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On Auslander-Type Conditions of Modules
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Abstract

For a left and right Noetherian ring R, we give some equivalent characterizations for

RR satisfying the Auslander condition in terms of the flat (resp. injective) dimensions
of the terms in a minimal injective coresolution (resp. flat resolution) of left R-modules.
Furthermore, we prove that for an artin algebra R satisfying the Auslander condition,
R is Gorenstein if and only if the subcategory consisting of finitely generated modules
satisfying the Auslander condition is contravariantly finite. As applications, we get some
equivalent characterizations of Auslander–Gorenstein rings and Auslander-regular rings.
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§1. Introduction

It is well known that commutative Gorenstein rings are fundamental and impor-

tant research objects in commutative algebra and algebraic geometry. Bass proved

in [B2] that a commutative Noetherian ring R is a Gorenstein ring (that is, the

self-injective dimension of R is finite) if and only if the flat dimension of the ith

term in a minimal injective coresolution of R as an R-module is at most i − 1

for any i ≥ 1. In the non-commutative case, Auslander proved that this condition

is left–right symmetric ([FGR, Thm. 3.7]); in this case, R is said to satisfy the

Auslander condition. Motivated by this philosophy, Huang and Iyama introduced

the notion of Auslander-type conditions of rings as follows. For any m,n ≥ 0, a

left and right Noetherian ring is said to be Gn(m) if the flat dimension of the

ith term in a minimal injective coresolution of RR is at most m + i − 1 for any
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1 ≤ i ≤ n. Auslander-type conditions are non-commutative analogs of commu-

tative Gorenstein rings. Such conditions play a crucial role in homological alge-

bra, representation theory of algebras and non-commutative algebraic geometry

([AR3, AR4, Bj, EHIS, FGR, H1, HI, IS, I1, I2, I3, I4, M, Ro, S, W] and so on).

In particular, by constructing an injective coresolution of the last term in an exact

sequence of finite length from that of the other terms, Miyachi obtained in [M]

an equivalent characterization of the Auslander condition in terms of the relation

between the flat dimensions of any module and its injective envelope. Then he got

some properties of Auslander–Gorenstein rings and Auslander-regular rings.

Note that a commutative Noetherian ring satisfies the Auslander condition if

and only if it is Gorenstein ([B2]). Auslander and Reiten conjectured in [AR3] that

an artin algebra satisfying the Auslander condition is Gorenstein. This conjecture is

situated between the well-known Nakayama conjecture and the finitistic dimension

conjecture. For an artin algebra R, the Nakayama conjecture states that R is self-

injective if all terms in a minimal injective coresolution of RR are projective,

and the finitistic dimension conjecture states that the supremum of the projective

dimensions of all finitely generated left R-modules with finite projective dimension

is finite. All of these conjectures remain open.

Based on the above-mentioned details, in this paper we will introduce mod-

ules satisfying Auslander-type conditions and study the homological properties of

such modules. By using the obtained properties we get some equivalent character-

izations of rings satisfying the Auslander condition, Auslander–Gorenstein rings

and Auslander-regular rings respectively. Then we study when an artin algebra

satisfying the Auslander condition is Gorenstein.

Throughout this paper, R is an associative ring with identity, ModR is the

category of left R-modules and modR is the category of finitely generated left

R-modules. This paper is organized as follows.

In Section 2 we give some terminology and some preliminary results.

Let M ∈ ModR. We use fdR M , pdR M and idR M to denote the flat, pro-

jective and injective dimensions of M , respectively. Bican, El Bashir and Enochs

[BEE, Thm. 3] proved that every R-module has a flat cover. For an R-module M ,

we call an exact sequence

· · · −→ Fi
πi−→ · · · π2−→ F1

π1−→ F0
π0−→M −→ 0

a proper flat resolution of M if πi : Fi → Imπi is a flat precover of Imπi for any

i ≥ 0. Furthermore, we call the exact sequence

· · · −−−−→ Fi(M)
πi(M)−−−−→ · · · π2(M)−−−−→ F1(M)

π1(M)−−−−→ F0(M)
π0(M)−−−−→M −−−−→ 0
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a minimal flat resolution of M , where πi(M) : Fi(M) → Imπi(M) is a flat cover

of Imπi(M) for any i ≥ 0. It is easy to verify that fdR M ≤ n if and only if

Fn+1(M) = 0. In addition, we use

0→M → E0(M)→ E1(M)→ · · · → Ei(M)→ · · ·

to denote a minimal injective coresolution of M .

In Section 3, by using some techniques of direct limits and transfinite induc-

tion, we prove the following theorem.

Theorem 1.1 (Theorem 3.1). Let R be a left Noetherian ring and n, k ≥ 0, and

let {Mi}i∈I be a family of left R-modules and M = lim−→i∈I
Mi, where I is a directed

index set. If fdR En(Mi) ≤ k for any i ∈ I, then fdR En(M) ≤ k.

For any m,n ≥ 0, we introduce in Section 4 the notion of modules satisfying

the Auslander-type conditions Gn(m); in particular, a module M in ModR is said

to satisfy the Auslander condition if fdR Ei−1(M) ≤ i− 1 for any i ≥ 1. By using

Theorem 1.1 and the constructions of (co)proper (co)resolutions of modules in [H2]

we will investigate the homological behavior of modules satisfying Auslander-type

conditions in terms of the relation between the flat (resp. injective) dimensions of

modules and their injective envelopes (resp. flat covers). We prove the following

theorem.

Theorem 1.2 (Theorem 4.9). Let R be a left and right Noetherian ring. Then

the following statements are equivalent:

(1) RR satisfies the Auslander condition.

(2) Every flat left R-module satisfies the Auslander condition.

(3) fdR Ei(M) ≤ fdR M + i for any M ∈ ModR and i ≥ 0.

(4) fdR E0(M) ≤ fdR M for any M ∈ ModR.

(5) idR Fi(Q) ≤ i for any injective left R-module Q and i ≥ 0.

(6) idR Fi(M) ≤ idR M + i for any M ∈ ModR and i ≥ 0.

(7) idR F0(M) ≤ idR M for any M ∈ ModR.

(i)op The opposite version of (i) (1 ≤ i ≤ 7).

As applications of this theorem, we obtain some equivalent characterizations of

Auslander–Gorenstein rings and Auslander-regular rings, respectively (Theorems

4.15 and 4.18).

In Section 5 we first obtain the approximation presentations of a given module

relative to the subcategory of modules satisfying the Auslander condition and

that of modules with finite injective dimension respectively. Then we establish the
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connection between the Auslander and Reiten conjecture mentioned above with

the contravariant finiteness of some certain subcategories as follows.

Theorem 1.3 (Theorem 5.8). Let R be an artin algebra satisfying the Auslander

condition. Then the following statements are equivalent:

(1) R is Gorenstein.

(2) The subcategory consisting of finitely generated modules satisfying the Auslan-

der condition is contravariantly finite.

(3) The subcategory consisting of finitely generated modules which are n-syzygy

for any n ≥ 1 is contravariantly finite.

(4) The subcategory consisting of finitely generated modules which are n-torsion-

free for any n ≥ 1 is contravariantly finite.

As a consequence, we get that an artin algebra is Auslander-regular if and

only if the subcategory consisting of projective modules and that consisting of

modules satisfying the Auslander condition coincide (Theorem 5.9).

§2. Preliminaries

In this section we give some terminology and some preliminary results.

Definition 2.1 ([E]). Let C ⊆ D be full subcategories of ModR. A homomor-

phism f : C → D in ModR with C ∈ C and D ∈ D is said to be a C -precover

of D if for any homomorphism g : C ′ → D in ModR with C ′ ∈ C , there exists a

homomorphism h : C ′ → C such that the following diagram commutes:

C ′

g

��

h

~~
C

f // D.

The homomorphism f : C → D is said to be right minimal if an endomorphism

h : C → C is an automorphism whenever f = fh. A C -precover f : C → D is

called a C -cover if f is right minimal. Dually, the notions of a C -preenvelope, a left

minimal homomorphism and a C -envelope are defined. Following Auslander and

Reiten’s terminology in [AR1], for a module over an artin algebra, a C -(pre)cover

and a C -(pre)envelope are called a (minimal) right C -approximation and a (min-

imal) left C -approximation, respectively. If each module in D has a right (resp.

left) C -approximation, then C is called contravariantly finite (resp. covariantly

finite) in D .
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We use F 0(ModR) and I 0(ModR) to denote the subcategories of ModR

consisting of flat modules and injective modules, respectively. Recall that an

F 0(ModR)-(pre)cover and an I 0(ModR)-(pre)envelope are called a flat (pre)

cover and an injective (pre)envelope, respectively.

Lemma 2.2 ([X, Thm. 1.2.9]). Let C be a full subcategory of ModR closed under

direct products. If fi : Ci → Mi is a C -precover of Mi in ModR for any i ∈ I,

where I is an index set, then
∏

i∈I fi :
∏

i∈I Ci →
∏

i∈I Mi is a C -precover of∏
i∈I Mi.

We write (−)+ := HomZ(−,Q/Z), where Z is the additive group of integers

and Q is the additive group of rational numbers.

Lemma 2.3 ([EH, Thm. 3.7]). The following statements are equivalent:

(1) R is a left Noetherian ring.

(2) A monomorphism f : A ↣ E in ModR is an injective preenvelope of A if and

only if f+ : E+ ↠ A+ is a flat precover of A+ in ModRop.

Lemma 2.4.

(1) ([F, Thm. 2.1]) For any M ∈ ModR, fdR M = idRop M+.

(2) ([F, Thm. 2.2]) If R is a right Noetherian ring, then fdR N+ = idRop N for

any N ∈ ModRop.

Recall that Fin.dimR = sup{pdR M | M ∈ ModR with pdR M < ∞}.
Observe that the first assertion in the following result was proved by Bass in [B1,

Cor. 5.5] when R is a commutative Noetherian ring.

Lemma 2.5.

(1) For a left Noetherian ring R, we have

idR R ≥ sup{fdR M |M ∈ ModR with fdR M <∞}.

(2) For a left and right Noetherian ring R, we have

idR R ≥ sup{idRop N | N ∈ ModRopwith idRop N <∞}.

Proof. (1) Let idR R = n (< ∞). Then Fin.dimR ≤ n by [B1, Prop. 4.3]. It

follows from [J1, Prop. 6] that the projective dimension of any flat left R-module

is finite. So, if M ∈ ModR with fdR M < ∞, then pdR M < ∞ and pdR M ≤ n.

Thus we have fdR M (≤ pdR M) ≤ n.

(2) By [B1, Prop. 4.1] we have sup{fdR M | M ∈ ModR with fdR M <

∞} = sup{idRop N | N ∈ ModRop with idRop N < ∞}. So the assertion follows

from (1).
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§3. Flat dimension of En of direct limits

In this section, R is a left Noetherian ring. The aim of this section is to prove the

following theorem.

Theorem 3.1. Let n, k ≥ 0 and let {Mi}i∈I be a family of left R-modules, where

I is a directed index set. If M = lim−→i∈I
Mi and fdR En(Mi) ≤ k for any i ∈ I,

then fdR En(M) ≤ k.

By [R, Thm. 5.40], every flat left R-module is a direct limit (over a directed

index set) of finitely generated free left R-modules. So by Theorem 3.1 we have

the following corollary.

Corollary 3.2. We have fdR En(RR) = sup{fdR En(F ) | F ∈ ModR is flat} for
any n ≥ 0.

Before giving the proof of Theorem 3.1 we need some preliminaries.

Definition 3.3 ([J2]). Let β be an ordinal number. A set S is called a continuous

union of a family of subsets indexed by ordinals α with α < β if for each such

α we have a subset Sα ⊂ S such that if α ≤ α′ then Sα ⊂ Sα′ , and such that if

γ < β is a limit ordinal then Sγ =
⋃

α<γ Sα.

A main tool in our proof is the next result.

Lemma 3.4 ([J2, Lem. 1.4]). If I is an infinite directed index set, then for some

ordinal β, I can be written as a continuous union I =
⋃

α<β Iα, where each Iα is

a directed index set with the order induced by that of I and where |Iα| < |I| for
each α < β.

This result will be useful since it will allow us to rewrite a direct limit as a well-

ordered direct limit. So if M = lim−→i∈I
Mi with I infinite, then write I =

⋃
α<β Iα

as above, and put Mα = lim−→i∈Iα
Mi. Hence if α ≤ α′ < β, since Iα ⊂ Iα′ we have

an obvious map Mα → Mα′ . These maps then give us a direct system {Mα}α<β .

Clearly then lim−→α<β
Mα = lim−→i∈I

Mi.

Proposition 3.5. Let κ be an ordinal number and {Mα, fαβ : Mα → Mβ | α ≤
β < κ} a direct system of left R-modules. If

ζα := 0→Mα → E0(Mα)→ E1(Mα)→ · · ·

is a minimal injective coresolution of Mα in ModR for each α, then these exact

sequences ζα are the members of a direct system indexed by α < κ in such a way

that if α ≤ β < κ, the map from the sequence indexed by α into that indexed by β

agrees with the original map fαβ : Mα →Mβ.
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Proof. We only need to construct a direct system {ζα, Fαβ : ζα → ζβ | α ≤
β < κ} indexed by κ, consisting of complexes ζα of minimal injective coresolu-

tion of Mα and system maps Fαβ : ζα → ζβ , where Fαβ is a sequence of maps

(fαβ , f
0
αβ , f

1
αβ , . . .) such that the diagram

(3.1)

0 // Mα
//

fαβ

��

E0(Mα) //

f0
αβ

��

E1(Mα) //

f1
αβ

��

· · ·

0 // Mβ
// E0(Mβ) // E1(Mβ) // · · ·

is commutative, and the original map in Fαβ is fαβ : Mα →Mβ .

Next we will give the construction of Fαβ : ζα → ζβ , α ≤ β < κ in (3.1) by

transfinite induction on β < κ.

(1) For the successional case, let β + 1 < κ. We can form a commutative

diagram

(3.2)

0 // Mβ
//

fβ,β+1

��

E0(Mβ) //

f0
β,β+1

��

E1(Mβ) //

f1
β,β+1

��

· · ·

0 // Mβ+1
// E0(Mβ+1) // E1(Mβ+1) // · · · .

Let Fβ,β+1 = (fβ,β+1, f
0
β,β+1, f

1
β,β+1, . . .) : ζβ → ζβ+1. Therefore, Fα,β+1 =

Fβ,β+1Fαβ , α < β, are the desired maps in (3.1).

(2) For the limit case, let β < κ be a limit ordinal. By induction, assume

{ζα, Fαγ : ζα → ζγ | α ≤ γ < β} is the desired direct subsystem in (3.1). Taking

the direct limit, we get the following commutative diagram:

ζα :

Fα

��

0 // Mα
//

��

E0(Mα) //

��

E1(Mα) //

��

· · ·

lim−→
α<β

ζα : 0 // lim−→
α<β

Mα
// lim−→
α<β

E0(Mα) // lim−→
α<β

E1(Mα) // · · · ,

where Fα is the limit map such that Fα = FγFαγ for any α ≤ γ < β. Since

R is left Noetherian, any direct limit of injective left R-modules is injective by

[B1, Thm. 1.1]. So lim−→α<β
ζα is in fact an injective coresolution of lim−→α<β

Mα. We

have a map fβ : lim−→α<β
Mα → Mβ given by the maps fαβ : Mα → Mβ . As the

construction in (3.2), we have a map Fβ : lim−→ ζα → ζβ such that the original in Fβ

is the map fβ . So, composing Fβ with Fα, we get maps Fαβ = FβFα : ζα → ζβ .

It follows that Fαβ = FγβFαγ for any α ≤ γ < β. By transfinite induction, this

completes the construction.
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Note that this result gives that if ζ is an injective coresolution of M , then

ζ ∼= lim−→α<β
ζα. In particular, this gives that En(M) ∼= lim−→α<β

En(Mα). This then

gives that if fdR En(Mα) ≤ k for each α then fdR En(M) ≤ k. In other words,

Theorem 3.1 holds true when our direct system is over the well-ordered index set

of α < β for some ordinal β.

Proof of Theorem 3.1. We proceed by transfinite induction on |I|. So to begin the

induction we suppose that |I| = ℵ0 (the first infinite cardinal number). Then I is

countable, so we suppose I = {in | n ∈ N} with N the set of non-negative integers.

We construct a sequence j0, j1, j2, . . . of elements in I by letting j0 = i0. Then we

choose j1 so that j1 ≥ j0, i1. So in general we choose jn so that jn ≥ jn−1, in.

Then let J = {jn | n ∈ N}. We have that J is well ordered and is clearly a cofinal

subset of I. Hence M = lim−→i∈I
Mi = lim−→j∈J

Mj . Since J is well ordered, we have

En(M) = lim−→j∈J
En(Mj). So the assumption that fdR En(Mj) ≤ k for each j

gives fdR En(M) ≤ k.

Now we make the induction hypothesis and assume |I| > ℵ0. We appeal to

Lemma 3.4 and write I =
⋃

α<β Iα as in that lemma. Then M = lim−→α<β
Mα.

We have that Mα is the limit over Iα. But |Iα| < |I|, so the assertion holds true

for direct limits over Iα by the induction hypothesis. This means that we have

fdR Mα ≤ k for each α. Because the system {Mα}α<β is over a well-ordered index

set of indices, we get that fdR En(Mα) ≤ k for each α, which gives the assertion

that fdR En(M) ≤ k.

Remark 3.6. The same techniques show that, for a given n ≥ 0, if

0→Mα → E0(Mα)→ E1(Mα)→ · · · → En−1(Mα)→ Cn(Mα)→ 0

is a partial minimal injective coresolution of Mα with fdR Cn(Mα) ≤ k for each α,

then we get fdR Cn(M) ≤ k, where

0→M → E0(M)→ E1(M)→ · · · → En−1(M)→ Cn(M)→ 0

is a partial minimal injective coresolution of M .

§4. Modules satisfying the Auslander-type conditions

As a generalization of rings satisfying the Auslander condition, Huang and Iyama

introduced in [HI] the notion of rings satisfying Auslander-type conditions. Now

we introduce the notion of modules satisfying the Auslander-type conditions as

follows.
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Definition 4.1. Let M ∈ ModR and let m,n ≥ 0. Then M is said to be Gn(m)

if fdR Ei(M) ≤ m + i for any 0 ≤ i ≤ n − 1, and M is said to be G∞(m) if it is

Gn(m) for all n. In particular, M is said to satisfy the Auslander condition if it is

G∞(0).

Recall from [FGR] that a left and right Noetherian ring R is called Auslander’s

n-Gorenstein if fdR Ei(RR) ≤ i for any 0 ≤ i ≤ n− 1, and R is said to satisfy the

Auslander condition if it is Auslander’s n-Gorenstein for all n.

Example 4.2. Let R be a left and right Noetherian ring. Then we have the

following:

(1) RR is Gn(m) if and only if R is Gn(m)op in the sense of Huang and Iyama in

[HI].

(2) RR is Gn(0) if and only if R is Auslander’s n-Gorenstein. Note that the notion

of Auslander’s n-Gorenstein rings (and hence that of the Auslander condition)

is left–right symmetric ([FGR, Thm. 3.7]). So R satisfies the Auslander condi-

tion if and only if both RR and RR satisfy the Auslander condition. However,

in general, the notion of R being Gn(m) is not left–right symmetric when

m ≥ 1 ([AR4, HI]).

(3) Let idRop R = m (< ∞). Then fdR E ≤ m for any injective left R-module E

by [I, Prop. 1]. So any module in ModR is G∞(m).

(4) Let K be an algebraically closed field, and let Q be the quiver

1 2oo 3oo · · ·oo n+ 1oo

and R = KQ/J2, where J is the Jacobson radical of KQ. Then gl.dimR = n,

Ej(R) is projective for any 0 ≤ j ≤ n−1 and pdR En(R) = n. The Auslander–

Reiten quiver of modR is

P (2)

��

P (3)

��

· · ·

  

P (n)

��

P (n+ 1)

%%
S(1) (= P (1))

99

S(2)

@@

S(3)

BB

S(n− 1)

<<

S(n)

<<

S(n+ 1),

where P (i) and S(i) are the projective and simple modules corresponding to

the vertex i respectively for any 1 ≤ i ≤ n+1. By [HZ, Thm. 4.8 and Cor. 4.9]

we have pdR S(i)+idR S(i) = n for any 1 ≤ i ≤ n+1. In the minimal injective

coresolution

0→ S(i)→ E0(S(i))→ E1(S(i))→ · · · → En−i+1(S(i))→ 0
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of S(i) in modR, we have that Ej(S(i)) is projective and pdR En−i+1(S(i)) =

n for any 1 ≤ i ≤ n + 1 and 0 ≤ j ≤ n − i. So S(1) is Gn+1(0) and hence

G∞(0), and S(i) is both Gn−i+1(0) and G∞(i− 1) for any 2 ≤ i ≤ n+ 1.

(5) Let K be an algebraically closed field, and let Q be the quiver

5 // 4 //oo 3 //

��

2 // 1oo

6

��
7

��
...

��
k + 5

��
k + 6

and R = KQ/J2 with n ≥ 1. We use P (i), I(i) and S(i) to denote the projec-

tive, injective and simple modules corresponding to the vertex i respectively

for any 1 ≤ i ≤ k + 6. Then we have

(5.1) For any 1 ≤ i ≤ 5,

0→ P (1)→ I(2)→ I(3)→ I(4)→ I(5)→ I(4)→ · · · ,
0→ P (2)→ I(1)→ 0,

0→ P (3)→ I(2)⊕ I(6)→ I(3)→ I(4)→ I(5)→ I(4)→ I(5)→ · · · ,
0→ P (4)→ I(3)⊕ I(5)→ I(4)→ I(5)→ I(4)→ · · · ,
0→ P (5)→ I(4)→ 0

are minimal injective coresolutions of P (i) respectively. So idR R = ∞.

Because pdR I(2) =∞, pdR I(3) =∞ and pdR I(5) =∞, we have that

none of P (1), P (3), P (4) and R is Gn(m) for any n,m ≥ 0.

(5.2) For any 7 ≤ i ≤ k + 6,

0→ S(i)→ I(i)→ I(i− 1)→ · · · → I(7)→ I(6)

→ I(3)→ I(4)→ I(5)→ I(4)→ · · ·



On Auslander-Type Conditions of Modules 67

is a minimal injective coresolution of S(i), where all of I(i), I(i−1), . . . ,

I(7) are projective and pdR I(6) = ∞. Thus S(i) is Gi−6(0) but not

Gi−5(0), and S(6) is not Gn(m) for any n,m ≥ 0.

(6) Let R and S be finite-dimensional algebras over a field K, and let M ∈ modR

be Gn(m) for some n,m ≥ 0. Because

0→M ⊗K S → E0(M)⊗K S → E1(M)⊗K S → · · ·

is a minimal injective coresolution of M ⊗K S in modR ⊗K S, by [CE,

Thm. XI.3.2] we have that M ⊗K S is Gn(m) in modR⊗K S.

The aim of this section is to study the homological behavior of modules (espe-

cially RR) satisfying certain Auslander-type conditions. The following proposition

plays an important role in proving the main result of this section.

Proposition 4.3. For a left Noetherian ring R, idRop Fi(E) ≤ fdR Ei(RR) for

any injective right R-module E and i ≥ 0.

Proof. By Lemma 2.3 we have that

· · · −→ [Ei(RR)]+
πi−→ · · · π2−→ [E1(RR)]+

π1−→ [E0(RR)]+
π0−→ (RR)+ −→ 0

is a proper flat resolution of (RR)+ in ModRop.

Let E be an injective right R-module. Because (RR)+ is an injective co-

generator for ModRop, we have that E is isomorphic to a direct summand of

[(RR)+]I for some index set I. Because the subcategory of ModRop consisting

of flat modules is closed under direct products by [C, Thm. 2.1], we have that

πi
I : ([Ei(RR)]+)I → (Imπi)

I is a flat precover of (Imπi)
I for any i ≥ 0 by

Lemma 2.2. Note that Fi(E) is isomorphic to a direct summand of ([Ei(RR)]+)I

for any i ≥ 0. So by Lemma 2.4(1), we have

idRop Fi(E) ≤ idRop([Ei(RR)]+)I = idRop [Ei(RR)]+ = fdR Ei(RR)

for any i ≥ 0.

We also have the following result.

Proposition 4.4. For any m ≥ 0, idRop Fi(E) ≤ m + i for any injective right

R-module E and i ≥ 0 if and only if idRop Fi(N) ≤ idRop N + m + i for any

N ∈ ModRop and i ≥ 0.

Proof. The sufficiency is trivial. We next prove the necessity. Let N ∈ ModRop

with idRop N = s < ∞. We will proceed by induction on s. If s = 0, then the
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assertion follows from assumption. Now suppose s ≥ 1. Then we have an exact

sequence

0→ N → E0(N)→ N1 → 0

in ModRop with idRop N1 = s − 1. By the induction hypothesis we have

idRop Fi(N
1) ≤ (s− 1) +m+ i and idRop Fi(E

0(N)) ≤ m+ i for any i ≥ 0.

By [H2, Cor. 3.3] we have that

· · · → Fi+1(N
1)

⊕
Fi(E

0(N))→ · · · → F2(N
1)

⊕
F1(E

0(N))→ F0 → N → 0

is a proper flat resolution of N and

0→ F0 → F1(N
1)

⊕
F0(E

0(N))→ F0(N
1)→ 0

is exact. So idRop F0 ≤ s + m and idRop Fi+1(N
1)

⊕
Fi(E

0(N)) ≤ s + m + i for

any i ≥ 1. Notice that F0(N) is isomorphic to a direct summand of F0 and Fi(N)

is isomorphic to a direct summand of Fi+1(N
1)

⊕
Fi(E

0(N)) for any i ≥ 1, so we

have idRop Fi(N) ≤ s+m+ i for any i ≥ 0.

As a consequence of Propositions 4.3 and 4.4, we get the following corollary.

Corollary 4.5. Let R be a left Noetherian ring. If RR is G∞(m) with m ≥ 0,

then idRop Fi(N) ≤ idRop N +m+ i for any N ∈ ModRop and i ≥ 0.

Proof. If RR is G∞(m), then fdR Ei(RR) ≤ m + i for any i ≥ 0. By Proposition

4.3 we have idRop Fi(E) ≤ m + i for any injective right R-module E and i ≥ 0.

Now the assertion follows from Proposition 4.4.

The following result can be regarded as a dual version of Proposition 4.4.

Proposition 4.6. For any m ≥ 0, any flat left R-module is G∞(m) if and only

if fdR Ei(M) ≤ fdR M +m+ i for any M ∈ ModR and i ≥ 0.

Proof. The sufficiency is trivial. We next prove the necessity. Let M ∈ ModR with

fdR M = s < ∞. We will proceed by induction on s. If s = 0, then the assertion

follows from assumption. Now suppose s ≥ 1. Then we have an exact sequence

0→M1 → F0(M)→M → 0

in ModR with fdR M1 = s−1. By the induction hypothesis we have fdR Ei(M1) ≤
(s− 1) +m+ i and fdR Ei(F0(M)) ≤ m+ i for any i ≥ 0.

By [M, Cor. 1.3] (cf. [H2, Cor. 3.5]) we have that

0→M → I0 → E1(F0(M))
⊕

E2(M1)→ · · ·

→ Ei(F0(M))
⊕

Ei+1(M1)→ · · ·
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is an injective coresolution of M and

0→ E0(M1)→ E0(F0(M))
⊕

E1(M1)→ I0 → 0

is exact and split. So fdR I0 ≤ s+m and fdR Ei(F0(M))
⊕

Ei+1(M1) ≤ s+m+ i

for any i ≥ 1. Notice that E0(M) is isomorphic to a direct summand of I0 and

Ei(M) is isomorphic to a direct summand of Ei(F0(M))
⊕

Ei+1(M1) for any

i ≥ 1, so we have fdR Ei(M) ≤ s+m+ i for any i ≥ 0.

By the dimension shifting we get the following lemma.

Lemma 4.7.

(1) fdR E0(M) ≤ fdR M for any M ∈ ModR if and only if fdR Ei(M) ≤ fdR M+i

for any M ∈ ModR and i ≥ 0.

(2) idRop F0(N) ≤ idRop N for any N ∈ ModRop if and only if idRop Fi(N) ≤
idRop N + i for any N ∈ ModRop and i ≥ 0.

We also need the following lemma.

Lemma 4.8. Let M ∈ ModR and n ≥ 0.

(1) If R is a right Noetherian ring and idRop F0(M
+) ≤ idRop M+ + n, then

fdR E0(M) ≤ fdR M + n.

(2) If R is a left Noetherian ring and idRop M+ ≤ idRop F0(M
+)+n, then fdR M ≤

fdR E0(M) + n.

Proof. (1) Let fdR M = s < ∞. Then idRop M+ = s by Lemma 2.4(1). So

idRop F0(M
+) ≤ idRop M+ = s + n by assumption, and hence we get an in-

jective preenvelope 0 → M++ → [F0(M
+)]+ of M++ with fdR[F0(M

+)]+ =

idRop F0(M
+) ≤ s + n by Lemma 2.4(2). Notice that there exists an embedding

M ↪→M++ by [St, p. 48, Exe. 41], thus E0(M) is isomorphic to a direct summand

of [F0(M
+)]+ and therefore fdR E0(M) ≤ s+ n.

(2) Let fdR E0(M) = s < ∞. By Lemmas 2.3 and 2.4(1), [E0(M)]+ ↠ M+

is a flat precover of M+ in ModRop with idRop [E0(M)]+ = s. So F0(M
+) is

isomorphic to a direct summand of [E0(M)]+ and idRop F0(M
+) ≤ s. Then by

assumption, we have

idRop M+ ≤ idRop F0(M
+) + n ≤ s+ n.

It follows from Lemma 2.4(1) that fdR M ≤ s+ n.

We are now in a position to state the main result in this section, which is

more general than Theorem 1.2.
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Theorem 4.9. For a left Noetherian ring R, consider the following conditions:

(1) RR satisfies the Auslander condition.

(2) Any flat left R-module satisfies the Auslander condition.

(3) fdR Ei(M) ≤ fdR M + i for any left R-module M and i ≥ 0.

(4) fdR E0(M) ≤ fdR M for any left R-module M .

(5) idRop Fi(E) ≤ i for any injective right R-module E and i ≥ 0.

(6) idRop Fi(N) ≤ idRop N + i for any right R-module N and i ≥ 0.

(7) idRop F0(N) ≤ idRop N for any right R-module N .

We have (1)⇔ (2)⇔ (3)⇔ (4)⇒ (5)⇔ (6)⇔ (7). If R is also right Noetherian,

then all of the above and below conditions are equivalent:

(i)op The opposite version of (i) (1 ≤ i ≤ 7).

Proof. (2)⇒ (1) is trivial, and (1)⇒ (2) follows from Corollary 3.2. The assertions

(2)⇔ (3)⇔ (4) follow from Proposition 4.6 and Lemma 4.7(1), and (5)⇔ (6)⇔
(7) follow from Proposition 4.4 and Lemma 4.7(2). By Corollary 4.5 we have

(1)⇒ (5).

Assume that R is a left and right Noetherian ring. Then (1) ⇔ (1)op follows

from [FGR, Thm. 3.7], and (7)⇒ (4) follows from Lemma 4.8(1).

Observe that Miyachi proved in [M, Thm. 4.1] that if R is a right coherent and

left Noetherian projective K-algebra over a commutative ring K, then R satisfies

the Auslander condition (that is, RR is G∞(0)) if and only if fdR E0(M) ≤ fdR M

for any M ∈ ModR. Theorem 4.9 extends this result. Moreover, by Theorem 4.9,

we immediately have the following corollary.

Corollary 4.10. Let R be a left Noetherian ring such that RR satisfies the Aus-

lander condition. If M ∈ ModR with fdR M ≤ s (<∞), then M is G∞(s).

Remark 4.11. By the dimension shifting it is easy to verify that the converse of

Corollary 4.10 holds true when idR M <∞, even without the assumption that R

is a left Noetherian ring satisfying the Auslander condition. However, this converse

does not hold true in general. For example, let R be a quasi-Frobenius ring with

the global dimension gl.dimR of R infinite. Then R is a left and right artin ring

satisfying the Auslander condition and every module in ModR is G∞(0), but there

exists a module in ModR which is not flat because gl.dimR is infinite.

For any n, k ≥ 0, we use G n(k) to denote the full subcategory of ModR

consisting of modules being Gn(k), and write G ∞(k) :=
⋂

n≥0 G n(k). By [H2,

Cor. 3.9] it is easy to get the following proposition.
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Proposition 4.12. Let

0→ X → X0 → X1 → 0

be an exact sequence in ModR, and let s ≥ 0 and n ≥ 1. If X0 ∈ G n(s) and

X1 ∈ G n−1(s+ 1), then X ∈ G n(s).

For any n ≥ 0, we use Fn(ModR) to denote the subcategory of ModR

consisting of modules with flat dimension at most n.

Corollary 4.13. Let R be a left Noetherian ring. Then we have

(1) G ∞(0) = F 0(ModR) if and only if G ∞(s) = F s(ModR) for any s ≥ 0;

(2) G ∞(0) ∩ modR = F 0(modR) if and only if G ∞(s) ∩ modR = F s(modR)

for any s ≥ 0.

Proof. (1) The sufficiency is trivial, so it suffices to prove the necessity. By Corol-

lary 4.10 we have F s(ModR) ⊆ G ∞(s) for any s ≥ 0. In the following we will

prove the converse inclusion by induction on s. The case for s = 0 follows from

assumption. Now suppose s ≥ 1 and M ∈ G ∞(s). Let

0→ K → F0(M)→M → 0

be an exact sequence in ModR. By assumption F0(M) ∈ G ∞(0). SoK ∈ G ∞(s−1)
by Proposition 4.12, and hence fdR K ≤ s−1 by the induction hypothesis. It follows

that fdR M ≤ s and M ∈ F s(ModR), which implies G ∞(s) ⊆ F s(ModR).

(2) It is an immediate consequence of (1).

As applications of the results obtained above, in the rest of this section we will

study the properties of rings satisfying the Auslander condition with finite certain

homological dimension. In particular, we will get some equivalent characterizations

of Auslander–Gorenstein rings and Auslander-regular rings.

For a module M ∈ ModR and t ≥ 0, we use Ωt(M) to denote the tth syzygy

of M (note: Ω0(M) = M). It is known that Ωt(M) is unique up to projective

equivalence for a given module M .

Lemma 4.14. Let R be a left Noetherian ring, and let t ≥ 1 and n ≥ 0. For

a module M ∈ ModR, if fdR Ωt(M) ≤ fdR E0(Ωt(M)) + n, then fdR M ≤
fdR E0(RR) + n+ t.

Proof. Let M ∈ ModR. Then there exist index sets J0, . . . , Jt−1 such that we have

the following exact sequence:

0→ Ωt(M)→ R(Jt−1) → · · · → R(J0) →M → 0
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in ModR. Because E0(R(Jt−1)) = [E0(RR)](Jt−1) by [B1, Thm. 1.1] and [AF,

Prop. 18.12(4)], we have fdR E0(R(Jt−1)) = fdR E0(RR). Notice that E0(Ωt(M)) is

isomorphic to a direct summand of E0(R(Jt−1)), so fdR E0(Ωt(M)) ≤ fdR E0(RR).

It follows from assumption that

fdR Ωt(M) ≤ fdR E0(Ωt(M)) + n ≤ fdR E0(RR) + n

and fdR M ≤ fdR E0(RR) + n+ t.

Recall from [Bj] that a left and right Noetherian ring R is called Auslander–

Gorenstein (resp. Auslander-regular) if R satisfies the Auslander condition and

idR R = idRop R (resp. gl.dimR) <∞. Also recall that fin.dimR = sup{pdR M |
M ∈ modR with pdR M <∞}.

As an application of Theorem 4.9 we get some equivalent characterizations of

rings satisfying the Auslander condition with finite left self-injective dimension as

follows, which generalizes [M, Prop. 4.4].

Theorem 4.15. For a left and right Noetherian ring R and n ≥ 1, the following

statements are equivalent:

(1) R satisfies the Auslander condition with idR R ≤ n.

(2) idRop F0(N) ≤ idRop N ≤ idRop F0(N)+n−1 for any N ∈ ModRop with finite

injective dimension.

(3) fdR E0(M) ≤ fdR M ≤ fdR E0(M)+n− 1 for any M ∈ ModR with finite flat

dimension.

Proof. (1)⇒ (2). When N ∈ ModRop is flat, it is trivial that assertion (2) holds

true. Now letN ∈ ModRop be non-flat with finite injective dimension. By Theorem

4.9 we have idRop F0(N) ≤ idRop N . So we only need to prove the latter inequality.

Because idR R ≤ n, we have idRop N ≤ n by Lemma 2.5(2). So if idRop F0(N) ≥ 1,

then the assertion holds true. Suppose that F0(N) is injective. We have an exact

sequence

0→ B → F0(N)→ N → 0

in ModRop with idRop B < ∞. If idRop N = n, then idRop B = n + 1. It follows

from Lemma 2.5(2) that idR R ≥ n + 1, which is a contradiction. Thus we have

idRop N ≤ n− 1.

(2) ⇒ (3). Let M ∈ ModR with finite flat dimension. Then M+ ∈ ModRop

with finite injective dimension by Lemma 2.4(1). Now the assertion follows from

Lemma 4.8.

(3)⇒ (1). By (3) and Theorem 4.9, R satisfies the Auslander condition. Let

M ∈ modR with pdR M (= fdR M) <∞. Then fdR Ω1(M) <∞. By (3) we have
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fdR Ω1(M) ≤ fdR E0(Ω1(M)) + n− 1. So

pdR M = fdR M ≤ fdR E0(RR) + n = n

by Lemma 4.14. Thus we have fin.dimR ≤ n. It follows from [HI, Cor. 5.3] that

idR R ≤ n.

In view of Theorem 4.15 it would be interesting to ask the following question.

Question 4.16. Let R be a left and right Noetherian ring satisfying the Auslan-

der condition with idR R < ∞. Then, is idRop R < ∞? That is, is R Auslander–

Gorenstein?

By [H1, Prop. 4.6] the answer to Question 4.16 is positive if R is a left and

right artin ring. It is a generalization of [AR3, Cor. 5.5(b)].

Putting n = 1 in Theorem 4.15 we have the following corollary.

Corollary 4.17. For a left and right Noetherian ring R, the following statements

are equivalent:

(1) R satisfies the Auslander condition with idR R ≤ 1.

(2) idRop F0(N) = idRop N for any N ∈ ModRop with finite injective dimension.

(3) fdR E0(M) = fdR M for any M ∈ ModR with finite flat dimension.

As another application of Theorem 4.9 we get some equivalent characteriza-

tions of Auslander-regular rings as follows, which generalizes [M, Cor. 4.5].

Theorem 4.18. For a left and right Noetherian ring R and n ≥ 1, the following

statements are equivalent:

(1) R is an Auslander-regular ring with gl.dimR ≤ n.

(2) idRop F0(N) ≤ idRop N ≤ idRop F0(N) + n− 1 for any N ∈ ModRop.

(3) fdR E0(M) ≤ fdR M ≤ fdR E0(M) + n− 1 for any M ∈ ModR.

Proof. By Theorem 4.15 and Lemma 4.8 we have (1)⇒ (2)⇒ (3).

(3)⇒ (1). By (3) and Theorem 4.9, R satisfies the Auslander condition. Let

M ∈ modR. By (3) we have fdR Ω1(M) ≤ fdR E0(Ω1(M)) + n− 1. So

pdR M = fdR M ≤ fdR E0(RR) + n = n

by Lemma 4.14, and hence gl.dimR ≤ n.

Putting n = 1 in Theorem 4.18 we have the following corollary.
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Corollary 4.19. For a left and right Noetherian ring R, the following statements

are equivalent:

(1) R is an Auslander-regular ring with gl.dimR ≤ 1.

(2) idRop F0(N) = idRop N for any N ∈ ModRop.

(3) fdR E0(M) = fdR M for any M ∈ ModR.

§5. Approximation presentations and Gorenstein algebras

In this section, R is an artin algebra. We will establish the connection between Aus-

lander and Reiten’s conjecture mentioned in the introduction and the contravari-

ant finiteness of the full subcategory of modR consisting of modules satisfying the

Auslander condition.

For n ≥ 0, we use I n(ModR) to denote the full subcategory of ModR con-

sisting of modules with injective dimension at most n. For a module M ∈ ModR,

we denote by Ω−n(M) the nth cosyzygy of M . The following approximation the-

orem plays a crucial role in the rest of this section.

Theorem 5.1. Let RR ∈ G n(k) and RR ∈ G n(k)
op with n, k ≥ 0. Then for any

M ∈ ModR and 1 ≤ i ≤ n − 1, there exist the following commutative diagrams

with exact rows:

(5.1)

0 // M // Ii+1(M) //

����

Gi+1(M) //

����

0

0 // M // Ii(M) // Gi(M) // 0

and

(5.2)

0 // Ii+1(M) //

����

Gi+1(M) //

����

M // 0

0 // Ii(M) // Gi(M) // M // 0

in ModR with Gj(M), Gj(M) ∈ G j(k), and Ij(M), Ij(M) ∈ I j+k(ModR) for

j = i, i + 1. Furthermore, if M is in modR, then all modules in the above two

commutative diagrams are also in modR.

Proof. By [H2, Cor. 3.7 and Lem. 3.1(1)] we have the following commutative dia-

grams with exact columns and rows:
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0

��

0

��

0

��
0 // M

��

// Ii(M)

��

// Gi(M)

��

// 0

0 // E0(M)

��

// E0(M)
⊕

(
⊕i−1

j=0 Pj(E
j+1(M)))

��

//⊕i−1
j=0 Pj(E

j+1(M))

��

// 0

0 // E1(M)

��

// E1(M)
⊕

(
⊕i−2

j=0 Pj(E
j+2(M)))

��

//⊕i−2
j=0 Pj(E

j+2(M))

��

// 0

...

��

...

��

...

��
0 // Ei−2(M)

��

// Ei−2(M)
⊕

(P1(E
i(M))

⊕
P0(E

i−1(M)))

��

// P1(E
i(M))

⊕
P0(E

i−1(M))

��

// 0

0 // Ei−1(M)

��

// Ei−1(M)
⊕

P0(E
i(M))

��

// P0(E
i(M))

��

// 0

0 // Ω−i(M)

��

// Ei(M)

��

// Ω−(i+1)(M)

��

// 0

0 0 0,

where, for any i ≥ 1,

Ii(M)= Ker

(
E0(M)

⊕( i−1⊕
j=0

Pj(E
j+1(M))

)
→E1(M)

⊕( i−2⊕
j=0

Pj(E
j+2(M))

))
,

Gi(M)= Ker

( i−1⊕
j=0

Pj(E
j+1(M))→

i−2⊕
j=0

Pj(E
j+2(M))

)
.

Consider the following pull-back diagram:

0

��

0

��
0 // Ω1(Ei+1(M)) // Xi+1

//

��

Ω−(i+1)(M) //

��

0

0 // Ω1(Ei+1(M)) // P0(E
i+1(M)) //

��

Ei+1(M) //

��

0

Ω−(i+2)(M)

��

Ω−(i+2)(M)

��
0 0.
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By [H2, Cor. 3.7 and Lem. 3.1(1)] again, for any i ≥ 1 we have the following

commutative and exact columns and rows:

0

��

0

��

0

��
0 // Ωi+1(Ei+1(M))

��

// Gi+1(M)

��

// Gi(M)

��

// 0

0 // Pi(E
i+1(M))

��

//⊕i
j=0 Pj(E

j+1(M))

��

//⊕i−1
j=0 Pj(E

j+1(M))

��

// 0

0 // Pi−1(E
i+1(M))

��

//⊕i−1
j=0 Pj(E

j+2(M))

��

//⊕i−2
j=0 Pj(E

j+2(M))

��

// 0

...

��

...

��

...

��
0 // P2(E

i+1(M))

��

// P2(E
i+1(M))

⊕
(P1(E

i(M))
⊕

P0(E
i−1(M)))

��

// P1(E
i(M))

⊕
P0(E

i−1(M))

��

// 0

0 // P1(E
i+1(M))

��

// P1(E
i+1(M))

⊕
P0(E

i(M))

��

// P0(E
i(M))

��

// 0

0 // Ω1(Ei+1(M))

��

// Xi+1

��

// Ω−(i+1)(M)

��

// 0

0 0 0.

Then we get the following pull-back diagram:

0

��

0

��
Ωi+1(Ei+1(M))

��

Ωi+1(Ei+1(M))

��
0 // M // Ii+1(M)

��

// Gi+1(M)

��

// 0

0 // M // Ii(M) //

��

Gi(M)

��

// 0

0 0.

Because RR ∈ G n(k)
op, we have idR Pj(E

t(M)) ≤ j+k for any 0 ≤ j ≤ n− 1 and

t ≥ 0 by Proposition 4.3. So from the middle column in the first diagram we get
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idR Ii(M) ≤ i+ k for any 1 ≤ i ≤ n. Because RR ∈ G n(k), any projective module

in ModR is also in G n(k). So by [H2, Cor. 3.9] and the exactness of the rightmost

column in the first diagram, we have Gi(M) ∈ G i(k) for any 1 ≤ i ≤ n. Thus the

above diagram is (5.1).

Put Ii(M) = Ii(Ω
1(M)). Then we have the following push-out diagram:

0

��

0

��
0 // Ω1(M) //

��

P0(M)

��

// M // 0

0 // Ii(M) //

��

Gi(M) //

��

M // 0

Gi(Ω
1(M))

��

Gi(Ω
1(M))

��
0 0.

Note that P0(M) ∈ G n(k). For any 1 ≤ i ≤ n, because Gi(Ω
1(M)) ∈ G i(k) by the

above argument, we have that Gi(M) is also in G i(k) by the horseshoe lemma and

the exactness of the middle column in the above diagram. By the above argument

we have the following pull-back diagram:

0

��

0

��
Ωi+1(Ei+1(Ω1(M)))

��

Ωi+1(Ei+1(Ω1(M)))

��
0 // P0(M) // Gi+1(M)

��

// Gi+1(Ω
1(M))

��

// 0

0 // P0(M) // Gi(M)

��

// Gi(Ω
1(M))

��

// 0

0 0.
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Then the pull-back diagram

0

��

0

��
Ωi+1(Ei+1(Ω1(M)))

��

Ωi+1(Ei+1(Ω1(M)))

��
0 // Ii+1(M) //

��

Gi+1(M) //

��

M // 0

0 // Ii(M) //

��

Gi(M) //

��

M // 0

0 0

is (5.2).

Let G ∈ G i(0) and I ∈ I i(ModR) with i ≥ 1. Then applying the functor

HomR(−, I) to the minimal injective coresolution of G, we get Ext1R(G, I) = 0 by

the dimension shifting. So, if R satisfies the Auslander condition, then the exact

sequences

0→M → Ii(M)→ Gi(M)→ 0

and

0→ Ii(M)→ Gi(M)→M → 0

in Theorem 5.1 are a left I i(ModR)-approximation and a right G i(0)-approx-

imation of M respectively for any 1 ≤ i ≤ n.

Lemma 5.2. Let X ∈ modR and {Mi}i∈I be a family of left R-modules, where

I is a directed index set. Then for any n ≥ 0 we have

ExtnR

(
lim−→
i∈I

Mi, X
)
∼= lim←−

i∈I

ExtnR(Mi, X).

Proof. Because R is an artin algebra, any module in modR is pure-injective by

[GT, Cor. 1.2.22]. Then the assertion follows from [GT, Lem. 3.3.4].

Let M ∈ ModR and n, k ≥ 0, and let

· · · → Pi(M)→ · · · → P1(M)→ P0(M)→M → 0

be a minimal projective resolution of M . We use CoG n(k) to denote the full

subcategory of ModR consisting of the modules M satisfying idR Pi(M) ≤ i + k



On Auslander-Type Conditions of Modules 79

for any 0 ≤ i ≤ n−1, and denote CoG ∞(k) =
⋂

n≥0 CoG n(k). We use Pn(modR)

(resp. I n(modR)) to denote the full subcategory of modR consisting of modules

with projective (resp. injective) dimension at most n. We use D to denote the

ordinary duality between modR and modRop. As a consequence of Theorem 5.1

we get the following proposition.

Proposition 5.3. Let R satisfy the Auslander condition and M ∈ modR. Then

we have the following:

(1) There exists a countably generated left R-module N ∈ CoG ∞(0) and a mono-

morphism β : M ↣ N in ModR such that HomR(β, T ) is epic for any T ∈
CoG ∞(0) ∩modR.

(2) There exists a countably generated right R-module N ′ ∈ CoG ∞(0)op and

an epimorphism α : DN ′ ↠ M in ModR such that DN ′ ∈ G ∞(0) and

HomR(T
′, α) is epic for any T ′ ∈ G ∞(0) ∩modR.

Proof. (1) Let R satisfy the Auslander condition. By Theorem 5.1, for any M ∈
modR and n ≥ 1, we have the following commutative diagram with exact rows:

0 // In+1(DM) //

����

Gn+1(DM) //

����

DM // 0

0 // In(DM) // Gn(DM) // DM // 0

with Gi(DM) ∈ G i(0)
op ∩modRop and Ii(DM) ∈ I i(modRop) for i = n, n+ 1.

Then we get the following commutative diagram with exact rows:

0 // M
βn // DGn(DM) //

��

��

DIn(DM) //
��

��

0

0 // M
βn+1 // DGn+1(DM) // DIn+1(DM) // 0

with DGi(DM) ∈ CoG i(0) ∩modR and DIi(DM) ∈Pi(modR) for i = n, n+ 1.

Put Nn := DGn(DM) and Kn := DIn(DM) for any n ≥ 1. Then we have the

following commutative diagram with exact rows:

Pk(Nn) //

gk
n+1,n

��

Pk−1(Nn) //

gk−1
n+1,n

��

· · · // P1(Nn) //

g1
n+1,n

��

P0(Nn) //

g0
n+1,n

��

Nn
//

��
gn+1,n

��

0

Pk(Nn+1) // Pk−1(Nn+1) // · · · // P1(Nn+1) // P0(Nn+1) // Nn+1
// 0.

If n > m, then put

gn,m := gn,n−1gn−1,n−2 · · · gm+1,m
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and

gkn,m := gkn,n−1g
k
n−1,n−2 · · · gkm+1,m.

In this way, for any k ≥ 0 we get direct systems {Nn, gn,m}n∈Z+ and {Pk(Nn),

gkn,m}n∈Z+ , where Z+ is the set of positive integers. Because each gn,m : Nm →
Nn is monic, we can identify lim−→n≥1

Nn with the direct union. It follows that

lim−→n≥1
Nn = lim−→n≥t

Nn for any 1 ≤ t ≤ n. Put N := lim−→n≥1
Nn. Then N is

countably generated.

Because Nt ∈ CoG t(0) ∩modR, we have idR Pk(Nt) ≤ k for any 0 ≤ k ≤ t.

So lim−→n≥t
Pk(Nn) is projective and idR lim−→n≥t

Pk(Nn) ≤ k for any 0 ≤ k ≤ t by

[B1, Thm. 1.1]. On the other hand, we have an exact sequence

· · · → lim−→
n≥t

Pt(Nn)→ lim−→
n≥t

Pt−1(Nn)→ · · · → lim−→
n≥t

P0(Nn)→ lim−→
n≥t

Nn (= N)→ 0.

So N ∈ CoG ∞(0). Put K := lim−→n≥t
Kn and β := lim−→n≥t

βn. Then we get the

following exact sequence:

0→M
β−→ N → K → 0

in ModR. Note that Kn ∈Pn(modR) for any n ≥ 1. So by Lemma 5.2 and the

dimension shifting, for any T ∈ CoG ∞(0) ∩modR we have

Ext1R(K,T ) ∼= Ext1R

(
lim−→
n≥t

Kn, T
)
∼= lim←−

n≥t

Ext1R(Kn, T )

∼= lim←−
n≥t

Extn+1
R (Kn,Ω

n(T )) = 0,

which implies that HomR(β, T ) is epic.

(2) Let M ∈ modR and T ′ ∈ G ∞(0) ∩ modR. Then DM ∈ modRop and

DT ′ ∈ CoG ∞(0)op ∩ modRop. By (1), there exists a monomorphism β : DM ↣
N ′ in ModRop with N ′ countably generated and N ′ ∈ CoG ∞(0)op such that

HomRop(β,DT ′) is epic. Then Dβ : DN ′ ↠ M (∼= DDM) is epic in ModR such

that HomR(T
′,Dβ) (∼= HomR(DDT ′,Dβ)) is also epic. Because N ′ ∈ CoG ∞(0)op,

we have that idRop Pi(N
′) ≤ i for any i ≥ 0. Note that Pi(N

′) =
⊕

j P
i
j with all

P i
j projective in modR for any i ≥ 0. So we get an exact sequence

0→ DN ′ →
∏
j

DP 0
j →

∏
j

DP 1
j → · · · →

∏
j

DP i
j → · · ·

in ModR with
∏

j DP i
j injective and pdR

∏
j DP i

j ≤ i (by [C, Thm. 3.3]) for any

i ≥ 0. It implies DN ′ ∈ G ∞(0).
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Following [AR2], for a full subcategory X of modR we write

Rapp(X ) :=
{
M ∈ modR | there exists a right X -approximation of M

}
,

Lapp(X ) :=
{
M ∈ modR | there exists a left X -approximation of M

}
.

We use P∞(modR) (resp. I ∞(modR)) to denote the full subcategory of modR

consisting of modules with finite projective (resp. injective) dimension.

Proposition 5.4. Let R satisfy the Auslander condition. Then we have

(1) Lapp(CoG ∞(0) ∩modR)

=
{
M ∈ modR | there exists an exact sequence 0→M → X → Y → 0 in

modR with X∈CoG ∞(0) ∩modR and Y ∈P∞(modR)
}
.

(2) Rapp(G ∞(0) ∩modR)

=
{
M ∈ modR | there exists an exact sequence 0→ Y → X →M → 0 in

modR with X∈ G ∞(0) ∩modR and Y ∈I ∞(modR)
}
.

Proof. It is easy to see that Lapp(CoG ∞(0)∩modR) ⊇ {M ∈ modR | there exists
an exact sequence 0→ M → X → Y → 0 in modR with X ∈ CoG ∞(0) ∩modR

and Y ∈ P∞(modR)} and Rapp(G ∞(0) ∩modR) ⊇ {M ∈ modR | there exists

an exact sequence 0 → Y → X → M → 0 in modR with X ∈ G ∞(0) ∩ modR

and Y ∈ I ∞(modR)}. So it suffices to prove the converse inclusions.

(1) Let M ∈ Lapp(CoG ∞(0) ∩ modR). Because R satisfies the Auslander

condition, the injective cogenerator D(RR) for ModR is in CoG ∞(0)∩modR. So

we may assume that

0→M
f−→ XM → Y M → 0

is exact in modR such that f is a minimal left CoG ∞(0) ∩modR-approximation

of M .

By the proof of Proposition 5.3(1) we have an exact sequence

0→M
β−→ N → K → 0

in ModR satisfying the following properties:

(a) N ∈ CoG ∞(0) and N = lim−→n≥1
Nn (=

⋃
n≥1 Nn) with all Nn ∈ CoG ∞(0) ∩

modR.

(b) K = lim−→n≥1
Kn (=

⋃
n≥1 Kn) with pdR Kn ≤ n for any n ≥ 1.

(c) 0→M
βn−−→ Nn → Kn → 0 is exact for any n ≥ 1 and β = lim−→n≥1

βn.

(d) HomR(β, T ) is epic for any T ∈ CoG ∞(0) ∩modR.
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Then there exist u ∈ HomR(N,XM ) and vn ∈ HomR(X
M , Nn) such that f = uβ

and βn = vnf for any n ≥ 1. It induces the following commutative diagram:

0 // M
f // XM //

v

��

Y M //

v′

��

0

0 // M
β // N //

u

��

K //

u′

��

0

0 // M
f // XM // Y M // 0,

where v = lim−→n≥1
vn, v

′ and u′ are induced homomorphisms. By the minimality

of f we have that uv is an isomorphism and so is u′v′. It implies that v′ : Y M →
K (= lim−→n≥1

Kn =
⋃

n≥1 Kn) is a split monomorphism. Because Y M is finitely

generated, we have Im v′ ⊆ Kn for some n. So Y M is isomorphic to a direct

summand of Kn, and hence pdR Y M ≤ n.

(2) Let M ∈ Rapp(G ∞(0) ∩ modR). Then DM ∈ Lapp(CoG ∞(0)op ∩
modRop). By (1) there exists an exact sequence

0→ DM → X → Y → 0

in modRop with X ∈ CoG ∞(0)op ∩modRop and Y ∈ P∞(modRop). So we get

an exact sequence

0→ DY → DX →M → 0

in modR with DX ∈ G ∞(0) ∩modR and DY ∈ I ∞(modR).

As a consequence of Proposition 5.4, we get the following proposition.

Proposition 5.5. Let R satisfy the Auslander condition. Then we have

(1) Rapp(G ∞(0)∩modR) = {M ∈ modR | there exists n ≥ 1 such that Ω−n(M)∈
G ∞(n) ∩modR}.

(2) Lapp(CoG ∞(0) ∩ modR) = {M ∈ modR | there exists n ≥ 1 such that

Ωn(M) ∈ CoG ∞(n) ∩modR}.

Proof. (1) Let M ∈ Rapp(G ∞(0) ∩ modR). Then by Proposition 5.4(2), there

exists an exact sequence

0→ Y → X →M → 0

in modR with X ∈ G ∞(0) ∩ modR and Y ∈ I ∞(modR). Suppose idR Y = k

(<∞). Then for any n > k we have

Ext1R(−,Ω−n+1(X)) ∼= ExtnR(−, X) ∼= ExtnR(−,M) ∼= Ext1R(−,Ω−n+1(M)),
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which implies that Ω−n+1(X) and Ω−n+1(M) are injectively equivalent. Because

X ∈ G ∞(0), we have Ω−n+1(X) ∈ G ∞(n − 1). So Ω−n+1(M) ∈ G ∞(n − 1) and

Ω−n(M) ∈ G ∞(n).

Conversely, let Ω−n(M) ∈ G ∞(n) ∩modR. We have the following commuta-

tive diagrams with exact columns and rows:

0

��

0

��

0

��
0 // I

��

// G

��

// M

��

// 0

0 // K0

��

// P0(E
0(M))

��

// E0(M)

��

// 0

0 // K1

��

// P0(E
1(M))

��

// E1(M)

��

// 0

...

��

...

��

...

��
0 // Kn−2

��

// P0(E
n−2(M))

��

// En−2(M)

��

// 0

0 // Kn−1

��

// P0(E
n−1(M))

��

// En−1(M)

��

// 0

0 Ω−n(M)

��

Ω−n(M)

��
0 0,

whereKi = Ker(P0(E
i(M))→ Ei(M)) for any 0 ≤ i ≤ n−1,G = Ker(P0(E

0(M))

→ P0(E
1(M))) and I = Ker(K0 → K1). Because R satisfies the Auslander con-

dition, we have that P0(E
i(M)) is injective and satisfies the Auslander condition

for any 0 ≤ i ≤ n − 1 by Theorem 4.9. So idR Ki ≤ 1 for any 0 ≤ i ≤ n − 1, and

hence idR I ≤ n by the exactness of the leftmost column in the above diagram.

On the other hand, by [H2, Cor. 3.9] and the exactness of the middle column in
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the above diagram, we have G ∈ G ∞(0) ∩modR. Thus the exact sequence

0→ I → G→M → 0

in modR is a right G ∞(0)∩modR-approximation of M and M ∈ Rapp(G ∞(0)∩
modR).

(2) It is dual to the proof of (1), so we omit it.

Corollary 5.6. Let R satisfy the Auslander condition. Then we have

(1) G ∞(0) ∩ modR is contravariantly finite in modR if and only if there exists

n ≥ 1 such that Ω−n(M) ∈ G ∞(n) ∩modR for any M ∈ modR;

(2) CoG ∞(0) ∩ modR is covariantly finite in modR if and only if there exists

n ≥ 1 such that Ωn(M) ∈ CoG ∞(n) ∩modR for any M ∈ modR.

Proof. (1) The sufficiency follows from Proposition 5.5(1).

Conversely, let G ∞(0) ∩ modR be contravariantly finite in modR and

{S1, S2, . . . , St} a complete set of non-isomorphic simple modules in modR. By

Proposition 5.5(1), there exists ni ≥ 1 such that Ω−ni(Si) ∈ G ∞(ni) for any

1 ≤ i ≤ t. Put n := max{n1, n2, . . . , nt}. Then Ω−n(Si) ∈ G ∞(n) for any 1 ≤ i ≤ t.

We will prove that Ω−n(M) ∈ G ∞(n) for any M ∈ modR by induction on

length(M) (the length of M). If length(M) = 1, then M ∼= Si for some 1 ≤ i ≤ t

and the assertion follows. Now suppose length(M) ≥ 2. Then there exists an exact

sequence

0→ S →M →M/S → 0

in modR with S simple and length(M/S) < length(M). By the induction hypoth-

esis, both S and M/S are in G ∞(n). Then M is also in G ∞(n) by the horseshoe

lemma.

(2) It is dual to the proof of (1), so we omit it.

Let M ∈ modR and let

P1(M)→ P0(M)→M → 0

be a minimal projective presentation of M ∈ modR. For any n ≥ 1, recall from

[AB] that M is called n-torsion-free if ExtiRop(TrM,R) = 0 for any 1 ≤ i ≤ n,

where TrM = Coker(P0(M)∗ → P1(M)∗) is the transpose of M and (−)∗ =

HomR(−, R). We use Ωn(modR) (resp. Tn(modR)) to denote the full subcategory

of modR consisting of n-syzygy (resp. n-torsion-free) modules. Put

Ω∞(modR) :=
⋂
n≥1

Ωn(modR) and T∞(modR) :=
⋂
n≥1

Tn(modR).

In general, we have Ωn(modR) ⊇ Tn(modR) for any n ≥ 1 (cf. [AB, Thm. 2.17]).
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Lemma 5.7. If R ∈ G n(0) with n ≥ 1, then

G n(0) ∩modR = Ωn(modR) = Tn(modR);

in particular, if R satisfies the Auslander condition, then

G ∞(0) ∩modR = Ω∞(modR) = T∞(modR).

Proof. We have G n(0)∩modR = Ωn(modR) by [AR3, Prop. 5.1] and Ωn(modR)

= Tn(modR) by [AR4, Prop. 1.6 and Thm. 4.7].

For a full subcategory C of modR, we write

C⊥1 :=
{
M ∈ modR | Ext1R(C,M) = 0 for any C ∈ C

}
.

Auslander and Reiten conjectured in [AR3] that R is Gorenstein (that is,

idR R = idRop R < ∞) if R satisfies the Auslander condition. It remains open.

Now we are in a position to establish the connection between this conjecture and

the contravariant finiteness of G∞(0) ∩ modR, Ω∞(modR) and T∞(modR) as

follows.

Theorem 5.8. Let R satisfy the Auslander condition. Then the following state-

ments are equivalent:

(1) R is Gorenstein.

(2) G∞(0) ∩modR is contravariantly finite in modR.

(3) CoG∞(0) ∩modR is covariantly finite in modR.

(4) Ω∞(modR) is contravariantly finite in modR.

(5) T∞(modR) is contravariantly finite in modR.

Proof. Because R satisfies the Auslander condition if and only if Rop does, we get

(2)⇔ (3). By Lemma 5.7 we have (2)⇔ (4)⇔ (5).

(1) ⇒ (2). Assume that R is Gorenstein with idR R = idRop R = n. By [I,

Prop. 1], we have pdR E ≤ n for any injective left R-module E. So G ∞(0) ∩
modR = G n(0) ∩ modR, and hence G ∞(0) ∩ modR is contravariantly finite in

modR by Theorem 5.1.

(2) ⇒ (1). Assume that G ∞(0) ∩ modR is contravariantly finite in modR.

Then there exists n ≥ 1 such that Ω−n(M) ∈ G ∞(n) ∩ modR for any M ∈
modR by Corollary 5.6, which implies G ∞(0)∩modR = G n(0)∩modR. Because

G n(0) ∩modR = Tn(modR) by Lemma 5.7, we have

(G ∞(0) ∩modR)⊥1 = (G n(0) ∩modR)⊥1 = Tn(modR)⊥1 = I n(modR)
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by [HI, Thm. 1.3]. On the other hand, it is easy to see that I ∞(modR) ⊆
(G ∞(0) ∩modR)⊥1 . So I ∞(modR) = I n(modR), and hence P∞(modRop) =

Pn(modRop). Thus idRop R ≤ n by [HI, Cor. 5.3], which implies that R is Goren-

stein by [AR3, Cor. 5.5(b)].

We remark that the equivalence between (1) and (5) in Theorem 5.8 has been

known for a commutative ring under some mild assumption (see [T, Cor. 3.15]).

As an application of Theorem 5.8, we obtain in the following result some

equivalent characterizations of Auslander-regular algebras. Note that the converse

of Corollary 4.10 does not hold true in general by Remark 4.11. The following

result also shows when this converse holds true.

Theorem 5.9. The following statements are equivalent:

(1) R is Auslander-regular.

(2) G ∞(0) = P0(ModR).

(3) G ∞(0) ∩modR = P0(modR).

(4) G ∞(s) = Ps(ModR) for any s ≥ 0.

(5) G ∞(s) ∩modR = Ps(modR) for any s ≥ 0.

Proof. Both (2) ⇒ (3) and (4) ⇒ (5) are trivial. By Corollary 4.13 we have

(2)⇔ (4) and (3)⇔ (5).

(1)⇒ (2). By (1) and Corollary 4.10 we have P0(ModR) ⊆ G ∞(0).

Let gl.dimR = n (< ∞) and M ∈ G ∞(0). Then in a minimal injective

coresolution

0→M → E0(M)→ E1(M)→ · · · → En(M)→ 0

of M in ModR, we have pdR Ei(M) ≤ i for any 0 ≤ i ≤ n. By the dimension

shifting we have that M is projective, which implies G ∞(0) ⊆P0(ModR).

(5)⇒ (1). By (5), R satisfies the Auslander condition and G ∞(0)∩modR =

P0(modR) is contravariantly finite in modR. So R is Gorenstein by Theorem

5.8. Suppose idRop R = idR R = n (< ∞). Then pdR E ≤ n for any injective left

R-module E by [I, Prop. 1]. So for any M ∈ modR, we have M ∈ G ∞(n)∩modR,

and hence pdR M ≤ n by (5). It follows that gl.dimR ≤ n.

Acknowledgements

This research was partially supported by NSFC (grant nos. 11971225, 12171207).

The author thanks Edgar E. Enochs, Xiaojin Zhang and Guocheng Dai for helpful

discussions, and also thanks the referee for very useful suggestions.



On Auslander-Type Conditions of Modules 87

References

[AF] F. W. Anderson and K. R. Fuller, Rings and categories of modules, 2nd ed., Graduate
Texts in Mathematics 13, Springer, Berlin, 1992. Zbl 0765.16001 MR 1245487

[AB] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969),
146 pp. Zbl 0204.36402 MR 0269685

[AR1] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv.
Math. 86 (1991), 111–152. Zbl 0774.16006 MR 1097029

[AR2] M. Auslander and I. Reiten, Homologically finite subcategories, in Representations
of algebras and related topics (Kyoto, 1990), London Mathematical Society Lecture
Note Series 168, Cambridge University Press, Cambridge, 1992, 1–42. Zbl 0774.16005
MR 1211476

[AR3] M. Auslander and I. Reiten, k-Gorenstein algebras and syzygy modules, J. Pure Appl.
Algebra 92 (1994), 1–27. Zbl 0803.16016 MR 1259667

[AR4] M. Auslander and I. Reiten, Syzygy modules for Noetherian rings, J. Algebra 183 (1996),
167–185. Zbl 0857.16006 MR 1397392

[B1] H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962),
18–29. Zbl 0126.06503 MR 138644

[B2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. Zbl 0112.26604
MR 153708

[BEE] L. Bican, R. El Bashir and E. E. Enochs, All modules have flat covers, Bull. London
Math. Soc. 33 (2001), 385–390. Zbl 1029.16002 MR 1832549

[Bj] J. E. Björk, The Auslander condition on Noetherian rings, in Séminaire d’Algèbre Paul
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