Relative singularity categories

CrossMark

Huanhuan Li, Zhaoyong Huang *
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, PR China

A R T I C L E I N F O

Article history:

Received 1 May 2014
Received in revised form 19
December 2014
Available online 11 February 2015
Communicated by S. Koenig

$M S C$:

18E30; 16E35; 18G25

Abstract

We study the properties of the relative derived category $D_{\mathscr{C}}^{b}(\mathscr{A})$ of an abelian category \mathscr{A} relative to a full and additive subcategory \mathscr{C}. In particular, when $\mathscr{A}=$ A-mod for a finite-dimensional algebra A over a field and \mathscr{C} is a contravariantly finite subcategory of A-mod which is admissible and closed under direct summands, the \mathscr{C}-singularity category $D_{\mathscr{C}}$-sg $(\mathscr{A})=D_{\mathscr{C}}^{b}(\mathscr{A}) / K^{b}(\mathscr{C})$ is studied. We give a sufficient condition when this category is triangulated equivalent to the stable category of the Gorenstein category $\mathscr{G}(\mathscr{C})$ of \mathscr{C}.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a finite-dimensional algebra over a field. We denote by A-mod the category of finitely generated left A-modules, and A-proj (resp. A-inj) the full subcategory of A-mod consisting of projective (resp. injective) modules. We use $K^{b}(A)$ and $D^{b}(A)$ to denote the bounded homotopy and derived categories of A-mod respectively, and $K^{b}\left(A\right.$-proj) (resp. $K^{b}(A$-inj $\left.)\right)$ to denote the bounded homotopy category of A-proj (resp. A-inj).

The composition functor $K^{b}(A-\operatorname{proj}) \rightarrow K^{b}(A) \rightarrow D^{b}(A)$ with the former one the inclusion functor and the latter one the quotient functor is naturally a fully faithful triangle functor, and then one can view $K^{b}\left(A\right.$-proj) as a triangulated subcategory of $D^{b}(A)$. In fact it is a thick one by [7, Lemma 1.2.1]. Consider the quotient triangulated category $D_{s g}(A):=D^{b}(A) / K^{b}(A$-proj), which is the so-called "singularity category". This category was first introduced and studied by Buchweitz in [7] where A is assumed to be a left and right noetherian ring. Later on Rickard proved in [26] that for a self-injective algebra A, this category is triangle-equivalent to the stable category of A-mod. This result was generalized to Gorenstein algebra by Happel in [19]. Since A has finite global dimension if and only if $D_{s g}(A)=0$, from this viewpoint $D_{s g}(A)$ measures the homological singularity of the algebra A, we call it the singularity category after [24].

[^0]Besides, other quotient triangulated categories have been studied by many authors. Beligiannis considered the quotient triangulated categories $D^{b}(R$-Mod $) / K^{b}\left(R\right.$-Proj) and $D^{b}(R$-Mod $) / K^{b}(R$-Inj) for arbitrary ring R, where R-Mod is the category of left R-modules and R-Proj (resp. R-Inj) is the full subcategory of R-Mod consisting of projective (resp. injective) modules (see [5]). Let \mathscr{A} be an abelian category. A full and additive subcategory ω of \mathscr{A} is called self-orthogonal if $\operatorname{Ext}_{\mathscr{A}}^{i}(M, N)=0$ for any $M, N \in \omega$ and $i \geq 1$; in particular, an object T in \mathscr{A} is called self-orthogonal if $\operatorname{Ext}_{\mathscr{A}}(T, T)=0$ for any $i \geq 1$. Chen and Zhang studied in [11] the quotient triangulated category $D^{b}(A) / K^{b}\left(\operatorname{add}_{A} T\right)$ for a finite-dimensional algebra A and a self-orthogonal module T in A-mod, where $\operatorname{add}_{A} T$ is the full subcategory of A-mod consisting of direct summands of finite direct sums of T. Recently Chen studied in [10] the relative singularity category $D_{\omega}(\mathscr{A}):=D^{b}(\mathscr{A}) / K^{b}(\omega)$ for an arbitrary abelian category \mathscr{A} and an arbitrary self-orthogonal, full and additive subcategory ω of \mathscr{A}.

For an abelian category \mathscr{A} with enough projective objects, the Gorenstein derived category $D_{g p}^{*}(\mathscr{A})$ of \mathscr{A} was introduced by Gao and Zhang in [16], where $* \in\{$ blank,,$- b\}$. It can be viewed as a generalization of the usual derived category $D^{*}(\mathscr{A})$ by using Gorenstein projective objects instead of projective objects and $\mathscr{G} \mathscr{P}$-quasi-isomorphisms instead of quasi-isomorphisms, where $\mathscr{G} \mathscr{P}$ means "Gorenstein projective". For Gorenstein projective modules and Gorenstein projective objects, we refer to [2,13,14,20,27]. Asadollahi, Hafezi and Vahed studied in [1] the relative derived category $D_{\mathscr{C}}^{*}(\mathscr{A})$ for an arbitrary abelian category \mathscr{A} with respect to a contravariantly finite subcategory \mathscr{C}, where $* \in\{$ blank,,$- b\}$, and they pointed out that $K^{b}(\mathscr{C})$ can be viewed as a triangulated subcategory of $D_{\mathscr{C}}^{b}(\mathscr{A})$.

Given a finite-dimensional algebra A over a field and a full and additive subcategory \mathscr{C} of \mathscr{A} ($=A$-mod) closed under direct summands, it follows from [6] that $K^{b}(\mathscr{C})$ is a Krull-Schmidt category and hence can be viewed as a thick triangulated subcategory of $D_{\mathscr{C}}^{b}(\mathscr{A})$. If the quotient triangulated category $D_{\mathscr{C} \text {-sg }}(\mathscr{A}):=$ $D_{\mathscr{C}}^{b}(\mathscr{A}) / K^{b}(\mathscr{C})$ is considered, then it is natural to ask whether $D_{\mathscr{C}-\mathrm{sg}}(\mathscr{A})$ shares some nice properties of $D_{s g}(A)$. The aim of this paper is to study this question.

In Section 2, we give some terminology and some preliminary results.
In Section 3, for an abelian category \mathscr{A} and a full and additive subcategory \mathscr{C} of \mathscr{A}, we prove that if \mathscr{C} is admissible, then the composition functor $\mathscr{A} \rightarrow K^{b}(\mathscr{A}) \rightarrow D_{\mathscr{C}}^{b}(\mathscr{A})$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor. Let \mathscr{C} be a contravariantly finite subcategory of \mathscr{A} and $\mathscr{D} \subseteq \mathscr{A}$ a subclass of \mathscr{A}. We introduce a dimension denoted by $\mathscr{C D}$-dim M which is called the \mathscr{C}-proper \mathscr{D}-dimension of an object M in \mathscr{A}. By choosing a left \mathscr{C}-resolution C_{M}^{\bullet} of M, we get a functor $\operatorname{Ext}_{\mathscr{C}}^{n}(M,-):=H^{n} \operatorname{Hom}_{\mathscr{A}}\left(C_{M}^{\bullet},-\right)$ for any $n \in \mathbb{Z}$. Then by using the properties of this functor we obtain some equivalent characterizations for $\mathscr{C} \mathscr{C}-\operatorname{dim} M$ being finite.

In Section 4, we introduce the \mathscr{C}-singularity category $D_{\mathscr{C} \text {-sg }}(\mathscr{A}):=D_{\mathscr{C}}^{b}(\mathscr{A}) / K^{b}(\mathscr{C})$, where $\mathscr{A}=A$-mod and \mathscr{C} is a contravariantly finite, full and additive subcategory of \mathscr{A} which is admissible and closed under direct summands. We prove that if $\mathscr{C} \mathscr{C}-\operatorname{dim} \mathscr{A}<\infty$, then $D_{\mathscr{C}-s g}(\mathscr{A})=0$. As a consequence, we get that if A is of finite representation type, then $\mathscr{C} \mathscr{C}-\operatorname{dim} \mathscr{A}<\infty$ if and only if $D_{\mathscr{C} \text {-sg }}(\mathscr{A})=0$. Let $\mathscr{G}(\mathscr{C})$ be the Gorenstein category of \mathscr{C} and ε the collection of all $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact complexes of the form: $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. By [8] (or [25]) ($\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category; moreover, it is a Frobenius category with \mathscr{C} the subcategory of projective-injective objects, see [18]. We prove that if $\mathscr{C} \mathscr{G}(\mathscr{C})$ - $\operatorname{dim} \mathscr{A}<\infty$, then the natural functor $\theta: \mathscr{G}(\mathscr{C}) \rightarrow D_{\mathscr{C}-s g}(\mathscr{A})$ induces a triangle-equivalence $\theta^{\prime}: \underline{\mathscr{G}(\mathscr{C})} \rightarrow D_{\mathscr{C}-\mathrm{sg}}(\mathscr{A})$, where $\underline{\mathscr{G}(\mathscr{C})}$ is the stable category of $\mathscr{G}(\mathscr{C})$.

2. Preliminaries

Throughout this paper, \mathscr{A} is an abelian category, $C(\mathscr{A})$ is the category of complexes of objects in $\mathscr{A}, K^{*}(\mathscr{A})$ is the homotopy category of \mathscr{A} and $D^{*}(\mathscr{A})$ is the usual derived category by inverting the quasi-isomorphisms in $K^{*}(\mathscr{A})$, where $* \in\{$ blank,,$- b\}$. We will use the formula $\operatorname{Hom}_{K(\mathscr{A})}\left(X^{\bullet}, Y^{\bullet}[n]\right)=$ $H^{n} \operatorname{Hom}_{\mathscr{A}}\left(X^{\bullet}, Y^{\bullet}\right)$ for any $X^{\bullet}, Y^{\bullet} \in C(\mathscr{A})$ and $n \in \mathbb{Z}$ (the ring of integers).

Let

$$
X^{\bullet}:=\cdots \longrightarrow X^{n-1} \xrightarrow{d_{X}^{n-1}} X^{n} \xrightarrow{d_{X}^{n}} X^{n+1} \rightarrow \cdots
$$

be a complex and $f: X^{\bullet} \rightarrow Y^{\bullet}$ a cochain map in $C(\mathscr{A})$. Recall that X^{\bullet} is called acyclic (or exact) if $H^{i}\left(X^{\bullet}\right)=0$ for any $i \in \mathbb{Z}$, and f is called a quasi-isomorphism if $H^{i}(f)$ is an isomorphism for any $i \in \mathbb{Z}$.

From now on, we fix a full and additive subcategory \mathscr{C} of \mathscr{A}.
Definition 2.1. Let X^{\bullet}, Y^{\bullet} and f be as above.
(1) (See [14].) X^{\bullet} in $C(\mathscr{A})$ is called \mathscr{C}-acyclic or $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact if the complex $\operatorname{Hom}_{\mathscr{A}}\left(C, X^{\bullet}\right)$ is acyclic for any $C \in \mathscr{C}$. Dually, a $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$-exact complex is defined.
(2) f is called a \mathscr{C}-quasi-isomorphism if the cochain map $\operatorname{Hom}_{\mathscr{A}}(C, f)$ is a quasi-isomorphism for any $C \in \mathscr{C}$.

Remark 2.2. (1) We use $\operatorname{Con}(f)$ to denote the mapping cone of $f: X^{\bullet} \rightarrow Y^{\bullet}$. It is well known that f is a quasi-isomorphism if and only if $\operatorname{Con}(f)$ is acyclic; analogously, f is a \mathscr{C}-quasi-isomorphism if and only if $\operatorname{Con}(f)$ is \mathscr{C}-acyclic.
(2) We use $\mathscr{P}(\mathscr{A})$ to denote the full subcategory of \mathscr{A} consisting of projective objects. If \mathscr{A} has enough projective objects, then every quasi-isomorphism is a $\mathscr{P}(\mathscr{A})$-quasi-isomorphism; and if $\mathscr{P}(\mathscr{A}) \subseteq \mathscr{C}$, then every \mathscr{C}-quasi-isomorphism is a quasi-isomorphism.

We use $K_{a c}^{*}(\mathscr{A})\left(\right.$ resp. $\left.K_{\mathscr{G} \text {-ac }}^{*}(\mathscr{A})\right)$ to denote the full subcategory of $K^{*}(\mathscr{A})$ consists of acyclic complexes (resp. \mathscr{C}-acyclic complexes).

Lemma 2.3. Let X^{\bullet} be a complex in $C(\mathscr{A})$. Then X^{\bullet} is \mathscr{C}-acyclic if and only if the complex $\operatorname{Hom}_{\mathscr{A}}\left(C^{\bullet}, X^{\bullet}\right)$ is acyclic for any $C^{\bullet} \in K^{-}(\mathscr{C})$.

Proof. See [12, Lemma 2.4].
Lemma 2.4. (1) Let C^{\bullet} be a complex in $K^{-}(\mathscr{C})$ and $f: X^{\bullet} \rightarrow C^{\bullet}$ a \mathscr{C}-quasi-isomorphism in $C(\mathscr{A})$. Then there exists a cochain map $g: C^{\bullet} \rightarrow X^{\bullet}$ such that $f g$ is homotopic to $\mathrm{id}_{C} \bullet$.
(2) Any \mathscr{C}-quasi-isomorphism between two complexes in $K^{-}(\mathscr{C})$ is a homotopy equivalence.

Proof. (1) Consider the distinguished triangle:

$$
X^{\bullet} \xrightarrow{f} C^{\bullet} \rightarrow \operatorname{Con}(f) \rightarrow X^{\bullet}[1]
$$

in $K(\mathscr{A})$ with $\operatorname{Con}(f) \mathscr{C}$-acyclic. By applying the functor $\operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet},-\right)$ to it, we get an exact sequence:

$$
\operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, X^{\bullet}\right) \xrightarrow{\operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, f\right)} \operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, C^{\bullet}\right) \rightarrow \operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, \operatorname{Con}(f)\right) .
$$

It follows from Lemma 2.3 that $\operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, \operatorname{Con}(f)\right) \cong H^{0} \operatorname{Hom}_{\mathscr{A}}\left(C^{\bullet}, \operatorname{Con}(f)\right)=0$. So there exists a cochain map $g: C^{\bullet} \rightarrow X^{\bullet}$ such that $f g$ is homotopic to $\operatorname{id}_{C}{ }^{\bullet}$.
(2) Let $f: X^{\bullet} \rightarrow Y^{\bullet}$ be a \mathscr{C}-quasi-isomorphism with X^{\bullet}, Y^{\bullet} in $K^{-}(\mathscr{C})$. By (1), there exists a cochain map $g: Y^{\bullet} \rightarrow X^{\bullet}$, such that $f g$ is homotopic to $\operatorname{id}_{Y} \bullet$. By (1) again, there exists a cochain map $g^{\prime}: X^{\bullet} \rightarrow Y^{\bullet}$, such that $g g^{\prime}$ is homotopic to $\operatorname{id}_{X} \bullet$. Thus $f=g^{\prime}$ in $K(\mathscr{A})$ is a homotopy equivalence.

Definition 2.5. (1) (See [3].) Let $\mathscr{C} \subseteq \mathscr{D}$ be subcategories of \mathscr{A}. The morphism $f: C \rightarrow D$ in \mathscr{A} with $C \in \mathscr{C}$ and $D \in \mathscr{D}$ is called a right \mathscr{C}-approximation of D if for any morphism $g: C^{\prime} \rightarrow D$ in \mathscr{A} with $C^{\prime} \in \mathscr{C}$, there exists a morphism $h: C^{\prime} \rightarrow C$ such that the following diagram commutes:

If each object in \mathscr{D} has a right \mathscr{C}-approximation, then \mathscr{C} is called contravariantly finite in \mathscr{D}.
(2) (See [9].) A contravariantly finite subcategory \mathscr{C} of \mathscr{A} is called admissible if any right \mathscr{C}-approximation is epic. In this case, every \mathscr{C}-acyclic complex is acyclic.

The following definition is cited from [8], see also [25] and [23].
Definition 2.6. Let \mathscr{B} be an additive category. A kernel-cokernel pair (i, p) in \mathscr{B} is a pair of composable morphisms $L \xrightarrow{i} M \xrightarrow{p} N$ such that i is a kernel of p and p is a cokernel of i. If a class ε of kernel-cokernel pairs on \mathscr{B} is fixed, an admissible monic (sometimes called inflation) is a morphism i for which there exists a morphism p such that $(i, p) \in \varepsilon$. Admissible epics (sometimes called deflations) are defined dually.

An exact category is a pair $(\mathscr{B}, \varepsilon)$ consisting of an additive category \mathscr{B} and a class of kernel-cokernel pairs ε on \mathscr{B} with ε closed under isomorphisms satisfying the following axioms:
[E0] For any object B in \mathscr{B}, the identity morphism id_{B} is both an admissible monic and an admissible epic.
[E1] The class of admissible monics is closed under compositions.
[E1 ${ }^{\mathrm{op}}$] The class of admissible epics is closed under compositions.
[E2] The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible monic.
[E2 $\left.{ }^{\mathrm{op}}\right]$ The pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible epic.

Elements of ε are called short exact sequences (or conflations).
Let \mathscr{B} be a triangulated subcategory of a triangulated category \mathscr{K} and S the compatible multiplicative system determined by \mathscr{B}. In the Verdier quotient category $\mathscr{K} / \mathscr{B}$, each morphism $f: X \rightarrow Y$ is given by an equivalence class of right fractions f / s or left fractions $s \backslash f$ as presented by $X \stackrel{s}{\Longleftrightarrow} Z \xrightarrow{f} Y$ or $X \xrightarrow{f} Z \stackrel{s}{\Leftarrow} Y$, where the doubled arrow means $s \in S$.

3. \mathscr{C}-derived categories

For a subclass \mathscr{C} of objects in a triangulated category \mathscr{K}, it is known that the full subcategory $\mathscr{C}^{\perp}=$ $\left\{X \in \mathscr{K} \mid \operatorname{Hom}_{\mathscr{K}}(C[n], X)=0\right.$ for any $C \in \mathscr{C}$ and $\left.n \in \mathbb{Z}\right\}$ is a triangulated subcategory of \mathscr{K} and is closed under direct summands, and hence is thick [26]. It follows that $K_{\mathscr{C} \text {-ac }}^{*}(\mathscr{A})$ is a thick subcategory of $K^{*}(\mathscr{A})$.

Definition 3.1. (See [28].) The Verdier quotient category $D_{\mathscr{C}}^{*}(\mathscr{A}):=K^{*}(\mathscr{A}) / K_{\mathscr{C} \text {-ac }}^{*}(\mathscr{A})$ is called the \mathscr{C}-derived category of \mathscr{A}, where $* \in\{$ blank,,$- b\}$.

Example 3.2. (1) If \mathscr{A} has enough projective objects and $\mathscr{C}=\mathscr{P}(\mathscr{A})$, then $D_{\mathscr{C}}^{*}(\mathscr{A})$ is the usual derived category $D^{*}(\mathscr{A})$.
(2) If \mathscr{A} has enough projective objects and $\mathscr{C}=\mathscr{G}(\mathscr{A})$ (the full subcategory of \mathscr{A} consisting of Gorenstein projective objects), then $D_{\mathscr{C}}^{*}(\mathscr{A})$ is the Gorenstein derived category $D_{g p}^{*}(\mathscr{A})$ defined in [16].
(3) Let R be a ring and $\mathscr{A}=R$-Mod. If $\mathscr{C}=\mathscr{P} \mathscr{P}(R)$ (the full subcategory of R-Mod consisting of pure projective modules), then $D_{\mathscr{C}}^{*}(\mathscr{A})$ is the pure derived category $D_{\text {pur }}^{*}(\mathscr{A})$ in [29].

Proposition 3.3. (See [1].) (1) $D_{\mathscr{C}}^{-}(\mathscr{A})$ is a triangulated subcategory of $D_{\mathscr{C}}(\mathscr{A})$, and $D_{\mathscr{C}}^{b}(\mathscr{A})$ is a triangulated subcategory of $D_{\mathscr{C}}^{-}(\mathscr{A})$.
(2) For any $C^{\bullet} \in K^{-}(\mathscr{C})$ and $X^{\bullet} \in C(\mathscr{A})$, there exists an isomorphism of abelian groups:

$$
\operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, X^{\bullet}\right) \cong \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}\left(C^{\bullet}, X^{\bullet}\right)
$$

(3) Let $\mathscr{C} \subseteq \mathscr{A}$ be admissible. Then the composition functor $\mathscr{A} \rightarrow K^{b}(\mathscr{A}) \rightarrow D_{\mathscr{C}}^{b}(\mathscr{A})$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor.

Proof. In the following, each morphism in $D_{\mathscr{C}}^{*}(\mathscr{A})$ will be denoted by the equivalence class of right fractions, where $* \in\{$ blank,,$- b\}$.
(1) We only prove the first assertion, the second one can be proved similarly.

Note that $D_{\mathscr{C}}^{-}(\mathscr{A})=K^{-}(\mathscr{A}) / K^{-}(\mathscr{A}) \bigcap K_{\mathscr{C} \text {-ac }}(\mathscr{A})$ and $D_{\mathscr{C}}(\mathscr{A})=K(\mathscr{A}) / K_{\mathscr{C} \text {-ac }}(\mathscr{A})$. By [17, Proposition 3.2.10], it suffices to show that for any \mathscr{C}-quasi-isomorphism $s: Y^{\bullet} \rightarrow X^{\bullet}$ with $X^{\bullet} \in K^{-}(\mathscr{A})$, there exists a morphism $f: Z^{\bullet} \rightarrow Y^{\bullet}$ with $Z^{\bullet} \in K^{-}(\mathscr{A})$ such that $s f$ is a \mathscr{C}-quasi-isomorphism.

Suppose $X^{n} \neq 0$ with $X^{i}=0$ for any $i>n$. Then there exists a commutative diagram:

where $\operatorname{Ker} d_{Y}^{n+1} \rightarrow Y^{n+1}$ is the canonical map. Since both f and s are \mathscr{C}-quasi-isomorphisms, so is $s f$.
(2) Consider the canonical map $G: \operatorname{Hom}_{K(\mathscr{A})}\left(C^{\bullet}, X^{\bullet}\right) \rightarrow \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}\left(C^{\bullet}, X^{\bullet}\right)$ defined by $G(f)=f / \operatorname{id}_{C} \bullet$. If $G(f)=0$, then there exists a \mathscr{C}-quasi-isomorphism $s: Z^{\bullet} \rightarrow C^{\bullet}$ such that $f s \sim 0$. By Lemma 2.4(1) there exists a cochain map $g: C^{\bullet} \rightarrow Z^{\bullet}$ such that $s g \sim \operatorname{id}_{C}$ •, and then $f \sim 0$. On the other hand, let $f / s \in \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}\left(C^{\bullet}, X^{\bullet}\right)$, that is, it has a diagram of the form $C^{\bullet} \stackrel{s}{\Longleftrightarrow} Z^{\bullet} \xrightarrow{f} X^{\bullet}$, where s is a \mathscr{C}-quasi-isomorphism. It follows from Lemma 2.4(1) there exists a cochain map $g: C^{\bullet} \rightarrow Z^{\bullet}$ such that $s g \sim \mathrm{id}_{C} \bullet$, which implies that $f / s=(f g) / \mathrm{id}_{C} \bullet=G(f g)$. Thus G is an isomorphism, as desired.
(3) Let $F: \mathscr{A} \rightarrow D_{\mathscr{C}}^{b}(\mathscr{A})$ denote the composition functor, it suffices to show that for any $M, N \in \mathscr{A}$, the map $F: \operatorname{Hom}_{\mathscr{A}}(M, N) \rightarrow \operatorname{Hom}_{D_{\mathscr{G}}^{b}(\mathscr{A})}(M, N)$ is an isomorphism.

Let $f \in \operatorname{Hom}_{\mathscr{A}}(M, N)$. If $F(f)=0$, then there exists a \mathscr{C}-quasi-isomorphism $s: Z^{\bullet} \rightarrow M$ such that $f s \sim 0$, and then $H^{0}(f) H^{0}(s)=0$. Since $H^{0}(s)$ is an isomorphism, $f=H^{0}(f)=0$. On the other hand, let $f / s \in \operatorname{Hom}_{D_{6}^{b}(\mathscr{A})}(M, N)$, that is, it has a diagram of the form $M \stackrel{s}{\Longleftrightarrow} Z \xrightarrow{f} N$, where s is a \mathscr{C}-quasiisomorphism. Then $H^{0}(s): H^{0}\left(Z^{\bullet}\right) \rightarrow M$ is an isomorphism. Put $g:=H^{0}(f) H^{0}(s)^{-1} \in \operatorname{Hom}_{\mathscr{A}}(M, N)$. Consider the truncation:

$$
U^{\bullet}:=\cdots \rightarrow Z^{-2} \xrightarrow{d_{Z}^{-2}} Z^{-1} \xrightarrow{d_{Z}^{-1}} \operatorname{Ker} d^{0} \rightarrow 0
$$

of Z^{\bullet} and the canonical map $i: U^{\bullet} \rightarrow Z^{\bullet}$. Since s is a \mathscr{C}-quasi-isomorphism, so is $s i$. We have the following commutative diagram:

where $U^{\bullet} \rightarrow H^{0}\left(Z^{\bullet}\right)$ is the canonical map, so $g s i=H^{0}(f) H^{0}(s)^{-1}$ si $=f i$. Then we get the following commutative diagram of complexes:

which implies $F(g)=g / \operatorname{id}_{M}=f / s$.

Set $K^{-, \mathscr{C b}}(\mathscr{C}):=\left\{X^{\bullet} \in K^{-}(\mathscr{C}) \mid\right.$ there exists $n \in \mathbb{Z}$ such that $H^{i}\left(\operatorname{Hom}_{\mathscr{A}}\left(C, X^{\bullet}\right)\right)=0$ for any $C \in \mathscr{C}$ and $i \leq n\}$.

Proposition 3.4. (See [1, Theorem 3.3].) If \mathscr{C} is a contravariantly finite subcategory of \mathscr{A}, then we have a triangle-equivalence $K^{-, \mathscr{C b}}(\mathscr{C}) \cong D_{\mathscr{C}}^{b}(\mathscr{A})$.

In the rest of this section, we always suppose that \mathscr{C} is a contravariantly finite subcategory of \mathscr{A} unless otherwise specified.

Definition 3.5. Let \mathscr{D} be a subclass of objects in \mathscr{A} and $M \in \mathscr{A}$.
(1) A \mathscr{C}-proper \mathscr{D}-resolution of M is a \mathscr{C}-quasi-isomorphism $f: D^{\bullet} \rightarrow M$, where D^{\bullet} is a complex of objects in \mathscr{D} with $D^{n}=0$ for any $n>0$, that is, it has an associated $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact complex $\cdots \rightarrow D^{-n} \rightarrow D^{-n+1} \rightarrow \cdots \rightarrow D^{0} \xrightarrow{f} M \rightarrow 0$.
(2) The \mathscr{C}-proper \mathscr{D}-dimension of M, written $\mathscr{C} \mathscr{D}$ - $\operatorname{dim} M$, is defined as $\inf \{n \mid$ there exists a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact complex $\left.0 \rightarrow D^{-n} \rightarrow D^{-n+1} \rightarrow \cdots \rightarrow D^{0} \xrightarrow{f} M \rightarrow 0\right\}$. If no such an integer exists, then set $\mathscr{C} \mathscr{D}$ - $\operatorname{dim} M=\infty$.
(3) For a class \mathscr{E} of objects of \mathscr{A}, the \mathscr{C}-proper \mathscr{D}-dimension of \mathscr{E}, written $\mathscr{C} \mathscr{D}$-dim \mathscr{E}, is defined as $\sup \{\mathscr{C} \mathscr{D}-\operatorname{dim} M \mid M \in \mathscr{E}\}$.

Remark 3.6. (1) If \mathscr{A} has enough projective objects and $\mathscr{C}=\mathscr{P}(\mathscr{A})$, then a \mathscr{C}-proper \mathscr{D}-resolution is just a \mathscr{D}-resolution and the \mathscr{C}-proper \mathscr{D}-dimension of an object $M \in \mathscr{A}$ is just the usual \mathscr{D}-dimension \mathscr{D}-dim M of M.
(2) If $\mathscr{D}=\mathscr{C}$, then a \mathscr{C}-proper \mathscr{D}-resolution is just a \mathscr{C}-proper resolution. In this case, it is also called a left \mathscr{C}-resolution and the \mathscr{C}-proper \mathscr{D}-dimension is the left \mathscr{C}-dimension (see [14]).

Let $M \in \mathscr{A}$. Since \mathscr{C} is a contravariantly finite subcategory of \mathscr{A}, we may choose a left \mathscr{C}-resolution $C_{M}^{\bullet} \rightarrow M$ of M. Put $\operatorname{Ext}_{\mathscr{C}}^{n}(M, N):=H^{n} \operatorname{Hom}_{\mathscr{A}}\left(C_{M}^{\bullet}, N\right)$ for any $N \in \mathscr{A}$ and $n \in \mathbb{Z}$. Note that C_{M}^{\bullet} is isomorphic to M in $D_{\mathscr{C}}(\mathscr{A})$. By Proposition $3.3(1)(2)$, we have $\operatorname{Ext}_{\mathscr{C}}^{n}(M, N)=H^{n} \operatorname{Hom}_{\mathscr{A}}\left(C_{M}^{\bullet}, N\right)=$ $\operatorname{Hom}_{K(\mathscr{A})}\left(C_{M}^{\bullet}, N[n]\right) \cong \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}\left(C_{M}^{\bullet}, N[n]\right) \cong \operatorname{Hom}_{D_{\mathscr{C}}^{b}(\mathscr{A})}(M, N[n])$.

The following is cited from [14, Chapter 8].

Lemma 3.7. (1) For any $M \in \mathscr{A}$, the functor $\operatorname{Ext}_{\mathscr{C}}^{n}(M,-)$ does not depend on the choices of left \mathscr{C}-resolutions of M.
(2) For any $M \in \mathscr{A}$ and $n<0, \operatorname{Ext}_{\mathscr{C}}^{n}(M,-)=0$ and there exists a natural equivalence $\operatorname{Hom}_{\mathscr{A}}(M,-) \cong$ $\operatorname{Ext}_{\mathscr{C}}^{0}(M,-)$ whenever \mathscr{C} is admissible.
(3) If \mathscr{C} is admissible, then every $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact complex $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ induces a long exact sequence $0 \rightarrow \operatorname{Hom}_{\mathscr{A}}(N,-) \rightarrow \operatorname{Hom}_{\mathscr{A}}(M,-) \rightarrow \operatorname{Hom}_{\mathscr{A}}(L,-) \rightarrow \cdots \rightarrow \operatorname{Ext}_{\mathscr{C}}^{n}(N,-) \rightarrow \operatorname{Ext}_{\mathscr{C}}^{n}(M,-) \rightarrow$ $\operatorname{Ext}_{\mathscr{C}}^{n}(L,-) \rightarrow \operatorname{Ext}_{\mathscr{C}}^{n+1}(N,-) \rightarrow \cdots$.

Theorem 3.8. Let \mathscr{C} be admissible and closed under direct summands, then the following statements are equivalent for any $M \in \mathscr{A}$ and $n \geq 0$.
(1) $\mathscr{C} \mathscr{C}-\operatorname{dim} M \leq n$.
(2) $\operatorname{Ext}_{\mathscr{C}}^{i}(M, N)=0$ for any $N \in \mathscr{A}$ and $i \geq n+1$.
(3) $\operatorname{Ext}_{\mathscr{C}}^{n+1}(M, N)=0$ for any $N \in \mathscr{A}$.
(4) For any left \mathscr{C}-resolution $C_{M}^{\bullet} \rightarrow M$ of M, $\operatorname{Ker} d_{C_{M}}^{-n+1} \in \mathscr{C}$, where $d_{C_{M}}^{-n+1}$ is the $(-n+1)$ st differential of C_{M}^{\bullet}.

Proof. (1) \Rightarrow (2) Let $0 \rightarrow C^{-n} \rightarrow C^{-n+1} \rightarrow \cdots \rightarrow C^{0} \rightarrow M \rightarrow 0$ be a left \mathscr{C}-resolution of M. Then $\operatorname{Hom}_{\mathscr{A}}\left(C^{-i}, N\right)=0$ for any $N \in \mathscr{A}$ and $i \geq n+1$ and the assertion follows.
$(2) \Rightarrow(3)$ and $(4) \Rightarrow(1)$ are trivial.
(3) \Rightarrow (4) Let $\cdots \rightarrow C_{M}^{-n} \xrightarrow{d_{C_{M}}^{-n}} C_{M}^{-n+1} \rightarrow \cdots \rightarrow C_{M}^{0} \rightarrow M \rightarrow 0$ be a left \mathscr{C}-resolution of M. Then we get a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact exact sequence $0 \rightarrow \operatorname{Ker} d_{C_{M}}^{-n} \rightarrow C_{M}^{-n} \rightarrow \operatorname{Ker} d_{C_{M}}^{-n+1} \rightarrow 0$. Since $\operatorname{Ext}_{\mathscr{C}}^{n+1}\left(M, \operatorname{Ker} d_{C_{M}}^{-n}\right)=0, \operatorname{Ext}_{\mathscr{C}}^{1}\left(\operatorname{Ker} d_{C_{M}}^{-n+1}, \operatorname{Ker} d_{C_{M}}^{-n}\right) \cong \operatorname{Ext}_{\mathscr{C}}^{n+1}\left(M, \operatorname{Ker} d_{C_{M}}^{-n}\right)=0$ by the dimension shifting. Applying $\operatorname{Hom}_{\mathscr{A}}\left(-, \operatorname{Ker} d_{C_{M}}^{-n}\right)$ to the exact sequence $0 \rightarrow \operatorname{Ker} d_{C_{M}}^{-n} \rightarrow C_{M}^{-n} \rightarrow \operatorname{Ker} d_{C_{M}}^{-n+1} \rightarrow 0$, it follows from Lemma 3.7(3) that the sequence splits. So $\operatorname{Ker} d_{C_{M}}^{-n+1}$ is a direct summand of C_{M}^{-n} and $\operatorname{Ker} d_{C_{M}}^{-n+1} \in \mathscr{C}$.

4. \mathscr{C}-singularity categories

In this section, unless otherwise specified, we always suppose that A is a finite-dimensional algebra over a field, $\mathscr{A}=A$-mod and \mathscr{C} is a full and additive subcategory of \mathscr{A} which is contravariantly finite in \mathscr{A} and is admissible and closed under direct summands.

Recall that an additive category is called a Krull-Schmidt category if each of its object X has a decomposition $X \cong X_{1} \bigoplus X_{2} \bigoplus \cdots \bigoplus X_{n}$ such that each X_{i} is indecomposable with a local endomorphism ring. By [6, Proposition A.2] $K^{b}(\mathscr{C})$ is a Krull-Schmidt category, so it is closed under direct summands and $K^{b}(\mathscr{C})$ viewed as a full triangulated subcategory of $D_{\mathscr{C}}^{b}(\mathscr{A})$ is thick. It is of interest to consider the quotient triangulated category $D_{\mathscr{C}}^{b}(\mathscr{A}) / K^{b}(\mathscr{C})$.

Definition 4.1. We call $D_{\mathscr{C} \text {-sg }}(\mathscr{A}):=D_{\mathscr{C}}^{b}(\mathscr{A}) / K^{b}(\mathscr{C})$ the \mathscr{C}-singularity category.
Example 4.2. (1) If $\mathscr{C}=A$-proj, then $D_{\mathscr{C}}^{b}(\mathscr{A})$ is the usual bounded derived category $D^{b}(\mathscr{A})$ and the \mathscr{C}-singularity category $D_{\mathscr{C} \text {-sg }}(\mathscr{A})$ is the singularity category $D_{s g}(A)$ which is called the "stabilized derived category" in [7].
(2) Let $\mathscr{C}=\mathscr{G}(A)$ (the subcategory of A-mod consisting of Gorenstein projective modules). If $\mathscr{G}(A)$ is contravariantly finite in A-mod, for example, if A is Gorenstein (that is, the left and right self-injective dimensions of A are finite) or $\mathscr{G}(A)$ contains only finitely many non-isomorphic indecomposable modules, then the bounded \mathscr{C}-derived category of \mathscr{A}, denoted by $D_{\mathscr{G}(A)}^{b}(\mathscr{A})$, is the bounded Gorenstein derived category introduced in [16]. The \mathscr{C}-singularity category $D_{\mathscr{G}(A) \text {-sg }}(\mathscr{A})$ is the quotient triangulated category $D_{\mathscr{G}_{(A)}}^{b}(\mathscr{A}) / K^{b}(\mathscr{G}(A))$, we call it the Gorenstein singularity category.

Given a complex X^{\bullet} and an integer $i \in \mathbb{Z}$, we denote by $\sigma^{\geq i} X^{\bullet}$ the complex with X^{j} in the j th degree whenever $j \geq i$ and 0 elsewhere, and set $\sigma^{>i} X^{\bullet}:=\sigma^{\geq i+1} X^{\bullet}$. Dually, for the notations $\sigma^{\leq i} X^{\bullet}$ and $\sigma^{<i} X^{\bullet}$. Recall that the cardinal of the set $\left\{X^{i} \neq 0 \mid i \in \mathbb{Z}\right\}$ is called the width of X^{\bullet}, and denoted by $\omega\left(X^{\bullet}\right)$.

It is well known that A has finite global dimension if and only if $D_{s g}(A)=0$. For the \mathscr{C}-singularity category $D_{\mathscr{C}-s g}^{b}(\mathscr{A})$ we have the following property.

Proposition 4.3. If $\mathscr{C} \mathscr{C}$ - $\operatorname{dim} \mathscr{A}<\infty$, then $D_{\mathscr{C} \text {-sg }}(\mathscr{A})=0$.
Proof. We claim that for every $X^{\bullet} \in K^{b}(\mathscr{A})$ there exists a \mathscr{C}-quasi-isomorphism $C_{X}^{\bullet} \rightarrow X^{\bullet}$ such that $C_{X}^{\bullet} \in K^{b}(\mathscr{C})$. We proceed by induction on the width $\omega\left(X^{\bullet}\right)$ of X^{\bullet}.

Let $\omega\left(X^{\bullet}\right)=1$. Because \mathscr{C} is contravariantly finite and $\mathscr{C} \mathscr{C}$ - $\operatorname{dim} \mathscr{A}<\infty$, there exists a \mathscr{C}-quasiisomorphism $C_{X}^{\bullet} \rightarrow X^{\bullet}$ with $C_{X}^{\bullet} \in K^{b}(\mathscr{C})$.

Let $\omega\left(X^{\bullet}\right) \geq 2$ with $X^{j} \neq 0$ and $X^{i}=0$ for any $i<j$. Put $X_{1}^{\bullet}:=X^{j}[-j-1], X_{2}^{\bullet}:=\sigma^{>j} X^{\bullet}$ and $g=d_{X}^{j}[-j-1]$. We have a distinguished triangle $X_{1}^{\bullet} \xrightarrow{g} X_{2}^{\bullet} \rightarrow X^{\bullet} \rightarrow X_{1}^{\bullet}[1]$ in $K^{b}(\mathscr{A})$. By the induction hypothesis, there exist \mathscr{C}-quasi-isomorphisms $f_{X_{1}}: C_{X_{1}}^{\bullet} \rightarrow X_{1}^{\bullet}$ and $f_{X_{2}}: C_{X_{2}}^{\bullet} \rightarrow X_{2}^{\bullet}$ with $C_{X_{1}}^{\bullet}, C_{X_{2}}^{\bullet} \in K^{b}(\mathscr{C})$. Then by Remark 2.2(1) and Lemma 2.3, $f_{X_{2}}$ induces an isomorphism:

$$
\operatorname{Hom}_{K^{b}(\mathscr{A})}\left(C_{X_{1}}^{\bullet}, C_{X_{2}}^{\bullet}\right) \cong \operatorname{Hom}_{K^{b}(\mathscr{A})}\left(C_{X_{1}}^{\bullet}, X_{2}^{\bullet}\right)
$$

So there exists a morphism $f^{\bullet}: C_{X_{1}}^{\bullet} \rightarrow C_{X_{2}}^{\bullet}$, which is unique up to homotopy, such that $f_{X_{2}} f^{\bullet}=g f_{X_{1}}$. Put $C_{X}^{\bullet}=\operatorname{Con}\left(f^{\bullet}\right)$. We have the following distinguished triangle in $K^{b}(\mathscr{C})$:

$$
C_{X_{1}}^{\bullet} \xrightarrow{f^{\bullet}} C_{X_{2}}^{\bullet} \rightarrow C_{X}^{\bullet} \rightarrow C_{X_{1}}^{\bullet}[1] .
$$

Then there exists a morphism $f_{X}: C_{X}^{\bullet} \rightarrow X^{\bullet}$ such that the following diagram commutes:

For any $C \in \mathscr{C}$ and any $n \in \mathbb{Z}$, we have the following commutative diagram with exact rows:

where $(C,-)$ denotes the functor $\operatorname{Hom}_{K(\mathscr{A})}(C,-)$. Since $f_{X_{1}}$ and $f_{X_{2}}$ are \mathscr{C}-quasi-isomorphisms, $\left(C, f_{X_{1}}[n]\right)$ and $\left(C, f_{X_{2}}[n]\right)$ are isomorphisms, and hence so is $\left(C, f_{X}[n]\right)$ for each n, that is, f_{X} is a \mathscr{C}-quasi-isomorphism. The claim is proved.

It follows from the claim that every object X^{\bullet} in $D_{\mathscr{C}}^{b}(\mathscr{A})$ is isomorphic to some C_{X}^{\bullet} of $K^{b}(\mathscr{C})$ in $D_{\mathscr{C}}^{b}(\mathscr{A})$. Thus $D_{\mathscr{C} \text {-sg }}(\mathscr{A})=0$.

As an application of Proposition 4.3, we have the following
Corollary 4.4. (1) $\mathscr{C} \mathscr{C}-\operatorname{dim} M<\infty$ for any $M \in \mathscr{A}$ if and only if $D_{\mathscr{C}-s g}(\mathscr{A})=0$.
(2) If A is of finite representation type, then $\mathscr{C} \mathscr{C}-\operatorname{dim} \mathscr{A}<\infty$ if and only if $D_{\mathscr{C} \text {-sg }}(\mathscr{A})=0$.

Proof. In both assertions, the necessity follows from Proposition 4.3. In the following, we only need to prove the sufficiency.
(1) Let $D_{\mathscr{C}-s g}(\mathscr{A})=0$ and $M \in \mathscr{A}$. Then $M=0$ in $D_{\mathscr{C}-s g}(\mathscr{A})$ and M is isomorphic to C^{\bullet} in $D_{\mathscr{C}}^{b}(\mathscr{A})$ for some $C^{\bullet} \in K^{b}(\mathscr{C})$. We use the equivalent class of right fractions to denote a morphism in $D_{\mathscr{C}}^{b}(\mathscr{A})$. Let $f / s: C^{\bullet} \stackrel{s}{\Longleftarrow} Z \stackrel{f}{\longrightarrow} M$ be an isomorphism in $D_{\mathscr{C}}^{b}(\mathscr{A})$, where s is a \mathscr{C}-quasi-isomorphism. Then f is a
\mathscr{C}-quasi-isomorphism. By Lemma 2.4(1), there exists a \mathscr{C}-quasi-isomorphism $s^{\prime}: C^{\bullet} \rightarrow Z^{\bullet}$. So $f s^{\prime}: C^{\bullet} \rightarrow M$ is also a \mathscr{C}-quasi-isomorphism and hence $H^{i} \operatorname{Hom}_{\mathscr{A}}\left(C, C^{\bullet}\right)=0$ whenever $C \in \mathscr{C}$ and $i \neq 0$. Consider the truncation:

$$
C^{\prime \bullet}:=\cdots \rightarrow C^{-2} \rightarrow C^{-1} \rightarrow \operatorname{Ker} d_{C}^{0} \rightarrow 0
$$

of C^{\bullet}. Then the composition $C^{\bullet \bullet} \hookrightarrow C^{\bullet} \xrightarrow{f s^{\prime}} M$ is a \mathscr{C}-quasi-isomorphism. Notice that $C^{\bullet} \in K^{b}(\mathscr{C})$, we may suppose $C^{n} \neq 0$ and $C^{i}=0$ whenever $i>n$. Then we have a \mathscr{C}-acyclic complex $0 \rightarrow \operatorname{Ker} d_{C}^{0} \rightarrow$ $C^{0} \xrightarrow{d_{C}^{0}} C^{1} \rightarrow \cdots \rightarrow C^{n} \rightarrow 0$ with all C^{i} in \mathscr{C}. Because \mathscr{C} is closed under direct summands, Ker $d_{C}^{0} \in \mathscr{C}$ and $\mathscr{C} \mathscr{C}$-dim $M<\infty$.
(2) Let A be of finite representation type, and let $\left\{M_{i} \mid 1 \leq i \leq n\right\}$ be the set of all non-isomorphic indecomposable modules in \mathscr{A}. By (1) $\mathscr{C} \mathscr{C}$ - $\operatorname{dim} M_{i}<\infty$ for any $1 \leq i \leq n$. Now set $m=\sup \left\{\mathscr{C} \mathscr{C}\right.$ - $\operatorname{dim} M_{i} \mid$ $1 \leq i \leq n\}$. Since \mathscr{A} is Krull-Schmidt, every module $M \in \mathscr{A}$ can be decomposed into a finite direct sum of modules in $\left\{M_{i} \mid 1 \leq i \leq n\right\}$. Then it is easy to see that $\mathscr{C} \mathscr{C}-\operatorname{dim} M \leq m$ and $\mathscr{C} \mathscr{C}-\operatorname{dim} \mathscr{A} \leq m<\infty$.

As a consequence of Corollary 4.4(1), we have the following
Corollary 4.5. If A is Gorenstein, then $D_{\mathscr{G}(A)-s g}(\mathscr{A})=0$.
Proof. Let A be Gorenstein. Because A-proj $\subseteq \mathscr{G}(A)$, we have that $\mathscr{G}(A)$ is admissible in A-mod by [14, Remark 11.5.2]. By [21, Theorem], we have $\mathscr{G}(A)$ - $\operatorname{dim} M<\infty$ for any $M \in \mathscr{A}$. So $D_{\mathscr{G}(A)-s g}(\mathscr{A})=0$ by [4, Proposition 4.8] and Corollary 4.4(1).

Put $\mathscr{G}(\mathscr{C})=\left\{M \cong \operatorname{Im}\left(C^{-1} \rightarrow C^{0}\right) \mid\right.$ there exists an acyclic complex $\cdots \rightarrow C^{-1} \rightarrow C^{0} \rightarrow C^{1} \rightarrow$ \cdots in \mathscr{C}, which is both $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact and $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$-exact $\}$, see [27], where it is called the Gorenstein category of \mathscr{C}. This notion unifies the following ones: modules of Gorenstein dimension zero [2], Gorenstein projective modules, Gorenstein injective modules [13], V-Gorenstein projective modules, V-Gorenstein injective modules [15], and so on. Set $\mathscr{G}^{1}(\mathscr{C})=\mathscr{G}(\mathscr{C})$ and inductively set $\mathscr{G}^{n}(\mathscr{C})=\mathscr{G}\left(\mathscr{G}^{n-1}(\mathscr{C})\right)$ for any $n \geq 2$. It was shown in [27] that $\mathscr{G}(\mathscr{C})$ possesses many nice properties when \mathscr{C} is self-orthogonal. For example, in this case, $\mathscr{G}(\mathscr{C})$ is closed under extensions and \mathscr{C} is a projective generator and an injective cogenerator for $\mathscr{G}(\mathscr{C})$, which induce that $\mathscr{G}^{n}(\mathscr{C})=\mathscr{G}(\mathscr{C})$ for any $n \geq 1$, see [27] for more details. Later on, Huang generalized this result to an arbitrary full and additive subcategory \mathscr{C} of \mathscr{A}, see [22].

Denote by ε the class of all $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact complexes of the form: $0 \rightarrow L \xrightarrow{i} M \xrightarrow{p} N \rightarrow 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. We have the following fact.

Proposition 4.6. $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category.
Proof. We will prove that all the axioms in Definition 2.6 are satisfied. It is trivial that the axiom [E0] is satisfied. In the following, we prove that the other axioms are satisfied.

For [E1 ${ }^{\text {op }], ~ l e t ~} f: G_{1} \rightarrow G_{2}$ and $g: G_{2} \rightarrow G_{3}$ be admissible epics in $\mathscr{G}(\mathscr{C})$. Then it is easy to see that $g f$ is also an admissible epic. By Lemma 3.7(3), the following $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact sequence:

$$
0 \rightarrow \operatorname{Ker} g f \rightarrow G_{1} \xrightarrow{g f} G_{3} \rightarrow 0
$$

is also $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$-exact. It follows from [22, Proposition 4.7] that $\operatorname{Ker} g f \in \mathscr{G}(\mathscr{C})$.
For [$\left.\mathrm{E} 2^{\mathrm{op}}\right]$, let $f: G_{2} \rightarrow G_{3}$ be an admissible epic in $\mathscr{G}(\mathscr{C})$ and $g: G_{2}^{\prime} \rightarrow G_{3}$ an arbitrary morphism in $\mathscr{G}(\mathscr{C})$. We have the following pull-back diagram with the second row in ε :

For any $C \in \mathscr{C}$ and any morphism $\varphi: C \rightarrow G_{2}^{\prime}$, there exists a morphism $\phi: C \rightarrow G_{2}$ such that $g \varphi=f \phi$. Notice that the right square is a pull-back diagram, so there exists a morphism $\phi^{\prime}: C \rightarrow X$ such that $\varphi=f^{\prime} \phi^{\prime}$ and hence the exact sequence $0 \rightarrow G_{1} \xrightarrow{h^{\prime}} X \xrightarrow{f^{\prime}} G_{2}^{\prime} \rightarrow 0$ is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact. It follows from Lemma 3.7(3) that this sequence is also $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$-exact. By [22, Proposition 4.7], $X \in \mathscr{G}(\mathscr{C})$, which implies that $0 \rightarrow G_{1} \xrightarrow{h^{\prime}} X \xrightarrow{f^{\prime}} G_{2}^{\prime} \rightarrow 0$ lies in ε.

For [E2], let $f: G_{1} \rightarrow G_{2}$ be an admissible monic in $\mathscr{G}(\mathscr{C})$ and $g: G_{1} \rightarrow G_{2}^{\prime}$ an arbitrary morphism in $\mathscr{G}(\mathscr{C})$. We have the following push-out diagram with the first row in ε :

For any $C \in \mathscr{C}$ and any morphism $\varphi: C \rightarrow G_{3}$, there exists a morphism $\phi: C \rightarrow G_{2}$ such that $\varphi=$ $h \phi=h^{\prime} g^{\prime} \phi$. So the exact sequence $0 \rightarrow G_{2}^{\prime} \xrightarrow{f^{\prime}} D \xrightarrow{h^{\prime}} G_{3} \rightarrow 0$ is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact. It follows from Lemma 3.7(3) that this sequence is also $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$-exact. By [22, Proposition 4.7], $D \in \mathscr{G}(\mathscr{C})$, which implies that $0 \rightarrow G_{2}^{\prime} \xrightarrow{f^{\prime}} D \xrightarrow{h^{\prime}} G_{3} \rightarrow 0$ lies in ε.

Now let $0 \rightarrow G_{0} \xrightarrow{i} G_{1} \rightarrow G_{2} \rightarrow 0$ and $0 \rightarrow G_{1} \xrightarrow{j} G_{1}^{\prime} \rightarrow G_{1}^{\prime \prime} \rightarrow 0$ lie in ε. We have the following push-out diagram:

By [E2], the rightmost column lies in ε. For any $C \in \mathscr{C}$, applying the functor $(C,-):=\operatorname{Hom}_{\mathscr{A}}(C,-)$ to the commutative diagram we get the following commutative diagram:

By the snake lemma, the morphism $\left(C, G_{1}^{\prime}\right) \rightarrow\left(C, G_{2}^{\prime}\right)$ is epic. Then $0 \rightarrow G_{0} \xrightarrow{j i} G_{1}^{\prime} \rightarrow G_{2}^{\prime} \rightarrow 0$ lies in ε, and [E1] follows.

By Proposition 4.6, we have the following
Corollary 4.7. $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is a Frobenius category, that is, $(\mathscr{G}(\mathscr{C}), \varepsilon)$ has enough projective objects and enough injective objects such that the projective objects coincide with the injective objects.

Proof. Because \mathscr{C} is the class of (relative) projective-injective objects in $\mathscr{G}(\mathscr{C})$, the assertion follows from Proposition 4.6.

For $M, N \in \mathscr{A}$, let $\mathscr{C}(M, N)$ denote the subspace of A-maps from M to N factoring through \mathscr{C}. Put ${ }_{\mathscr{C}}^{\mathscr{C}}=\left\{M \in \mathscr{A} \mid \operatorname{Ext}_{\mathscr{C}}^{i}(M, C)=0\right.$ for any $C \in \mathscr{C}$ and $\left.i \geq 1\right\}$. By definition, it is clear that $\mathscr{C} \subseteq \mathscr{G}(\mathscr{C}) \subseteq$ $\perp_{8} \mathscr{C}$.

Lemma 4.8. For any $M \in_{\mathscr{\mathscr { C }}}^{\mathscr{C}}$ and $N \in \mathscr{A}$, we have a canonical isomorphism of abelian groups:

$$
\operatorname{Hom}_{\mathscr{A}}(M, N) / \mathscr{C}(M, N) \cong \operatorname{Hom}_{D_{\mathscr{C}-s g}(\mathscr{A})}(M, N) .
$$

Proof. In the following, a morphism from M to N in $D_{\mathscr{C}-s g}(\mathscr{A})$ is denoted by the equivalent class of left fractions $s \backslash a: M \xrightarrow{a} Z^{\bullet} \stackrel{s}{\Longleftarrow} N$, where $Z^{\bullet} \in D_{\mathscr{C}}^{b}(\mathscr{A})$ and $\operatorname{Con}(s) \in K^{b}(\mathscr{C})$. We have a distinguished triangle in $D_{\mathscr{C}}^{b}(\mathscr{A})$:

$$
\begin{equation*}
N \xlongequal{s} Z^{\bullet} \rightarrow \operatorname{Con}(s) \rightarrow N[1] . \tag{1}
\end{equation*}
$$

Consider the canonical map $G: \operatorname{Hom}_{\mathscr{A}}(M, N) \rightarrow \operatorname{Hom}_{D_{\mathscr{C}-s g}(\mathscr{A})}(M, N)$ defined by $G(f)=\mathrm{id}_{N} \backslash f$. We first prove that G is surjective. For any $N \in \mathscr{A}$, we have the following left \mathscr{C}-resolution of N :

$$
\cdots \rightarrow C^{-n} \xrightarrow{d_{C}^{-n}} C^{-n+1} \rightarrow \cdots \xrightarrow{d_{C}^{-1}} C^{0} \xrightarrow{d_{C}^{0}} N \rightarrow 0
$$

Then in $D_{\mathscr{C}}(\mathscr{A}), N$ is isomorphic to the complex $C^{\bullet}:=\cdots \rightarrow C^{-n} \xrightarrow{d_{C}^{-n}} C^{-n+1} \rightarrow \cdots \xrightarrow{d_{C}^{-1}} C^{0} \rightarrow 0$, and so is isomorphic to the complex $0 \rightarrow \operatorname{Ker} d_{C}^{-l} \rightarrow C^{-l} \xrightarrow{d_{C}^{-l}} C^{-l+1} \rightarrow \cdots \xrightarrow{d_{C}^{-1}} C^{0} \rightarrow 0$ for any $l \geq 0$. Hence we have a distinguished triangle in $D_{\mathscr{C}}^{b}(\mathscr{A})$:

$$
\begin{equation*}
\operatorname{Ker} d_{C}^{-l}[l] \rightarrow \sigma^{\geq-l} C^{\bullet} \xrightarrow{d_{C}^{0}} N \xrightarrow{s^{\prime}} \operatorname{Ker} d_{C}^{-l}[l+1], \tag{2}
\end{equation*}
$$

where $\operatorname{Con}\left(s^{\prime}\right) \in K^{b}(\mathscr{C})$. Since $\operatorname{Con}(s) \in K^{b}(\mathscr{C})$, it follows from Proposition 3.3 that there exists $l_{0} \gg 0$ such that for any $l \geq l_{0}$, we have

$$
\operatorname{Hom}_{D_{\mathscr{G}}^{b}(\mathscr{A})}\left(\operatorname{Con}(s), \operatorname{Ker} d_{C}^{-l}[l+1]\right)=0 .
$$

 $h: Z^{\bullet} \rightarrow \operatorname{Ker} d_{C}^{-l_{0}}\left[l_{0}+1\right]$ such that $s^{\prime}=h s$. So we have $s \backslash a=s^{\prime} \backslash(h a)$. On the other hand, applying $\operatorname{Hom}_{D_{\mathscr{G}}^{b}(\mathscr{A})}(M,-):=(M,-)$ to (2) we get an exact sequence

$$
(M, N) \xrightarrow{\left(M, s^{\prime}\right)}\left(M, \operatorname{Ker} d_{C}^{-l_{0}}\left[l_{0}+1\right]\right) \rightarrow\left(M,\left(\sigma^{\geq-l_{0}} C^{\bullet}\right)[1]\right) .
$$

Since $M \in^{{ }_{\mathscr{C}}} \mathscr{C}$, by using induction on $\omega\left(\sigma^{\geq-l_{0}} C^{\bullet}\right)$ we have $\left(M,\left(\sigma^{\geq-l_{0}} C^{\bullet}\right)[1]\right)=0$, and hence there exists $f: M \rightarrow N$ such that $h a=s^{\prime} f$. Therefore we have $s \backslash a=s^{\prime} \backslash(h a)=s^{\prime} \backslash\left(s^{\prime} f\right)=\operatorname{id}_{N} \backslash f$, that is, G is surjective.

Next, if $f: M \rightarrow N$ satisfies $G(f)=\operatorname{id}_{N} \backslash f=0$ in $D_{\mathscr{C}-s g}(\mathscr{A})$, then there exists $s: N \rightarrow Z^{\bullet}$ with $\operatorname{Con}(s) \in K^{b}(\mathscr{C})$ such that $s f=0$ in $D_{\mathscr{C}}^{b}(\mathscr{A})$. Use the same notations as in (1) and (2), by the above argument we have $s^{\prime}=h s$, so $s^{\prime} f=0$. Applying $\operatorname{Hom}_{D_{\mathscr{G}}(\mathscr{A})}(M,-)$ to (2) we get that there exists $f^{\prime}: M \rightarrow$ $\sigma^{\geq-l_{0}} C^{\bullet}$ such that $f=d_{C}^{0} f^{\prime}$.

Put $\sigma^{<0}\left(\sigma^{\geq-l_{0}}\right) C^{\bullet}:=0 \rightarrow C^{-l_{0}} \rightarrow C^{-l_{0}+1} \rightarrow \cdots \rightarrow C^{-1} \rightarrow 0$. We have the following distinguished triangle:

$$
\left(\sigma^{<0}\left(\sigma^{\geq-l_{0}}\right) C^{\bullet}\right)[-1] \longrightarrow C^{0} \xrightarrow{\pi} \sigma^{\geq-l_{0}} C^{\bullet} \rightarrow \sigma^{<0}\left(\sigma^{\geq-l_{0}}\right) C^{\bullet}
$$

in $D_{\mathscr{C}}^{b}(\mathscr{A})$, where π is the canonical map. By applying the functor $\operatorname{Hom}_{D_{\mathscr{G}}^{b}(\mathscr{A})}(M,-)$ to this triangle, it follows from $M \in{ }^{\mathscr{C}} \mathscr{C}$ that $\operatorname{Hom}_{D_{\mathscr{G}}(\mathscr{A})}\left(M, \sigma^{<0}\left(\sigma^{\geq-l_{0}}\right) C^{\bullet}\right)=0$, and hence there exists $g: M \rightarrow C^{0}$ such that $f^{\prime}=\pi g$. So $f=d_{C}^{0} \pi g$ in $D_{\mathscr{C}}^{b}(\mathscr{A})$. By Proposition 3.3(3), \mathscr{A} is a full subcategory of $D_{\mathscr{C}}^{b}(\mathscr{A})$. So f factors through C^{0} in \mathscr{A}, and hence $\operatorname{Ker} G \subseteq \mathscr{C}(M, N)$. Since $\mathscr{C}(M, N) \subseteq \operatorname{Ker} G$ trivially, $\operatorname{Ker} G=\mathscr{C}(M, N)$, which means that $\operatorname{Hom}_{\mathscr{A}}(M, N) / \mathscr{C}(M, N) \cong \operatorname{Hom}_{D_{\mathscr{C - s} g}(\mathscr{A})}(M, N)$.

Let $\theta: \mathscr{G}(\mathscr{C}) \rightarrow D_{\mathscr{C} \text {-sg }}(\mathscr{A})$ be the composition of the following three functors: the embedding functors $\mathscr{G}(\mathscr{C}) \hookrightarrow \mathscr{A}, \mathscr{A} \hookrightarrow D_{\mathscr{C}}^{b}(\mathscr{A})$ and the localization functor $D_{\mathscr{C}}^{b}(\mathscr{A}) \rightarrow D_{\mathscr{C}-\mathrm{sg}}(\mathscr{A})$, and let $\underline{\mathscr{G}(\mathscr{C})}$ denote the stable category of $\mathscr{G}(\mathscr{C})$.

Proposition 4.9. θ induces a fully faithful functor $\theta^{\prime}: \underline{\mathscr{G}(\mathscr{C})} \rightarrow D_{\mathscr{C} \text {-sg }}(\mathscr{A})$.
Proof. Since $\mathscr{G}(\mathscr{C}) \subseteq{ }^{\mathscr{C}_{\mathscr{C}}} \mathscr{C}$, the assertion follows from Lemma 4.8.
Recall from [10] that a ∂-functor is an additive functor F from an exact category $(\mathscr{B}, \varepsilon)$ to a triangulated category \mathcal{C} satisfying that for any short exact sequence $L \xrightarrow{i} M \xrightarrow{p} N$ in ε, there exists a morphism $\omega_{(i, p)}: F(N) \rightarrow F(L)[1]$ such that the triangle

$$
F(L) \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(N) \xrightarrow{\omega_{(i, p)}} F(L)[1]
$$

in \mathcal{C} is distinguished; moreover, the morphism $\omega_{(i, p)}$ is "functorial" in the sense that any morphism between two short exact sequences in ε :

the following is a morphism of triangles:

By [18, Chapter I, Theorem 2.6] and Corollary 4.7, $\underline{\mathscr{G}(\mathscr{C})}$ and $D_{\mathscr{C}-s g}(\mathscr{A})$ are triangulated categories. Moreover, we have

Proposition 4.10. The functor θ^{\prime} in Proposition 4.9 is a triangle functor.
Proof. We first claim that θ is a ∂-functor. In fact, let $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ be a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact complex with all terms in $\mathscr{G}(\mathscr{C})$. Then it induces a distinguished triangle in $D_{\mathscr{C} \text {-sg }}(\mathscr{A})$, saying $\theta(L) \xrightarrow{\theta(f)}$ $\theta(M) \xrightarrow{\theta(g)} \theta(N) \xrightarrow{\omega_{(f, g)}} \theta(L)[1]$. It is clear that $\omega_{(f, g)}$ is "functorial". This shows that θ is a ∂-functor.

Note that every object in \mathscr{C} is zero in $D_{\mathscr{C} \text {-sg }}(\mathscr{A})$. So θ vanishes on the projective-injective objects in $\mathscr{G}(\mathscr{C})$. It follows from [10, Lemma 2.5] that the induced functor θ^{\prime} is a triangle functor.

By Propositions 4.9 and 4.10 the natural triangle functor $\mathscr{G}(\mathscr{C}) \rightarrow D_{\mathscr{C}-s g}(\mathscr{A})$ is fully faithful. It is of interest to make sense when it is essentially surjective (or dense). We have the following

Theorem 4.11. If $\mathscr{C} \mathscr{G}(\mathscr{C})$ - $\operatorname{dim} \mathscr{A}<\infty$, then the natural functor $\theta: \mathscr{G}(\mathscr{C}) \rightarrow D_{\mathscr{C} \text {-sg }}(\mathscr{A})$ is essentially surjective (or dense).

Proof. Let $X^{\bullet} \in D_{\mathscr{C}}^{b}(\mathscr{A})$. By Proposition 3.4, there exists $C_{0}^{\bullet}=\left(C_{0}^{i}, d_{C_{0}}^{i}\right) \in K^{-, \mathscr{C b}}(\mathscr{C})$ such that $X^{\bullet} \cong C_{0}^{\bullet}$ in $D_{\mathscr{C}}^{b}(\mathscr{A})$. So there exists $n_{0} \in \mathbb{Z}$ such that $H^{i}\left(\operatorname{Hom}_{\mathscr{A}}\left(\mathscr{C}, C_{0}^{\bullet}\right)\right)=0$ for any $i \leq n_{0}$. Let $K^{i}=\operatorname{Ker} d_{C_{0}}^{i}$. Then C_{0}^{\bullet} is isomorphic to the complex:

$$
0 \rightarrow K^{i} \rightarrow C_{0}^{i} \xrightarrow{d_{C_{0}}^{i}} C_{0}^{i+1} \xrightarrow{d_{C_{0}}^{i+1}} C_{0}^{i+2} \rightarrow \cdots
$$

in $D_{\mathscr{C}}^{b}(\mathscr{A})$ for any $i \leq n_{0}$. It induces a distinguished triangle in $D_{\mathscr{C}}^{b}(\mathscr{A})$, hence a distinguished triangle in $D_{\mathscr{C} \text {-sg }}(\mathscr{A})$ of the following form:

$$
K^{i}[-i] \rightarrow \sigma^{\geq i} C_{0}^{\bullet} \rightarrow C_{0}^{\bullet} \rightarrow K^{i}[-i+1] .
$$

Since $\sigma^{\geq i} C_{0}^{\bullet} \in K^{b}(\mathscr{C}), C_{0}^{\bullet} \cong K^{i}[-i+1]$ in $D_{\mathscr{C}-s g}(\mathscr{A})$. Take $l_{0}=i$ and $Y=K^{i}$. Then $C_{0}^{\bullet} \cong Y\left[-l_{0}+1\right]$ in $D_{\mathscr{C}-s g}(\mathscr{A})$. By assumption we may assume that $\mathscr{C} \mathscr{G}(\mathscr{C})$ - $\operatorname{dim} Y=m_{0}<\infty$. Let $C_{1}^{\bullet} \rightarrow Y$ be the left \mathscr{C}-resolution of Y. We claim that for any $n \leq-m_{0}+1$, $\operatorname{Ker} d_{C_{1}}^{n} \in \mathscr{G}(\mathscr{C})$, where $d_{C_{1}}^{n}$ is the nth differential of C_{1}^{\bullet}.

We have a \mathscr{C}-acyclic complex:

$$
0 \rightarrow G^{-m_{0}} \rightarrow G^{-m_{0}+1} \rightarrow \cdots \rightarrow G^{-1} \rightarrow G^{0} \rightarrow Y \rightarrow 0
$$

with $G^{j} \in \mathscr{G}(\mathscr{C})$ for any $-m_{0} \leq j \leq 0$. Let G^{\bullet} be the complex $0 \rightarrow G^{-m_{0}} \rightarrow G^{-m_{0}+1} \rightarrow \cdots \rightarrow G^{-1} \rightarrow$ $G^{0} \rightarrow 0$. By Lemma 2.3, there exists a \mathscr{C}-quasi-isomorphism $C_{1}^{\bullet} \rightarrow G^{\bullet}$ lying over id ${ }_{Y}$, and hence its mapping cone is \mathscr{C}-acyclic. So for any $n \leq-m_{0}+1$, we get the following \mathscr{C}-acyclic complex:

$$
0 \rightarrow \operatorname{Ker} d_{C_{1}}^{n} \rightarrow C_{1}^{n} \rightarrow \cdots \rightarrow C_{1}^{-m_{0}} \rightarrow C_{1}^{-m_{0}+1} \oplus G^{-m_{0}} \rightarrow \cdots \rightarrow C_{1}^{0} \oplus G^{-1} \rightarrow G^{0} \rightarrow 0 .
$$

Note that this complex is acyclic because \mathscr{C} is admissible. Put $K=\operatorname{Ker}\left(C_{1}^{0} \oplus G^{-1} \rightarrow G^{0}\right)$, we get a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact exact sequence $0 \rightarrow K \rightarrow C_{1}^{0} \oplus G^{-1} \rightarrow G^{0} \rightarrow 0$. By Lemma 3.7(3), we get an exact sequence:

$$
0 \rightarrow \operatorname{Hom}_{\mathscr{A}}\left(G^{0}, C\right) \rightarrow \operatorname{Hom}_{\mathscr{A}}\left(C_{1}^{0} \oplus G^{-1}, C\right) \rightarrow \operatorname{Hom}_{\mathscr{A}}(K, C) \rightarrow \operatorname{Ext}_{\mathscr{C}}^{1}\left(G^{0}, C\right)
$$

for any $C \in \mathscr{C}$. Since $G^{0} \in \mathscr{G}(\mathscr{C}), \operatorname{Ext}_{\mathscr{C}}^{1}\left(G^{0}, C\right)=0$ and so the exact sequence $0 \rightarrow K \rightarrow C_{1}^{0} \oplus G^{-1} \rightarrow G^{0} \rightarrow 0$ is $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$-exact. Because both $C_{1}^{0} \oplus G^{-1}$ and G^{0} are in $\mathscr{G}(\mathscr{C}), K \in \mathscr{G}(\mathscr{C})$ by [22, Proposition 4.7]. Iterating this process, we get that $\operatorname{Ker} d_{C_{1}}^{n} \in \mathscr{G}(\mathscr{C})$ for any $n \leq-m_{0}+1$. The claim is proved.

Choose a left \mathscr{C}-resolution C_{1}^{\bullet} of Y and put $X=\operatorname{Ker} d_{C_{1}}^{-m_{0}+1}$. By the above claim we have a \mathscr{C}-acyclic complex:

$$
0 \rightarrow X \rightarrow C_{1}^{-m_{0}+1} \rightarrow C_{1}^{-m_{0}+2} \rightarrow \cdots \rightarrow C_{1}^{0} \rightarrow Y \rightarrow 0
$$

with $X \in \mathscr{G}(\mathscr{C})$. Then $Y \cong X\left[m_{0}\right]$ in $D_{\mathscr{C} \text {-sg }}(\mathscr{A})$ and $X^{\bullet} \cong C_{0}^{\bullet} \cong Y\left[-l_{0}+1\right] \cong X\left[m_{0}-l_{0}+1\right]$ in $D_{\mathscr{C}-s g}(\mathscr{A})$. We may assume that $X^{\bullet} \cong C_{0}^{\bullet} \cong X\left[r_{0}\right]$ in $D_{\mathscr{C}-s g}(\mathscr{A})$ for $r_{0}>0$. Because $X \in \mathscr{G}(\mathscr{C})$, we get a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$-exact exact sequence $0 \rightarrow X \rightarrow C^{0} \rightarrow C^{1} \rightarrow \cdots \rightarrow C^{r_{0}-1} \rightarrow X^{\prime} \rightarrow 0$ with $X^{\prime} \in \mathscr{G}(\mathscr{C})$ and $C^{i} \in \mathscr{C}$ for any $0 \leq i \leq r_{0}-1$. It follows that $X \cong X^{\prime}\left[-r_{0}\right]$ and $X^{\bullet} \cong C_{0}^{\boldsymbol{\bullet}} \cong X\left[r_{0}\right] \cong X^{\prime}$ in $D_{\mathscr{C} \text {-sg }}(\mathscr{A})$. This completes the proof.

The following is the main result of this paper.
Theorem 4.12. If $\mathscr{C} \mathscr{G}(\mathscr{C})$ - $\operatorname{dim} \mathscr{A}<\infty$, then the natural functor $\theta: \mathscr{G}(\mathscr{C}) \rightarrow D_{\mathscr{C} \text {-sg }}(\mathscr{A})$ induces a triangleequivalence $\theta^{\prime}: \underline{\mathscr{G}(\mathscr{C})} \rightarrow D_{\mathscr{C}-\mathrm{sg}}(\mathscr{A})$.

Proof. It follows directly from Propositions 4.9, 4.10 and Theorem 4.11.
The following result is the dual version of Happel's result, see [19, Theorem 4.6].
Corollary 4.13. If A is Gorenstein, then the canonical functor $\mathscr{G}(A) \rightarrow D_{s g}(A)$ induces a triangle-equivalence $\underline{\mathscr{G}(A)} \rightarrow D_{s g}(A)$.

Proof. Let A be Gorenstein and $\mathscr{C}=A$-proj. Then $\mathscr{C} \mathscr{G}(\mathscr{C})-\operatorname{dim} \mathscr{A}<\infty$ by [21, Theorem]. Now the assertion is an immediate consequence of Theorem 4.12.

Acknowledgements

This research was partially supported by NSFC (Grant No. 11171142) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referee for the helpful suggestions.

References

[1] J. Asadollahi, R. Hafezi, R. Vahed, Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra 218 (2014) 888-903.
[2] M. Auslander, M. Bridger, Stable module theory, Mem. Am. Math. Soc., vol. 94, Amer. Math. Soc., Providence, RI, 1969.
[3] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991) $111-152$.
[4] L.L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. Lond. Math. Soc. 85 (2002) 393-440.
[5] A. Beligiannis, The homological theory of contravariantly finite subcategories: Gorenstein categories, Auslander-Buchweitz contexts and (co-)stabilization, Commun. Algebra 28 (2000) 4547-4596.
[6] I. Burban, Y.A. Drozd, Derived categories of nodal algebras, J. Algebra 272 (2004) 46-94.
[7] R.O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, 1986, unpublished manuscript.
[8] T. Bühler, Exact categories, Expo. Math. 28 (2010) 1-69.
[9] X.W. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010) 2718-2731.
[10] X.W. Chen, Relative singularity categories and Gorenstein-projective modules, Math. Nachr. 284 (2011) 199-212.
[11] X.W. Chen, P. Zhang, Quotient triangulated categories, Manuscr. Math. 123 (2007) 167-183.
[12] L.W. Christensen, A. Frankild, H. Holm, On Gorenstein projective, injective and flat dimensions-a functorial description with applications, J. Algebra 302 (2006) 231-279.
[13] E.E. Enochs, O.M.G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995) 611-633.
[14] E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., vol. 30, Walter de Gruyter, Berlin, New York, 2000.
[15] E.E. Enochs, O.M.G. Jenda, J.A. López-Ramos, Covers and envelopes by V-Gorenstein modules, Commun. Algebra 33 (2005) 4705-4717.
[16] N. Gao, P. Zhang, Gorenstein derived categories, J. Algebra 323 (2010) 2041-2057.
[17] S.I. Gelfand, Y.I. Manin, Methods of Homological Algebra, second edition, Springer Monogr. Math., Springer-Verlag, Berlin, 2003.
[18] D. Happel, Triangulated Categories in Representation Theory of Finite Dimensional Algebras, Lond. Math. Soc. Lect. Notes Ser., vol. 119, Cambridge University Press, Cambridge, 1988.
[19] D. Happel, On Gorenstein algebras, in: Representation Theory of Finite Groups and Finite-Dimensional Algebras, Proc. Conf. at Bielefeld, 1991, in: Prog. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 389-404.
[20] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004) 167-193.
[21] M. Hoshino, Algebras of finite self-injective dimension, Proc. Am. Math. Soc. 112 (1991) 619-622.
[22] Z.Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013) 142-169.
[23] B. Keller, Chain complexes and stable categories, Manuscr. Math. 67 (1990) 379-417.
[24] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246 (2004) 227-248.
[25] D. Quillen, Higher Algebraic K-Theory I, Lect. Notes Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147.
[26] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989) 303-317.
[27] S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. 77 (2008) 481-502.
[28] J.L. Verdier, Catégories dérivées, Etat 0, Lect. Notes Math., vol. 569, Springer-Verlag, Berlin, 1977, pp. 262-311.
[29] Y.F. Zheng, Z.Y. Huang, On pure derived categories, preprint, available at http://math.nju.edu.cn/~huangzy/.

[^0]: * Corresponding author.

 E-mail addresses: lihuanhuan0416@163.com (H. Li), huangzy@nju.edu.cn (Z. Huang).

