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(F,F′)
n (−,−) in the module

category, which unifies several related left derived functors. Then we give some criteria for comput-
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obtained as corollaries.
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1 Introduction

The derived functor is a powerful tool in studying homological properties of rings and modules
in classical homological algebra, see [2, 3, 5, 6, 8, 9], and so on. It is well known that the classical
left derived functor Tor(−,−) induced by −⊗− simultaneously measures unflatness of the first
variable and the second variable, and that one has the adjoint isomorphism theorem with the
classical right derived functor Ext(−,−) induced by Hom(−,−). In fact, these theories are
based on a standard balanced pair (P0, I0), where P0 and I0 are subcategories of R-modules
consisting of projective modules and injective modules respectively.

The relative homological algebra, especially Gorenstein homological algebra, as a general-
ization of the classical one, was introduced by Enochs and Jenda in 1970s. It has been developed
to an advanced level in recent years, see [3, 4, 6, 7, 10, 12] and the references therein. In partic-
ular, in [3], Enochs and Jenda introduced and studied the Gorenstein left (resp. right) derived
functor Gtor(−,−) (resp. Gext(−,−)). Then Holm provided in [7] a sufficient condition for the
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functor −⊗− being balanced with respect to Gorenstein flat modules, and he investigated the
relations between the Gorenstein left derived functor Gtor(−,−) and the classical left derived
functor Tor(−,−). Recently, we introduced a more general right derived functors Exti

A (−,−)
induced by Hom(−,−) relative to a given balanced pair in [11], where A is an abelian category.
The aim of this paper is to introduce and study the relative left derived functor Tor(F ,F ′)

n (−,−)
induced by −⊗−.

This paper is organized as follows.
In Section 2, we give some terminology and some preliminary results. In Section 3, we write

(−)+ := HomZ(−, Q/Z), where Z is the additive group of integers and Q is the additive group
of rational numbers. Let (C , D) be a balanced pair in Mod-R and (C ′, D ′) a balanced pair in
R-Mod, and let F be a precovering subcategory of Mod-R containing C and F ′ a precovering
subcategory of R-Mod containing C ′, such that F ′+ ⊆ D and F+ ⊆ D

′
. Then we may define

the relative left derived functor Tor(F ,F ′)
n (−,−) of − ⊗R −, which unifies several related left

derived functors. We get some criteria for computing the F -resolution dimensions of modules
in terms of the properties of the relative left derived functor Tor(F ,F ′)

n (−,−). Furthermore, by
using the properties of Tor(F ,F ′)

n (−,−), we construct in Section 4 a complete and hereditary
cotorsion pair relative to (C , D). Some known results are obtained as corollaries.

2 Definitions and Notations

In this section, A is an abelian category and a subcategory of A means a full and additive
subcategory closed under isomorphisms and direct summands.

Definition 2.1 ([2]) Let C be a subcategory of A . A morphism f : C → D in A with C ∈ C

is called a C -precover of D if for any morphism g : C ′ → D in A with C ′ ∈ C , there exists a
morphism h : C ′ → C such that the following diagram commutes :

C ′

h

���
�

�
�

g

��
C

f �� D.

The morphism f : C → D is called right minimal if an endomorphism h : C → C is an
automorphism whenever f = fh. A C -precover is called a C -cover if it is right minimal;
C is called a (pre)covering subcategory of A if every object in A has a C -(pre)cover; C is
called a surjective (pre)covering subcategory of A if every object in A has a surjective C -
(pre)cover. Dually, the notions of a C -(pre)envelope, a (pre)enveloping subcategory and a
monic (pre)enveloping subcategory are defined.

The following result is useful.

Lemma 2.2 ([8, Theorem 2.5]) Let T be any class of modules which is closed under pure
quotient modules. Then the following statements are equivalent :

(1) T is closed under direct sums.
(2) T is precovering.
(3) T is covering.

Let C be a subcategory of A . Recall that a sequence in A is called HomA (C ,−)-exact if it
is exact after applying the functor HomA (C,−) for any object C ∈ C . Let M ∈ A . An exact
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sequence (of finite or infinite length):

· · · fn+1−→ Cn
fn−→ · · · f2−→ C1

f1−→ C0
f0−→ M → 0

in A with all Ci ∈ C is called a C -resolution of M if it is HomA (C ,−)-exact, that is, each fi

is an epic C -precover of Im fi. We denote sometimes the C -resolution of M by C• → M , where

C• := · · · → C2
f2−→ C1

f1−→ C0 → 0

is the deleted C -resolution of M . Note that by a version of the comparison theorem, the C -
resolution is unique up to homotopy (see [3, p. 169]). The C -resolution dimension C -res.dim M

of M is defined to be the minimal integer n ≥ 0 such that there is a C -resolution

0 → Cn → · · · → C1 → C0 → M → 0

of M . If there exists no such an integer, we set C -res.dim M = ∞. Dually, the notions of a
HomA (−, C )-exact sequence, a C-coresolution and the C-coresolution dimension C -cores.dim M

of M are defined.

Definition 2.3 ([1]) A pair (C , D) of additive subcategories in A is called a balanced pair if
the following conditions are satisfied :

(1) C is surjective precovering and D is monic preenveloping.
(2) For any M ∈ A , there is a C -resolution C• → M such that it is HomA (−, D)-exact.
(3) For any N ∈ A , there is a D-coresolution N → D• such that it is HomA (C ,−)-exact.

Let (C , D) be a balanced pair in A . For any M, N ∈ A , there exist a C -resolution C• → M

of M and a D-coresolution N → D• of N . We write

Extn
(C ,D)(M, N) := Hn(HomA (C•, N)) = Hn(HomA (M, D•)).

Definition 2.4 ([10]) Let C be a subcategory of A . The Gorenstein subcategory G(C ) of A is
defined as G(C ) := {M ∈ A | there exists an exact sequence · · · → C1 → C0 → C0 → C1 → · · ·
in A with all terms in C , which is both HomA (C ,−)-exact and HomA (−, C )-exact, such that
M ∼= Im(C0 → C0)}.

Let R be a ring. If C is the category of projective (resp. injective) R-modules, then G(C ) is
exactly the category of Gorenstein projective (resp. injective) R-modules, which is denoted by
GProj (resp. GInj). We use GpdM (resp. Gid M) to denote the Gorenstein projective (resp.
injective) dimension of M .

Definition 2.5 ([3]) Let R be a ring. A right R-module M is called Gorenstein flat if there
exists an exact sequence of right R-modules

F : · · · → F1 → F0 → F 0 → F 1 → · · ·
with all terms flat, such that M = Im(F0 → F 0) and the sequence F ⊗R I is exact for any
injective left R-module I. The category of Gorenstein flat R-modules is denoted by GFlat, and
we use GfdM to denote the Gorenstein flat dimension of M .

Let R be a ring. Recall that a short exact sequence ξ: 0 → A → B → C → 0 of R-modules
is called pure exact if the induced sequence HomR(F, ξ) is exact for every finitely presented
R-module F . In this case A is called a pure submodule of B and C is called a pure quotient
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module of B. In addition, modules that are projective (resp. injective) with respect to pure
exact sequences are called pure projective (resp. pure injective). The class of all pure projective
(resp. pure injective) R-modules is denoted by PP (resp. PI).

3 Relative Left Derived Functor Tor(F ,F ′)
n (−, −)

From now on, R is an associative ring with identity, Mod-R is the category of right R-modules
and R-Mod is the category of left R-modules. We use P0 (resp. I0, F0) to denote the sub-
category of Mod-R consisting of projective (resp. injective, flat) modules, and use pdM (resp.
id M , fdM) to denote the projective (resp. injective, flat) dimension of M for any R-module
M . For a subcategory of X of Mod-R, X op denotes the corresponding opposite subcategory
of R-Mod.

We start with the following theorem which is crucial to define the relative left derived
functor Tor(F ,F ′)

n (−,−).

Theorem 3.1 Let (C , D) be a balanced pair in Mod-R and (C ′, D ′) a balanced pair in R-Mod,
and let F be a surjective precovering subcategory of Mod-R containing C and F ′ a surjective
precovering subcategory of R-Mod containing C ′, such that F ′+ ⊆ D and F+ ⊆ D ′. Then we
have

Hn(F• ⊗R N) ∼= Hn(M ⊗R F ′
•)

for any M ∈ Mod-R, N ∈ R-Mod and n ≥ 0, where F• (resp. F ′
•) is the deleted resolution of

M (resp. N).

Proof Note that F and F ′ are both surjective precovering by assumption. Take an F -
resolution

· · · fn+1−→ Fn
fn−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

of M in Mod-R. We claim that

· · · fn+1⊗1F ′−→ Fn ⊗R F ′ fn⊗1F ′−→ · · · f2⊗1F ′−→ F1 ⊗R F ′ f1⊗1F ′−→ F0 ⊗R F ′ f0⊗1F ′−→ M ⊗R F ′ → 0

is exact for any F ′ ∈ F ′. It suffices to show that

0 → Ker fi ⊗R F ′ → Fi ⊗R F ′ → Ker fi−1 ⊗R F ′ → 0 (3.1)

is exact for any i ≥ 0 (where Ker f−1 = M). Because F ′+ ⊆ D , we have Ext1(C ,D)(Ker fi−1,

F ′+) = 0 for any i ≥ 0. Then by [3, Theorem 8.2.3(2)], we get the following commutative
diagram with bottom row exact:

0 �� (Ker fi−1 ⊗R F ′)+ ��

∼=
���
�
� (Fi ⊗R F ′)+ ��

∼=

���
�
� (Ker fi ⊗R F ′)+ ��

∼=

���
�
� 0

0 �� HomR(Ker fi−1, F ′+) �� HomR(Fi, F ′+) �� HomR(Ker fi, F ′+) �� Ext1(C,D)(Ker fi−1, F ′+) = 0.

The vertical isomorphisms follow from the adjoint isomorphism theorem. So the upper row is
also exact, which induces the exactness of the sequence (3.1). The claim is proved.

Similarly, take an F ′-resolution

· · · f ′
n+1−→ F ′

n

f ′
n−→ · · · f ′

2−→ F ′
1

f ′
1−→ F ′

0

f ′
0−→ N → 0
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of N in R-Mod. Then we have a long exact sequence

· · · 1F ⊗fn+1−→ F ⊗R F ′
n

1F ⊗fn−→ · · · 1F ⊗f2−→ F ⊗R F ′
1

1F ⊗f1−→ F ⊗R F ′
0

1F ⊗f ′
0−→ F ⊗R N → 0

for any F ∈ F .
By [3, Definition 8.2.13], − ⊗ − is left balanced relative to F × F ′. So Hn(F• ⊗R N) ∼=

Hn(M ⊗R F ′
•) for any M ∈ Mod-R and N ∈ R-Mod. �

In the rest of this paper, the assumptions in Theorem 3.1 are satisfied. Now we can give the
following definition.

Definition 3.2 For any M ∈ Mod-R and N ∈ R-Mod, we define

Tor(F ,F ′)
n (M, N) := Hn(F• ⊗R N) ∼= Hn(M ⊗R F ′

•).

By Theorem 3.1, we have that, for any n ≥ 0, Tor(F ,F ′)
n (M, N) is independent of the

choices of F -resolutions of M and F ′-resolutions of N . So we have Tor(F ,F ′)
n (M, N) ∼=

Tor(C ,C ′)
n (M, N).
The following example shows that the above definition unifies several related notions.

Example 3.3 (1) Note that (P0, I0) is the standard balanced pair in Mod-R. Let C = P0,
D = I0 and F = F0, and let C ′ = P0

op, D ′ = I0
op and F ′ = F0

op. Then Tor(F ,F ′)
n (M, N) is

exactly the standard homology TorR
n (M, N).

(2) By [3, Example 8.3.2], (PP,PI) is a balanced pair in Mod-R. Let C = PP and D = PI,
and let C ′ = PPop and D ′ = PIop. In this case, we write PtorR

n (M, N) := Tor(F ,F ′)
n (M, N).

(3) Let R be a Gorenstein ring (that is, R is a left and right and noetherian ring with
finite left and right self-injective dimensions). Then by [3, Theorem 12.1.4], we have that
(GProj, GInj) is a balanced pair in Mod-R. Now let C = GProj, D = GInj and F = GFlat,
and let C ′ = GProjop, D ′ = GInjop and F ′ = GFlatop. Then Tor(F ,F ′)

n (M, N) coincides with
GtorR

n (M, N) defined in [3, p. 299].
(4) Let R be an FC ring (that is, R is a left and right and coherent ring with finite left and

right FP-self-injective dimensions). Then by [3, Theorem 12.1.4], we have that (SGF ,GFI)
is a balanced pair in Mod-R, where SGF and GFI are the subcategories of Mod-R consisting
of strongly Gorenstein flat modules and Gorenstein FP-injective modules, respectively. Now
let C = F = SGF and D = GFI, and let C ′ = F ′ = SGFop and D ′ = GFIop. Then
Tor(F ,F ′)

n (M, N) coincides with DtorR
n (M, N) defined in [12].

Lemma 3.4 (1) Tor(F ,F ′)
n (M, N) = 0 for any n < 0.

(2) Tor(F ,F ′)
0 (M, N) is naturally isomorphic to M ⊗R N .

(3) Tor(F ,F ′)
n (M, N) = 0 for any n ≥ 1 if either M ∈ F or N ∈ F ′.

(4) Let

0 → A → B → C → 0

be a HomR(C ,−)-exact (equivalently HomR(−, D)-exact) sequence in Mod-R. Then for any
N ∈ R-Mod, we have the following long exact sequences :

· · · → Tor(F ,F ′)
n (C, N) → Tor(F ,F ′)

n−1 (A, N) → Tor(F ,F ′)
n−1 (B, N) → Tor(F ,F ′)

n−1 (C, N) →

· · · → Tor(F ,F ′)
1 (C, N) → A ⊗R N → B ⊗R N → C ⊗R N → 0.
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(5) Let

0 → A′ → B′ → C ′ → 0

be a HomR(C ′,−)-exact (equivalently HomR(−, D ′)-exact) sequence in R-Mod. Then for any
M ∈ Mod-R, we have the following long exact sequences :

· · · → Tor(F ,F ′)
n (M, C ′) → Tor(F ,F ′)

n−1 (M, A′) → Tor(F ,F ′)
n−1 (M, B′) → Tor(F ,F ′)

n−1 (M, C ′) →

· · · → Tor(F ,F ′)
1 (M, C ′) → M ⊗R A′ → M ⊗R B′ → M ⊗R C ′ → 0.

Proof The assertions (1), (2) and (3) are trivial. Both (4) and (5) follow from [3, Theorem
8.2.3(1)]. �

As an immediate consequence of Lemma 3.4, we have the following

Proposition 3.5 (1) Let

0 → A → B → C → 0

be a HomR(C ,−)-exact (equivalently HomR(−, D)-exact) sequence in Mod-R. If B ∈ F , then
Tor(F ,F ′)

n (C, N) ∼= Tor(F ,F ′)
n−1 (A, N) for any N ∈ R-Mod and n ≥ 2.

(2) Let

0 → A′ → B′ → C ′ → 0

be a HomR(C ′,−)-exact (equivalently HomR(−, D ′)-exact) sequence in R-Mod. If B′ ∈ F ′,
then Tor(F ,F ′)

n (M, C ′) ∼= Tor(F ,F ′)
n−1 (M, A′) for any M ∈ Mod-R and n ≥ 2.

Proposition 3.6 Let N ∈ R-Mod. Then

(1) the canonical map Ext1(C ′,D′)(M, N) → Ext1R(M, N) is an injection for any M ∈ R-
Mod, and

(2) the canonical map TorR
1 (M, N) → Tor(F ,F ′)

1 (M, N) is a surjection for any M ∈ Mod-R.

Proof (1) By [1, Proposition 2.2], take a HomR(C ′,−)-exact exact sequence

0 → N → D → L → 0

in R-Mod with D ∈ D ′. Then by [3, Theorem 8.2.5(1)], we have the following commutative
diagram with exact rows:

HomR(M, D) �� HomR(M, L) �� Ext1(C ′,D′)(M, N) ��

���
�
�

Ext1(C ′,D′)(M, D) = 0

HomR(M, D) �� HomR(M, L) �� Ext1R(M, N),

and the assertion (1) follows.

(2) The argument is dual to that of (1). By the assumption, take a HomR(C ′,−)-exact
exact sequence

0 → K → F → N → 0
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in R-Mod with F ∈ F ′. Then by Lemma 3.4(5), we have the following commutative diagram
with exact rows:

TorR
1 (M, N) ��

���
�
�

M ⊗R K �� M ⊗R F

0 = Tor(F ,F ′)
1 (M, F ) �� Tor(F ,F ′)

1 (M, N) �� M ⊗R K �� M ⊗R F,

and the assertion (2) follows. �
Proposition 3.7 For any M ∈ Mod-R, N ∈ R-Mod and i ≥ 0, we have

Exti
(C ,D)(M, N+) ∼= Tor(F ,F ′)

i (M, N)
+ ∼= Exti

(C ′,D′)(N, M+).

Proof If i = 0, then HomR(M, N+) ∼= (M ⊗R N)+ ∼= HomRop(N, M+) by [9, Theorems 2.75
and 2.76]. If i ≥ 1, then

Exti
(C ,D)(M, N+) ∼= Hi(HomR(C•, N+)) ∼= Hi((C• ⊗R N)+)

∼= (Hi(C• ⊗R N))+ ∼= Tor(F ,F ′)
i (M, N)

+
.

Similarly, we have Exti
(C ′,D′)(N, M+) ∼= Tor(F ,F ′)

i (M, N)
+
. �

Let R be a Gorenstein ring. Then the right derived functors of HomR(M, N) using a
Gorenstein projective resolution of M or a Gorenstein injective coresolution of N are denoted
by Gexti

R(M, N) (see [3, p. 296]).

Corollary 3.8 Let R be a Gorenstein ring. Then for any M ∈ Mod-R, N ∈ R-Mod and
i ≥ 0, we have

Gexti
R(M, N+) ∼= GtorR

i (M, N)
+ ∼= Gexti

Rop(N, M+).

Proof The assertion follows from Proposition 3.7 and Example 3.3 (3). �
Corollary 3.9 For any M ∈ Mod-R, N ∈ R-Mod and n ≥ 1, we have PtorR

n (M, N) = 0.

Proof Put (C , D) = (PP, PI). Notice that N+ is pure injective right R-module for any
N ∈ R-Mod by [3, Proposition 5.3.7], so the assertion follows from Proposition 3.7 and Exam-
ple 3.3(2). �

In the following, we will give some criteria for computing the F -resolution dimensions of
modules in terms of the properties of the relative left derived functor Tor(F ,F ′)

n (−,−).

Theorem 3.10 Consider the following conditions for any M ∈ Mod-R and n ≥ 0.
(1) F -res.dim M ≤ n.
(2) Tor(F ,F ′)

n+i (M, N) = 0 for any N ∈ R-Mod and i ≥ 1.

(3) Tor(F ,F ′)
n+1 (M, N) = 0 for any N ∈ R-Mod.

(4) Tor(F ,F ′)
n+1 (M, N) = 0 for any finitely presented left R-module N .

(5) For any F -resolution

· · · fn−→ Fn−1
fn−1−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

of M , we have Ker fn−1 ∈ F (where Ker f−1 = M).
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(6) There exists an F -resolution

· · · fn−→ Fn−1
fn−1−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0,

of M , such that Ker fn−1 ∈ F (where Ker f−1 = M).
Then we have (5) ⇒ (6) ⇒ (1) ⇒ (2) ⇒ (3) ⇒ (4). If F is closed under pure quotient

modules, then (4) ⇒ (5), and thus all statements are equivalent.

Proof The implications (5) ⇒ (6) ⇒ (1) and (2) ⇒ (3) ⇒ (4) are trivial.
(1) ⇒ (2) Let F -res.dim M ≤ n and

0 −→ Fn
fn−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

be an F -resolution of M . By Lemma 3.4 and Proposition 3.5(1), we have

Tor(F ,F ′)
n+i (M, N) ∼= Tor(F ,F ′)

i (Fn, N) = 0

for any N ∈ R-Mod and i ≥ 1.
Now suppose that F is closed under pure quotient modules. We will prove (4) ⇒ (5)
Let K = Ker fn−1. Then Tor(F ,F ′)

1 (K, N) ∼= Tor(F ,F ′)
n+1 (M, N) = 0 for any finitely pre-

sented left R-module N by (4). Take a HomR(C ,−)-exact exact sequence

0 → L → F → K → 0 (�)

with F ∈ F . Then we have

0 = Tor(F ,F ′)
1 (K, N) → L ⊗R N → F ⊗R N → K ⊗R N → 0,

and so (�) is a pure exact sequence. Now the assertion follows from the assumption. �
In the following, we will give some applications of Theorem 3.10.

Corollary 3.11 ([9, Proposition 8.17]) The following are equivalent for any M ∈ Mod R and
n ≥ 0 :

(1) fdM ≤ n.
(2) TorR

n+i(M, N) = 0 for any N ∈ R-Mod and i ≥ 1.
(3) TorR

n+1(M, N) = 0 for any N ∈ R-Mod.
(4) TorR

n+1(M, N) = 0 for any finitely presented left R-module N .
(5) For any flat resolution

· · · fn−→ Fn−1
fn−1−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

of M , we have Ker fn−1 is flat.
(6) There exists a flat resolution

· · · fn−→ Fn−1
fn−1−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

of M , such that Ker fn−1 is flat.

Proof The assertions follow Theorem 3.10 and Example 3.3(1). �
Corollary 3.12 Let R be a Gorenstein ring. Then the following are equivalent for any M ∈
Mod-R and n ≥ 0 :

(1) GfdM ≤ n.
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(2) GtorR
n+i(M, N) = 0 for any N ∈ R-Mod and i ≥ 1.

(3) GtorR
n+1(M, N) = 0 for any N ∈ R-Mod.

(4) GtorR
n+1(M, N) = 0 for any finitely presented left R-module N .

(5) For any Gorenstein flat resolution

· · · fn−→ Fn−1
fn−1−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

of M , we have Ker fn−1 is Gorenstein flat.
(6) There exists a Gorenstein flat resolution

· · · fn−→ Fn−1
fn−1−→ · · · f2−→ F1

f1−→ F0
f0−→ M → 0

of M , such that Ker fn−1 is Gorenstein flat.

Proof If R is a Gorenstein ring, then by Example 3.3(3), we take a pure exact sequence

0 → A → B → C → 0

with B is Gorenstein flat. So

0 → C+ → B+ → A+ → 0

splits by [3, Proposition 5.3.8], and hence C is Gorenstein flat by [3, Theorem 10.3.8]. Now the
assertion follows from Theorem 3.10. �
Corollary 3.13 Let R be an n-Gorenstein ring. Then GtorR

n+i(M, N) = 0 for any M ∈ Mod-
R, N ∈ R-Mod and i ≥ 1.

Proof Since GfdM ≤ Gpd M ≤ n for any M ∈ Mod-R over an n-Gorenstein ring, the
assertion follows from Corollary 3.12. �
Theorem 3.14 (1) If F is closed under pure quotient modules, then F -res.dim M = D ′-
cores.dim M+ for any M ∈ Mod-R.

(2) If F ′ is closed under pure quotient modules, then F ′-res.dim N = D-cores.dim N+ for
any N ∈ R-Mod.

Proof (1) Let F -res.dim M = n. Because F is closed under pure quotient modules, we have

Tor(F ,F
′
)

n+1 (M, N) = 0 for any N ∈ R-Mod by Theorem 3.10. So Extn+1
(C ′,D′)(N, M+) = 0 by

Proposition 3.7, and hence D ′-cores.dim M+ ≤ n, that is, D ′-cores.dim M+ ≤ F -res.dim M .
Dually, we have F -res.dim M ≤ D ′-cores.dim M+.

(2) It follows from Proposition 3.7 and the opposite version of Theorem 3.10. �
Immediately, we have the following

Corollary 3.15 (1) ([3, Theorem 3.2.19]) fdM = id M+ for any M ∈ Mod-R.
(2) ([6, Proposition 3.11]) Let R be a Gorenstein ring. Then Gfd M = GidM+ for any

M ∈ Mod-R.

4 Cotorsion Pairs

In [11], we introduced cotorsion pairs relative to a given balanced pair (C , D) in an abelian
category. In this section, we study cotorsion pairs induced by Tor(F ,F ′)

n (−,−) relative to (C , D)
in Mod-R and give some applications.
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Let X ⊆ Mod-R and T ⊆ R-Mod. We write

X ⊥∗ := {N ∈ Mod R | Ext1(C ,D)(M, N) = 0 for any M ∈ X },
⊥∗X := {M ∈ Mod R | Ext1(C ,D)(M, N) = 0 for any N ∈ X },
�∗T := {M ∈ Mod R | Tor(F ,F ′)

1 (M, N) = 0 for any N ∈ T }.
Proposition 4.1 Let C ⊆ PP or D ⊆ PI. Then we have

(1) �∗T is covering and closed under direct limits.
(2) If X ⊆ {N+ | N ∈ R-Mod}, then ⊥∗X is covering.

Proof (1) Let 0 → A → B → C → 0 be a pure exact sequence in Mod-R with B ∈ �∗T .
Since C ⊆ PP or D ⊆ PI, the above sequence is HomR(C ,−)-exact by [1, Proposition 2.2].
So we have C ∈ �∗T . Notice that �∗T is closed under direct sums, so �∗T is covering by
Lemma 2.2, and it is closed under direct limits by [5, Corollary 2.9].

(2) By Proposition 3.7, M ∈ ⊥∗(N+) ⇐⇒ M ∈ �∗N for any right R-module M . So the
assertion follows from (1). �

In order to give the main result in this section, we need some definitions.

Definition 4.2 Let E be a full subcategory of Mod-R.
(1) E is said to be closed under C -extensions if 0 → A → B → C → 0 is HomR(C ,−)-exact

exact in Mod-R with A, C in E , then B is also in E .
(2) E is said to be closed under kernels of C -epimorphisms if 0 → A → B → C → 0 is

HomR(C ,−)-exact exact in Mod-R with B, C in E , then A is also in E .
(3) E is called C -resolving if C ⊆ E and E is closed under direct summands, C -extensions

and kernels of C -epimorphisms.

Definition 4.3 If there exists an exact sequence

0 → A → C → M → 0

in R-Mod with C ∈ C ′, then A is called a C ′-syzygy module of M , and denoted by Ω1
C ′(M).

A subcategory T of R-Mod is called C ′-syzygy closed if Ω1
C ′(M) ∈ T for any M ∈ T ; in

particular, if C ′ is the category of projective left R-modules, then T is called syzygy closed.

Definition 4.4 (1) Let T be a full subcategory of Mod-R and M ∈ Mod-R. A T -(pre)cover
f : C → M of M is called special relative to (C , D) if it is epic and Ker f ∈ T ⊥∗ . Dually, a T -
(pre)envelope f : M → C of M is called special relative to (C , D) if f is monic and Coker f ∈
⊥∗T . If each module in Mod-R has a special T -(pre)cover (resp. special T -(pre)envelope)
relative to (C , D), then C is called special (pre)covering (resp. special (pre)enveloping) relative
to (C , D).

(2) A pair (X , Y ) is called a cotorsion pair relative to (C , D) in Mod-R if X = ⊥∗Y and
Y = X ⊥∗ . The cotorsion pair (X , Y ) is called complete relative to (C , D) if X is special
precovering and Y is special preenveloping relative to (C , D); it is called perfect relative to
(C , D) if X is special covering and Y is special enveloping relative to (C , D); and it is called
hereditary relative to (C , D) if X is C -resolving and Y is D-coresolving.

Putting (C , D) = (P0, I0), then those in Definition 4.4(2) are exactly the so-called (classical)
complete, perfect and hereditary cotorsion pairs, respectively (see [3]).
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The main result in this section is the following

Theorem 4.5 Let T be C ′-syzygy closed. If �∗T is closed under pure quotient modules, then
(�∗T , (�∗T )⊥∗) is a complete and hereditary cotorsion pair relative to (C , D).

Proof Note that �∗T is closed under direct sums. So �∗T is covering by Lemma 2.2. Since
C ⊆ �∗T , we have that �∗T is surjective covering.

Next we show that �∗T is C -resolving. Obviously, we have that C ⊆ �∗T and �∗T

is closed under direct summands and C -extensions. Now let 0 → M → N → L → 0 be a
HomR(C ,−)-exact exact sequence in Mod-R with N, L ∈ �∗T . By Lemma 3.4(4), for any
T ∈ T , we get the following exact sequence:

Tor(F ,F ′)
2 (L, T ) → Tor(F ,F ′)

1 (M, T ) → Tor(F ,F ′)
1 (N, T ) → Tor(F ,F ′)

1 (L, T ).

In order to prove that �∗T is closed under kernels of C -epimorphisms, it suffices to show that
Tor(F ,F ′)

2 (L, T ) = 0. Take a HomR(C ′,−)-exact exact sequence 0 → K → C → T → 0 in
R-Mod with C ∈ C ′. Then K ∈ T since T is C ′-syzygy closed. By Lemma 3.4(5), we get the
following exact sequence:

0 = Tor(F ,F ′)
2 (L, C) → Tor(F ,F ′)

2 (L, T ) → Tor(F ,F ′)
1 (L, K) → Tor(F ,F ′)

1 (L, C) = 0.

Since L ∈ �∗T , we have Tor(F ,F ′)
2 (L, T ) = 0. So we conclude that �∗T is C -resolving. Then it

follows from [11, Theorems 3.1 and 3.2] that (�∗T , (�∗T )⊥∗) is a complete hereditary cotorsion
pair relative to (C , D). �

In the rest of this section, we will give some applications of Theorem 4.5.

Corollary 4.6 (1) If F is closed under pure quotient modules, then (F , F⊥∗) is a complete
and hereditary cotorsion pair relative to (C , D).

(2) If �∗G(C ′) is closed under pure quotient modules, then (�∗G(C ′), (�∗G(C ′))⊥∗) is a
complete and hereditary cotorsion pair relative to (C , D).

(3) Let C ⊆ PP or D ⊆ PI. If T is C ′-syzygy closed, then (�∗T , (�∗T )⊥∗) is a complete
and hereditary cotorsion pair relative to (C , D).

Proof (1) Observe that M ∈ F ⇐⇒ Tor(F ,F ′)
1 (M, N) = 0 for any N ∈ R-Mod by Theo-

rem 3.10. Now the assertion follows from Theorem 4.5 by taking T = R-Mod.
(2) It follows from Theorem 4.5 and the fact that G(C ′) is C ′-syzygy closed.
(3) �∗T is closed under pure quotient modules by the proof of Proposition 4.1(1). So the

assertion follows from Theorem 4.5. �
Let X ⊆ Mod R and T ⊆ R-Mod. We write

X ⊥G := {N ∈ Mod R | Gext1R(M, N) = 0 for any M ∈ X },
�GT := {M ∈ Mod R | GtorR

1 (M, T ) = 0 for any T ∈ T },
�1T := {M ∈ Mod R | TorR

1 (M, T ) = 0 for any T ∈ T }.
Corollary 4.7 (1) ([4, Theorems 2.11 and 2.12]) If R is left coherent, then (GFlat, GFlat⊥1)
is a perfect and hereditary cotorsion pair in Mod-R; in particular, GFlat⊥1 is enveloping.

(2) If R is Gorenstein, then (GFlat, GFlat⊥G) is a complete and hereditary cotorsion pair
relative to (GProj, GInj) in Mod-R; in particular, GFlat⊥G is preenveloping.
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Proof (1) Because GFlat is precovering by [13, Theorem A], and we have that GFlat is P0-
resolving and closed under direct limits by [6, Theorem 3.7]. Thus GFlat is surjective covering,
and therefore (GFlat, GFlat⊥1) is a perfect and hereditary cotorsion pair by [11, Theorems 3.1
and 3.2] and [3, Theorem 7.2.6].

(2) By Corollary 3.12, we have that GFlat = �G(R-Mod) and GFlat is closed under pure
quotient modules. So the assertion follows from Theorem 4.5. �
Corollary 4.8 Let T ⊆ R-Mod such that T is syzygy closed. Then (�1T , (�1T )⊥1) is a
perfect and hereditary cotorsion pair in Mod-R.

Proof Put (C , D) = (P0, I0) in Mod-R and (C ′, D ′) = (P0, I0) in R-Mod. By Corol-
lary 4.6(3), we have that (�1T , (�1T )⊥1) is a complete and hereditary classical cotorsion
pair in Mod-R. Now the assertion follows from Proposition 4.1(1) and [3, Theorem 7.2.6]. �

Recall that a module C in Mod-R is called cotorsion if Ext1R(F, C) = 0 for any flat right
R-module F . We use C0 to denote the subcategory of Mod-R consisting of cotorsion modules.

Corollary 4.9 (1) ([5, Theorem 8.1]) (F0, C0) is a perfect and hereditary cotorsion pair in
Mod-R.

(2) (�1 GProj, (�1 GProj)⊥1) is a perfect and hereditary cotorsion pair in Mod-R.
(3) Let R be a right coherent ring. Then (�1 GFlat, (�1 GFlat)⊥1) is a perfect and hereditary

cotorsion pair in Mod-R.

Proof (1) and (2) are trivial by Corollary 4.8.
(3) Since GFlat is syzygy closed by [6, Theorem 3.7], the assertion follows from Corol-

lary 4.8. �
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