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Cograde Conditions and Cotorsion Pairs

by

Xi Tang and Zhaoyong Huang

Abstract

Let R and S be rings and RωS a semidualizing bimodule. We investigate when the dou-
ble functor TorSi (ω,ExtiR(ω,−)) preserves epimorphisms and the double functor ExtiR(ω,
TorSi (ω,−)) preserves monomorphisms in terms of the (strong) cograde conditions of
modules. Under certain cograde condition of modules, we construct two complete cotor-
sion pairs. In addition, we establish the relation between some relative finitistic dimen-
sions of rings and the right and left projective dimensions of ω.
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§1. Introduction

Let R be a left and right Noetherian ring and n > 1. It was proved by Auslander

that the flat dimension of the ith term in the minimal injective resolution of RR is

at most i for any 0 6 i < n if and only if the strong grade of ExtiR(M,R) is at least

i for any finitely generated left R-module M and 1 6 i 6 n; this result is left–right

symmetric ([FGR, Thm. 3.7]). In this case, R is called Auslander n-Gorenstein.

If R is Auslander n-Gorenstein for all n, then it is said to satisfy the Auslander

condition. This condition is a noncommutative version of commutative Gorenstein

rings. It is known that Auslander n-Gorenstein rings and the Auslander condition

play a crucial role in homological algebra, representation theory of artin algebras

and noncommutative algebraic geometry; see [AR1, AR2, B, CSS, EHIS, FGR,

H1, H3, HI, HQ, IS, IY1, IY2] and references therein. In particular, Auslander
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n-Gorenstein rings and some generalized versions were characterized in terms of

the properties of the double functor ExtiRop(ExtiR(−, R), R) and certain (strong)

grade conditions of Ext-modules, and a series of cotorsion pairs were constructed

under the Auslander condition ([HI]).

It is well known that the (Auslander) transpose is one of the most powerful

tools in representation theory of artin algebras and Gorenstein homological alge-

bra; see [AB, ARS, EJ]. To dualize this important and useful notion, we introduced

in [TH1] the notion of the cotranspose of modules and then obtained many dual

counterparts of interesting results ([TH1, TH2, TH3, TH4]). As a dual of the notion

of the (strong) grade of modules, we introduced in [TH1, TH4] the notion of the

(strong) cograde of modules, and obtained the dual versions of some results about

the (strong) grade of modules. Let R and S be rings and RωS a semidualizing bi-

module. In this paper, we will study when the double functor TorSi (ω,ExtiR(ω,−))

preserves epimorphisms and the double functor ExtiR(ω,TorSi (ω,−)) preserves

monomorphisms in terms of the (strong) cograde conditions of modules and some

related properties of the cotranspose of modules, and also investigate the relation-

ship between certain cograde conditions of modules and complete cotorsion pairs.

This paper is organized as follows.

In Section 2 we give some terminology and some preliminary results.

Let R and S be rings and RωS a semidualizing bimodule. In Section 3 we inves-

tigate when TorSi (ω,ExtiR(ω,−)) preserves epimorphisms and ExtiR(ω,TorSi (ω,−))

preserves monomorphisms in terms of the (strong) cograde conditions of modules.

Let n, k > 0. We prove that the Tor-cograde of Exti+kR (ω,M) with respect to ω is

at least i for any left R-module M and 1 6 i 6 n if and only if TorSi (ω,ExtiR(ω, f))

is an epimorphism for any epimorphism of left R-modules f : B � C with B, C

being a (k + 1)-cosyzygy and 0 6 i 6 n − 1 (Theorem 3.5), and that the Ext-

cograde of TorSi+k(ω,N) with respect to ω is at least i for any left S-module N

and 1 6 i 6 n if and only if ExtiR(ω,TorSi (ω, g)) is a monomorphism for any

monomorphism of left S-modules g : B′ � C ′ with B′, C ′ being a (k + 1)-yoke

and 0 6 i 6 n− 1 (Theorem 3.7).

Moreover, we prove that the strong Tor-cograde of Exti+kR (ω,M) with respect

to ω is at least i for any left R-module M and 1 6 i 6 n if and only if for any

exact sequence of left R-modules 0→ A→ B
f−→ C → 0 with A an (i−1)-Pω(R)-

syzygy of an (i+ k − 1)-cosyzygy, TorSi (ω,ExtiR(ω, f)) is an epimorphism for any

0 6 i 6 n − 1 (Theorem 3.8), and that the strong Ext-cograde of TorSi+k(ω,N)

with respect to ω is at least i for any left S-module N and 1 6 i 6 n if and only if

for any exact sequence of left S-modules 0→ A
g→ B → C → 0 with C an (i− 1)-
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Iω(S)-cosyzygy of an (i+k−1)-yoke, ExtiR(ω,TorSi (ω, g)) is a monomorphism for

any 0 6 i 6 n− 1 (Theorem 3.9).

In Section 4 we introduce the notion of ω satisfying the (quasi) n-cograde

condition in terms of the properties of the strong cograde of modules. By using

the results obtained in Section 3 we give some equivalent characterizations for ω

satisfying such conditions (Theorems 4.8 and 4.14). In particular, the n-cograde

condition is left–right symmetric, but the quasi n-cograde condition is not. In

addition, we prove that the Tor-cograde of ExtiR(ω,M) with respect to ω is at

least i − 1 for any M ∈ ModR and 1 6 i 6 n if and only if the Ext-cograde of

TorSi (ω,N) with respect to ω is at least i − 1 for any N ∈ ModS and 1 6 i 6 n

(Theorem 4.19).

In Section 5 we prove that if one of the equivalent conditions in Theorem 4.19

mentioned above is satisfied, then the right S-projective dimension pdSop ω of ω

is at most n− 1 if and only if (Pω- id6n−1(R),Rω
⊥n) forms a complete cotorsion

pair, and that the left R-projective dimension pdR ω of ω is at most n− 1 if and

only if (ωS
>n , Iω- pd6n−1(S)) forms a complete cotorsion pair (Theorem 5.6); see

Sections 2 and 5 for the details of this notation.

In Section 6 we introduce the finitistic Pω(R)-injective dimension FPω- idR

of R and the Iω(S)-projective dimension FIω- pdS of S. We prove that if the Tor-

cograde of Exti+kR (ω,M) with respect to ω is at least i for any M ∈ ModR and

i > 1, then FPω- idR 6 pdR ω 6 FPω- idR+ k. Further, we prove that if the Ext-

cograde of TorSi+k(ω,N) with respect to ω is at least i for anyN ∈ ModS and i > 1,

then FIω- pdS 6 pdSop ω 6 FIω- pdS+k (Theorem 6.3). As an application, we get

that for an artin algebra R, if R satisfies the Auslander condition then FPDRop =

FIDRop = idRop R = idRR = FPDR = FIDR, and if R satisfies the right quasi

Auslander condition then FPDR 6 FIDR = idRop R = idRR 6 FPDR + 1,

where FIDR, FPDR, idRop R and idRR are the finitistic injective dimension, the

finitistic projective dimension, the right and left self-injective dimensions of R

respectively (Corollary 6.9).

§2. Preliminaries

Throughout this paper, all rings are associative rings with units. For a ring R,

ModR (resp. modR) are the class of left (resp. finitely generated left) R-modules.

Let M ∈ ModR; we use AddRM to denote the subclass of ModR consisting of

modules consisting of direct summands of direct sums of copies of M , and use

pdRM , fdRM and idRM to denote the projective, flat and injective dimensions

of M respectively.
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Definition 2.1 ([ATY, HW]). Let R and S be rings. An (R-S)-bimodule RωS is

called semidualizing if the following conditions are satisfied:

(a1) Rω admits a degreewise finite R-projective resolution.

(a2) ωS admits a degreewise finite S-projective resolution.

(b1) The homothety map RRR
Rγ→ HomSop(ω, ω) is an isomorphism.

(b2) The homothety map SSS
γS→ HomR(ω, ω) is an isomorphism.

(c1) Ext>1
R (ω, ω) = 0.

(c2) Ext>1
Sop(ω, ω) = 0.

Wakamatsu in [W1] introduced and studied the so-called generalized tilting

modules, which are usually called Wakamatsu tilting modules; see [BR, MR]. Note

that a bimodule RωS is semidualizing if and only if it is Wakamatsu tilting ([W3,

Cor. 3.2]). Examples of semidualizing bimodules are given in [HW, S, TH2, TH4,

W2].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule

RωS . For convenience, we write

(−)∗ := Hom(ω,−) and (−)∗ := Hom(−, ω),

Rω
⊥ := {M ∈ ModR | Ext>1

R (ω,M) = 0},
ωS
> := {N ∈ ModS | TorS>1(ω,N) = 0}.

For any n > 1 we write

Rω
⊥n := {M ∈ ModR | Ext16i6nR (ω,M) = 0},

ωS
>n := {N ∈ ModS | TorS16i6n(ω,N) = 0};

in particular, Rω
⊥0 = ModR and ωS

>0 = ModS. We define ωS
⊥n and Rω

>n

symmetrically. Following [HW] set

Fω(R) := {ω ⊗S F | F is flat in ModS},
Pω(R) := {ω ⊗S P | P is projective in ModS},
Iω(S) := {I∗ | I is injective in ModR}.

The modules in Fω(R), Pω(R) and Iω(S) are called ω-flat, ω-projective and ω-

injective respectively. Note that Pω(R) = AddR ω ([TH4, Prop. 3.4(2)]). The

classes of Fω(Sop), Pω(Sop) and Iω(Rop) are defined symmetrically.

Let M ∈ ModR and N ∈ ModS. Then we have the following two canonical

valuation homomorphisms:

θM : ω ⊗S M∗ →M
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defined by θM (x⊗ f) = f(x) for any x ∈ ω and f ∈M∗, and

µN : N → (ω ⊗S N)∗

defined by µN (y)(x) = x ⊗ y for any y ∈ N and x ∈ ω. Recall that a module

M ∈ ModR is called ω-cotorsionless (resp. ω-coreflexive) if θM is an epimor-

phism (resp. an isomorphism) ([TH1]), and a module N ∈ ModS is called adjoint

ω-cotorsionless (resp. adjoint ω-coreflexive) if µN is a monomorphism (resp. an

isomorphism) ([TH3]).

Definition 2.2 ([HW]). (1) The Auslander class Aω(S) with respect to ω con-

sists of all left S-modules N satisfying the following conditions:

(A1) N ∈ ωS>.

(A2) ω ⊗S N ∈ Rω
⊥.

(A3) µN is an isomorphism in ModS.

(2) The Bass class Bω(R) with respect to ω consists of all left R-modules M

satisfying the following conditions:

(B1) M ∈ Rω
⊥.

(B2) M∗ ∈ ωS>.

(B3) θM is an isomorphism in ModR.

For a module M ∈ ModR we use

(2.1) 0→M → I0(M)
g0

−→ I1(M)
g1

−→ · · · g
i−1

−→ Ii(M)
gi−→ · · ·

to denote the minimal injective resolution of M . For any n > 1, coΩn(M) :=

Im gn−1 is called the n-cosyzygy of M ; in particular, coΩ0(M) = M . We use

coΩn(R) to denote the subclass of ModR consisting of n-cosyzygy modules. We

defined coΩn(Sop) symmetrically.

Definition 2.3 ([TH1]). Let M ∈ ModR and n > 1.

(1) cTrωM := Coker(g0∗) is called the cotranspose of M with respect to RωS ,

where g0 is as in (2.1).

(2) M is called n-ω-cotorsionfree if cTrωM ∈ωS>n and is called∞-ω-cotorsionfree

if it is n-ω-cotorsionfree for all n.

We use cT nω(R) (resp. cT ω(R)) to denote the subclass of ModR consist-

ing of n-ω-cotorsionfree modules (resp. ∞-ω-cotorsionfree modules). We define

cT nω(Sop) symmetrically. By [TH1, Prop. 3.2] we have that a module in ModR is

ω-cotorsionless (resp. ω-coreflexive) if and only if it is in cT 1
ω(R) (resp. cT 2

ω(R)).
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Recall from [E] that a homomorphism f : F → N in ModS with F flat is

called a flat cover of N if HomS(F ′, f) is epic for any flat module F ′ in ModS,

and an endomorphism h : F → F is an automorphism whenever f = fh. Let

N ∈ ModS. Bican, El Bashir and Enochs proved in [BBE] that N has a flat cover.

We use

(2.2) · · · fn−→ Fn(N)
fn−1−→ · · · f1−→ F1(N)

f0−→ F0(N)→ N → 0

to denote the minimal flat resolution of N in ModS, where each Fi(N)→ Coker fi
is a flat cover of Coker fi. For any n > 1, ΩnF (N) := Im fn−1 is called the n-yoke

of N ; in particular, Ω0
F (N) = N . We use ΩnF (S) to denote the subclass of ModS

consisting of n-yoke modules. We define ΩnF (Rop) symmetrically.

Definition 2.4 ([TH3]). Let N ∈ ModS and n > 1.

(1) acTrω N := Ker(1ω ⊗ f0) is called the adjoint cotranspose of N with respect

to RωS , where f0 is as in (2.2).

(2) N is called adjoint n-ω-cotorsionfree if acTrω N ∈ Rω
⊥n and is called adjoint

∞-ω-cotorsionfree if it is adjoint n-ω-cotorsionfree for all n.

We use acT nω(S) (resp. acT ω(S)) to denote the subclass of ModS consisting

of adjoint n-ω-cotorsionfree modules (resp. adjoint ∞-ω-cotorsionfree modules).

We define acT nω(Rop) symmetrically. By [TH3, Prop. 3.2] we have that a module

in ModS is adjoint ω-cotorsionless (resp. adjoint ω-coreflexive) if and only if it is

in acT 1
ω(S) (resp. acT 2

ω(S)).

Definition 2.5 ([TH4]). (1) Let M ∈ ModR and n > 0. The Ext-cograde of M

with respect to ω is defined as E-cogradeωM := inf{i > 0 | ExtiR(ω,M) 6= 0}
and the strong Ext-cograde ofM with respect to ω, denoted by s.E-cogradeωM ,

is said to be at least n if E-cogradeωX > n for any quotient module X of M .

The (strong) Ext-cograde of a module in ModSop is defined symmetrically.

(2) Let N ∈ ModS and n > 0. The Tor-cograde of N with respect to ω is defined

as T-cogradeω N := inf{i > 0 | TorSi (ω,N) 6= 0} and the strong Tor-cograde

of N with respect to ω, denoted by s.T-cogradeω N , is said to be at least n if

T-cogradeω Y > n for any submodule Y of N . The (strong) Tor-cograde of a

module in ModRop is defined symmetrically.

Let X be a subclass of ModR and M ∈ ModR. An exact sequence (of finite

or infinite length)

· · · → Xn → · · · → X1 → X0 →M → 0
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in ModR is called an X -resolution of M if all Xi are in X . The X -projective

dimension X - pdRM of M is defined as inf{n | there exists an X -resolution

0→ Xn → · · · → X1 → X0 →M → 0

of M in ModR}. The notions of an X -coresolution and the X -injective dimension

X -idRM of M are defined dually.

Let F be a subclass of ModR. A module M ∈ ModR is said to have special

F-precover if there exists an exact sequence

0→ K → F →M → 0

in ModR with F ∈ F and Ext1R(F ′,K) = 0 for any F ′ ∈ F . The class F is called a

special precovering if any module in ModR has a special F-precover. The notions

of special F-preenvelopes and special preenveloping classes are defined dually (see

[EJ]).

Definition 2.6 ([GT]). Let U , V be subclasses of ModR. The pair (U ,V) is called

a cotorsion pair if U = ⊥1V := {U ∈ ModR | Ext1R(U, V ) = 0 for any V ∈ V} and

V = U⊥1 := {V ∈ ModR | Ext1R(U, V ) = 0 for any U ∈ U}.

The following is Salce’s lemma.

Lemma 2.7 (Cf. [GT, Lem. 2.2.6]). Let (U ,V) be a cotorsion pair in ModR. Then

the following statements are equivalent :

(1) Any module in ModR has a special U-precover.

(2) Any module in ModR has a special V-preenvelope.

In this case, the cotorsion pair (U ,V) is called complete.

Definition 2.8. Let X be a subcategory of an abelian category E and n > 1. If

there exists an exact sequence

0→ N → X0 → · · · → Xn−1 →M → 0

in E with all Xi in X , then N is called an n-X -syzygy of M and M is called an

n-X -cosyzygy of N .

For subcategories X , Y of an abelian category E and n > 1, we write

ΩnX (Y) := {N ∈ A | N is an n-X -syzygy of some object in Y},
coΩnX (Y) := {M ∈ A |M is an n-X -cosyzygy of some object in Y}.
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In particular, Ω0
X (Y) = Y = coΩ0

X (Y) and Ω−1X (Y) = 0 = coΩ−1X (Y). For conve-

nience, we write

ΩnA(S) := ΩnAω(S)(ModS), ΩnIω (S) := ΩnIω(S)(ModS),

ΩnIω (Rop) := ΩnIω(Rop)(ModRop),

coΩnB(R) := coΩnBω(R)(ModR), coΩnFω
(R) := coΩnFω(R)(ModR),

coΩnPω
(R) := coΩnPω(R)(ModR), coΩnPω

(Sop) := coΩnPω(Sop)(ModSop).

Lemma 2.9. We have

(1) Ω1
Iω (S) = acT 1

ω(S);

(2) coΩ1
Pω

(R) = cT 1
ω(R).

Proof. (1) By [TH3, Prop. 3.8] we have acT 1
ω(S) ⊆ Ω1

Iω (S). Now let N ∈ Ω1
Iω (S)

and let f0 : N � I0 be a monomorphism in ModS with I0 ∈ Iω(S). Then from

the commutative diagram

N // f0

//

µN

��

I0

µI0

��
(ω ⊗S N)∗

(1ω⊗f0)∗// (ω ⊗S I0)∗,

with µI0 an isomorphism, we get that µN is a monomorphism and N ∈ acT 1
ω(S).

It implies Ω1
Iω (S) ⊆ acT 1

ω(S).

(2) By [TH1, Prop. 3.7] we have cT 1
ω(R) ⊆ coΩ1

Pω
(R). Now let M ∈ coΩ1

Pω
(R)

and let f0 : W0 �M be an epimorphism in ModR with W0 ∈ Pω(R). Then from

the commutative diagram

ω ⊗S W0∗
1ω⊗f0∗//

θW0

��

ω ⊗S M∗

θM

��
W0

f0 // // M,

with θW0 an isomorphism, we get that θM is an epimorphism and M ∈ cT 1
ω(R).

It implies coΩ1
Pω

(R) ⊆ cT 1
ω(R).

Let C, E be abelian categories and ∆: C → E a functor. Recall that a sequence

T in C is called ∆-exact if ∆(T) is exact in E .
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§3. (Strong) cograde conditions and double homological functors

In this section we investigate when TorSi (ω,ExtiR(ω,−)) preserves epimorphisms

and ExtiSop(ω,TorRi (−, ω)) preserves monomorphisms in terms of the (strong)

cograde conditions of modules.

§3.1. Cograde conditions

We begin with the following lemma.

Lemma 3.1. (1) Let M ∈ ModR with the minimal injective resolution as (2.1).

Then there exists an exact sequence

(3.1) 0→ Ext1R(ω,M)
λ−→ cTrωM

π−→ I1(M)∗/ coΩ1(M)∗ → 0

in ModS such that 1ω ⊗ π is an isomorphism.

(2) Let N ∈ ModS with the minimal flat resolution as (2.2). Then there exists an

exact sequence

(3.2) 0→ Im(1ω ⊗ f1)
σ−→ acTrω N

τ−→ TorS1 (ω,N)→ 0

in ModR such that σ∗ is an isomorphism.

Proof. (1) Let g0 = α·β (where β : I0(M)� coΩ1(M) (= Im g0) and α : coΩ1(M)

� I1(M)) be the natural epic-monic decomposition of g0. Then we have the

commutative diagram with exact columns and rows

0

��

0

��
0 // M∗ // I0(M)∗

β∗ // coΩ1(M)∗ //

α∗

��

Ext1R(ω,M) //

λ

��

0

0 // M∗ // I0(M)∗
g0
∗ // I1(M)∗

γ //

π1

��

cTrωM //

π

��

0

C

��

C

��
0 0

in ModS, where C = I1(M)∗/ coΩ1(M)∗, π1 is the natural epimorphism, λ and

π are induced homomorphisms. The rightmost column in the above diagram is
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exactly the exact sequence (3.1). Notice that

0→ coΩ1(M)∗
α∗−→ I1(M)∗

g1
∗−→ I2(M)∗

is exact, so there exists a homomorphism δ : C → I2(M)∗ in ModS such that

g1∗ = δ · π1, and hence g1∗ = δ · π1 = δ · π · γ.

By [HW, Lem. 4.1], for any injective module I ∈ ModR we have ω⊗S I∗ ∼= I

canonically. So the upper row in the commutative diagram

ω ⊗S I0(M)∗
1ω⊗g0

∗// ω ⊗S I1(M)∗
1ω⊗g1

∗//

1ω⊗γ
����

ω ⊗S I2(M)∗

ω ⊗S cTrωM
1ω⊗π // // ω ⊗S C

1ω⊗δ

OO

is exact. Let x ∈ Ker(1ω ⊗ π). Then there exists y ∈ ω ⊗S I1(M)∗ such that

x = (1ω ⊗ γ)(y). It follows that

(1ω ⊗ g1∗)(y) = (1ω ⊗ δ) · (1ω ⊗ π) · (1ω ⊗ γ)(y) = (1ω ⊗ δ) · (1ω ⊗ π)(x) = 0.

So y ∈ Ker(1ω ⊗ g1∗) = Im(1ω ⊗ g0∗), and hence there exists z ∈ ω ⊗S I0(M)∗
such that y = (1ω ⊗ g0∗)(z). Thus

x = (1ω ⊗ γ)(y) = (1ω ⊗ γ) · (1ω ⊗ g0∗)(z) = (1ω ⊗ (γ · g0∗))(z) = 0,

which implies that 1ω ⊗ π is a monomorphism, and hence an isomorphism.

(2) Let f0 = α′ · β′ (where β′ : F1(N) � Ω1
F (N)(= Im f0) and α′ : Ω1

F (N) �
F0(N)) be the natural epic-monic decomposition of f0. Then we have the commu-

tative diagram with exact columns and rows

0

��

0

��
Im(1ω ⊗ f1)

σ

��

Im(1ω ⊗ f1)

σ1

��
0 // acTrω N

η //

τ

��

ω ⊗S F1(N)
1ω⊗f0 //

1ω⊗β′

��

ω ⊗S F0(N) // ω ⊗S N // 0

0 // TorS1 (ω,N) //

��

ω ⊗S Ω1
F (N)

1ω⊗α′ //

��

ω ⊗S F0(N)
γ // ω ⊗S N // 0

0 0
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in ModR, where σ and τ are induced homomorphisms. The leftmost column in

the above diagram is exactly the exact sequence (3.2). Notice that

ω ⊗S F2(N)
1ω⊗f1−→ ω ⊗S F1(N)

1ω⊗β′−→ ω ⊗S Ω1
F (N)→ 0

is exact, so there exists a homomorphism φ : ω⊗S F2(N)→ Im(1ω⊗ f1) in ModR

such that 1ω ⊗ f1 = σ1 · φ, and hence 1ω ⊗ f1 = σ1 · φ = η · σ · φ.

By [HW, Lem. 4.1], for any flat module F ∈ ModS we have F ∼= (ω ⊗S F )∗
canonically. So the upper row in the following commutative diagram is exact:

(ω ⊗S F2(N))∗
(1ω⊗f1)∗//

φ∗

��

(ω ⊗S F1(N))∗
(1ω⊗f0)∗// (ω ⊗S F0(N))∗

(Im(1ω ⊗ f1))∗ //
σ∗ // (acTrω N)∗.

OO
η∗

OO

Let x ∈ (acTrω N)∗. Since ((1ω ⊗ f0)∗ · η∗)(x) = (((1ω ⊗ f0) · η)∗)(x) = 0, we have

that η∗(x) ∈ Ker(1ω ⊗ f0)∗ = Im(1ω ⊗ f1)∗ and there exists y ∈ (ω ⊗S F2(N))∗
such that η∗(x) = (1ω ⊗ f1)∗(y). Thus

η∗(x) = (1ω ⊗ f1)∗(y) = (η∗ · σ∗ · φ∗)(y).

As η∗ is monic we have x = σ∗(φ∗(y)). It means that σ∗ is an epimorphism, and

hence an isomorphism.

The following two lemmas are useful in this section.

Lemma 3.2. Assume that coΩn(R) ⊆ cT mω (R) with m,n > 0. Then the following

statements are equivalent :

(1) T-cogradeω Extn+1
R (ω,M) > m for any M ∈ ModR.

(2) coΩn+1(R) ⊆ cT m+1
ω (R).

Proof. Because any injective module in ModR is in cT 1
ω(R) by [TH1, Lem. 2.5(2)],

we have coΩn+1(R) ⊆ cT 1
ω(R) for any n > 0, and the case for m = 0 follows. Now

suppose that m > 1 and M ∈ ModR. By Lemma 3.1(1) there exists an exact

sequence

0→ Ext1R(ω, coΩn(M))
λ−→ cTrω coΩn(M)

π−→ C → 0

in ModS such that 1ω⊗π is an isomorphism, where C = In+1(M)∗/coΩn+1(M)∗.

Because coΩn(R) ⊆ cT mω (R) by assumption, we have that both cTrω coΩn(M)

and cTrω coΩn+1(M) are in ωS
>m . It yields that

TorSi (ω,Extn+1
R (ω,M)) ∼= TorSi (ω,Ext1R(ω, coΩn(M))) ∼= TorSi+1(ω,C)
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for any 0 6 i 6 m− 1. In addition, we also have an exact sequence

0→ C → In+2(M)∗ → cTrω coΩn+1(M)→ 0

in ModS. By [HW, Cor. 6.1] we have In+2(M)∗ ∈ ωS>. So

TorSi (ω,Extn+1
R (ω,M)) ∼= TorSi+1(ω,C) ∼= TorSi+2(ω, cTrω coΩn+1(M))

for any 0 6 i 6 m − 1. Thus we conclude that TorS06i6m−1(ω,Extn+1
R (ω,M)) =

0 if and only if cTrω coΩn+1(M) ∈ ωS
>m+1 , and if and only if coΩn+1(M) ∈

cT m+1
ω (R). The proof is finished.

Lemma 3.3. Assume that ΩnF (S) ⊆ acT mω (S) with m,n > 0. Then the following

statements are equivalent :

(1) E-cogradeω TorSn+1(ω,N) > m for any N ∈ ModS.

(2) Ωn+1
F (S) ⊆ acT m+1

ω (S).

Proof. Because any flat module in ModS is in acT 1
ω(S) by [TH3, Cor. 3.5(1)], we

have Ωn+1
F (S) ⊆ acT 1

ω(S) for any n > 0, and the case for m = 0 follows. Now

suppose that m > 1 and N ∈ ModS. By Lemma 3.1(2), there exists an exact

sequence

0→ Im(1ω ⊗ fn+1)
σ→ acTrω ΩnF (N)

τ→ TorS1 (ω,ΩnF (N))→ 0

in ModR such that σ∗ is an isomorphism. Because ΩnF (S) ⊆ acT mω (S) by assump-

tion, we have that both acTrω ΩnF (N) and acTrω Ωn+1
F (N) are in Rω

⊥m . It yields

that

ExtiR(ω,TorSn+1(ω,N)) ∼= ExtiR(ω,TorS1 (ω,ΩnF (N))) ∼= Exti+1
R (ω, Im(1ω ⊗ fn+1))

for any 0 6 i 6 m− 1. In addition, we also have an exact sequence

0→ acTrω Ωn+1
F (N)→ ω ⊗S Fn+2(N)→ Im(1ω ⊗ fn+1)→ 0

in ModR. By [HW, Cor. 6.1] we have ω ⊗S Fn+2(N) ∈ Rω
⊥. So

ExtiR(ω,TorSn+1(ω,N)) ∼= Exti+1
R (ω, Im(1ω ⊗ fn+1)) ∼= Exti+2

R (ω, acTrω Ωn+1
F (N))

for any 0 6 i 6 m−1. Thus we conclude that Ext06i6m−1R (ω,TorSn+1(ω,N)) = 0 if

and only if acTrω Ωn+1
F (N) ∈ Rω

⊥m+1 , and if and only if Ωn+1
F (N) ∈ acT m+1

ω (S).

The proof is finished.

Let T ⊆ W be subcategories of an abelian category E . Recall that T is called

a generator (resp. cogenerator) for W if for any W ∈ W, there exists an exact
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sequence

0→W ′ → T →W → 0 (resp. 0→W → T →W ′ → 0)

in E with T ∈ T and W ′ ∈ W.

Lemma 3.4. (1) Pω(R) is a generator for Bω(R).

(2) coΩn(R) ⊆ coΩnB(R) = coΩnFω
(R) = coΩnPω

(R) for any n > 1.

Proof. (1) Let M ∈ Bω(R). Then by [TH1, Thm. 3.9 & Prop. 3.7] there exists an

exact sequence

· · · →W2 →W1 →W0 →M → 0

in ModR with all Wi ∈ Pω(R) such that it remains exact after applying the functor

HomR(ω,−). Put M1 := Im(W1 →W0). Then M1 ∈ cT ω(R) by [TH1, Prop. 3.7].

Because both M and W0 are in Rω
⊥, we have M1 ∈ Rω

⊥. So M1 ∈ Bω(R) by

[TH1, Thm. 3.9].

(2) Let n > 1. By [HW, Lem. 4.1] we have that Bω(R) contains all injective left

R-modules, which yields coΩn(R) ⊆ coΩnB(R). Because Bω(R) ⊇ Fω(R) ⊇ Pω(R)

by [HW, Cor. 6.1], we have coΩnB(R) ⊇ coΩnFω
(R) ⊇ coΩnPω

(R). Because Bω(R) is

closed under extensions by [HW, Thm. 6.2], we have coΩnB(R) = coΩnPω
(R) by (1)

and [H4, Cor. 5.4(2)].

In the following result, we characterize when the double functor TorSi (ω,

ExtiR(ω,−)) preserves epimorphisms in terms of the Tor-cograde conditions of

Ext-modules.

Theorem 3.5. Conditions (1)–(3) below are equivalent for any n, k > 0. If k > 1

then (1)–(4) are equivalent.

(1) T-cogradeω Exti+kR (ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

(2) TorSi (ω,ExtiR(ω, f)) is an epimorphism for any epimorphism f : B � C in

ModR with B,C ∈ coΩk+1
Pω

(R) and 0 6 i 6 n− 1.

(3) TorSi (ω,ExtiR(ω, f)) is an epimorphism for any epimorphism f : B � C in

ModR with B,C ∈ coΩk+1(R) and 0 6 i 6 n− 1.

(4) coΩi+k(R) ⊆ cT i+1
ω (R) for any 1 6 i 6 n.

Proof. By using induction on i, (1)⇔ (4) follows from Lemma 3.2.

(1) ⇒ (2) Let f : B � C be an epimorphism in ModR with B,C ∈ coΩk+1
Pω

(R).

Then C = coΩk+1
Pω

(C ′) for some C ′ ∈ ModR. By (1) we have

TorSi (ω,ExtiR(ω,C)) ∼= TorSi (ω,Exti+k+1
R (ω,C ′)) = 0
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for any 1 6 i 6 n − 1. Thus TorSi (ω,ExtiR(ω, f)) is epic. In the following we will

show that 1ω ⊗ f∗ is epic.

If k > 1 then coΩkPω
(R) ⊆ cT 1

ω(R) by Lemma 2.9(2). So coΩk+1
Pω

(R) ⊆ cT 2
ω(R)

by Lemma 3.2, and hence B,C ∈ cT 2
ω(R). It follows that 1ω ⊗ f∗ ∼= f and 1ω ⊗ f∗

is epic.

Now suppose k = 0. We have an epimorphism p : W � B in ModR with

W ∈ AddR ω. From the exact sequence

0→M1 →W
f ·p−→ C → 0

in ModR with M1 = Ker(f · p), we get the exact sequence

W∗
(f ·p)∗−→ C∗ → Ext1R(ω,M1)→ 0

in ModS. By (1), ω ⊗S Ext1R(ω,M1) = 0. So (1ω ⊗ f∗) · (1ω ⊗ p∗) = 1ω ⊗ (f · p)∗
is epic, which implies that 1ω ⊗ f∗ is also epic.

By Lemma 3.4(2), we have (2)⇒ (3).

(3)⇒ (1) Let M ∈ ModR. From the exact sequence

0→ coΩk(M)→ Ik(M)
f−→ coΩk+1(M)→ 0

in ModR, we get the exact sequence

Ik(M)∗
f∗−→ coΩk+1(M)∗ → Extk+1

R (ω,M)→ 0

in ModS. Since 1ω⊗f∗ is an epimorphism by (2), we have ω⊗S Extk+1
R (ω,M) = 0

and T-cogradeω Extk+1
R (ω,M) > 1. In addition, for any 1 6 i 6 n− 1,

0 = TorSi (ω,ExtiR(ω, Ik(M)))
TorSi (ω,ExtiR(ω,f))−→ TorSi (ω,ExtiR(ω, coΩk+1(M)))

is epic by (3), so we have

TorSi (ω,Exti+k+1
R (ω,M)) ∼= TorSi (ω,ExtiR(ω, coΩk+1(M))) = 0.

Thus T-cogradeω Exti+k+1
R (ω,M) > i+ 1 for any 0 6 i 6 n− 1.

Lemma 3.6. (1) Iω(S) is a cogenerator for Aω(S).

(2) ΩnF (S) ⊆ ΩnA(S) = ΩnIω (S) for any n > 1.

Proof. (1) Let N ∈ Aω(S). Then by [TH3, Thm. 3.11(1)] there exists an (ω⊗S−)-

exact exact sequence

0→ N → U0 → U1 → U2 → · · ·



Cograde Conditions and Cotorsion Pairs 459

in ModS with all U i ∈ Iω(S). Put N1 := Im(U0 → U1). Then N1 ∈ acT ω(S)

by [TH3, Cor. 3.9]. Because both N and U0 are in ωS
> we have N1 ∈ ωS>. So

N1 ∈ Aω(S) by [TH3, Thm. 3.11(1)] again.

(2) Let n > 1. By [HW, Lem. 4.1] we have that Aω(S) contains all flat left S-

modules, which yields ΩnF (S) ⊆ ΩnA(S). Because Aω(S) is closed under extensions

by [HW, Thm. 6.2], we have ΩnA(S) = ΩnIω (S) by (1) and [H4, Cor. 5.4(1)].

In the following result we characterize when the double functor ExtiR(ω,

TorSi (ω,−)) preserves monomorphisms in terms of the Ext-cograde conditions of

Tor-modules.

Theorem 3.7. Conditions (1)–(3) below are equivalent for any n, k > 0. If k > 1

then (1)–(4) are equivalent.

(1) E-cogradeω TorSi+k(ω,N) > i for any N ∈ ModS and 1 6 i 6 n.

(2) ExtiR(ω,TorSi (ω, g)) is a monomorphism for any monomorphism g : B′ � C ′

in ModS with B′, C ′ ∈ Ωk+1
Iω (S) and 0 6 i 6 n− 1.

(3) ExtiR(ω,TorSi (ω, g)) is a monomorphism for any monomorphism g : B′ � C ′

in ModS with B′, C ′ ∈ Ωk+1
F (S) and 0 6 i 6 n− 1.

(4) Ωi+kF (S) ⊆ acT i+1
ω (S) for any 1 6 i 6 n.

Proof. By using induction on i, (1)⇔ (4) follows from Lemma 3.3.

(1)⇒ (2) Let g : B′ � C ′ be a monomorphism in ModS with B′, C ′ ∈ Ωk+1
Iω (S).

Then B′ = Ωk+1
Iω (B′′) for some B′′ ∈ ModS. By (1) we have

ExtiR(ω,TorSi (ω,B′)) ∼= ExtiR(ω,TorSi+k+1(ω,B′′)) = 0

for any 1 6 i 6 n− 1. Thus ExtiR(ω,TorSi (ω, g)) is monic. In the following we will

show that (1ω ⊗ g)∗ is monic.

If k > 1 then ΩkIω (S) ⊆ acT 1
ω(S) by Lemma 2.9(1). So Ωk+1

Iω (S) ⊆ acT 2
ω(S)

by Lemma 3.3, and hence B′, C ′ ∈ acT 2
ω(S). It follows that (1ω ⊗ g)∗ ∼= g and

(1ω ⊗ g)∗ is monic.

Now suppose k = 0. We have a monomorphism i : C ′ � U in ModS with

U ∈ Iω(S). From the exact sequence

0→ B′
i·g−→ U → L1 → 0

in ModS with L1 = Coker(i · g), we get the exact sequence

0→ TorS1 (ω,L1)→ ω ⊗S B′
1ω⊗(i·g)−→ ω ⊗S U
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in ModR. By (1), (TorS1 (ω,L1))∗ = 0. So (1ω ⊗ i)∗ · (1ω ⊗ g)∗ = (1ω ⊗ (i · g))∗ is

monic, which implies that (1ω ⊗ g)∗ is also monic.

By Lemma 3.6(2) we have (2)⇒ (3).

(3)⇒ (1) Let N ∈ ModS. From the exact sequence

0→ Ωk+1
F (N)

g−→ Fk(N)→ ΩkF (N)→ 0

in ModS, we get the exact sequence

0→ TorSk+1(ω,N)→ ω ⊗S Ωk+1
F (N)

1ω⊗g−→ ω ⊗S Fk(N)

in ModR. Since (1ω⊗g)∗ is a monomorphism by (2), we have (TorSk+1(ω,N))∗ = 0

and E-cogradeω TorSk+1(ω,N) > 1. In addition, for any 1 6 i 6 n− 1,

ExtiR(ω,TorSi (ω,Ωk+1
F (N)))

ExtiR(ω,TorSi (ω,g))−→ ExtiR(ω,TorSi (ω, Fk(N))) = 0

is monic by (3), so we have

ExtiR(ω,TorSi+k+1(ω,N)) ∼= ExtiR(ω,TorSi (Ωk+1
F (ω,N))) = 0.

Thus we conclude that E-cogradeω TorSi+k+1(ω,N) > i+1 for any 0 6 i 6 n−1.

§3.2. Strong cograde conditions

Compare the following result with Theorem 3.5.

Theorem 3.8. For any n > 1 and k > 0, the following three statements are

equivalent :

(1) s.T-cogradeω Exti+kR (ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

(2) For any exact sequence

0→ A→ B
f−→ C → 0

in ModR with A ∈ Ωi−1Pω
(coΩi+k−1Pω

(R)), TorSi (ω,ExtiR(ω, f)) is an epimor-

phism for any 0 6 i 6 n− 1.

(3) For any exact sequence

0→ A→ B
f−→ C → 0

in ModR with A ∈ Ωi−1Pω
(coΩi+k−1(R)), TorSi (ω,ExtiR(ω, f)) is an epimor-

phism for any 0 6 i 6 n− 1.

Moreover, if k = 0 then any of the above statements is equivalent to the following

one:
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(4) For any exact sequence

0→ A→ B
f−→ C → 0

in ModR, TorSi (ω,ExtiR(ω, f)) is an epimorphism for any 0 6 i 6 n− 1.

Proof. (1) ⇒ (2) Let A = Ωi−1Pω
(coΩi+k−1Pω

(A′)) with A′ ∈ ModR. For any i > 0,

by dimension shifting we have an exact sequence

Exti+kR (ω,A′)
g−→ ExtiR(ω,B)

ExtiR(ω,f)−→ ExtiR(ω,C)→ Exti+k+1
R (ω,A′)

in ModS, which induces exact sequences

TorSi (ω,ExtiR(ω,B))
a−→ TorSi (ω, Im(ExtiR(ω, f)))→ TorSi−1(ω,Ker(ExtiR(ω, f)))

and

TorSi (ω, Im(ExtiR(ω, f)))
b−→ TorSi (ω,ExtiR(ω,C))→ TorSi (ω,Coker(ExtiR(ω, f)))

in ModR. Since Coker(ExtiR(ω, f)) ⊆ Exti+k+1
R (ω,A′), by (1) we have

TorSi (ω,Coker(ExtiR(ω, f))) = 0

for any 0 6 i 6 n− 1. Moreover, it follows from (1) and the exact sequence

0→ Ker g → Exti+kR (ω,A′)→ Ker(ExtiR(ω, f))→ 0

in ModS that TorSi−1(ω,Ker(ExtiR(ω, f))) = 0 for any 0 6 i 6 n − 1. Thus

TorSi (ω,ExtiR(ω, f)) = b · a is an epimorphism for any 0 6 i 6 n− 1.

By Lemma 3.4(2) we have (2)⇒ (3).

(3) ⇒ (1) Let M ∈ ModR. Fix i (1 6 i 6 n) and an S-submodule L of

Exti+kR (ω,M). Take an epimorphism a : P � L in ModS with P projective and

a′ the composition

P
a
� L ↪→ Exti+kR (ω,M).

Then a′ can be lifted to b : P → coΩi+k(M)∗. Take the pull-back diagram

(3.3)

0 // coΩi+k−1(M)
d // X

c //

��

ω ⊗S P //

b′

��

0

0 // coΩi+k−1(M) // Ii+k−1(M) // coΩi+k(M) // 0,

where b′ is the composition

ω ⊗S P
1ω⊗b−→ ω ⊗S coΩi+k(M)∗

θ
coΩi+k(M)−→ coΩi+k(M).
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It induces the following commutative diagram with exact rows:

0 // coΩi+k−1(M)∗
d∗ // X∗

c∗ //

��

(ω ⊗S P )∗ //

b′∗
��

L //

��

0

0 // coΩi+k−1(M)∗ // Ii+k−1(M)∗ // coΩi+k(M)∗ // Exti+kR (ω,M) // 0.

In the following we will proceed by induction on i. Let i = 1. Since 1ω ⊗ c∗ is

epic by (3), we have ω ⊗S L = 0 and s.T-cogradeω Ext1+kR (ω,M) > 1.

Assume that statement (1) holds for any 1 6 i 6 n−1. Now consider the case

for i = n. By the induction hypothesis we have s.T-cogradeω Exti+kR (ω,M) > i for

any 1 6 i 6 n− 1 and s.T-cogradeω Extn+kR (ω,M) > n− 1. Then coΩn+k−1(M) ∈
cT n−1ω (R) by Lemma 3.2. Because ω ⊗S P ∈ cT n−1ω (R) by [TH1, Prop. 3.7],

it follows from [TH5, Lem. 4.3] that X in the (3.3) is in cT n−1ω (R). By [TH1,

Prop. 3.7] again, there exist HomR(AddR ω,−)-exact exact sequences

0→ Y ′ →W ′n−2 → · · · →W ′0 → coΩn+k−1(M)→ 0

and

0→ Y →Wn−2 → · · · →W0 → X → 0

in ModR with all W ′j , Wj in AddR ω. Then both Y and Y ′ are in Rω
⊥n−1 and we

get the commutative diagram

0 // Y ′ //

g

��

W ′n−2 //

��

· · · // W ′0 //

��

coΩn+k−1(M) //

d

��

0

0 // Y // Wn−2 // · · · // W0
// X // 0.

We can guarantee that g is a monomorphism by adding a direct summand in

AddR ω (for example W ′n−2) to Y and Wn−2. Thus we get an exact sequence

0→ Y ′
g−→ Y

h−→ Z → 0

in ModR with Z = Coker g. Since

Coker(Extn−1R (ω, h)) ∼= Ker(ExtnR(ω, g)) ∼= Ker(Ext1R(ω, d)) ∼= Coker c∗ ∼= L

we obtain L ∼= Extn−1R (ω,Z). Since Y ′ ∈ Ωn−1Pω
(coΩn+k−1(R)), by (3) we get that

TorSn−1(ω,Extn−1R (ω, h)) is epic. So TorSn−1(ω,L) = 0 and s.T-cogradeω Extn+kR (ω,

M) > n.

When k = 0 the proof of (3) ⇒ (1) ⇒ (2) is in fact that of (4) ⇔ (1) by just

removing the first sentence and putting A′ = A at the beginning of the proof of

(1)⇒ (2).
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Compare the following result with Theorem 3.7.

Theorem 3.9. For any n > 1 and k > 0, the following three statements are

equivalent :

(1) s.E-cogradeω TorSi+k(ω,N) > i for any N ∈ ModS and 1 6 i 6 n.

(2) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (Ωi+k−1Iω (S)), ExtiR(ω,TorSi (ω, g)) is a monomor-

phism for any 0 6 i 6 n− 1.

(3) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (Ωi+k−1F (S)), ExtiR(ω,TorSi (ω, g)) is a monomor-

phism for any 0 6 i 6 n− 1.

Moreover, if k = 0, then any of the above statements is equivalent to the following

one:

(4) For any exact sequence

0→ A
g−→ B → C → 0

in ModS, ExtiR(ω,TorSi (ω, g)) is a monomorphism for any 0 6 i 6 n− 1.

Proof. (1) ⇒ (2) Let C = coΩi−1Iω (Ωi+k−1Iω (C ′)) with C ′ ∈ ModS. For any i > 0,

by dimension shifting we have an exact sequence

TorSi+k+1(ω,C ′)→ TorSi (ω,A)
TorSi (ω,g)−→ TorSi (ω,B)

f−→ TorSi+k(ω,C ′)

in ModR, which induces exact sequences

ExtiR(ω,Ker(TorSi (ω, g)))→ ExtiR(ω,TorSi (ω,A))
a−→ ExtiR(ω, Im(TorSi (ω, g)))

and

Exti−1R (ω,Coker(TorSi (ω,g)))→ ExtiR(ω, Im(TorSi (ω,g)))
b−→ ExtiR(ω,TorSi (ω,B))

in ModS. Since Ker(TorSi (ω, g)) is an R-quotient module of TorSi+k+1(ω,C ′), by

(1) we have

ExtiR(ω,Ker(TorSi (ω, g))) = 0.
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Moreover, it follows from (1) and the exact sequence

0→ Coker(TorSi (ω, g))→ TorSi+k(ω,C ′)→ Coker f → 0

in ModR that Exti−1R (ω,Coker(TorSi (ω, g))) = 0 for any 0 6 i 6 n − 1. Thus

ExtiR(ω,TorSi (ω, g)) = b · a is a monomorphism for any 0 6 i 6 n− 1.

By Lemma 3.6(2) we have (2)⇒ (3).

(3) ⇒ (1) Let N ∈ ModS. Fix i (1 6 i 6 n) and an R-quotient module H of

TorSi+k(ω,N). Take a monomorphism a : H � I in ModR with I injective and a′

the composition

TorSi+k(ω,N)� H
a
� I.

Then a′ can be extended to b : ω ⊗S Ωi+kF (N)→ I. Take the push-out diagram

(3.4)

0 // Ωi+kF (N) //

b′

��

Fi+k−1(N) //

��

Ωi+k−1F (N) // 0

0 // I∗
c // Y

d // Ωi+k−1F (N) // 0,

where b′ is the composition

Ωi+kF (N)
µ

Ω
i+k
F (N)

−→ (ω ⊗S Ωi+kF (N))∗
b∗−→ I∗.

It induces the following commutative diagram with exact rows:

0 // TorSi+k(ω,N) //

��

ω ⊗S Ωi+kF (N) //

1ω⊗b′

��

ω ⊗S Fi+k−1(N) //

��

ω ⊗S Ωi+k−1F (N) // 0

0 // H // ω ⊗S I∗
1ω⊗c // ω ⊗S Y

1ω⊗d // ω ⊗S Ωi+k−1F (N) // 0.

In the following we will proceed by induction on i. Let i = 1. Since (1ω ⊗ c)∗
is monic by (2), we have H∗ = 0 and s.E-cogradeω TorS1+k(ω,N) > 1.

Assume that statement (1) holds for any 1 6 i 6 n−1. Now consider the case

for i = n. By the induction hypothesis we have s.E-cogradeω TorSi+k(ω,N) > i for

any 1 6 i 6 n − 1 and s.E-cogradeω TorSn+k(ω,N) > n − 1. Then Ωn+k−1F (N) ∈
acT n−1ω (S) by Lemma 3.3. Because I∗ ∈ acT n−1ω (S) by [TH3, Prop. 3.8], it follows

from the dual result of [TH5, Lem. 4.3] that Y in diagram (3.4) is in acT n−1ω (S).

By [TH3, Prop. 3.8] again, there exist (ω ⊗S −)-exact exact sequences

0→ Y → U0 → · · · → Un−2 → X → 0

and

0→ Ωn+k−1F (L)→ V 0 → · · · → V n−2 → X ′ → 0
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in ModS with all U i, V i in Iω(S). Then both X and X ′ are in ωS
>n−1 and we

get the following commutative diagram:

0 // Y //

d
��

U0 //

��

· · · // Un−2 //

��

X //

f

��

0

0 // Ωn+k−1F (L) // V 0 // · · · // V n−2 // X ′ // 0.

We can guarantee that f is an epimorphism by adding a direct summand in

Iω(S) (for example V n−2) to X and Un−2. Thus we get an exact sequence

0→ Z
h−→ X

f−→ X ′ → 0

in ModS with Z = Ker f . Since

Ker(TorSn−1(ω, h)) ∼= Coker(TorSn(ω, f)) ∼= Coker(TorS1 (ω, d)) ∼= Ker(1ω ⊗ c),

we obtain H ∼= TorSn−1(ω,Z). Since X ′ ∈ coΩn−1Iω (Ωn+k−1F (S)), by (3) we get

that Extn−1R (ω,TorSn−1(ω, h)) is a monomorphism. So Extn−1R (ω,H) = 0 and

s.E-cogradeω TorSn+k(ω,N) > n.

When k = 0, the proof of (3) ⇒ (1) ⇒ (2) is in fact that of (4) ⇔ (1) by just

removing the first sentence and putting C ′ = C at the beginning of the proof of

(1)⇒ (2).

§4. (Quasi) n-cograde condition

In this section, we introduce and study the (quasi) n-cograde condition of semi-

dualizing bimodules.

§4.1. The n-cograde condition

Definition 4.1. For any n > 1, ω is said to satisfy the right n-cograde condition

if s.E-cogradeω TorSi (ω,N) > i for any N ∈ ModS and 1 6 i 6 n and ω is said

to satisfy the left n-cograde condition if s.E-cogradeω TorRi (M ′, ω) > i for any

M ′ ∈ ModRop and 1 6 i 6 n.

As a consequence of Theorems 3.8 and 3.9, we get the following equivalent

characterizations for ω satisfying the right n-cograde condition.

Corollary 4.2. For any n > 1 the following statements are equivalent :

(1) s.T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

(2) s.E-cogradeω TorSi (ω,N) > i for any N ∈ ModS and 1 6 i 6 n.
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(3) TorSi (ω,ExtiR(ω,−)) preserves epimorphisms in ModR for 0 6 i 6 n− 1.

(4) ExtiR(ω,TorSi (ω,−)) preserves monomorphisms in ModS for 0 6 i 6 n− 1.

(5) For any exact sequence

0→ A→ B
f−→ C → 0

in ModR with A ∈ Ωi−1Pω
(coΩi−1Pω

(R)), TorSi (ω,ExtiR(ω, f)) is an epimorphism

for any 0 6 i 6 n− 1.

(6) For any exact sequence

0→ A→ B
f−→ C → 0

in ModR with A ∈ Ωi−1Pω
(coΩi−1(R)), TorSi (ω,ExtiR(ω, f)) is an epimorphism

for any 0 6 i 6 n− 1.

(7) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (Ωi−1Iω (S)), ExtiR(ω,TorSi (ω, g)) is a monomorphism

for any 0 6 i 6 n− 1.

(8) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (Ωi−1F (S)), ExtiR(ω,TorSi (ω, g)) is a monomorphism

for any 0 6 i 6 n− 1.

Proof. By [TH4, Thm. 6.9] we have (1)⇔ (2). By Theorems 3.8 and 3.9 we have

(1)⇔ (3)⇔ (5)⇔ (6) and (2)⇔ (4)⇔ (7)⇔ (8) respectively.

Symmetrically, we have the following equivalent characterizations for ω satis-

fying the left n-cograde condition.

Corollary 4.3. For any n > 1 the following statements are equivalent :

(1) s.T-cogradeω ExtiSop(ω,N ′) > i for any N ′ ∈ ModSop and 1 6 i 6 n.

(2) s.E-cogradeω TorRi (M ′, ω) > i for any M ′ ∈ ModRop and 1 6 i 6 n.

(3) TorRi (ExtiSop(ω,−), ω) preserves epimorphisms in ModSop for 0 6 i 6 n− 1.

(4) ExtiSop(ω,TorRi (−, ω)) preserves monomorphisms in ModRop for 0 6 i 6
n− 1.

(5) For any exact sequence

0→ A→ B
f−→ C → 0
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in ModSop with A ∈ Ωi−1Pω
(coΩi−1Pω

(Sop)), TorRi (ExtiSop(ω, f), ω) is an epimor-

phism for any 0 6 i 6 n− 1.

(6) For any exact sequence

0→ A→ B
f−→ C → 0

in ModSop with A ∈ Ωi−1Pω
(coΩi−1(Sop)), TorRi (ExtiSop(ω, f), ω) is an epimor-

phism for any 0 6 i 6 n− 1.

(7) For any exact sequence

0→ A
g−→ B → C → 0

in ModRop with C ∈ coΩi−1Iω (Ωi−1Iω (Rop)), ExtiSop(ω,TorRi (g, ω)) is a mono-

morphism for any 0 6 i 6 n− 1.

(8) For any exact sequence

0→ A
g−→ B → C → 0

in ModRop with C ∈ coΩi−1Iω (Ωi−1F (Rop)), ExtiSop(ω,TorRi (g, ω)) is a mono-

morphism for any 0 6 i 6 n− 1.

In the following we will establish the left–right symmetry of the n-cograde

condition.

Lemma 4.4. Let

0→ A→ B → C → 0

be an exact sequence in ModR such that A is superfluous in B. Then the following

assertions hold :

(1) Let L ∈ ModRop. If L′⊗RC = 0 for any submodule L′ of L, then L⊗RB = 0.

(2) Let M ∈ ModR. If HomR(C,M ′) = 0 for any quotient module M ′ of M , then

HomR(B,M) = 0.

Proof. (1) If L ⊗R B 6= 0 then there exists x ∈ L such that xR ⊗R B 6= 0. Since

xR ∼= R/I for some right ideal I of R, we have

B/IB ∼= R/I ⊗R B ∼= xR⊗R B 6= 0

and IB � B. In view of the assumption that A is superfluous in B, it follows that

IB +A � B and

xR⊗R C ∼= R/I ⊗R C ∼= R/I ⊗R B/A ∼=
B/A

(IB +A)/A
∼= B/(IB +A) 6= 0,

which contradicts the assumption.
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(2) If HomR(B,M) 6= 0 then there exists a nonzero homomorphism f ∈ HomR(B,

M). Pick the kernel L of f such that Im f ∼= B/L. Because A is superfluous in B

and f 6= 0, we have A+L � B. Then there exists a nonzero natural epimorphism

π : B/A (∼= C) � B/(A + L). Note that the inclusions (A + L)/L ⊆ B/L ⊆ M

induce an embedding homomorphism

i :
B/L

(A+ L)/L
(∼= B/(A+ L)) ↪→ M

(A+ L)/L
.

Then 0 6= i · π ∈ HomR(C, M
(A+L)/L ), which contradicts the assumption.

It is straightforward to verify the following observation.

Lemma 4.5. (1) If P ∈ ModR is finitely generated projective then pdSop P ∗ =

Pω(R)-idR P .

(2) If Q ∈ ModSop is finitely generated projective then pdRQ
∗ = Pω(Sop)-

idSop Q.

Lemma 4.6. Let P ∈ ModR be finitely generated projective and t > 0. Then the

following statements are equivalent :

(1) pdSop P ∗ 6 t.

(2) Pω(R)-idR P 6 t.

(3) Extt+1
Sop (ω,H)⊗R P = 0 for any H ∈ ModSop.

(4) HomR(P,TorSt+1(ω,N)) = 0 for any N ∈ ModS.

Proof. By Lemma 4.5(1), we have (1)⇔ (2).

(1)⇔ (3) Let H ∈ ModSop and

I := 0→ H → I0 → I1 → · · · → Ii → · · ·

be an injective resolution of H in ModSop. Because P ∈ ModR is finitely gener-

ated projective by assumption, the functor −⊗R P is exact. Then we have

Extt+1
Sop (P ∗, H) ∼= Ht+1(HomSop(P ∗, I))

∼= Ht+1(HomSop(ω, I)⊗R P )

∼= Ht+1(HomSop(ω, I))⊗R P (by [EJ, p. 30, Exer. 2])

∼= Extt+1
Sop (ω,H)⊗R P.

Now the assertion follows easily.

(1)⇔ (4) Since pdSop P ∗ = fdSop P ∗, the assertion follows from [TH2, Lem. 7.6].
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Recall from [N] that a ring R is called semiregular if R/J(R) is von Neumann

regular and idempotents can be lifted modulo J(R), where J(R) is the Jacobson

radical of R. The class of semiregular rings includes (1) von Neumann regular

rings, (2) semiperfect rings, (3) left cotorsion rings and (4) right cotorsion rings.

See [GH] for the definitions of left cotorsion rings and right cotorsion rings.

If R is a semiregular ring then any finitely presented left or right R-module

has a projective cover by [N, Thm. 2.9]. In this case, since Rω admits a degreewise

finite R-projective resolution by Definition 2.1, we may assume that

· · · → Pi(ω)→ · · · → P1(ω)→ P0(ω)→ Rω → 0

is the minimal projective resolution of Rω in mod R. Put ωi := Im(Pi(ω) →
Pi−1(ω)) for any i > 1 and ω0 := ω. Analogously, if S is a semiregular ring then

we assume that

· · · → Qi(ω)→ · · · → Q1(ω)→ Q0(ω)→ ωS → 0

is the minimal projective resolution of ωS in modSop. By Lemma 4.6 we have the

following proposition.

Proposition 4.7. Let R be a semiregular ring and m,n > 1. Then the following

statements are equivalent :

(1) pdSop Pi(ω)∗ 6 m− 1 for any 0 6 i 6 n− 1.

(2) Pω(R)-idR Pi(ω) 6 m− 1 for any 0 6 i 6 n− 1.

(3) s.T-cogradeω ExtmSop(ω,N ′) > n for any N ′ ∈ ModSop.

(4) s.E-cogradeω TorSm(ω,N) > n for any N ∈ ModS.

Proof. By [TH2, Prop. 7.7] and Lemma 4.6, we have (4)⇔ (1)⇔ (2).

(3) ⇒ (1) We proceed by induction on n. Let N ′ ∈ ModSop. Suppose n = 1.

Because s.T-cogradeω ExtmSop(ω,N ′) > 1 by (3), we have L′ ⊗R ω = 0 for any

submodule L′ of ExtmSop(ω,N ′) in ModRop. It follows from Lemma 4.4(1) that

ExtmSop(ω,N ′)⊗RP0(ω) = 0. Therefore by Lemma 4.6 we get pdSop P0(ω)∗ 6 m−1

and the case for n = 1 is proved.

Now suppose n > 2. Let X be a submodule of ExtmSop(ω,N ′) in ModRop. By

(3) we have TorR06i6n−1(X,ω) = 0. Then for any 0 6 i 6 n− 2 we have

TorR1 (X,ωi) ∼= TorRi+1(X,ω) = 0.

For any i > 0, from the exact sequence

0→ ωi+1 → Pi(ω)→ ωi → 0
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we get the exact sequence

(4.1) 0→ TorR1 (X,ωi)→ X ⊗R ωi+1 → X ⊗R Pi(ω).

By the induction hypothesis we have pdSop Pi(ω)∗ 6 m− 1 for any 0 6 i 6 n− 2.

Then it follows from Lemma 4.6 that ExtmSop(ω,N ′) ⊗R Pn−2(ω) = 0 and hence

X ⊗R Pn−2(ω) = 0. So it is derived from (4.1) that X ⊗R ωn−1 = 0. Notice that

Pn−1(ω) is the projective cover of ωn−1, so ExtmSop(ω,N ′) ⊗R Pn−1(ω) = 0 by

Lemma 4.4(1). It follows from Lemma 4.6 that pdSop Pn−1(ω)∗ 6 m− 1.

(1) ⇒ (3) Let X be a submodule of ExtmSop(ω,N ′) in ModRop. Then by (1)

and Lemma 4.6, we have ExtmSop(ω,N ′) ⊗R (⊕n−1i=0 Pi(ω)) = 0, and hence X ⊗R
(⊕n−1i=0 Pi(ω)) = 0. Since ωi is a quotient module of Pi(ω) for any i > 0, we then

have X ⊗R (⊕n−1i=0 ωi) = 0.

If n = 1 then X ⊗R ω = 0 and s.T-cogradeω ExtmSop(ω,N ′) > 1. If n > 2 then

from (4.1) we get TorR1 (X,⊕n−2i=0 ωi) = 0. Since TorRi+1(X,ω) ∼= TorR1 (X,ωi) for any

i > 0, we have TorR06i6n−1(X,ω) = 0 and s.T-cogradeω ExtmSop(ω,N ′) > n.

The following result means that the n-cograde condition is left–right symmet-

ric.

Theorem 4.8. Let R be semiregular and n > 1. Then the following statements

are equivalent :

(1) pdSop Pi(ω)∗ 6 i for any 0 6 i 6 n− 1.

(2) Pω(R)-idR Pi(ω) 6 i for any 0 6 i 6 n− 1.

(3) s.T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

(4) s.E-cogradeω TorSi (ω,N) > i for any N ∈ ModS and 1 6 i 6 n.

(5) s.T-cogradeω ExtiSop(ω,N ′) > i for any N ′ ∈ ModSop and 1 6 i 6 n.

(6) s.E-cogradeω TorRi (M ′, ω) > i for any M ′ ∈ ModRop and 1 6 i 6 n.

(7) TorSi (ω,ExtiR(ω,−)) preserves epimorphisms in ModR for 0 6 i 6 n− 1.

(8) ExtiR(ω,TorSi (ω,−)) preserves monomorphisms in ModS for 0 6 i 6 n− 1.

(9) TorRi (ExtiSop(ω,−), ω) preserves epimorphisms in ModSop for 0 6 i 6 n−1.

(10) ExtiSop(ω,TorRi (−, ω)) preserves monomorphisms in ModRop for 0 6 i 6
n− 1.

Proof. By Proposition 4.7 we have (1) ⇔ (2) ⇔ (4) ⇔ (5). By Corollaries 4.2

and 4.3 we have (3)⇔ (4)⇔ (7)⇔ (8) and (5)⇔ (6)⇔ (9)⇔ (10).

As a consequence, we get the following corollary.
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Corollary 4.9. Let R and S be semiregular and n > 1. Then the following state-

ments are equivalent :

(1) pdSop Pi(ω)∗ 6 i for any 0 6 i 6 n− 1.

(2) pdRQi(ω)∗ 6 i for any 0 6 i 6 n− 1.

(3) Pω(R)-idR Pi(ω) 6 i for any 0 6 i 6 n− 1.

(4) Pω(Sop)-idSop Qi(ω) 6 i for any 0 6 i 6 n− 1.

Proof. By the symmetric version of Proposition 4.7 we have

(2)⇔ (4)⇔ s.T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

Now the assertion follows from Theorem 4.8.

§4.2. The quasi n-cograde condition

Definition 4.10. For any n > 1, ω is said to satisfy the right quasi n-cograde

condition if s.E-cogradeω TorSi+1(ω,N) > i for anyN ∈ ModS and 1 6 i 6 n and ω

is said to satisfy the left quasi n-cograde condition if s.E-cogradeω TorRi+1(M ′, ω) >
i for any M ′ ∈ ModRop and 1 6 i 6 n.

It is trivial that ω satisfies the right (resp. left) quasi n-cograde conditions

if it satisfies the right (resp. left) n-cograde condition. But the converse does not

hold true in general, see Section 4.4 below.

The following lemma is useful in the sequel.

Lemma 4.11. For any n > 0, the following assertions hold :

(1) Let M ∈ ModR. If E-cogradeωM > n and T-cogradeω ExtnR(ω,M) > n + 1,

then E-cogradeωM > n+ 1.

(2) Let N ∈ ModS. If T-cogradeω N > n and E-cogradeω TorSn(ω,N) > n + 1,

then T-cogradeω N > n+ 1.

Proof. We proceed by induction on n.

(1) If n = 0 then ω⊗SM∗ = 0 by assumption. It follows from [TH4, Lem. 6.1(1)]

that M∗ = 0 and E-cogradeωM > 1.

Let n > 1. Consider an injective resolution

0→M → I0 → · · · → In → · · ·

of M in ModR. Put M ′ = Im(In−1 → In). Since E-cogradeωM > n by the

induction hypothesis, applying the functor (−)∗ to the above exact sequence yields

the exact sequence

0→ I0∗ → · · · → In−1∗
g−→M ′∗ → ExtnR(ω,M)→ 0
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in ModS. Because T-cogradeω ExtnR(ω,M) > n + 1 by assumption, we have

TorS06i6n(ω,ExtnR(ω,M)) = 0. Then by [CE, Prop. VI.5.1] we have

ExtiS(ExtnR(ω,M), Ij∗) ∼= HomR(TorSi (ω,ExtnR(ω,M)), Ij) = 0

for any 0 6 i 6 n and j > 0, and hence

Ext1S(ExtnR(ω,M), Im g) ∼= ExtnS(ExtnR(ω,M), I0∗) = 0.

It implies that the exact sequence

0→ Im g →M ′∗ → ExtnR(ω,M)→ 0

splits and hence ExtnR(ω,M) is a direct summand of M ′∗. Since M ′∗ is ad-

joint 1-ω-cotorsionfree, so is ExtnR(ω,M). Thus, applying [TH3, Prop. 3.2], the

T-cograde condition on ExtnR(ω,M) proves ExtnR(ω,M) = 0. Consequently we

have E-cogradeωM > n+ 1 and the assertion follows.

(2) If n = 0 then (ω⊗SN)∗ = 0 by assumption. It follows from [TH4, Lem. 6.1(2)]

that ω ⊗S N = 0 and T-cogradeω N > 1.

Let n > 1. Consider a projective resolution

· · · → Pn → · · · → P0 → N → 0

of N in ModS. Put N ′ = Im(Pn → Pn−1). Since T-cogradeω N > n by the

induction hypothesis, applying the functor ω ⊗S − to the above exact sequence

yields the exact sequence

0→ TorSn(ω,N)→ ω ⊗S N ′
f−→ ω ⊗S Pn−1 → · · · → ω ⊗S P0 → 0

in ModR. Because E-cogradeω TorSn(ω,N) > n + 1 by assumption, we have

Ext06i6nR (ω,TorSn(ω,N)) = 0. Notice that ω ⊗S P ∈ AddR ω for any projective

module P in ModS, so Ext06i6nR (ω ⊗S Pj ,TorSn(ω,N)) = 0 for any j > 0, and

hence

Ext1R(Im f,TorSn(ω,N)) ∼= ExtnR(ω ⊗S P0,TorSn(ω,N)) = 0.

It induces an exact sequence

HomR(ω ⊗S N ′,TorSn(ω,N))→ HomR(TorSn(ω,N),TorSn(ω,N))→ 0.

Because ω ⊗S N ′ ∈ cT 1
ω(R) by [TH4, Lem. 6.1(2)], there exists an epimorphism

U � ω ⊗S N ′ in ModR with U ∈ AddR ω by [TH1, Lem. 3.6(1)]. Because

(TorSn(ω,N))∗ = 0 we have HomR(U,TorSn(ω,N)) = 0. It follows that HomR(ω⊗S
N ′,TorSn(ω,N)) = 0 and HomR(TorSn(ω,N),TorSn(ω,N)) = 0, which implies

TorSn(ω,N) = 0. So T-cogradeω N > n+ 1 and the assertion follows.
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We have the following equivalent characterizations for ω satisfying the right

quasi n-cograde condition.

Proposition 4.12. For any n > 1, the following statements are equivalent :

(1) s.E-cogradeω TorSi+1(ω,N) > i for any N ∈ ModS and 1 6 i 6 n.

(2) T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

(3) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (ΩiIω (S)), ExtiR(ω,TorSi (ω, g)) is a monomorphism

for any 0 6 i 6 n− 1.

(4) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (ΩiF (S)), ExtiR(ω,TorSi (ω, g)) is a monomorphism

for any 0 6 i 6 n− 1.

(5) TorSi (ω,ExtiR(ω, f)) is an epimorphism for any epimorphism f : B � C in

ModR with B,C ∈ coΩ1
Pω

(R) and 0 6 i 6 n− 1.

(6) TorSi (ω,ExtiR(ω, f)) is an epimorphism for any epimorphism f : B � C in

ModR with B,C ∈ coΩ1(R) and 0 6 i 6 n− 1.

(7) coΩi(R) ⊆ cT i+1
ω (R) for any 1 6 i 6 n.

Proof. By Theorems 3.9 and 3.5 we have (1)⇔ (3)⇔ (4) and (2)⇔ (5)⇔ (6)⇔
(7) respectively. In the following we will prove (1)⇔ (2) by induction on n.

(1) ⇒ (2) Let M ∈ ModR. By Lemma 3.1(1), for any n > 1 there exist exact

sequences

0→ ExtnR(ω,M)
λ−→ cTrω coΩn−1(M)

π−→ C → 0,(4.2)

0→ C → In+1(M)∗ → cTrω coΩn(M)→ 0(4.3)

in ModS such that 1ω ⊗ π is an isomorphism, where C = In(M)∗/ coΩn(M)∗.

Because In+1(M)∗ ∈ ωS> by [HW, Cor. 6.1], it follows from the exact sequence

(4.3) that TorSi (ω,C) ∼= TorSi+1(ω, cTrω coΩn(M)) for any i > 1.

If n = 1 then from the exact sequence (4.2) we get an exact sequence

TorS2 (ω, cTrω coΩ1(M)) (∼= TorS1 (ω,C))→ ω ⊗S Ext1R(ω,M)→ 0

in ModR. Because s.E-cogradeω TorS2 (ω, cTrω coΩ1(M)) > 1 by assumption, we

have E-cogradeω ω ⊗S Ext1R(ω,M)) > 1. It is derived from Lemma 4.11(2) that

T-cogradeω Ext1R(ω,M) > 1.
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Now suppose n > 2. Then T-cogradeω ExtiR(ω,M) > i for any 1 6 i 6
n− 1 and T-cogradeω ExtnR(ω,M) > n− 1 by the induction hypothesis. It follows

from Theorem 3.5 that coΩi(R) ⊆ cT iω(R) for any 1 6 i 6 n. So coΩn−1(M) ∈
cT n−1ω (R), and hence cTrω coΩn−1(M) ∈ ωS>n−1 . Thus from the exact sequences

(4.2) and (4.3) we get the exact sequence

TorSn+1(ω, cTrω coΩn(M))→ TorSn−1(ω,ExtnR(ω,M))→ 0.

By (1) we have E-cogradeω TorSn−1(ω,ExtnR(ω,M)) > n. From Lemma 4.11(2) it

follows that T-cogradeω ExtnR(ω,M) > n.

(2)⇒ (1) Let N ∈ ModS and X be a quotient module of TorSn+1(ω,N) in ModR,

and let β : TorS1 (ω,ΩnF (N)) (∼= TorSn+1(ω,N))� X be an epimorphism in ModR.

By Lemma 3.1(2) we have an exact sequence

0→ Im(1ω ⊗ fn+1)
σ−→ acTrω ΩnF (N)

τ−→ TorSn+1(ω,N)→ 0

in ModR such that σ∗ is an isomorphism. Then we get an exact sequence

(4.4) 0→ Ker f
η−→ acTrω ΩnF (N)

f−→ X → 0

in ModR, where f = β · τ . It is easy to see that η∗ is an isomorphism.

Let n = 1. Because Ω1
F (N) ∈ acT 1

ω(S) by [TH3, Cor. 3.5(1)], we have

acTrω Ω1
F (N) ∈ Rω

⊥1 . Then the exact sequence (4.4) gives X∗ ∼= Ext1R(ω,Ker f).

So T-cogradeωX∗ > 1 by (2), and hence E-cogradeωX > 1 by Lemma 4.11(1).

The case for n = 1 is proved.

Now suppose n > 2. Then s.E-cogradeω TorSi+1(ω,N) > i for any 1 6 i 6
n − 1 and s.E-cogradeω TorSn+1(ω,N) > n − 1 by the induction hypothesis. So

E-cogradeωX > n− 1.

By Theorem 3.7 we have ΩiF (S) ⊆ acT iω(S) for any 1 6 i 6 n. So ΩnF (N) ∈
acT nω(S) and acTrω ΩnF (N) ∈ Rω

⊥n . It follows from the exact sequence (4.4) that

Extn−1R (ω,X) ∼= ExtnR(ω,Ker f). Then by (2) we have T-cogradeω Extn−1R (ω,X) =

T-cogradeω ExtnR(ω,Ker f) > n. Thus E-cogradeωX > n by Lemma 4.11(1).

We also have the following proposition.

Proposition 4.13. For any n > 1 the following statements are equivalent :

(1) s.T-cogradeω Exti+1
Sop(ω,N ′) > i for any N ′ ∈ ModSop and 1 6 i 6 n.

(2) E-cogradeω TorRi (M ′, ω) > i for any M ′ ∈ ModRop and 1 6 i 6 n.

(3) For any exact sequence

0→ A′ → B′
f ′−→ C ′ → 0
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in ModSop with A ∈ Ωi−1Pω
(coΩiPω

(Sop)), TorRi (ExtiSop(ω, f ′), ω) is an epimor-

phism for any 0 6 i 6 n− 1.

(4) For any exact sequence

0→ A′ → B′
f ′−→ C ′ → 0

in ModSop with A ∈ Ωi−1Pω
(coΩi(Sop)), TorRi (ExtiSop(ω, f ′), ω) is an epimor-

phism for any 0 6 i 6 n− 1.

(5) ExtiSop(ω,TorRi (g′, ω)) is a monomorphism for any monomorphism g′ : B′ �
C ′ in ModRop with B′, C ′ ∈ Ω1

Iω (Rop) and 0 6 i 6 n− 1.

(6) ExtiSop(ω,TorRi (g′, ω)) is a monomorphism for any monomorphism g′ : B′ �
C ′ in ModRop with B′, C ′ ∈ Ω1

F (Rop) and 0 6 i 6 n− 1.

(7) ΩiF (Rop) ⊆ acT i+1
ω (Rop) for any 1 6 i 6 n.

Proof. By the symmetric versions of Theorems 3.8 and 3.7 we have (1)⇔ (3)⇔ (4)

and (2)⇔ (5)⇔ (6)⇔ (7) respectively. In the following, we will prove (1)⇔ (2)

by induction on n.

(1)⇒ (2) Let M ′ ∈ ModRop and let

· · · → Fi+1(M ′)
fi−→ Fi(M

′)→ · · · f0−→ F0(M ′)→M ′ → 0

be the minimal flat resolution of M ′ in ModRop. By Lemma 3.1(2), for any n > 1,

there exist exact sequences

0→ Im(1ω ⊗ fn)
σ−→ acTrω Ωn−1F (M ′)

τ−→ TorRn (M ′, ω)→ 0,(4.5)

0→ acTrω ΩnF (M ′)→ Fn+1(M ′)⊗R ω → Im(1ω ⊗ fn)→ 0(4.6)

in ModSop such that σ∗ is an isomorphism. Because Fn+1(M ′) ⊗R ω ∈ ωS⊥ by

[HW, Cor. 6.1], it follows from the exact sequence (4.6) that ExtiSop(ω, Im(1ω ⊗
fn)) ∼= Exti+1

Sop(ω, acTrω ΩnF (M ′)) for any i > 1.

If n = 1 then from the exact sequence (4.5) we get an exact sequence

0→ (TorR1 (M ′, ω))∗ → Ext2Sop(ω, acTrω Ω1
F (M ′)) (∼= Ext1Sop(ω, Im(1ω ⊗ fn)))

in ModRop. Because s.T-cogradeω Ext2Sop(ω, acTrω Ω1
F (M ′)) > 1 by assumption,

we have T-cogradeω(TorR1 (M ′, ω))∗ > 1. It is derived from Lemma 4.11(1) that

E-cogradeω TorR1 (M ′, ω) > 1.

Now suppose n > 2. Then E-cogradeω TorRi (M ′, ω) > i for any 1 6 i 6 n− 1

and E-cogradeω TorRn (M ′, ω) > n− 1 by the induction hypothesis. It follows from

Theorem 3.7 that ΩiF (Rop) ⊆ acT iω(Rop) for any 1 6 i 6 n. So Ωn−1F (M ′) ∈
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acT n−1ω (Rop) and acTrω Ωn−1F (M ′) ∈ ωS⊥n−1 . Thus from the exact sequences (4.5)

and (4.6) we get the exact sequence

0→ Extn−1Sop (ω,TorRn (M ′, ω))→ Extn+1
Sop (ω, acTrω ΩnF (M ′)).

By (1) we have T-cogradeω Extn−1Sop (ω,TorRn (M ′, ω)) > n. From Lemma 4.11(1) it

follows that E-cogradeω TorRn (M ′, ω) > n.

(2)⇒ (1) Let N ′ ∈ ModSop and Y be a submodule of Extn+1
Sop (ω,N ′) in ModRop,

and let α : Y � Ext1Sop(ω, coΩn(N ′)) (∼= Extn+1
Sop (ω,N ′)) be a monomorphism in

ModRop. By Lemma 3.1(1) we have an exact sequence

0→ Extn+1
Sop (ω,N ′)

λ−→ cTrω coΩn(N ′)
π−→ In+1(N ′)∗/ coΩn+1(N ′)∗ → 0

in ModRop such that π ⊗ 1ω is an isomorphism. Then we get an exact sequence

(4.7) 0→ Y
g−→ cTrω coΩn(N ′)

ρ−→ Coker g → 0

in ModRop, where g = λ · α. It is easy to see that ρ⊗ 1ω is an isomorphism.

Let n = 1. Because coΩ1(N ′) ∈ cT 1
ω(Sop) by [TH1, Lem. 2.5(2)], we have

cTrω coΩ1(N ′)∈ωS>1 . Then the exact sequence (4.7) gives Y⊗Rω ∼= TorR1 (Coker g,

ω). So E-cogradeω Y ⊗Rω > 1 by (2), and hence by Lemma 4.11(2) T-cogradeω Y >
1. The case for n = 1 is proved.

Now suppose n > 2. Then s.T-cogradeω Exti+1
Sop(ω,N ′) > i for any 1 6 i 6

n − 1 and s.T-cogradeω Extn+1
Sop (ω,N ′) > n − 1 by the induction hypothesis. So

T-cogradeω Y > n− 1.

By Theorem 3.5 we have coΩi(Rop) ⊆ cT iω(Rop) for any 1 6 i 6 n. So

coΩn(N ′) ∈ cT iω(Rop) and cTrω coΩn(N ′) ∈ Rω
>n . It follows from the exact se-

quence (4.7) that TorRn−1(Y, ω) ∼= TorRn (Coker g, ω). Then by (2) we have

E-cogradeω TorRn−1(Y, ω) = E-cogradeω TorRn (Coker g, ω) > n. Thus T-cogradeω Y

> n by Lemma 4.11(2).

Now we are in a position to state the following proposition.

Theorem 4.14. Let R be semiregular and n > 1. Then the following statements

are equivalent :

(1) pdSop Pi(ω)∗ 6 i+ 1 for any 0 6 i 6 n− 1.

(2) Pω(R)-idR Pi(ω) 6 i+ 1 for any 0 6 i 6 n− 1.

(3) s.T-cogradeω Exti+1
Sop(ω,N ′) > i for any N ′ ∈ ModSop and 1 6 i 6 n.

(4) s.E-cogradeω TorSi+1(ω,N) > i for any N ∈ ModS and 1 6 i 6 n.

(5) T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and 1 6 i 6 n.

(6) E-cogradeω TorRi (M ′, ω) > i for any M ′ ∈ ModRop and 1 6 i 6 n.
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(7) TorSi (ω,ExtiR(ω, f)) is an epimorphism for any epimorphism f : B � C in

ModR with B,C ∈ coΩ1(R) and 0 6 i 6 n− 1.

(8) ExtiSop(ω,TorRi (f ′, ω)) is a monomorphism for any monomorphism f ′ : B′�
C ′ in ModRop with B′, C ′ ∈ Ω1

F (Rop) and 0 6 i 6 n− 1.

(9) For any exact sequence

0→ A′ → B′
g′−→ C ′ → 0

in ModSop with A′ ∈ Ωi−1Pω
(coΩi(Sop)), TorRi (ExtiSop(ω, g′), ω) is an epimor-

phism for any 0 6 i 6 n− 1.

(10) For any exact sequence

0→ A
g−→ B → C → 0

in ModS with C ∈ coΩi−1Iω (ΩiF (S)), ExtiR(ω,TorSi (ω, g)) is a monomorphism

for any 0 6 i 6 n− 1.

(11) coΩi(R) ⊆ cT i+1
ω (R) for any 1 6 i 6 n.

(12) ΩiF (Rop) ⊆ acT i+1
ω (Rop) for any 1 6 i 6 n.

Proof. By Proposition 4.7 we have (1) ⇔ (2) ⇔ (3) ⇔ (4). By Propositions 4.12

and 4.13 we have (4) ⇔ (5) ⇔ (7) ⇔ (10) ⇔ (11) and (3) ⇔ (6) ⇔ (8) ⇔ (9) ⇔
(12) respectively.

For the right quasi 1-cograde condition, we have some additional interesting

equivalent characterizations.

Proposition 4.15. Let R be a semiregular ring. Then the following statements

are equivalent :

(1) pdSop P0(ω)∗ 6 1.

(2) s.E-cogradeω TorS2 (ω,N) > 1 for any N ∈ ModS.

(3) θM is a superfluous epimorphism for any M ∈ coΩ1(R).

(4) µM ′ is an essential monomorphism for any M ′ ∈ Ω1
F (Rop).

Proof. By Theorem 4.14 we have (1)⇔ (2).

(1)⇒ (3) Let M ∈ coΩ1(R). By [TH1, Lem. 2.5(2)] we have coΩ1(R) ⊆ cT 1
ω(R).

So M ∈ cT 1
ω(R) and θM is an epimorphism. Because Ker θM ∼= TorS2 (ω, cTrωM)

by [TH1, Prop. 3.2], we have

HomR(P0(ω),Ker θM ) ∼= HomR(P0(ω),TorS2 (ω, cTrωM)) = 0

by (1) and Lemma 4.6. It follows easily that X∗ = 0 for any quotient module X

of Ker θM . Let A be a submodule of ω ⊗S M∗ in ModR such that Ker θM + A =
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ω ⊗S M∗. Then (Ker θM + A)/A (∼= Ker θM/(A ∩ Ker θM )) is isomorphic to a

quotient module of Ker θM , and so ((Ker θM + A)/A)∗ = 0. Since ω ⊗S M∗ ∈
cT 1

ω(R) by [TH4, Lem. 6.1(2)], (Ker θM + A)/A ∈ cT 1
ω(R) by [TH1, Cor. 3.8]. It

follows that θ(Ker θM+A)/A : ω⊗S ((Ker θM +A)/A)∗ → (Ker θM +A)/A is epic and

(Ker θM + A)/A = 0. It induces that A = Ker θM + A = ω ⊗S M∗ and θM is a

superfluous epimorphism.

(3) ⇒ (2) Let f : B � C be an epimorphism in ModR with B,C ∈ coΩ1(R)

(⊆ cT 1
ω(R)). Then θC · (1ω ⊗ f∗) = f · θB is epic. Because θC is a superfluous

epimorphism by (3), it follows from [AF, Cor. 5.15] that 1ω ⊗ f∗ is epic. Now the

assertion follows from Theorem 4.14.

(1)⇒ (4) LetM ′∈Ω1
F (Rop). By [TH3, Cor. 3.5(1)] we have Ω1

F (Rop)⊆ acT 1
ω(Rop).

So M ′ ∈ acT 1
ω(Rop) and µM ′ is a monomorphism. Because CokerµM ′ ∼= Ext2Sop(ω,

acTrωM
′) by [TH3, Prop. 3.2], we have

CokerµM ′ ⊗R P0(ω) ∼= Ext2Sop(ω, acTrωM
′)⊗R P0(ω) = 0

by (1) and Lemma 4.6. It follows easily that Y ⊗R ω = 0 for any submodule Y of

CokerµM ′ . Let A′ be a submodule of (M ′ ⊗R ω)∗ in ModRop with A′ ∩M ′ = 0.

Then A′ ∼= A′/A′∩M ′ ∼= (A′+M ′)/M ′ is isomorphic to a submodule of CokerµM ′ ,

and so A′ ⊗R ω = 0. Since (M ′ ⊗R ω)∗ ∈ acT 1
ω(Rop) by [TH4, Lem. 6.1(1)],

A′ ∈ acT 1
ω(Rop) by [TH3, Cor. 3.3(1)]. It follows that µA′ : A

′ → (A′ ⊗R ω)∗ is

monic. It induces that A′ = 0 and µM ′ is an essential monomorphism.

(4)⇒ (2) Let g : B′ → C ′ be a monomorphism in ModRop with B′, C ′ ∈ Ω1
F (Rop)

(⊆ acT 1
ω(Rop)). Then (g⊗1ω)∗ ·µB′ = µC′ ·g is monic. Because µB′ is an essential

monomorphism by (4), it follows from [AF, Cor. 5.13] that (g⊗1ω)∗ is monic. Now

the assertion follows from Theorem 4.14.

§4.3. The equivalence of certain cograde condition of modules

We have the following facts: for the strong Tor-cograde condition of modules

in Theorem 3.8(1) and the strong Ext-cograde condition of modules in Theo-

rem 3.9(1), they are equivalent when k = 0 by Theorem 4.8, but they are not

equivalent when k = 1 by Theorem 4.14 and Section 4.4 below. Also from Theo-

rem 4.14 and Section 4.4 below, we know that the Tor-cograde condition of modules

in Theorem 3.5(1) and the Ext-cograde condition of modules in Theorem 3.7(1)

are not equivalent when k = 0. In this subsection we will show that these two

cograde conditions of modules are equivalent when k = 1.

For any i > 1, by [TH3, Prop. 3.8] we have acT iω(S) ⊆ ΩiIω (S). The following

result characterizes when they are identical.
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Proposition 4.16. For any n > 1, the following statements are equivalent :

(1) E-cogradeω TorSi (ω,N) > i− 1 for any N ∈ coΩiA(S) and 1 6 i 6 n.

(2) E-cogradeω TorSi (ω,N) > i− 1 for any N ∈ coΩiIω (S) and 1 6 i 6 n.

(3) acT iω(S) = ΩiA(S) for any 1 6 i 6 n.

(4) acT iω(S) = ΩiIω (S) for any 1 6 i 6 n.

Proof. Because Iω(S) ⊆ Aω(S) we have (1) ⇒ (2). By Lemma 3.6(2) we have

(3)⇔ (4).

(2) ⇒ (4) By [TH3, Prop. 3.8] it suffices to prove ΩiIω (S) ⊆ acT iω(S) for any

1 6 i 6 n. We proceed by induction on n. The case for n = 1 follows from

Lemma 2.9(1).

Now let N ∈ ΩnIω (S) with n > 2 and let

(4.8) 0 −→ N
f0

−→ I0
f1

−→ · · · f
n−1

−→ In−1

be an exact sequence in ModS with all Ii in Iω(S). By the induction hypothesis

we have Im f1 ∈ acT n−1ω (S). Applying the functor ω ⊗S − to (4.8) gives an exact

sequence

(4.9) 0→ TorSn(ω,Coker fn−1) −→ ω ⊗S N
1ω⊗f0

−→ ω ⊗S I0 −→ ω ⊗S Im f1 → 0

in ModR. Set M := Im(1ω ⊗ f0) and let 1ω ⊗ f0 := α · π (where π : ω⊗S N �M

and α : M ↪→ ω ⊗S I0) be the natural epic-monic decomposition of 1ω ⊗ f0. Then

we have the following commutative diagram with exact rows:

(4.10)

0 // N
f0

//

g

��

I0 //

µI0

��

Im f1 //

µIm f1

��

0

0 // (M)∗
α∗ // (ω ⊗S I0)∗ // (ω ⊗S Im f1)∗ // Ext1R(ω,M) // 0.

Since µIm f1 is a monomorphism by the above argument, it follows from the snake

lemma that g is an epimorphism. On the other hand, we have

α∗ · π∗ · µN = (α · π)∗ · µN = (1ω ⊗ f0)∗ · µN = µI0 · f0 = α∗ · g.

As α∗ is monic we get that π∗ · µN = g and π∗ is epic. Consider the following

commutative diagram with exact rows

(4.11)

N

µN

��

N

g

��
0 // (TorSn(ω,Coker fn−1))∗ // (ω ⊗S N)∗

π∗ // M∗ // 0.
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Because (TorSn(ω,Coker fn−1))∗ = 0 by assumption, we have that π∗ is an iso-

morphism. So µN is epic by diagram (4.11), and hence an isomorphism. Thus

N ∈ acT 2
ω(S) and the case for n = 2 follows.

Now suppose n > 3. By the induction hypothesis we have that Im f1 ∈
acT n−1ω (S) and µIm f1 is an isomorphism. So Ext1R(ω,M) = 0 by diagram (4.10).

In addition, we have ω ⊗S Im f1 ∈ Rω
⊥n−3 by [TH3, Cor. 3.3(3)]. Because

E-cogradeω TorSn(ω,Coker fn−1) > n − 1 (by assumption) and ω ⊗S I0 ∈ Rω
⊥,

applying the dimension shifting to (4.9) we obtain ω ⊗S N ∈ Rω
⊥n−2 . Therefore

we conclude that N ∈ acT nω(S) by [TH3, Cor. 3.3(3)] again.

(3) ⇒ (1) We proceed by induction on n. The case for n = 1 is trivial. Let

N ∈ coΩnA(S) with n > 2. Then there exists an exact sequence

0→ H → An−1
f−→ An−2 → · · · → A0 → N → 0

in ModS with all Ai in Aω(S). By (3) we have H ∈ acT nω(S). By the induction

hypothesis we have E-cogradeω TorSi (ω,N) > i − 1 for any 1 6 i 6 n − 1 and

E-cogradeω TorSn(ω,N) > n− 2.

Put M := Ker(1ω ⊗ f). Because Ai ∈ acT ω(S) by [TH3, Thm. 3.11(1)], we

obtain M∗ ∼= H (∈ acT nω(S)) and M ∈ Rω
⊥n−2 . By [TH2, Prop. 5.1] we have the

exact sequences

0→ TorSn(ω,N) (∼= TorS2 (ω,Coker f))→ ω ⊗S M∗
π−→ Im θM → 0,(4.12)

0→ Im θM
λ−→M → TorSn−1(ω,N) (∼= TorS1 (ω,Coker f))→ 0(4.13)

such that θM = λ · π. Since µM∗ is an isomorphism, it follows from [TH4,

Lem. 6.1(1)] that (θM )∗ is also an isomorphism. Then both λ∗ and π∗ are iso-

morphisms.

From the exact sequence (4.13) we get Im θM ∈ Rω
⊥n−2 . Because ω ⊗S

M∗ ∈ Rω
⊥n−2 by [TH3, Cor. 3.3], from the exact sequence (4.12) it yields that

Extn−2R (ω,TorSn(ω,N)) = 0. Thus we have E-cogradeω TorSn(ω,N) > n− 1.

For any i > 1, by [TH1, Prop. 3.7] we have cT iω(R) ⊆ coΩiPω
(R). The following

result characterizes when they are identical.

Proposition 4.17. For any n > 1 the following statements are equivalent :

(1) T-cogradeω ExtiR(ω,M) > i− 1 for any M ∈ ΩiB(R) and 1 6 i 6 n.

(2) T-cogradeω ExtiR(ω,M) > i− 1 for any M ∈ ΩiFω
(R) and 1 6 i 6 n.

(3) T-cogradeω ExtiR(ω,M) > i− 1 for any M ∈ ΩiPω
(R) and 1 6 i 6 n.

(4) cT iω(R) = coΩiB(R) for any 1 6 i 6 n.
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(5) cT iω(R) = coΩiFω
(R) for any 1 6 i 6 n.

(6) cT iω(R) = coΩiPω
(R) for any 1 6 i 6 n.

Proof. Because Bω(R) ⊇ Fω(R) ⊇ Pω(R), we have (1) ⇒ (2) ⇒ (3). By Lemma

3.4(2) we have (4)⇔ (5)⇔ (6).

(3) ⇒ (6) By [TH1, Prop. 3.7], it suffices to prove coΩiPω
(R) ⊆ cT iω(R) for any

1 6 i 6 n. We proceed by induction on n. The case for n = 1 follows from Lemma

2.9(2).

Now let M ∈ coΩnPω
(R) with n > 2 and let

(4.14) Wn−1
fn−1−→ · · · →W1

f1−→W0
f0−→M → 0

be an exact sequence in ModR with all Wi in Pω(R). By the induction hypothesis

we have Im f1 ∈ cT n−1ω (R). Applying the functor (−)∗ to (4.14) gives an exact

sequence

(4.15) 0→ (Im f1)∗ →W0∗
f0∗−→M∗ → ExtnR(ω,Ker fn−1)→ 0.

Set N := Im(f0∗) and let f0∗ := α·π (where π : W0∗ � N and α : N ↪→M∗) be the

natural epic-monic decompositions of f0∗. Then we have the following commutative

diagram with exact rows:

(4.16)

0 // TorS1 (ω,N) // ω ⊗S (Im f1)∗ //

θIm f1

��

ω ⊗S W0∗
1ω⊗π //

θW0

��

ω ⊗S N

g

��

// 0

0 // Im f1 // W0
f0 // M // 0.

So we have

θM · (1ω ⊗ α) · (1ω ⊗ π) = θM · (1ω ⊗ f0∗) = f0 · θW0
= g · (1ω ⊗ π).

Because 1ω ⊗ π is epic, we have θM · (1ω ⊗ α) = g and the following commutative

diagram with exact rows:

(4.17)

ω ⊗S N

g

��

1ω⊗α // ω ⊗S M∗ //

θM

��

ω ⊗S ExtnR(ω,Ker fn−1) // 0

M M.

Since θIm f1
is an epimorphism by the above argument, it follows from the snake

lemma that g is an isomorphism. Thus 1ω ⊗ α is a monomorphism. Because ω⊗S
ExtnR(ω,Ker fn−1) = 0 by assumption, we have that θM is an isomorphism and

M ∈ cT 2
ω(R) by diagram (4.17). It means that the assertion holds true for n = 2.
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If n > 3 then the fact that Im f1 ∈ cT n−1ω (R) implies θIm f1
is an isomorphism.

So TorS1 (ω,N) = 0 by diagram (4.16). In addition, we have (Im f1)∗ ∈ ωS>n−3 by

[TH1, Cor. 3.4(3)]. Because T-cogradeω ExtnR(ω,Ker fn−1) > n−1 by assumption,

applying the dimension shifting to (4.15) we obtain M∗ ∈ ωS>n−2 . Therefore we

conclude that M ∈ cT nω(R) by [TH1, Cor. 3.4(3)] again.

(4) ⇒ (1) We proceed by induction on n. The case for n = 1 is trivial. Let

M ∈ ΩnB(R) with n > 2 and let

0→M → Bn−1 → · · · → B1
f−→ B0 → L→ 0

be an exact sequence with all Bi in Bω(R). By (4) we have L ∈ cT nω(R). By the

induction hypothesis we have T-cogradeω ExtiR(ω,M) > i−1 for any 1 6 i 6 n−1

and T-cogradeω ExtnR(ω,M) > n− 2.

Put N := cTrω Ker f . Because Bi ∈ cT ω(R) by [TH1, Thm. 3.9], we obtain

that ω ⊗S N ∼= L (∈ cT nω(R)) and N ∈ ωS>n−2 . By [TH4, Prop. 6.7] we have the

exact sequences

0→ Extn−1R (ω,M)→ N
π−→ ImµN → 0,(4.18)

0→ ImµN
λ−→ (ω ⊗S N)∗ → ExtnR(ω,M)→ 0(4.19)

such that µN = λ · π. Since θω⊗SN is an isomorphism, it follows from [TH4,

Lem. 6.1(2)] that 1ω ⊗ µN is also an isomorphism. Then both 1ω ⊗ λ and 1ω ⊗ π
are isomorphisms.

From the exact sequence (4.18) we get ImµN ∈ ωS
>n−2 . Because (ω ⊗S

N)∗ ∈ ωS>n−2 by [TH1, Cor. 3.4], from the exact sequence (4.19) it yields that

TorSn−2(ω,ExtnR(ω,M)) = 0. Thus we have T-cogradeω ExtnR(ω,M) > n− 1.

Lemma 4.18. For any n > 0, the following statements are equivalent :

(1) ω ⊗ Ext2R(ω,−) vanishes on ModR.

(2) (TorS2 (ω,−))∗ vanishes on ModS.

(3) M∗ ∈ acT 2
ω(S) for any M ∈ ModR.

(4) ω ⊗S N ∈ cT 2
ω(R) for any N ∈ ModS.

Proof. By [TH2, Cor. 6.6] we have (3)⇔ (4).

(1)⇔ (4) Assume that (1) holds true. Let N ∈ ModS. By [TH4, Lem. 6.1(2)] we

have

θω⊗SN · (1ω ⊗ µN ) = 1ω⊗SN .
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It follows that θω⊗SN is a split epimorphism and

Ker θω⊗SN
∼= Coker(1ω ⊗ µN ) ∼= ω ⊗S CokerµN
∼= ω ⊗S Ext2R(ω, acTrω N) (by [TH2, Cor. 5.2(2)])

= 0 (by (1)).

So θω⊗SN is a monomorphism, and hence an isomorphism.

Conversely, assume that (4) holds true. LetM ∈ModR. By [TH4, Lem. 6.1(2)]

again, we have

θω⊗ScTrω M · (1ω ⊗ µcTrω M ) = 1ω⊗ScTrω M .

It follows that

ω ⊗S Ext2R(ω,M) ∼= ω ⊗S CokerµcTrω M (by [TH2, Cor. 5.3(2)])

∼= Coker(1ω ⊗ µcTrω M ) ∼= Ker θω⊗ScTrω M

= 0 (by (4)).

(2)⇔ (3) Assume that (2) holds true. Let M ∈ ModR. By [TH4, Lem. 6.1(1)] we

have

(θM )∗ · µM∗ = 1M∗ .

It follows that µM∗ is a split monomorphism and

CokerµM∗
∼= Ker(θM )∗ ∼= (Ker θM )∗
∼= (TorS2 (ω, cTrωM))∗ (by [TH1, Prop. 3.2])

= 0 (by (2)).

So µM∗ is an epimorphism, and hence an isomorphism.

Conversely, assume that (3) holds true. Let N ∈ ModS. By [TH4, Lem. 6.1(1)]

again, we have

(θacTrω N )∗ · µ(acTrω N)∗ = 1(acTrω N)∗ .

It follows that

(TorS2 (ω,N))∗ ∼= (Ker θacTrω N )∗ (by [TH2, Cor. 5.3(1)])

∼= Ker(θacTrω N )∗ ∼= Cokerµ(acTrω N)∗

= 0 (by (3)).

The following result establishes the left–right symmetry of certain cograde

conditions of modules.
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Theorem 4.19. For any n > 1, the following statements are equivalent :

(1) T-cogradeω ExtiR(ω,M) > i− 1 for any M ∈ ModR and 1 6 i 6 n.

(2) E-cogradeω TorSi (ω,N) > i− 1 for any N ∈ ModS and 1 6 i 6 n.

(3) coΩi(R) ⊆ cT iω(R) = coΩiB(R) for any 1 6 i 6 n.

(4) coΩi(R) ⊆ cT iω(R) = coΩiFω
(R) for any 1 6 i 6 n.

(5) coΩi(R) ⊆ cT iω(R) = coΩiPω
(R) for any 1 6 i 6 n.

(6) ΩiF (S) ⊆ acT iω(S) = ΩiA(S) for any 1 6 i 6 n.

(7) ΩiF (S) ⊆ acT iω(S) = ΩiIω (S) for any 1 6 i 6 n.

Proof. By Theorem 3.5 and Proposition 4.17 we have (1)⇔ (3)⇔ (4)⇔ (5). By

Theorem 3.7 and Proposition 4.16, (2)⇔ (6)⇔ (7).

In the following, we will prove (1)⇔ (2) by induction on n. The case for n = 1

is trivial and the case for n = 2 follows from Lemma 4.18. Now suppose n > 3.

(1)⇒(2) Let N∈ModS. By the induction hypothesis we have E-cogradeω TorSi (ω,

N) > i− 1 for any 1 6 i 6 n− 1 and E-cogradeω TorSn(ω,N) > n− 2. By Lemma

3.1(2) there exists an exact sequence

0→ Im(fn ⊗ 1ω)
σ−→ acTrω Ωn−1F (N)

τ−→ TorSn(ω,N)→ 0

in ModR such that σ∗ is an isomorphism. By Theorem 3.7 we have Ωn−1F (N) ∈
acT n−1ω (S) and acTrω Ωn−1F (N) ∈ Rω

⊥n−1 . So

Extn−2R (ω,TorSn(ω,N)) ∼= Extn−1R (ω, Im(fn ⊗ 1ω))

∼= ExtnR(ω, acTrω ΩnF (N)).

Then T-cogradeω Extn−2R (ω,TorSn(ω,N)) > n − 1 by (1). It follows from Lemma

4.11(1) that E-cogradeω TorSn(ω,N) > n− 1.

(2)⇒(1) LetM∈ModR. By the induction hypothesis we have T-cogradeωExtiR(ω,

M) > i− 1 for any 1 6 i 6 n− 1 and T-cogradeω ExtnR(ω,M) > n− 2. By Lemma

3.1(1) there exists an exact sequence

0→ Extn+1
R (ω,M)

λ−→ cTrω coΩn(M)
π−→ In+1(M)∗/ coΩn+1(M)∗ → 0

in ModS such that 1ω⊗π is an isomorphism. By Theorem 3.5 we have coΩn−1(M)∈
cT n−1ω (R) and cTrω coΩn−1(M) ∈ ωS>n−1 . So

TorSn−2(ω,ExtnR(ω,M)) ∼= TorSn−1(ω, In(M)∗/ coΩn(M)∗)

∼= TorSn(ω, cTrω coΩn(M)).

Then E-cogradeω TorSn−2(ω,ExtnR(ω,M)) > n − 1 by (2). It follows from Lemma

4.11(2) that T-cogradeω ExtnR(ω,M) > n− 1.
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§4.4. Examples

In this subsection we give some examples for ω satisfying the (quasi) n-cograde

condition.

Let R be an artin algebra. Recall that R is called Auslander n-Gorenstein if

pdRop Ii(RR) 6 i for any 0 6 i 6 n − 1, or equivalently pdR I
i(RR) 6 i for any

0 6 i 6 n− 1 ([FGR, IS]), and R is called left (resp. right) quasi n-Gorenstein if

pdR I
i(RR) (resp. pdRop Ii(RR) 6 i+ 1 for any 0 6 i 6 n− 1; [H3]).

Let D be the ordinary duality between mod R and mod Rop. Then D(R) is

a semidualizing (R,R)-bimodule. Because

pdR I
i(RR) = idRop Pi(D(RR)) = pdR HomRop(Pi(D(RR)), D(R))

and

pdRop Ii(RR) = idR Pi(D(RR)) = pdRop HomR(Pi(D(RR)), D(R)),

we have the following example.

Example 4.20. (1) R is Auslander n-Gorenstein if and only if D(R) satisfies the

n-cograde condition.

(2) R is left (resp. right) quasi n-Gorenstein if and only if D(R) satisfies the left

(resp. right) quasi n-cograde condition.

So, putting RωS = RD(R)R in Theorem 4.8 (resp. Theorem 4.14), then all

the conditions there are equivalent to R being Auslander n-Gorenstein (resp. right

quasi n-Gorenstein). Note that the notion of quasi n-Gorenstein algebras is not

left–right symmetric ([AR1, p. 11]). So contrary to the n-cograde condition, the

quasi n-cograde condition is not left–right symmetric.

Example 4.21. Let Q be the quiver

3
β

��
1 5.

γ
��

α

__

4

ε
��

δ

^^

2
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and R = KQ/〈βα− δγ, εγ〉 with K a field. Take

ω :=

0

1 0

0

0

⊕

0

1 0

1

1

⊕

0

1 0

1

0

⊕

1

1 1

1

0

⊕

0

0 1

1

0

.

By [ASS, Exa. VI.2.8(a)] we have that ωR is a noninjective tilting module with

pdR ω = 1. Thus it is a semidualizing (R,EndR(ω))-bimodule. It is straightforward

to verify that the projective cover P0(ω) of ω is P (1)⊕ P (4)2 ⊕ P (5)2. So Pω(R)-

idR P0(ω) = 0, and hence ω satisfies the left and right 1-cograde conditions by

Theorem 4.8. Since pdR ω = 1 we have Ext>2
R (ω,M) = 0 for any M ∈ ModR. By

Theorem 4.8 again, we have that ω satisfies the left and right n-cograde conditions

for any n > 1.

§5. Two cotorsion pairs

In this section we will construct two complete cotorsion pairs under any of the

equivalent conditions in Theorem 4.19.

For any n > 0, set Pω- id6n(R) := {M ∈ ModR | Pω(R)- idRM 6 n}.

Lemma 5.1. Let M ∈ Rω
⊥n−1 with n > 1. If T-cogradeω ExtnR(ω,M) > n − 1,

then there exists an exact sequence

0→M → X → Y → 0

in ModR with X ∈ Rω
⊥n and Y ∈ Pω- id6n−1(R).

Proof. Let M ∈ Rω
⊥n−1 . From the exact sequence

0→M → I0(M)→ · · · → In−1(M)→ coΩn(M)→ 0

in ModR, we get the following commutative diagram with exact rows,

(5.1)

Pn−1

��

// · · · // P0

��

// ExtnR(ω,M) // 0

I0(M)∗ // I1(M)∗ // · · · // coΩn(M)∗ // ExtnR(ω,M) // 0,

where the upper sequence is a projective resolution of ExtnR(ω,M) in ModS. Tak-

ing the mapping cone of diagram (5.1) we get an exact sequence

(5.2) I0(M)∗ ⊕ Pn−1 → · · · → In−1(M)∗ ⊕ P0 → coΩn(M)∗ → 0.
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Since T-cogradeω ExtnR(ω,M) > n− 1 we get an exact sequence

ω ⊗S Pn−1 → · · · → ω ⊗S P1 → ω ⊗S P0 → 0

in ModR. Then we get the following commutative diagram with exact columns

and rows

(5.3)

0

��

0

��

0

��
0 // M //

��

X //

��

Y //

��

0

0 // I0(M) //

��

I0(M)⊕ (ω ⊗S Pn−1) //

��

ω ⊗S Pn−1 //

��

0

...

��

...

��

...

��
0 // In−1(M) //

��

In−1(M)⊕ (ω ⊗S P0) //

��

ω ⊗S P0
//

��

0

coΩn(M)

��

coΩn(M)

��

0

0 0,

where

X = Ker(I0(M)⊕ (ω ⊗S Pn−1)→ I1(M)⊕ (ω ⊗S Pn−2))

and

Y = Ker(ω ⊗S Pn−1 → ω ⊗S Pn−2).

Then Y ∈ Pω- id6n−1(R). From the exactness of (5.2) and the middle column in

diagram (5.3) we know that X ∈ Rω
⊥n . So the top row in diagram (5.3) is the

desired exact sequence.

For any n > 0, set Iω- pd6n(S) := {N ∈ ModS | Iω(S)- pdS N 6 n}.

Lemma 5.2. Let N ∈ ωS>n−1 with n > 1. If E-cogradeω TorSn(ω,N) > n−1 then

there exists an exact sequence

0→ Y ′ → X ′ → N → 0

in ModS with X ′ ∈ ωS>n and Y ′ ∈ Iω- pd6n−1(S).
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Proof. Let N ∈ ωS>n−1 . From the exact sequence

0→ ΩnF (N)→ Fn−1(N)→ · · · → F0(N)→ N → 0

in ModS, we get the following commutative diagram with exact rows

(5.4)

0 // TorSn(ω,N) // ω ⊗S ΩnF (N) //

��

· · · // ω ⊗S F1(N)

��

// ω ⊗S F0(N)

0 // TorSn(ω,N) // I0 // · · · // In−1,

where the lower sequence is an injective resolution of TorSn(ω,N) in ModR. Taking

the mapping cone of diagram (5.4), we get an exact sequence

(5.5) ω ⊗S ΩnF (N)→ I0 ⊕ (ω ⊗S Fn−1(N))→ · · · → In−1 ⊕ (ω ⊗S F0(N)).

Since E-cogradeω TorSn(ω,N) > n− 1 we get an exact sequence

0→ I0∗ → I1∗ → · · · → In−1∗

in ModS. Then we get the following commutative diagram with exact columns

and rows

(5.6)

0

��

0

��
0

��

ΩnF (N)

��

ΩnF (N)

��
0 // I0∗ //

��

I0∗ ⊕ Fn−1(N) //

��

Fn−1(N) //

��

0

...

��

...

��

...

��
0 // In−1∗ //

��

In−1∗ ⊕ F0(N) //

��

F0(N) //

��

0

0 // Y ′

��

// X ′

��

// N

��

// 0

0 0 0,
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where

X ′ = Coker(In−2∗ ⊕ F1(N)→ In−1∗ ⊕ F0(N))

and

Y ′ = Coker(In−2∗ → In−1∗).

Then Y ′ ∈ Iω- pd6n−1(S). From the exactness of (5.5) and the middle column in

diagram (5.6) we know that X ′ ∈ ωS>n . So the bottom row in diagram (5.6) is

the desired exact sequence.

Lemma 5.3. For any n > 0, we have

(1) Pω- id6n(R) is closed under direct summands and closed under extensions;

(2) Iω- pd6n(S) is closed under direct summands and closed under extensions.

Proof. (1) By [TH4, Lem. 4.6], Pω- id6n(R) is closed under direct summands. Let

0→ A→ B → C → 0

be an exact sequence in ModR with A,C ∈ Pω- id6n(R). It is easy to see that

it is HomR(−,Pω(R))-exact. Then B ∈ Pω- id6n(R) by the generalized horseshoe

lemma (cf. [H4, Lem. 3.1(2)]).

(2) By [TH3, Lem. 4.7], Iω- pd6n(S) is closed under direct summands. Let

0→ A→ B → C → 0

be an exact sequence in ModS with A,C ∈ Iω- pd6n(S). It is easy to see that it

is (ω⊗S −)-exact; equivalently it is HomR(−, Iω(S))-exact by [TH3, p. 298, Obs.].

Then B ∈ Iω- pd6n(S) by the generalized horseshoe lemma (cf. [H4, Lem. 3.1(1)]).

Proposition 5.4. Let n, k > 1 and T-cogradeω Exti+kR (ω,M) > i for any M ∈
ModR and 1 6 i 6 n − 1. Then for any M ∈ ModR and 0 6 i 6 n − 1 there

exists an exact sequence

0→ coΩk−1(M)→ X → Y → 0

in ModR with X ∈ Rω
⊥i+1 and Y ∈ Pω- id6i(R).

Proof. We proceed by induction on n. The case for n = 1 follows from Lemma 5.1.

Now suppose n > 2. By the induction hypothesis for any 0 6 i 6 n−2 there exists

an exact sequence

0→ coΩk−1(M)→ Xi → Yi → 0
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in ModR with Xi ∈ Rω
⊥i+1 and Yi ∈ Pω- id6i(R). Then

ExtnR(ω,Xn−2) ∼= ExtnR(ω, coΩk−1(M)) ∼= Extn+k−1R (ω,M).

So T-cogradeω ExtnR(ω,Xn−2) = T-cogradeω Extn+k−1R (ω,M) > n− 1 by assump-

tion. Applying Lemma 5.1 we get an exact sequence

0→ Xn−2 → Xn−1 → Yn−1 → 0

in ModR with Xn−1 ∈ Rω
⊥n and Yn−1 ∈ Pω- id6n−1(R). Consider the following

push-out diagram:

0

��

0

��
0 // coΩk−1(M) // Xn−2 //

��

Yn−2 //

��

0

0 // coΩk−1(M) // Xn−1 //

��

Y //

��

0

Yn−1

��

Yn−1

��
0 0.

By Lemma 5.3(1) we have Y ∈ Pω- id6n−1(R). So the middle row in this diagram

is the desired sequence.

Proposition 5.5. Let n, k > 1 and E-cogradeω TorSi+k(ω,N) > i for any N ∈
ModS and 1 6 i 6 n − 1. Then for any N ∈ ModS and 0 6 i 6 n − 1, there

exists an exact sequence

0→ Y ′ → X ′ → Ωk−1F (N)→ 0

in ModS with X ′ ∈ ωS>i+1 and Y ′ ∈ Iω- pd6i(S).

Proof. We proceed by induction on n. The case for n = 1 follows from Lemma 5.2.

Now suppose n > 2. By the induction hypothesis, for any 0 6 i 6 n − 2 there

exists an exact sequence

0→ Y ′i → X ′i → Ωk−1F (N)→ 0

in ModS with X ′i ∈ ωS>i+1 and Y ′i ∈ Iω- pd6i(S). Then

TorSn(ω,X ′n−2) ∼= TorSn(ω,Ωk−1F (N)) ∼= TorSn+k−1(ω,N).
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So E-cogradeω TorSn(ω,X ′n−2) = E-cogradeω TorSn+k−1(ω,N) > n − 1 by assump-

tion. Applying Lemma 5.2 we get an exact sequence

0→ Y ′n−1 → X ′n−1 → X ′n−2 → 0

in ModS with X ′n−1 ∈ ωS>n and Y ′n−1 ∈ Iω- pdn−1(S). Consider the pull-back

diagram

0

��

0

��
0 // Y ′n−1 // Y ′ //

��

Y ′n−2 //

��

0

0 // Y ′n−1 // X ′n−1 //

��

X ′n−2 //

��

0

Ωk−1F (N)

��

Ωk−1F (N)

��
0 0.

By Lemma 5.3(2), we have Y ′ ∈ Iω- pd6n−1(S). So the middle column in this

diagram is the desired sequence.

Based on the equivalence of (1) and (2) in Theorem 4.19, we have the following

result.

Theorem 5.6. For any n > 1, we have the following properties:

(1) If one of the equivalent conditions in Theorem 4.19 is satisfied then the fol-

lowing statements are equivalent :

(1-1) pdSop ω 6 n− 1.

(1-2) Pω(R)-idRR 6 n− 1.

(1-3) Pω(R)-idR P 6 n− 1 for any projective P in ModR.

(1-4) (Pω- id6n−1(R),Rω
⊥n) forms a complete cotorsion pair.

(2) If one of the equivalent conditions in Theorem 4.19 is satisfied then the fol-

lowing statements are equivalent :

(2-1) Iω(S)- pdS Q 6 n− 1 for some injective cogenerator Q in ModS.

(2-2) Iω(S)- pdS I 6 n− 1 for any injective module I in ModS.

(2-3) (ωS
>n , Iω- pd6n−1(S)) forms a complete cotorsion pair.
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If R and S are artin algebras, then statements (2-1)–(2-3) are equivalent to

the following one:

(2-4) pdR ω 6 n− 1.

Proof. By Lemma 4.5(1) we have (1-1)⇔ (1-2).

If Pω(R)-idRR 6 n−1 then Pω(R)-idR F 6 n−1 for any free module F in ModR

by [HW, Prop. 5.1(b)]. It follows from Lemma 5.3(1) that Pω(R)-idR P 6 n − 1

for any projective P in ModR. This proves (1-2)⇔ (1-3).

(1-3)⇒ (1-4) It is easy to verify that Ext1R(A,B) = 0 for any A ∈ Pω- id6n−1(R)

and B ∈ Rω
⊥n .

LetM ∈ ModR. By Lemma 5.1 when n = 1, or taking k = 1 in Proposition 5.4

when n > 2, we get an exact sequence

(5.7) 0→M → B → A→ 0

in ModR with B ∈ Rω
⊥n and A ∈ Pω- id6n−1(R). It implies that M has a

special Rω
⊥n-preenvelope and Rω

⊥n is special preenveloping in ModR. If M ∈
(Pω- id6n−1(R))⊥1 then the exact sequence (5.7) splits. It follows that M is a

direct summand of B and M ∈ Rω
⊥n .

Let

0→M1 → P →M → 0

be an exact sequence in ModR with P projective. We have P ∈ Pω- id6n−1(R) by

(1-3). By Lemma 5.1 when n = 1 or by Proposition 5.4 when n > 2, we have an

exact sequence

0→M1 → B′ → A′ → 0

in ModR with B′ ∈ Rω
⊥n and A′ ∈ Pω- id6n−1(R). Consider the push-out dia-

gram

0

��

0

��
0 // M1

//

��

P //

��

M // 0

0 // B′

��

// A′′ //

��

M // 0

A′

��

A′

��
0 0.
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Since Pω- id6n−1(R) is closed under extensions by Lemma 5.3(1), it follows from

the middle column in the above diagram that A′′ ∈ Pω- id6n−1(R). If M ∈
⊥1(Rω

⊥n) then the middle row in the above diagram splits and M is a direct

summand of A′′. By Lemma 5.3(1) we have M ∈ Pω- id6n−1(R). It follows from

Lemma 2.7 that (Pω- id6n−1(R),Rω
⊥n) forms a complete cotorsion pair.

(1-4) ⇒ (1-2) By (1-4) we immediately have RR ∈ Pω- id6n−1(R) and Pω(R)-

idRR 6 n− 1.

If Iω(S)- pdS Q 6 n− 1 for some injective cogenerator Q in ModS, then any

direct product of Q is in Iω- pd6n−1(S) by [HW, Prop. 5.1(c)]. It follows from

Lemma 5.3(2) that Iω(S)- pdS I 6 n − 1 for any injective module I in ModS.

This proves (2-1)⇔ (2-2).

(2-2) ⇒ (2-3) It is easy to verify that Ext1S(C,D) = 0 for any C ∈ ωS
>n and

D ∈ Iω- pd6n−1(S).

Let N ∈ ModS. By Lemma 5.2 when n = 1, or taking k = 1 in Proposition 5.5

when n > 2, we get an exact sequence

(5.8) 0→ D → C → N → 0

in ModS with C ∈ ωS>n and D ∈ Iω- pd6n−1(S). It implies that N has a special

ωS
>n -precover and ωS

>n is precovering in ModS. If N ∈ ⊥1(Iω- pd6n−1(S)) then

the exact sequence (5.8) splits. It follows that N is a direct summand of C and

N ∈ ωS>n .

Let

0→ N → I → N1 → 0

be an exact sequence in ModS with I injective. By (2-2) we have I∈Iω- pd6n−1(S).

By Lemma 5.2 when n = 1 or by Proposition 5.5 when n > 2, we have an exact

sequence

0→ D′ → C ′ → N1 → 0

in ModS with C ′ ∈ ωS
>n and D′ ∈ Iω- pd6n−1(S). Consider the pull-back
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diagram

0

��

0

��
N

��

N

��
0 // D′ // D′′ //

��

I //

��

0

0 // D′ // C ′ //

��

N1
//

��

0

0 0.

Since Iω- pd6n−1(S) is closed under extensions by Lemma 5.3(2), it follows from

the middle row in the above diagram that D′′ ∈ Iω- pd6n−1(S). If N ∈ (ωS
>n)⊥1

then the middle column in the above diagram splits and N is a direct summand

of D′′. By Lemma 5.3(2) we have N ∈ Iω- pd6n−1(S). It follows from Lemma 2.7

that (ωS
>n , Iω- pd6n−1(S)) forms a complete cotorsion pair.

(2-3) ⇒ (2-2) For any injective module I in ModS, by (2-3) we have I ∈
Iω- pd6n−1(S) and Iω(S)- pdS I 6 n− 1.

If R and S are artin algebras then pdR ω = Iω(S)- pdS D(SS) by [TH3, Lem. 4.9].

Because D(SS) is an injective cogenerator in ModS, (2-1)⇔ (2-4) follows.

Observation 5.7. Let R be an artin algebra and RωS = RD(R)R. Then we have

the following properties:

(1) pdR ω = idRop R and pdRop ω = idRR.

(2) Pω(R) is exactly the subclass of ModR consisting of injective modules. It

implies that

(2-1) Pω(R)-idRM = idRM for any M ∈ ModR;

(2-2) Pω- id6n(R) = I6n(R) := {M ∈ ModR | idRM 6 n}.

(3) Iω(R) is exactly the subclass of ModR consisting of projective modules. It

implies that

(3-1) Iω(R)- pdRN = pdRN for any N ∈ ModR;

(3-2) Iω- pd6n(R) = P6n(R) := {N ∈ ModR | pdRN 6 n}.

(4) By [CE, Prop. VI.5.3] it is easy to see that ωR
>n+1 = ⊥n+1

RR.
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(5) If R is right quasi (n− 1)-Gorenstein, then all conditions in Theorem 4.19 are

satisfied; see Theorem 4.14 and Example 4.20(2).

As an application of Theorem 5.6, we have the following corollary.

Corollary 5.8. Let R be a right quasi (n−1)-Gorenstein artin algebra with n > 1.

Then the following statements are equivalent :

(1) idRR 6 n− 1.

(2) idRop R 6 n− 1.

(3) (I6n−1(R),RD(R)⊥n) forms a complete cotorsion pair.

(4) (⊥n
RR,P6n−1(R)) forms a complete cotorsion pair.

Proof. By Theorem 5.6 and Observation 5.7 we have (1)⇔ (3) and (2)⇔ (4).

(1) ⇔ (2) Let idRR 6 n − 1. By [AR2, Thm. 4.7] and the symmetric version

of [H2, Thm.] we have idRop R 6 (n − 1) + (n − 2) = 2n − 3. Conversely, let

idRop R 6 n − 1. By [TH2, Thm. 7.5] we have idRR 6 n − 1. Now the assertion

follows from [Z, Lem. A].

As a consequence of Corollary 5.8, we have the following result.

Corollary 5.9. For any artin algebra R, the following conditions are equivalent :

(1) idRR 6 1.

(2) idRop R 6 1.

Furthermore, if R is right quasi 1-Gorenstein then they are equivalent to each of

the following two statements:

(3) (I61(R),RD(R)⊥2) forms a complete cotorsion pair.

(4) (⊥2
RR,P61(R)) forms a complete cotorsion pair.

Proof. The first assertion follows from [H2, Cor. 2]. If R is right quasi 1-Gorenstein

then we get the second assertion by putting n = 2 in Corollary 5.8.

We use I(R) and P(R) to denote the subclasses of ModR consisting of injec-

tive and projective modules respectively. Putting n = 1 in Corollary 5.8, we have

the following result.

Corollary 5.10. For any artin algebra R, the following statements are equivalent :

(1) R is self-injective.

(2) (I(R),RD(R)⊥1) forms a complete cotorsion pair (in this case, RD(R)⊥1 =

I(R)⊥1).

(3) (⊥1
RR,P(R)) forms a complete cotorsion pair (in this case, ⊥1

RR = ⊥1P(R)).
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§6. Relative finitistic dimensions

In this section, we introduce and study the finitistic Pω(R)-injective dimension

and the Iω(S)-projective dimension of rings.

The finitistic Pω(R)-injective dimension FPω- idR of R is defined as

FPω- idR := sup
{
Pω(R)- idRM |M ∈ ModR and Pω(R)- idRM <∞

}
and the finitistic Iω(S)-projective dimension FIω- pdS of S is defined as

FIω- pdS := sup
{
Iω(S)- pdS N | N ∈ ModS and Iω(S)- pdS N <∞

}
.

Lemma 6.1. For any n > 0 and k > 1 we have

(1) Let T-cogradeω Exti+kR (ω,M) > i for any M ∈ ModR and 1 6 i 6 n + 1. If

FPω- idR = n then pdR ω 6 n+ k.

(2) Let E-cogradeω TorSi+k(ω,N) > i for any N ∈ ModS and 1 6 i 6 n + 1. If

FIω- pdS = n then pdSop ω 6 n+ k.

Proof. (1) Let M ∈ ModR. By Proposition 5.4 there exists an exact sequence

0→ coΩk−1(M)→ X → Y → 0

in ModR with X ∈ Rω
⊥n+2 and Pω(R)-idR Y 6 n + 1. If FPω- idR = n then

Pω(R)-idR Y 6 n. Thus we have

Extn+k+1
R (ω,M) ∼= Extn+2

R (ω, coΩk−1(M)) ∼= Extn+1
R (ω, Y ) = 0

and pdR ω 6 n+ k.

(2) Let N ∈ ModS. By Proposition 5.5 there exists an exact sequence

0→ Y ′ → X ′ → Ωk−1F (N)→ 0

in ModS with X ′ ∈ ωS
>n+2 and Pω(R)-idS Y

′ 6 n + 1. If FIω- pdS = n then

Iω(R)- pdS Y
′ 6 n. Thus we have

TorSn+k+1(ω,N) ∼= TorSn+2(ω,Ωk−1F (N)) ∼= TorSn+1(ω, Y ′) = 0

and pdSop ω = fdSop ω 6 n+ k.

Lemma 6.2. For any n > 0 we have

(1) Let FPω- idR 6 n and N ∈ ModS. If T-cogradeω N > n+ 1 then N = 0.

(2) Let FIω- pdS 6 n and H ∈ ModR. If E-cogradeωH > n+ 1 then H = 0.
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Proof. (1) Consider a projective resolution

· · · → Qn+1 → Qn → · · · → Q0 → N → 0

of N in ModS. If T-cogradeω N > n+ 1 then we get an exact sequence

0→M → ω ⊗S Qn+1 → ω ⊗S Qn → · · · → ω ⊗S Q1 → ω ⊗S Q0 → 0

in ModR, where M = Ker(ω ⊗S Qn+1 → ω ⊗S Qn). By [TH3, Cor. 3.5], Q ∼=
(ω ⊗S Q)∗ canonically for any projective Q in ModS, so N ∼= Extn+1

R (ω,M).

Because FPω- idR 6 n by assumption, we have Pω(R)-idRM 6 n and N ∼=
Extn+1

R (ω,M) = 0.

(2) Consider an injective resolution

0→ H → I0 → · · · → In → In+1 → · · ·

of H in ModR. If E-cogradeωH > n+ 1 then we get an exact sequence

0→ I0∗ → · · · → In∗ → In+1
∗ → N → 0

in ModS, where N = Coker(In∗ → In+1
∗). By [TH1, Lem. 2.5(2)], ω ⊗S I∗ ∼= I

canonically for any injective I in ModR, so H ∼= TorSn+1(ω,N). Because FIω- pdS

6 n by assumption, we have Iω(Rop)- pdS N 6 n and H ∼= TorSn+1(ω,N) = 0.

The following is the main result in this section.

Theorem 6.3. For any k > 0 we have the following properties:

(1) If T-cogradeω Exti+kR (ω,M) > i for any M ∈ ModR and i > 1, then FPω- idR

6 pdR ω 6 FPω- idR+ k.

(2) If E-cogradeω TorSi+k(ω,N) > i for any N ∈ ModS and i > 1, then FIω- pdS

6 pdSop ω 6 FIω- pdS + k.

Proof. (1) Let pdR ω = n (<∞) and M ∈ ModR with Pω(R)-idRM = m (<∞).

Then there exists an exact sequence

0→M
f0

−→ ω0 f1

−→ ω1 → · · · f
m

−→ ωm → 0

in ModR with all ωi in Pω(R). Since Pω(R) ⊆ Bω(R) by [HW, Cor. 6.1], we have

Bω(R)-idRM 6 Pω(R)-idRM <∞. If m > n then it follows from [TH4, Thm. 4.2]

that Bω(R)-idRM 6 n and Im fn ∈ Bω(R). On the other hand, we have the exact

and split sequence

0→ (Im fn)∗ → ωn∗ → · · · → ωm∗ → 0
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in ModS with all ωi∗ projective. So (Im fn)∗ is projective, and hence Im fn ∈
Pω(R) by [HW, Lem. 5.1(2)]. It yields that Pω(R)-idRM 6 n, a contradiction.

This proves FPω- idR 6 pdR ω.

In the following we will prove pdR ω 6 FPω- idR + k. The case for k > 1

follows from Lemma 6.1(1). Now suppose that k = 0 and FPω- idR = n (< ∞).

Let M ∈ ModR. Then T-cogradeω Extn+1
R (ω,M) > n+1 by assumption. It follows

from Lemma 6.2(1) that Extn+1
R (ω,M) = 0 and pdR ω 6 n.

(2) Let pdSop ω = n (<∞) and N ∈ ModS with Iω(S)- pdS N = m (<∞). Then

there exists an exact sequence

0→ Um
gm−→ · · · → U1

g1−→ U0
g0−→ N → 0

in ModS with all Ui in Iω(S). Since Iω(S) ⊆ Aω(S) by [HW, Cor. 6.1], we

have Aω(S)- pdS N < ∞. If m > n then it follows from the dual result of [TH4,

Thm. 4.2] that Aω(S)- pdS N 6 n and Im gn ∈ Aω(S). On the other hand, we

have the exact and split sequence

0→ ω ⊗S Um → · · · → ω ⊗S Un → ω ⊗S Im gn → 0

in ModR with all ω⊗S Ui injective. So ω⊗S Im gn is injective, and hence Im gn ∈
Iω(S) by [HW, Lem. 5.1(3)]. It yields that Iω(S)- pdS N 6 n, a contradiction.

This proves FIω- pdS 6 pdSop ω.

In the following we will prove pdSop ω 6 FIω- pdS + k. The case for k > 1

follows from Lemma 6.1(2). Now suppose that k = 0 and FIω- pdS = n. Let

N ∈ ModS. Then E-cogradeω TorSn+1(ω,N) > n + 1 by assumption. It follows

from Lemma 6.2(2) that TorSn+1(ω,N) = 0 and pdSop ω = fdSop ω 6 n.

Putting k = 0 in Theorem 6.3, we immediately get the following corollary.

Corollary 6.4. (1) If T-cogradeω ExtiR(ω,M) > i for any M ∈ ModR and i >
1, then FPω- idR = pdR ω.

(2) If E-cogradeω TorSi (ω,N) > i for any N ∈ ModS and i > 1, then FIω- pdS

= pdSop ω.

The following is an immediate consequence of Corollaries 4.2 and 6.4.

Corollary 6.5. If ω satisfies the n-cograde condition for all n then

FPω- idR = pdR ω and FIω- pdS = pdSop ω.

Combining Theorem 4.19 with the case for k = 1 in Theorem 6.3, we get the

following corollary.
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Corollary 6.6. We have

FPω- idR 6 pdR ω 6 FPω- idR+ 1

and

FIω- pdS 6 pdSop ω 6 FIω- pdS + 1

if either of the following conditions is satisfied :

(1) T-cogradeω Exti+1
R (ω,M) > i for any M ∈ ModR and i > 1.

(2) E-cogradeω TorSi+1(ω,N) > i for any N ∈ ModS and i > 1.

Corollary 6.7. If ω satisfies the right quasi n-cograde condition for all n, then

FPω- idR = pdR ω and FIω- pdS 6 pdSop ω 6 FIω- pdS + 1.

Proof. The former equality follows from Proposition 4.12 and Corollary 6.4(1),

and the later inequalities follow from the definition of the right quasi n-cograde

condition and Corollary 6.6.

Observation 6.8. Let R be an artin algebra and RωS = RD(R)R.

(1) By Observation 5.7 we have

FPω- idR = FIDR := sup{idRM |M ∈ ModR and idRM <∞},
FIω- pdS = FPDR := sup{pdRN | N ∈ ModR and pdRN <∞}.

(2) If R is right (or left) quasi n-Gorenstein for all n, then idRop R = idRR ([H2,

Cor. 4]).

As a consequence of the above results, we have the following corollary.

Corollary 6.9. Let R be an artin algebra.

(1) If R satisfies the Auslander condition (that is, R is Auslander n-Gorenstein

for all n) then

FPDRop = FIDRop = idRop R = idRR = FPDR = FIDR.

(2) If R satisfies the right quasi Auslander condition (that is, R is right quasi

n-Gorenstein for all n) then

FPDR 6 FIDR = idRop R = idRR 6 FPDR+ 1.

Proof. In view of Example 4.20 and Observations 5.7 and 6.8, the assertions follow

from Corollaries 6.5 and 6.7 respectively.
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