} \in{ }_{R} \omega^{\perp_{i+1}}$ and $Y_{i} \in \mathcal{P}_{\omega^{-}} \mathrm{id}{ }^{\leqslant i}(R)$. Then

$$
\operatorname{Ext}_{R}^{n}\left(\omega, X_{n-2}\right) \cong \operatorname{Ext}_{R}^{n}\left(\omega, \cos ^{k-1}(M)\right) \cong \operatorname{Ext}_{R}^{n+k-1}(\omega, M)
$$

So T-cograde $\omega \operatorname{Ext}_{R}^{n}\left(\omega, X_{n-2}\right)=$ T-cograde ${ }_{\omega} \operatorname{Ext}_{R}^{n+k-1}(\omega, M) \geqslant n-1$ by assumption. Applying Lemma 5.1 we get an exact sequence

$$
0 \rightarrow X_{n-2} \rightarrow X_{n-1} \rightarrow Y_{n-1} \rightarrow 0
$$

in $\operatorname{Mod} R$ with $X_{n-1} \in{ }_{R} \omega^{\perp_{n}}$ and $Y_{n-1} \in \mathcal{P}_{\omega}$ - $\mathrm{id}^{\leqslant n-1}(R)$. Consider the following push-out diagram:

By Lemma 5.3(1) we have $Y \in \mathcal{P}_{\omega^{-}} \mathrm{id}^{\leqslant n-1}(R)$. So the middle row in this diagram is the desired sequence.

Proposition 5.5. Let $n, k \geqslant 1$ and $\mathrm{E}-\operatorname{cograde}_{\omega} \operatorname{Tor}_{i+k}^{S}(\omega, N) \geqslant i$ for any $N \in$ $\operatorname{Mod} S$ and $1 \leqslant i \leqslant n-1$. Then for any $N \in \operatorname{Mod} S$ and $0 \leqslant i \leqslant n-1$, there exists an exact sequence

$$
0 \rightarrow Y^{\prime} \rightarrow X^{\prime} \rightarrow \Omega_{\mathcal{F}}^{k-1}(N) \rightarrow 0
$$

in $\operatorname{Mod} S$ with $X^{\prime} \in \omega_{S}{ }^{\top_{i+1}}$ and $Y^{\prime} \in \mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant i}(S)$.
Proof. We proceed by induction on n. The case for $n=1$ follows from Lemma 5.2. Now suppose $n \geqslant 2$. By the induction hypothesis, for any $0 \leqslant i \leqslant n-2$ there exists an exact sequence

$$
0 \rightarrow Y_{i}^{\prime} \rightarrow X_{i}^{\prime} \rightarrow \Omega_{\mathcal{F}}^{k-1}(N) \rightarrow 0
$$

in $\operatorname{Mod} S$ with $X_{i}^{\prime} \in \omega_{S}{ }^{\top+1}$ and $Y_{i}^{\prime} \in \mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant i}(S)$. Then

$$
\operatorname{Tor}_{n}^{S}\left(\omega, X_{n-2}^{\prime}\right) \cong \operatorname{Tor}_{n}^{S}\left(\omega, \Omega_{\mathcal{F}}^{k-1}(N)\right) \cong \operatorname{Tor}_{n+k-1}^{S}(\omega, N)
$$

So E-cograde $\omega_{\omega} \operatorname{Tor}_{n}^{S}\left(\omega, X_{n-2}^{\prime}\right)=$ E-cograde ${ }_{\omega} \operatorname{Tor}_{n+k-1}^{S}(\omega, N) \geqslant n-1$ by assumption. Applying Lemma 5.2 we get an exact sequence

$$
0 \rightarrow Y_{n-1}^{\prime} \rightarrow X_{n-1}^{\prime} \rightarrow X_{n-2}^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $X_{n-1}^{\prime} \in \omega_{S}{ }^{\top_{n}}$ and $Y_{n-1}^{\prime} \in \mathcal{I}_{\omega^{-}}-\mathrm{pd}^{n-1}(S)$. Consider the pull-back diagram

By Lemma $5.3(2)$, we have $Y^{\prime} \in \mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n-1}(S)$. So the middle column in this diagram is the desired sequence.

Based on the equivalence of (1) and (2) in Theorem 4.19, we have the following result.

Theorem 5.6. For any $n \geqslant 1$, we have the following properties:
(1) If one of the equivalent conditions in Theorem 4.19 is satisfied then the following statements are equivalent:
(1-1) $\operatorname{pd}_{S^{\text {op }}} \omega \leqslant n-1$.
(1-2) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} R \leqslant n-1$.
(1-3) $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} P \leqslant n-1$ for any projective P in $\operatorname{Mod} R$.
(1-4) $\left(\mathcal{P}_{\omega}-\mathrm{id}{ }^{\leqslant n-1}(R),{ }_{R} \omega^{\perp_{n}}\right)$ forms a complete cotorsion pair.
(2) If one of the equivalent conditions in Theorem 4.19 is satisfied then the following statements are equivalent:
(2-1) $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} Q \leqslant n-1$ for some injective cogenerator Q in $\operatorname{Mod} S$.
(2-2) $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} I \leqslant n-1$ for any injective module I in $\operatorname{Mod} S$.
(2-3) $\left(\omega_{S}{ }^{\top}, \mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant n-1}(S)\right)$ forms a complete cotorsion pair.

If R and S are artin algebras, then statements (2-1)-(2-3) are equivalent to the following one:
$(2-4) \operatorname{pd}_{R} \omega \leqslant n-1$.
Proof. By Lemma 4.5(1) we have (1-1) $\Leftrightarrow(1-2)$.
If $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} R \leqslant n-1$ then $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} F \leqslant n-1$ for any free module F in $\operatorname{Mod} R$ by [HW, Prop. 5.1(b)]. It follows from Lemma 5.3(1) that $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} P \leqslant n-1$ for any projective P in $\operatorname{Mod} R$. This proves $(1-2) \Leftrightarrow(1-3)$.
$(1-3) \Rightarrow(1-4)$ It is easy to verify that $\operatorname{Ext}_{R}^{1}(A, B)=0$ for any $A \in \mathcal{P}_{\omega}$ - $\mathrm{id}^{\leqslant n-1}(R)$ and $B \in{ }_{R} \omega^{\perp_{n}}$.

Let $M \in \operatorname{Mod} R$. By Lemma 5.1 when $n=1$, or taking $k=1$ in Proposition 5.4 when $n \geqslant 2$, we get an exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow B \rightarrow A \rightarrow 0 \tag{5.7}
\end{equation*}
$$

in $\operatorname{Mod} R$ with $B \in{ }_{R} \omega^{\perp_{n}}$ and $A \in \mathcal{P}_{\omega^{-}}$id ${ }^{\leqslant n-1}(R)$. It implies that M has a special ${ }_{R} \omega^{\perp_{n}}$-preenvelope and ${ }_{R} \omega^{\perp_{n}}$ is special preenveloping in $\operatorname{Mod} R$. If $M \in$ $\left(\mathcal{P}_{\omega^{-}} \mathrm{id} \leqslant n-1(R)\right)^{\perp_{1}}$ then the exact sequence (5.7) splits. It follows that M is a direct summand of B and $M \in{ }_{R} \omega^{\perp_{n}}$.

Let

$$
0 \rightarrow M_{1} \rightarrow P \rightarrow M \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} R$ with P projective. We have $P \in \mathcal{P}_{\omega}$ - $\mathrm{id}^{\leqslant n-1}(R)$ by (1-3). By Lemma 5.1 when $n=1$ or by Proposition 5.4 when $n \geqslant 2$, we have an exact sequence

$$
0 \rightarrow M_{1} \rightarrow B^{\prime} \rightarrow A^{\prime} \rightarrow 0
$$

in $\operatorname{Mod} R$ with $B^{\prime} \in{ }_{R} \omega^{\perp_{n}}$ and $A^{\prime} \in \mathcal{P}_{\omega^{-}}-\mathrm{id} \leqslant n-1(R)$. Consider the push-out diagram

Since $\mathcal{P}_{\omega}-\mathrm{id}^{\leqslant n-1}(R)$ is closed under extensions by Lemma $5.3(1)$, it follows from the middle column in the above diagram that $A^{\prime \prime} \in \mathcal{P}_{\omega^{-}} \mathrm{id}^{\leqslant n-1}(R)$. If $M \in$ ${ }^{\perp_{1}}\left({ }_{R} \omega^{\perp_{n}}\right)$ then the middle row in the above diagram splits and M is a direct summand of $A^{\prime \prime}$. By Lemma $5.3(1)$ we have $M \in \mathcal{P}_{\omega^{-}} \mathrm{id}{ }^{\leqslant n-1}(R)$. It follows from Lemma 2.7 that $\left(\mathcal{P}_{\omega^{-}} \mathrm{id}{ }^{\leqslant n-1}(R),{ }_{R} \omega^{\perp_{n}}\right)$ forms a complete cotorsion pair.
(1-4) $\Rightarrow(1-2)$ By (1-4) we immediately have ${ }_{R} R \in \mathcal{P}_{\omega^{-}} \mathrm{id}^{\leqslant n-1}(R)$ and $\mathcal{P}_{\omega}(R)$ $\operatorname{id}_{R} R \leqslant n-1$.

If $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} Q \leqslant n-1$ for some injective cogenerator Q in $\operatorname{Mod} S$, then any direct product of Q is in $\mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant n-1}(S)$ by [HW, Prop. 5.1(c)]. It follows from Lemma 5.3(2) that $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} I \leqslant n-1$ for any injective module I in $\operatorname{Mod} S$. This proves $(2-1) \Leftrightarrow(2-2)$.
$(2-2) \Rightarrow(2-3)$ It is easy to verify that $\operatorname{Ext}_{S}^{1}(C, D)=0$ for any $C \in \omega_{S}{ }^{\top}$ and $D \in \mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant n-1}(S)$.

Let $N \in \operatorname{Mod} S$. By Lemma 5.2 when $n=1$, or taking $k=1$ in Proposition 5.5 when $n \geqslant 2$, we get an exact sequence

$$
\begin{equation*}
0 \rightarrow D \rightarrow C \rightarrow N \rightarrow 0 \tag{5.8}
\end{equation*}
$$

in $\operatorname{Mod} S$ with $C \in \omega_{S}{ }^{\top_{n}}$ and $D \in \mathcal{I}_{\omega^{-}} \operatorname{pd}^{\leqslant n-1}(S)$. It implies that N has a special $\omega_{S}{ }^{\top_{n}}$-precover and $\omega_{S}{ }^{\top_{n}}$ is precovering in $\operatorname{Mod} S$. If $N \in{ }^{\perp_{1}}\left(\mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n-1}(S)\right)$ then the exact sequence (5.8) splits. It follows that N is a direct summand of C and $N \in \omega_{S}{ }^{{ }^{n}}$.

Let

$$
0 \rightarrow N \rightarrow I \rightarrow N_{1} \rightarrow 0
$$

be an exact sequence in $\operatorname{Mod} S$ with I injective. By (2-2) we have $I \in \mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n-1}(S)$. By Lemma 5.2 when $n=1$ or by Proposition 5.5 when $n \geqslant 2$, we have an exact sequence

$$
0 \rightarrow D^{\prime} \rightarrow C^{\prime} \rightarrow N_{1} \rightarrow 0
$$

in $\operatorname{Mod} S$ with $C^{\prime} \in \omega_{S}{ }^{T_{n}}$ and $D^{\prime} \in \mathcal{I}_{\omega}-\mathrm{pd}^{\leqslant n-1}(S)$. Consider the pull-back
diagram

Since $\mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n-1}(S)$ is closed under extensions by Lemma $5.3(2)$, it follows from the middle row in the above diagram that $D^{\prime \prime} \in \mathcal{I}_{\omega}$ - $\mathrm{pd}^{\leqslant n-1}(S)$. If $N \in\left(\omega_{S}{ }^{\top}\right)^{\perp_{1}}$ then the middle column in the above diagram splits and N is a direct summand of $D^{\prime \prime}$. By Lemma 5.3(2) we have $N \in \mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n-1}(S)$. It follows from Lemma 2.7 that $\left(\omega_{S}{ }^{\top}, \mathcal{I}_{\omega^{-}}-\mathrm{pd}^{\leqslant n-1}(S)\right)$ forms a complete cotorsion pair.
$(2-3) \Rightarrow(2-2)$ For any injective module I in $\operatorname{Mod} S$, by (2-3) we have $I \in$ $\mathcal{I}_{\omega^{-}} \mathrm{pd}^{\leqslant n-1}(S)$ and $\mathcal{I}_{\omega}(S)-\mathrm{pd}_{S} I \leqslant n-1$.

If R and S are artin algebras then $\operatorname{pd}_{R} \omega=\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} D\left(S_{S}\right)$ by [TH3, Lem. 4.9]. Because $D\left(S_{S}\right)$ is an injective cogenerator in $\operatorname{Mod} S,(2-1) \Leftrightarrow(2-4)$ follows.

Observation 5.7. Let R be an artin algebra and ${ }_{R} \omega_{S}={ }_{R} D(R)_{R}$. Then we have the following properties:
(1) $\operatorname{pd}_{R} \omega=\operatorname{id}_{R^{\text {op }}} R$ and $\operatorname{pd}_{R^{\text {op }}} \omega=\operatorname{id}_{R} R$.
(2) $\mathcal{P}_{\omega}(R)$ is exactly the subclass of $\operatorname{Mod} R$ consisting of injective modules. It implies that
(2-1) $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} M=\operatorname{id}_{R} M$ for any $M \in \operatorname{Mod} R$;
(2-2) $\mathcal{P}_{\omega}-\mathrm{id}^{\leqslant n}(R)=\mathcal{I} \leqslant n(R):=\left\{M \in \operatorname{Mod} R \mid \operatorname{id}_{R} M \leqslant n\right\}$.
(3) $\mathcal{I}_{\omega}(R)$ is exactly the subclass of $\operatorname{Mod} R$ consisting of projective modules. It implies that
(3-1) $\mathcal{I}_{\omega}(R)-\operatorname{pd}_{R} N=\operatorname{pd}_{R} N$ for any $N \in \operatorname{Mod} R$;
(3-2) $\mathcal{I}_{\omega}-\operatorname{pd}^{\leqslant n}(R)=\mathcal{P} \leqslant n(R):=\left\{N \in \operatorname{Mod} R \mid \operatorname{pd}_{R} N \leqslant n\right\}$.
(4) By [CE, Prop. VI.5.3] it is easy to see that $\omega_{R}^{{ }^{T_{n+1}}}={ }^{\perp_{n+1}} R R$.
(5) If R is right quasi ($n-1$)-Gorenstein, then all conditions in Theorem 4.19 are satisfied; see Theorem 4.14 and Example 4.20(2).

As an application of Theorem 5.6, we have the following corollary.
Corollary 5.8. Let R be a right quasi ($n-1$)-Gorenstein artin algebra with $n \geqslant 1$. Then the following statements are equivalent:
(1) $\operatorname{id}_{R} R \leqslant n-1$.
(2) $\operatorname{id}_{R^{\text {op }}} R \leqslant n-1$.
(3) $\left(\mathcal{I}^{\leqslant n-1}(R),{ }_{R} D(R)^{\perp_{n}}\right)$ forms a complete cotorsion pair.
(4) $\left({ }^{\perp_{n}} R, \mathcal{P} \leqslant n-1(R)\right)$ forms a complete cotorsion pair.

Proof. By Theorem 5.6 and Observation 5.7 we have $(1) \Leftrightarrow(3)$ and $(2) \Leftrightarrow(4)$.
(1) $\Leftrightarrow(2)$ Let $\operatorname{id}_{R} R \leqslant n-1$. By [AR2, Thm. 4.7] and the symmetric version of [H2, Thm.] we have $\mathrm{id}_{R^{\text {op }}} R \leqslant(n-1)+(n-2)=2 n-3$. Conversely, let $\mathrm{id}_{R^{\text {op }}} R \leqslant n-1$. By [TH2, Thm. 7.5] we have $\operatorname{id}_{R} R \leqslant n-1$. Now the assertion follows from [Z, Lem. A].

As a consequence of Corollary 5.8, we have the following result.
Corollary 5.9. For any artin algebra R, the following conditions are equivalent:
(1) $\operatorname{id}_{R} R \leqslant 1$.
(2) $\operatorname{id}_{R^{\text {op }}} R \leqslant 1$.

Furthermore, if R is right quasi 1-Gorenstein then they are equivalent to each of the following two statements:
(3) $\left(\mathcal{I} \leqslant 1(R),{ }_{R} D(R)^{\perp_{2}}\right)$ forms a complete cotorsion pair.
(4) $\left({ }^{\perp_{2}} R R, \mathcal{P} \leqslant 1(R)\right)$ forms a complete cotorsion pair.

Proof. The first assertion follows from [H2, Cor. 2]. If R is right quasi 1-Gorenstein then we get the second assertion by putting $n=2$ in Corollary 5.8.

We use $\mathcal{I}(R)$ and $\mathcal{P}(R)$ to denote the subclasses of $\operatorname{Mod} R$ consisting of injective and projective modules respectively. Putting $n=1$ in Corollary 5.8, we have the following result.

Corollary 5.10. For any artin algebra R, the following statements are equivalent:
(1) R is self-injective.
(2) $\left(\mathcal{I}(R),{ }_{R} D(R)^{\perp_{1}}\right)$ forms a complete cotorsion pair (in this case, ${ }_{R} D(R)^{\perp_{1}}=$ $\left.\mathcal{I}(R)^{\perp_{1}}\right)$.
(3) $\left({ }^{\perp_{1}} R R, \mathcal{P}(R)\right)$ forms a complete cotorsion pair (in this case, $\left.{ }^{{ }_{1}^{1}}{ }_{R} R={ }^{\perp_{1}} \mathcal{P}(R)\right)$.

§6. Relative finitistic dimensions

In this section, we introduce and study the finitistic $\mathcal{P}_{\omega}(R)$-injective dimension and the $\mathcal{I}_{\omega}(S)$-projective dimension of rings.

The finitistic $\mathcal{P}_{\omega}(R)$-injective dimension $\mathrm{F} \mathcal{P}_{\omega}$ - id R of R is defined as

$$
\mathrm{FP}_{\omega^{-}} \operatorname{id} R:=\sup \left\{\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} M \mid M \in \operatorname{Mod} R \text { and } \mathcal{P}_{\omega}(R)-\operatorname{id}_{R} M<\infty\right\}
$$

and the finitistic $\mathcal{I}_{\omega}(S)$-projective dimension $\mathrm{F} \mathcal{I}_{\omega^{-}}$- $\operatorname{pd} S$ of S is defined as
$\mathrm{F} \mathcal{I}_{\omega^{-}} \operatorname{pd} S:=\sup \left\{\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} N \mid N \in \operatorname{Mod} S\right.$ and $\left.\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} N<\infty\right\}$.
Lemma 6.1. For any $n \geqslant 0$ and $k \geqslant 1$ we have
(1) Let T-cograde $\omega_{\omega} \operatorname{Ext}_{R}^{i+k}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $1 \leqslant i \leqslant n+1$. If $\mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R=n$ then $\operatorname{pd}_{R} \omega \leqslant n+k$.
(2) Let $\mathrm{E}-\mathrm{cograde}_{\omega} \operatorname{Tor}_{i+k}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $1 \leqslant i \leqslant n+1$. If $\mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S=n$ then $\operatorname{pd}_{S^{\circ \mathrm{P}}} \omega \leqslant n+k$.

Proof. (1) Let $M \in \operatorname{Mod} R$. By Proposition 5.4 there exists an exact sequence

$$
0 \rightarrow \operatorname{co} \Omega^{k-1}(M) \rightarrow X \rightarrow Y \rightarrow 0
$$

in $\operatorname{Mod} R$ with $X \in{ }_{R} \omega^{\perp_{n+2}}$ and $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} Y \leqslant n+1$. If $\mathrm{F} \mathcal{P}_{\omega}$ - $\mathrm{id} R=n$ then $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} Y \leqslant n$. Thus we have

$$
\operatorname{Ext}_{R}^{n+k+1}(\omega, M) \cong \operatorname{Ext}_{R}^{n+2}\left(\omega, \operatorname{co}^{k-1}(M)\right) \cong \operatorname{Ext}_{R}^{n+1}(\omega, Y)=0
$$

and $\operatorname{pd}_{R} \omega \leqslant n+k$.
(2) Let $N \in \operatorname{Mod} S$. By Proposition 5.5 there exists an exact sequence

$$
0 \rightarrow Y^{\prime} \rightarrow X^{\prime} \rightarrow \Omega_{\mathcal{F}}^{k-1}(N) \rightarrow 0
$$

in $\operatorname{Mod} S$ with $X^{\prime} \in \omega_{S}{ }^{\top_{n+2}}$ and $\mathcal{P}_{\omega}(R)-\operatorname{id}_{S} Y^{\prime} \leqslant n+1$. If $\mathrm{F} \mathcal{I}_{\omega^{-}} \operatorname{pd} S=n$ then $\mathcal{I}_{\omega}(R)-\mathrm{pd}_{S} Y^{\prime} \leqslant n$. Thus we have

$$
\operatorname{Tor}_{n+k+1}^{S}(\omega, N) \cong \operatorname{Tor}_{n+2}^{S}\left(\omega, \Omega_{\mathcal{F}}^{k-1}(N)\right) \cong \operatorname{Tor}_{n+1}^{S}\left(\omega, Y^{\prime}\right)=0
$$

and $\operatorname{pd}_{S^{\text {op }}} \omega=\mathrm{fd}_{S^{\text {op }}} \omega \leqslant n+k$.
Lemma 6.2. For any $n \geqslant 0$ we have
(1) Let $\mathrm{FP}_{\omega}-\mathrm{id} R \leqslant n$ and $N \in \operatorname{Mod} S$. If $\mathrm{T}-\operatorname{cograde}{ }_{\omega} N \geqslant n+1$ then $N=0$.
(2) Let $\mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S \leqslant n$ and $H \in \operatorname{Mod} R$. If $E-\operatorname{cograde}_{\omega} H \geqslant n+1$ then $H=0$.

Proof. (1) Consider a projective resolution

$$
\cdots \rightarrow Q_{n+1} \rightarrow Q_{n} \rightarrow \cdots \rightarrow Q_{0} \rightarrow N \rightarrow 0
$$

of N in $\operatorname{Mod} S$. If T-cograde ${ }_{\omega} N \geqslant n+1$ then we get an exact sequence

$$
0 \rightarrow M \rightarrow \omega \otimes_{S} Q_{n+1} \rightarrow \omega \otimes_{S} Q_{n} \rightarrow \cdots \rightarrow \omega \otimes_{S} Q_{1} \rightarrow \omega \otimes_{S} Q_{0} \rightarrow 0
$$

in $\operatorname{Mod} R$, where $M=\operatorname{Ker}\left(\omega \otimes_{S} Q_{n+1} \rightarrow \omega \otimes_{S} Q_{n}\right)$. By [TH3, Cor. 3.5], $Q \cong$ $\left(\omega \otimes_{S} Q\right)_{*}$ canonically for any projective Q in $\operatorname{Mod} S$, so $N \cong \operatorname{Ext}_{R}^{n+1}(\omega, M)$. Because $\mathrm{F} \mathcal{P}_{\omega}$ - id $R \leqslant n$ by assumption, we have $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} M \leqslant n$ and $N \cong$ $\operatorname{Ext}_{R}^{n+1}(\omega, M)=0$.
(2) Consider an injective resolution

$$
0 \rightarrow H \rightarrow I^{0} \rightarrow \cdots \rightarrow I^{n} \rightarrow I^{n+1} \rightarrow \cdots
$$

of H in $\operatorname{Mod} R$. If E-cograde $\omega_{\omega} H \geqslant n+1$ then we get an exact sequence

$$
0 \rightarrow I_{*}^{0} \rightarrow \cdots \rightarrow I_{*}^{n} \rightarrow I^{n+1}{ }_{*} \rightarrow N \rightarrow 0
$$

in $\operatorname{Mod} S$, where $N=\operatorname{Coker}\left(I^{n}{ }_{*} \rightarrow I^{n+1}{ }_{*}\right)$. By [TH1, Lem. 2.5(2)], $\omega \otimes_{S} I_{*} \cong I$ canonically for any injective I in $\operatorname{Mod} R$, so $H \cong \operatorname{Tor}_{n+1}^{S}(\omega, N)$. Because $\mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S$ $\leqslant n$ by assumption, we have $\mathcal{I}_{\omega}\left(R^{\mathrm{op}}\right)-\operatorname{pd}_{S} N \leqslant n$ and $H \cong \operatorname{Tor}_{n+1}^{S}(\omega, N)=0$.

The following is the main result in this section.
Theorem 6.3. For any $k \geqslant 0$ we have the following properties:
(1) If $\mathrm{T}-\operatorname{cograde}{ }_{\omega} \operatorname{Ext}_{R}^{i+k}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $i \geqslant 1$, then $\mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R$ $\leqslant \operatorname{pd}_{R} \omega \leqslant \mathrm{~F}_{\omega}-\mathrm{id} R+k$.
(2) If E-cograde $\omega_{\omega} \operatorname{Tor}_{i+k}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $i \geqslant 1$, then $\mathcal{F}_{\omega}-\operatorname{pd} S$ $\leqslant \operatorname{pd}_{S^{\text {op }}} \omega \leqslant \mathrm{FI}_{\omega}-\operatorname{pd} S+k$.

Proof. (1) Let $\operatorname{pd}_{R} \omega=n(<\infty)$ and $M \in \operatorname{Mod} R$ with $\mathcal{P}_{\omega}(R)-\operatorname{id}_{R} M=m(<\infty)$.
Then there exists an exact sequence

$$
0 \rightarrow M \xrightarrow{f^{0}} \omega^{0} \xrightarrow{f^{1}} \omega^{1} \rightarrow \cdots \xrightarrow{f^{m}} \omega^{m} \rightarrow 0
$$

in $\operatorname{Mod} R$ with all ω^{i} in $\mathcal{P}_{\omega}(R)$. Since $\mathcal{P}_{\omega}(R) \subseteq \mathcal{B}_{\omega}(R)$ by [HW, Cor. 6.1], we have $\mathcal{B}_{\omega}(R)-\operatorname{id}_{R} M \leqslant \mathcal{P}_{\omega}(R)-\operatorname{id}_{R} M<\infty$. If $m>n$ then it follows from [TH4, Thm. 4.2] that $\mathcal{B}_{\omega}(R)-\operatorname{id}_{R} M \leqslant n$ and $\operatorname{Im} f^{n} \in \mathcal{B}_{\omega}(R)$. On the other hand, we have the exact and split sequence

$$
0 \rightarrow\left(\operatorname{Im} f^{n}\right)_{*} \rightarrow \omega^{n}{ }_{*} \rightarrow \cdots \rightarrow \omega^{m}{ }_{*} \rightarrow 0
$$

in $\operatorname{Mod} S$ with all $\omega^{i}{ }_{*}$ projective. So $\left(\operatorname{Im} f^{n}\right)_{*}$ is projective, and hence $\operatorname{Im} f^{n} \in$ $\mathcal{P}_{\omega}(R)$ by [HW, Lem. $\left.5.1(2)\right]$. It yields that $\mathcal{P}_{\omega}(R)-\mathrm{id}_{R} M \leqslant n$, a contradiction. This proves $\mathrm{FP}_{\omega^{-}}$- id $R \leqslant \operatorname{pd}_{R} \omega$.

In the following we will prove $\operatorname{pd}_{R} \omega \leqslant \mathrm{FP}_{\omega}$ - id $R+k$. The case for $k \geqslant 1$ follows from Lemma 6.1(1). Now suppose that $k=0$ and $\mathrm{F} \mathcal{P}_{\omega^{-}}$id $R=n(<\infty)$. Let $M \in \operatorname{Mod} R$. Then T-cograde ${ }_{\omega} \operatorname{Ext}_{R}^{n+1}(\omega, M) \geqslant n+1$ by assumption. It follows from Lemma 6.2(1) that $\operatorname{Ext}_{R}^{n+1}(\omega, M)=0$ and $\mathrm{pd}_{R} \omega \leqslant n$.
(2) Let $\operatorname{pd}_{S^{\text {op }}} \omega=n(<\infty)$ and $N \in \operatorname{Mod} S$ with $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} N=m(<\infty)$. Then there exists an exact sequence

$$
0 \rightarrow U_{m} \xrightarrow{g_{m}} \cdots \rightarrow U_{1} \xrightarrow{g_{1}} U_{0} \xrightarrow{g_{0}} N \rightarrow 0
$$

in $\operatorname{Mod} S$ with all U_{i} in $\mathcal{I}_{\omega}(S)$. Since $\mathcal{I}_{\omega}(S) \subseteq \mathcal{A}_{\omega}(S)$ by [HW, Cor. 6.1], we have $\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} N<\infty$. If $m>n$ then it follows from the dual result of [TH4, Thm. 4.2] that $\mathcal{A}_{\omega}(S)-\operatorname{pd}_{S} N \leqslant n$ and $\operatorname{Im} g_{n} \in \mathcal{A}_{\omega}(S)$. On the other hand, we have the exact and split sequence

$$
0 \rightarrow \omega \otimes_{S} U_{m} \rightarrow \cdots \rightarrow \omega \otimes_{S} U_{n} \rightarrow \omega \otimes_{S} \operatorname{Im} g_{n} \rightarrow 0
$$

in $\operatorname{Mod} R$ with all $\omega \otimes_{S} U_{i}$ injective. So $\omega \otimes_{S} \operatorname{Im} g_{n}$ is injective, and hence $\operatorname{Im} g_{n} \in$ $\mathcal{I}_{\omega}(S)$ by [HW, Lem. $\left.5.1(3)\right]$. It yields that $\mathcal{I}_{\omega}(S)-\operatorname{pd}_{S} N \leqslant n$, a contradiction. This proves $\mathrm{F} \mathcal{I}_{\omega^{-}} \operatorname{pd} S \leqslant \operatorname{pd}_{S_{\text {op }}} \omega$.

In the following we will prove $\operatorname{pd}_{S^{\text {op }}} \omega \leqslant \mathrm{F}_{\mathcal{I}^{-}}-\mathrm{pd} S+k$. The case for $k \geqslant 1$ follows from Lemma 6.1(2). Now suppose that $k=0$ and $\mathrm{F} \mathcal{I}_{\omega^{-}} \operatorname{pd} S=n$. Let $N \in \operatorname{Mod} S$. Then E-cograde $\omega_{\omega} \operatorname{Tor}_{n+1}^{S}(\omega, N) \geqslant n+1$ by assumption. It follows from Lemma 6.2(2) that $\operatorname{Tor}_{n+1}^{S}(\omega, N)=0$ and $\operatorname{pd}_{S^{\text {op }}} \omega=\mathrm{fd}_{S^{\text {op }}} \omega \leqslant n$.

Putting $k=0$ in Theorem 6.3, we immediately get the following corollary.
Corollary 6.4. (1) If $\mathrm{T}-\operatorname{cograde}_{\omega} \operatorname{Ext}_{R}^{i}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $i \geqslant$ 1, then $\mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R=\operatorname{pd}_{R} \omega$.
(2) If $\mathrm{E}-\mathrm{cograde}_{\omega} \operatorname{Tor}_{i}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $i \geqslant 1$, then $\mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S$ $=\operatorname{pd}_{S^{\text {op }}} \omega$.

The following is an immediate consequence of Corollaries 4.2 and 6.4.
Corollary 6.5. If ω satisfies the n-cograde condition for all n then

$$
\mathrm{F} \mathcal{P}_{\omega}-\operatorname{id} R=\operatorname{pd}_{R} \omega \quad \text { and } \quad \mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S=\operatorname{pd}_{S^{\mathrm{op}}} \omega .
$$

Combining Theorem 4.19 with the case for $k=1$ in Theorem 6.3 , we get the following corollary.

Corollary 6.6. We have

$$
\mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R \leqslant \operatorname{pd}_{R} \omega \leqslant \mathrm{~F} \mathcal{P}_{\omega}-\mathrm{id} R+1
$$

and

$$
\mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S \leqslant \operatorname{pd}_{S^{\text {op }}} \omega \leqslant \mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S+1
$$

if either of the following conditions is satisfied:
(1) $\mathrm{T}-\operatorname{cograde}_{\omega} \operatorname{Ext}_{R}^{i+1}(\omega, M) \geqslant i$ for any $M \in \operatorname{Mod} R$ and $i \geqslant 1$.
(2) $\mathrm{E}-\mathrm{cograde}_{\omega} \operatorname{Tor}_{i+1}^{S}(\omega, N) \geqslant i$ for any $N \in \operatorname{Mod} S$ and $i \geqslant 1$.

Corollary 6.7. If ω satisfies the right quasi n-cograde condition for all n, then

$$
\mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R=\operatorname{pd}_{R} \omega \quad \text { and } \quad \mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S \leqslant \operatorname{pd}_{S^{\mathrm{op}}} \omega \leqslant \mathrm{~F} \mathcal{I}_{\omega}-\operatorname{pd} S+1 .
$$

Proof. The former equality follows from Proposition 4.12 and Corollary 6.4(1), and the later inequalities follow from the definition of the right quasi n-cograde condition and Corollary 6.6.

Observation 6.8. Let R be an artin algebra and ${ }_{R} \omega_{S}={ }_{R} D(R)_{R}$.
(1) By Observation 5.7 we have

$$
\begin{aligned}
& \mathrm{F} \mathcal{P}_{\omega}-\mathrm{id} R=\mathrm{FID} R:=\sup \left\{\operatorname{id}_{R} M \mid M \in \operatorname{Mod} R \text { and } \operatorname{id}_{R} M<\infty\right\}, \\
& \mathrm{F} \mathcal{I}_{\omega}-\operatorname{pd} S=\mathrm{FPD} R:=\sup \left\{\operatorname{pd}_{R} N \mid N \in \operatorname{Mod} R \text { and } \operatorname{pd}_{R} N<\infty\right\} .
\end{aligned}
$$

(2) If R is right (or left) quasi n-Gorenstein for all n, then $\operatorname{id}_{R^{\text {op }}} R=\operatorname{id}_{R} R$ ([H2, Cor. 4]).

As a consequence of the above results, we have the following corollary.
Corollary 6.9. Let R be an artin algebra.
(1) If R satisfies the Auslander condition (that is, R is Auslander n-Gorenstein for all n) then

$$
\text { FPD } R^{\mathrm{op}}=\mathrm{FID} R^{\mathrm{op}}=\operatorname{id}_{R^{\mathrm{op}}} R=\operatorname{id}_{R} R=\mathrm{FPD} R=\mathrm{FID} R .
$$

(2) If R satisfies the right quasi Auslander condition (that is, R is right quasi n-Gorenstein for all n) then

$$
\operatorname{FPD} R \leqslant \operatorname{FID} R=\operatorname{id}_{R^{\text {op }}} R=\operatorname{id}_{R} R \leqslant \operatorname{FPD} R+1
$$

Proof. In view of Example 4.20 and Observations 5.7 and 6.8, the assertions follow from Corollaries 6.5 and 6.7 respectively.

Acknowledgements

This research was partially supported by NSFC (grant nos. 11971225, 11571164, 11501144), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the NSF of Guangxi Province of China (grant no. 2016GXNSFAA380151). The authors thank the referee for the useful suggestions.

References

[AF] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics 13, Springer, New York, 1992. Zbl 0765.16001 MR 1245487
[ATY] T. Araya, R. Takahashi and Y. Yoshino, Homological invariants associated to semidualizing bimodules, J. Math. Kyoto Univ. 45 (2005), 287-306. Zbl 1096.16001 MR 2161693
[ASS] I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras, Vol. 1: Techniques of representation theory, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006. Zbl 1092.16001 MR 2197389
[AB] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969), 146pp. Zbl 0204.36402 MR 0269685
[AR1] M. Auslander and I. Reiten, k-Gorenstein algebras and syzygy modules, J. Pure Appl. Algebra 92 (1994), 1-27. Zbl 0803.16016 MR 1259667
[AR2] M. Auslander and I. Reiten, Syzygy modules for noetherian rings, J. Algebra 183 (1996), 167-185. Zbl 0857.16006 MR 1397392
[ARS] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, 1997. Corrected reprint of the 1995 original. Zbl 0834.16001 MR 1476671
[BR] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp. Zbl 1124.18005 MR 2327478
[BBE] L. Bican, R. El Bashir and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385-390. Zbl 1029.16002 MR 1832549
[B] J. E. Björk, The Auslander condition on Noetherian rings, in Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année, Paris, 1987/1988, Lecture Notes in Mathematics 1404, Springer, Berlin, 1989, 137-173. Zbl 0696.16006 MR 1035224
[CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, 1999. With an appendix by D. A. Buchsbaum; reprint of the 1956 original. Zbl 0933.18001 MR 1731415
[CSS] J. Coates, P. Schneider and R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (2003), 73-108. Zbl 1061.11060 MR 1955208
[E] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209. Zbl 0464.16019 MR 0636889
[EJ] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin, New York, 2000. Zbl 0952.13001 MR 1753146
[EHIS] K. Erdmann, T. Holm, O. Iyama and J. Schröer, Radical embeddings and representation dimension, Adv. Math. 185 (2004), 159-177. Zbl 1062.16006 MR 2058783
[FGR] R. M. Fossum, P. A. Griffith and I. Reiten, Trivial extensions of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory, Lecture Notes in Mathematics 456, Springer, Berlin, 1975. Zbl 0303.18006 MR 0389981
[GT] R. Göbel and J. Trlifaj, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics 41, Walter de Gruyter, Berlin, New York, 2006. Zbl 1121.16002 MR 2251271
[GH] P. A. Guil Asensio and I. Herzog, Left cotorsion rings, Bull. London Math. Soc. 36 (2004), 303-309. Zbl 1068.16003 MR 2038718
[HW] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007 MR 2413065
[H1] Z. Y. Huang, Extension closure of k-torsionfree modules, Comm. Algebra 27 (1999), 1457-1464. Zbl 0928.16010 MR 1669127
[H2] Z. Y. Huang, Selforthogonal modules with finite injective dimension II, J. Algebra 264 (2003), 262-268. Zbl 1023.16009 MR 1980696
[H3] Z. Y. Huang, Syzygy modules for quasi k-Gorenstein rings, J. Algebra 299 (2006), 21-32. Zbl 1114.16012 MR 2225763
[H4] Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142169. Zbl 1291.18022 MR 3090064
[HI] Z. Y. Huang and O. Iyama, Auslander-type conditions and cotorsion pairs, J. Algebra 318 (2007), 93-110. Zbl 1183.16012 MR 2363126
[HQ] Z. Y. Huang and H. R. Qin, Homological behavior of Auslander's k-Gorenstein rings, Algebr. Represent. Theory 15 (2012), 835-853. Zbl 1290.16009 MR 2969279
[IS] Y. Iwanaga and H. Sato, On Auslander's n-Gorenstein rings, J. Pure Appl. Algebra 106 (1996), 61-76. Zbl 0855.16011 MR 1370843
[IY1] O. Iyama, Auslander correspondence, Adv. Math. 210 (2007), 51-82. Zbl 1115.16006 MR 2298820
[IY2] O. Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011), 1-61. Zbl 1233.16014 MR 2735750
[MR] F. Mantese and I. Reiten, Wakamatsu tilting modules, J. Algebra 278 (2004), 532-552. Zbl 1075.16006 MR 2071651
[N] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (1976), 1105-1120. Zbl 0317.16005 MR 0422343
[S] S. Sather-Wagstaff, Semidualizing modules, available at https://www.ndsu.edu/pubweb/ ~ssatherw/DOCS/sdmhist.html.
[TH1] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander transpose, Forum Math. 27 (2015), 3717-3743. Zbl 1405.16004 MR 3420357
[TH2] X. Tang and Z. Y. Huang, Coreflexive modules and semidualizing modules with finite projective dimension, Taiwanese J. Math. 21 (2017), 1283-1324. Zbl 1401.18037 MR 3732907
[TH3] X. Tang and Z. Y. Huang, Homological aspects of the adjoint cotranspose, Colloq. Math. 150 (2017), 293-311. Zbl 1397.18032 MR 3719463
[TH4] X. Tang and Z. Y. Huang, Homological aspects of the dual Auslander transpose II, Kyoto J. Math. 57 (2017), 17-53. Zbl 1394.16003 MR 3621778
[TH5] X. Tang and Z. Y. Huang, Two filtration results for modules with applications to the Auslander condition, Colloq. Math. 158 (2019), 157-181. Zbl 07146386 MR 4019169
[W1] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), 106-114. Zbl 0646.16025 MR 0931903
[W2] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), 298-325. Zbl 0726.16009 MR 1074331
[W3] T. Wakamatsu, Tilting modules and Auslander's Gorenstein property, J. Algebra 275 (2004), 3-39. Zbl 1076.16006 MR 2047438
[Z] A. Zaks, Injective dimension of semiprimary rings, J. Algebra 13 (1969), 73-89. Zbl 0216.07001 MR 0244325

[^0]: Communicated by S. Mochizuki. Received February 16, 2019. Revised May 15, 2019.
 X. Tang: College of Science, Guilin University of Technology, Guilin 541004, Guangxi Province, P. R. China;
 e-mail: tx5259@sina.com.cn
 Z. Y. Huang: Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China;
 e-mail: huangzy@nju.edu.cn

