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We study the properties of the relative derived category Db
C (A ) of an abelian 

category A relative to a full and additive subcategory C . In particular, when A =
A-mod for a finite-dimensional algebra A over a field and C is a contravariantly finite 
subcategory of A-mod which is admissible and closed under direct summands, the 
C -singularity category DC -sg(A ) = Db

C (A )/Kb(C ) is studied. We give a sufficient 
condition when this category is triangulated equivalent to the stable category of the 
Gorenstein category G (C ) of C .
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1. Introduction

Let A be a finite-dimensional algebra over a field. We denote by A-mod the category of finitely gener-
ated left A-modules, and A-proj (resp. A-inj) the full subcategory of A-mod consisting of projective (resp. 
injective) modules. We use Kb(A) and Db(A) to denote the bounded homotopy and derived categories of 
A-mod respectively, and Kb(A-proj) (resp. Kb(A-inj)) to denote the bounded homotopy category of A-proj
(resp. A-inj).

The composition functor Kb(A-proj) → Kb(A) → Db(A) with the former one the inclusion functor 
and the latter one the quotient functor is naturally a fully faithful triangle functor, and then one can view 
Kb(A-proj) as a triangulated subcategory of Db(A). In fact it is a thick one by [7, Lemma 1.2.1]. Consider the 
quotient triangulated category Dsg(A) := Db(A)/Kb(A-proj), which is the so-called “singularity category”. 
This category was first introduced and studied by Buchweitz in [7] where A is assumed to be a left and 
right noetherian ring. Later on Rickard proved in [26] that for a self-injective algebra A, this category is 
triangle-equivalent to the stable category of A-mod. This result was generalized to Gorenstein algebra by 
Happel in [19]. Since A has finite global dimension if and only if Dsg(A) = 0, from this viewpoint Dsg(A)
measures the homological singularity of the algebra A, we call it the singularity category after [24].
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Besides, other quotient triangulated categories have been studied by many authors. Beligiannis consid-
ered the quotient triangulated categories Db(R-Mod)/Kb(R-Proj) and Db(R-Mod)/Kb(R-Inj) for arbitrary 
ring R, where R-Mod is the category of left R-modules and R-Proj (resp. R-Inj) is the full subcategory of 
R-Mod consisting of projective (resp. injective) modules (see [5]). Let A be an abelian category. A full and 
additive subcategory ω of A is called self-orthogonal if ExtiA (M, N) = 0 for any M, N ∈ ω and i ≥ 1; in 
particular, an object T in A is called self-orthogonal if ExtiA (T, T ) = 0 for any i ≥ 1. Chen and Zhang 
studied in [11] the quotient triangulated category Db(A)/Kb(addA T ) for a finite-dimensional algebra A
and a self-orthogonal module T in A-mod, where addA T is the full subcategory of A-mod consisting of 
direct summands of finite direct sums of T . Recently Chen studied in [10] the relative singularity category 
Dω(A ) := Db(A )/Kb(ω) for an arbitrary abelian category A and an arbitrary self-orthogonal, full and 
additive subcategory ω of A .

For an abelian category A with enough projective objects, the Gorenstein derived category D∗
gp(A ) of 

A was introduced by Gao and Zhang in [16], where ∗ ∈ {blank, −, b}. It can be viewed as a generalization 
of the usual derived category D∗(A ) by using Gorenstein projective objects instead of projective objects 
and G P-quasi-isomorphisms instead of quasi-isomorphisms, where G P means “Gorenstein projective”. For 
Gorenstein projective modules and Gorenstein projective objects, we refer to [2,13,14,20,27]. Asadollahi, 
Hafezi and Vahed studied in [1] the relative derived category D∗

C (A ) for an arbitrary abelian category A
with respect to a contravariantly finite subcategory C , where ∗ ∈ {blank, −, b}, and they pointed out that 
Kb(C ) can be viewed as a triangulated subcategory of Db

C (A ).
Given a finite-dimensional algebra A over a field and a full and additive subcategory C of A (= A-mod)

closed under direct summands, it follows from [6] that Kb(C ) is a Krull–Schmidt category and hence can be 
viewed as a thick triangulated subcategory of Db

C (A ). If the quotient triangulated category DC -sg(A ) :=
Db

C (A )/Kb(C ) is considered, then it is natural to ask whether DC -sg(A ) shares some nice properties of 
Dsg(A). The aim of this paper is to study this question.

In Section 2, we give some terminology and some preliminary results.
In Section 3, for an abelian category A and a full and additive subcategory C of A , we prove that if 

C is admissible, then the composition functor A → Kb(A ) → Db
C (A ) is fully faithful, where the former 

functor is the inclusion functor and the latter one is the quotient functor. Let C be a contravariantly finite 
subcategory of A and D ⊆ A a subclass of A . We introduce a dimension denoted by CD-dimM which is 
called the C -proper D-dimension of an object M in A . By choosing a left C -resolution C•

M of M , we get a 
functor ExtnC (M, −) := Hn HomA (C•

M , −) for any n ∈ Z. Then by using the properties of this functor we 
obtain some equivalent characterizations for CC -dimM being finite.

In Section 4, we introduce the C -singularity category DC -sg(A ) := Db
C (A )/Kb(C ), where A = A-mod

and C is a contravariantly finite, full and additive subcategory of A which is admissible and closed under 
direct summands. We prove that if C C -dimA < ∞, then DC -sg(A ) = 0. As a consequence, we get 
that if A is of finite representation type, then CC -dim A < ∞ if and only if DC -sg(A ) = 0. Let G (C )
be the Gorenstein category of C and ε the collection of all HomA (C , −)-exact complexes of the form: 
0 → L → M → N → 0 with L, M, N ∈ G (C ). By [8] (or [25]) (G (C ), ε) is an exact category; moreover, 
it is a Frobenius category with C the subcategory of projective–injective objects, see [18]. We prove that 
if C G (C )-dim A < ∞, then the natural functor θ : G (C ) → DC -sg(A ) induces a triangle-equivalence 
θ′ : G (C ) → DC -sg(A ), where G (C ) is the stable category of G (C ).

2. Preliminaries

Throughout this paper, A is an abelian category, C(A ) is the category of complexes of objects in 
A , K∗(A ) is the homotopy category of A and D∗(A ) is the usual derived category by inverting the 
quasi-isomorphisms in K∗(A ), where ∗ ∈ {blank, −, b}. We will use the formula HomK(A )(X•, Y •[n]) =
Hn HomA (X•, Y •) for any X•, Y • ∈ C(A ) and n ∈ Z (the ring of integers).
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Let

X• := · · · −→ Xn−1 dn−1
X−−−−→ Xn dn

X−−→ Xn+1 → · · ·

be a complex and f : X• → Y • a cochain map in C(A ). Recall that X• is called acyclic (or exact) if 
Hi(X•) = 0 for any i ∈ Z, and f is called a quasi-isomorphism if Hi(f) is an isomorphism for any i ∈ Z.

From now on, we fix a full and additive subcategory C of A .

Definition 2.1. Let X•, Y • and f be as above.
(1) (See [14].) X• in C(A ) is called C -acyclic or HomA (C , −)-exact if the complex HomA (C, X•) is 

acyclic for any C ∈ C . Dually, a HomA (−, C )-exact complex is defined.
(2) f is called a C -quasi-isomorphism if the cochain map HomA (C, f) is a quasi-isomorphism for any 

C ∈ C .

Remark 2.2. (1) We use Con(f) to denote the mapping cone of f : X• → Y •. It is well known that f is a 
quasi-isomorphism if and only if Con(f) is acyclic; analogously, f is a C -quasi-isomorphism if and only if 
Con(f) is C -acyclic.

(2) We use P(A ) to denote the full subcategory of A consisting of projective objects. If A has enough 
projective objects, then every quasi-isomorphism is a P(A )-quasi-isomorphism; and if P(A ) ⊆ C , then 
every C -quasi-isomorphism is a quasi-isomorphism.

We use K∗
ac(A ) (resp. K∗

C -ac(A )) to denote the full subcategory of K∗(A ) consists of acyclic complexes 
(resp. C -acyclic complexes).

Lemma 2.3. Let X• be a complex in C(A ). Then X• is C -acyclic if and only if the complex HomA (C•, X•)
is acyclic for any C• ∈ K−(C ).

Proof. See [12, Lemma 2.4]. �
Lemma 2.4. (1) Let C• be a complex in K−(C ) and f : X• → C• a C -quasi-isomorphism in C(A ). Then 
there exists a cochain map g : C• → X• such that fg is homotopic to idC• .

(2) Any C -quasi-isomorphism between two complexes in K−(C ) is a homotopy equivalence.

Proof. (1) Consider the distinguished triangle:

X• f−→ C• → Con(f) → X•[1]

in K(A ) with Con(f) C -acyclic. By applying the functor HomK(A )(C•, −) to it, we get an exact sequence:

HomK(A )(C•, X•) HomK(A )(C•,f)−−−−−−−−−−−→ HomK(A )(C•, C•) → HomK(A )(C•,Con(f)).

It follows from Lemma 2.3 that HomK(A )(C•, Con(f)) ∼= H0 HomA (C•, Con(f)) = 0. So there exists a 
cochain map g : C• → X• such that fg is homotopic to idC• .

(2) Let f : X• → Y • be a C -quasi-isomorphism with X•, Y • in K−(C ). By (1), there exists a cochain 
map g : Y • → X•, such that fg is homotopic to idY • . By (1) again, there exists a cochain map g′ : X• → Y •, 
such that gg′ is homotopic to idX• . Thus f = g′ in K(A ) is a homotopy equivalence. �
Definition 2.5. (1) (See [3].) Let C ⊆ D be subcategories of A . The morphism f : C → D in A with C ∈ C

and D ∈ D is called a right C -approximation of D if for any morphism g : C ′ → D in A with C ′ ∈ C , there 
exists a morphism h : C ′ → C such that the following diagram commutes:
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C ′

g
h

C
f

D.

If each object in D has a right C -approximation, then C is called contravariantly finite in D .
(2) (See [9].) A contravariantly finite subcategory C of A is called admissible if any right C -approximation 

is epic. In this case, every C -acyclic complex is acyclic.

The following definition is cited from [8], see also [25] and [23].

Definition 2.6. Let B be an additive category. A kernel–cokernel pair (i, p) in B is a pair of composable 
morphisms L i−→ M

p−→ N such that i is a kernel of p and p is a cokernel of i. If a class ε of kernel–cokernel 
pairs on B is fixed, an admissible monic (sometimes called inflation) is a morphism i for which there exists 
a morphism p such that (i, p) ∈ ε. Admissible epics (sometimes called deflations) are defined dually.

An exact category is a pair (B, ε) consisting of an additive category B and a class of kernel–cokernel 
pairs ε on B with ε closed under isomorphisms satisfying the following axioms:

[E0] For any object B in B, the identity morphism idB is both an admissible monic and an admissible epic.
[E1] The class of admissible monics is closed under compositions.
[E1op] The class of admissible epics is closed under compositions.
[E2] The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible 

monic.
[E2op] The pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible 

epic.

Elements of ε are called short exact sequences (or conflations).

Let B be a triangulated subcategory of a triangulated category K and S the compatible multiplicative 
system determined by B. In the Verdier quotient category K /B, each morphism f : X → Y is given 
by an equivalence class of right fractions f/s or left fractions s\f as presented by X

s⇐= Z
f−→ Y or 

X
f−→ Z

s⇐= Y , where the doubled arrow means s ∈ S.

3. CCC -derived categories

For a subclass C of objects in a triangulated category K , it is known that the full subcategory C⊥ =
{X ∈ K | HomK (C[n], X) = 0 for any C ∈ C and n ∈ Z} is a triangulated subcategory of K and is closed 
under direct summands, and hence is thick [26]. It follows that K∗

C -ac(A ) is a thick subcategory of K∗(A ).

Definition 3.1. (See [28].) The Verdier quotient category D∗
C (A ) := K∗(A )/K∗

C -ac(A ) is called the C -derived 
category of A , where ∗ ∈ {blank, −, b}.

Example 3.2. (1) If A has enough projective objects and C = P(A ), then D∗
C (A ) is the usual derived 

category D∗(A ).
(2) If A has enough projective objects and C = G (A ) (the full subcategory of A consisting of Gorenstein 

projective objects), then D∗
C (A ) is the Gorenstein derived category D∗

gp(A ) defined in [16].
(3) Let R be a ring and A = R-Mod. If C = PP(R) (the full subcategory of R-Mod consisting of pure 

projective modules), then D∗
C (A ) is the pure derived category D∗

pur(A ) in [29].
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Proposition 3.3. (See [1].) (1) D−
C (A ) is a triangulated subcategory of DC (A ), and Db

C (A ) is a triangulated 
subcategory of D−

C (A ).
(2) For any C• ∈ K−(C ) and X• ∈ C(A ), there exists an isomorphism of abelian groups:

HomK(A )(C•, X•) ∼= HomDC (A )(C•, X•).

(3) Let C ⊆ A be admissible. Then the composition functor A → Kb(A ) → Db
C (A ) is fully faithful, 

where the former functor is the inclusion functor and the latter one is the quotient functor.

Proof. In the following, each morphism in D∗
C (A ) will be denoted by the equivalence class of right fractions, 

where ∗ ∈ {blank, −, b}.
(1) We only prove the first assertion, the second one can be proved similarly.
Note that D−

C (A ) = K−(A )/K−(A ) 
⋂

KC -ac(A ) and DC (A ) = K(A )/KC -ac(A ). By [17, Proposi-
tion 3.2.10], it suffices to show that for any C -quasi-isomorphism s : Y • → X• with X• ∈ K−(A ), there 
exists a morphism f : Z• → Y • with Z• ∈ K−(A ) such that sf is a C -quasi-isomorphism.

Suppose Xn 
= 0 with Xi = 0 for any i > n. Then there exists a commutative diagram:

Z• :

f

· · · Y n−1 Y n Ker dn+1
Y 0

Y • :

s

· · · Y n−1 Y n Y n+1 · · ·

X• : · · · Xn−1 Xn 0 · · · ,

where Ker dn+1
Y → Y n+1 is the canonical map. Since both f and s are C -quasi-isomorphisms, so is sf .

(2) Consider the canonical map G : HomK(A )(C•, X•) → HomDC (A )(C•, X•) defined by G(f) = f/ idC• . 
If G(f) = 0, then there exists a C -quasi-isomorphism s : Z• → C• such that fs ∼ 0. By Lemma 2.4(1) 
there exists a cochain map g : C• → Z• such that sg ∼ idC• , and then f ∼ 0. On the other hand, 
let f/s ∈ HomDC (A )(C•, X•), that is, it has a diagram of the form C• s⇐= Z• f−→ X•, where s is a 
C -quasi-isomorphism. It follows from Lemma 2.4(1) there exists a cochain map g : C• → Z• such that 
sg ∼ idC• , which implies that f/s = (fg)/ idC• = G(fg). Thus G is an isomorphism, as desired.

(3) Let F : A → Db
C (A ) denote the composition functor, it suffices to show that for any M, N ∈ A , the 

map F : HomA (M, N) → HomDb
C (A )(M, N) is an isomorphism.

Let f ∈ HomA (M, N). If F (f) = 0, then there exists a C -quasi-isomorphism s : Z• → M such that 
fs ∼ 0, and then H0(f)H0(s) = 0. Since H0(s) is an isomorphism, f = H0(f) = 0. On the other hand, 
let f/s ∈ HomDb

C (A )(M, N), that is, it has a diagram of the form M
s⇐= Z• f−→ N , where s is a C -quasi-

isomorphism. Then H0(s) : H0(Z•) → M is an isomorphism. Put g := H0(f)H0(s)−1 ∈ HomA (M, N). 
Consider the truncation:

U• := · · · → Z−2 d−2
Z−−−→ Z−1 d−1

Z−−−→ Ker d0 → 0

of Z• and the canonical map i : U• → Z•. Since s is a C -quasi-isomorphism, so is si. We have the following 
commutative diagram:

U• i
Z•

s

H0(Z•)
H0(s)

M,
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where U• → H0(Z•) is the canonical map, so gsi = H0(f)H0(s)−1si = fi. Then we get the following 
commutative diagram of complexes:

Z•

s f

M U•
si

i

si

fi
N

M,

idM
g

which implies F (g) = g/ idM = f/s. �
Set K−,C b(C ) := {X• ∈ K−(C ) | there exists n ∈ Z such that Hi(HomA (C, X•)) = 0 for any C ∈ C

and i ≤ n}.

Proposition 3.4. (See [1, Theorem 3.3].) If C is a contravariantly finite subcategory of A , then we have a 
triangle-equivalence K−,C b(C ) ∼= Db

C (A ).

In the rest of this section, we always suppose that C is a contravariantly finite subcategory of A unless 
otherwise specified.

Definition 3.5. Let D be a subclass of objects in A and M ∈ A .
(1) A C -proper D-resolution of M is a C -quasi-isomorphism f : D• → M , where D• is a complex 

of objects in D with Dn = 0 for any n > 0, that is, it has an associated HomA (C , −)-exact complex 
· · · → D−n → D−n+1 → · · · → D0 f−→ M → 0.

(2) The C -proper D-dimension of M , written C D-dimM , is defined as inf{n | there exists a 
HomA (C , −)-exact complex 0 → D−n → D−n+1 → · · · → D0 f−→ M → 0}. If no such an integer ex-
ists, then set C D-dimM = ∞.

(3) For a class E of objects of A , the C -proper D-dimension of E , written C D-dim E , is defined as 
sup{C D-dimM | M ∈ E }.

Remark 3.6. (1) If A has enough projective objects and C = P(A ), then a C -proper D-resolution is just 
a D-resolution and the C -proper D-dimension of an object M ∈ A is just the usual D-dimension D-dimM

of M .
(2) If D = C , then a C -proper D-resolution is just a C -proper resolution. In this case, it is also called a 

left C -resolution and the C -proper D-dimension is the left C -dimension (see [14]).

Let M ∈ A . Since C is a contravariantly finite subcategory of A , we may choose a left C -resolution 
C•

M → M of M . Put ExtnC (M, N) := Hn HomA (C•
M , N) for any N ∈ A and n ∈ Z. Note that C•

M

is isomorphic to M in DC (A ). By Proposition 3.3(1)(2), we have ExtnC (M, N) = Hn HomA (C•
M , N) =

HomK(A )(C•
M , N [n]) ∼= HomDC (A )(C•

M , N [n]) ∼= HomDb
C (A )(M, N [n]).

The following is cited from [14, Chapter 8].

Lemma 3.7. (1) For any M ∈ A , the functor ExtnC (M, −) does not depend on the choices of left C -resolutions 
of M .

(2) For any M ∈ A and n < 0, ExtnC (M, −) = 0 and there exists a natural equivalence HomA (M, −) ∼=
Ext0C (M, −) whenever C is admissible.
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(3) If C is admissible, then every HomA (C , −)-exact complex 0 → L → M → N → 0 induces a long 
exact sequence 0 → HomA (N, −) → HomA (M, −) → HomA (L, −) → · · · → ExtnC (N, −) → ExtnC (M, −) →
ExtnC (L, −) → Extn+1

C (N, −) → · · ·.

Theorem 3.8. Let C be admissible and closed under direct summands, then the following statements are 
equivalent for any M ∈ A and n ≥ 0.

(1) C C -dimM ≤ n.
(2) ExtiC (M, N) = 0 for any N ∈ A and i ≥ n + 1.
(3) Extn+1

C (M, N) = 0 for any N ∈ A .
(4) For any left C -resolution C•

M → M of M , Ker d−n+1
CM

∈ C , where d−n+1
CM

is the (−n +1)st differential 
of C•

M .

Proof. (1) ⇒ (2) Let 0 → C−n → C−n+1 → · · · → C0 → M → 0 be a left C -resolution of M . Then 
HomA (C−i, N) =0 for any N ∈ A and i ≥ n + 1 and the assertion follows.

(2) ⇒ (3) and (4) ⇒ (1) are trivial.

(3) ⇒ (4) Let · · · → C−n
M

d−n
CM−−−−→ C−n+1

M → · · · → C0
M → M → 0 be a left C -resolution of M . 

Then we get a HomA (C , −)-exact exact sequence 0 → Ker d−n
CM

→ C−n
M → Ker d−n+1

CM
→ 0. Since 

Extn+1
C (M, Ker d−n

CM
) = 0, Ext1C (Ker d−n+1

CM
, Ker d−n

CM
) ∼= Extn+1

C (M, Ker d−n
CM

) = 0 by the dimension shifting. 
Applying HomA (−, Ker d−n

CM
) to the exact sequence 0 → Ker d−n

CM
→ C−n

M → Ker d−n+1
CM

→ 0, it follows from 
Lemma 3.7(3) that the sequence splits. So Ker d−n+1

CM
is a direct summand of C−n

M and Ker d−n+1
CM

∈ C . �
4. CCC -singularity categories

In this section, unless otherwise specified, we always suppose that A is a finite-dimensional algebra over 
a field, A = A-mod and C is a full and additive subcategory of A which is contravariantly finite in A and 
is admissible and closed under direct summands.

Recall that an additive category is called a Krull–Schmidt category if each of its object X has a decom-
position X ∼= X1

⊕
X2

⊕
· · ·

⊕
Xn such that each Xi is indecomposable with a local endomorphism ring. 

By [6, Proposition A.2] Kb(C ) is a Krull–Schmidt category, so it is closed under direct summands and 
Kb(C ) viewed as a full triangulated subcategory of Db

C (A ) is thick. It is of interest to consider the quotient 
triangulated category Db

C (A ) /Kb(C ).

Definition 4.1. We call DC -sg(A ) := Db
C (A ) /Kb(C ) the C -singularity category.

Example 4.2. (1) If C = A-proj, then Db
C (A ) is the usual bounded derived category Db(A ) and the 

C -singularity category DC -sg(A ) is the singularity category Dsg(A) which is called the “stabilized derived 
category” in [7].

(2) Let C = G (A) (the subcategory of A-mod consisting of Gorenstein projective modules). If G (A) is 
contravariantly finite in A-mod, for example, if A is Gorenstein (that is, the left and right self-injective 
dimensions of A are finite) or G (A) contains only finitely many non-isomorphic indecomposable modules, 
then the bounded C -derived category of A , denoted by Db

G (A)(A ), is the bounded Gorenstein derived 
category introduced in [16]. The C -singularity category DG (A)-sg(A ) is the quotient triangulated category 
Db

G (A)(A ) /Kb(G (A)), we call it the Gorenstein singularity category.

Given a complex X• and an integer i ∈ Z, we denote by σ≥iX• the complex with Xj in the jth degree 
whenever j ≥ i and 0 elsewhere, and set σ>iX• := σ≥i+1X•. Dually, for the notations σ≤iX• and σ<iX•. 
Recall that the cardinal of the set {Xi 
= 0 | i ∈ Z} is called the width of X•, and denoted by ω(X•).

It is well known that A has finite global dimension if and only if Dsg(A) = 0. For the C -singularity 
category Db

C -sg(A ) we have the following property.
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Proposition 4.3. If C C -dim A < ∞, then DC -sg(A ) = 0.

Proof. We claim that for every X• ∈ Kb(A ) there exists a C -quasi-isomorphism C•
X → X• such that 

C•
X ∈ Kb(C ). We proceed by induction on the width ω(X•) of X•.
Let ω(X•)=1. Because C is contravariantly finite and C C -dim A < ∞, there exists a C -quasi-

isomorphism C•
X → X• with C•

X ∈ Kb(C ).
Let ω(X•) ≥ 2 with Xj 
= 0 and Xi = 0 for any i < j. Put X•

1 :=Xj [−j − 1], X•
2 := σ>jX• and 

g = djX [−j − 1]. We have a distinguished triangle X•
1

g−→ X•
2 → X• → X•

1 [1] in Kb(A ). By the induction 
hypothesis, there exist C -quasi-isomorphisms fX1 : C•

X1
→ X•

1 and fX2 : C•
X2

→ X•
2 with C•

X1
, C•

X2
∈ Kb(C ). 

Then by Remark 2.2(1) and Lemma 2.3, fX2 induces an isomorphism:

HomKb(A )(C•
X1

, C•
X2

) ∼= HomKb(A )(C•
X1

, X•
2 ).

So there exists a morphism f• : C•
X1

→ C•
X2

, which is unique up to homotopy, such that fX2f
• = gfX1 . 

Put C•
X = Con(f•). We have the following distinguished triangle in Kb(C ):

C•
X1

f•
−−→ C•

X2
→ C•

X → C•
X1

[1].

Then there exists a morphism fX : C•
X → X• such that the following diagram commutes:

C•
X1

f•

fX1

C•
X2

fX2

C•
X

fX

C•
X1

[1]

fX1 [1]

X•
1

g
X•

2 X• X•
1 [1].

For any C ∈ C and any n ∈ Z, we have the following commutative diagram with exact rows:

(C,C•
X1

[n])

(C,fX1 [n])

(C,C•
X2

[n])

(C,fX2 [n])

(C,C•
X [n])

(C,fX [n])

(C,C•
X1

[n + 1])

(C,fX1 [n+1])

(C,C•
X2

[n + 1])

(C,fX2 [n+1])

(C,X•
1 [n]) (C,X•

2 [n]) (C,X•[n]) (C,X•
1 [n + 1]) (C,X•

2 [n + 1]),

where (C, −) denotes the functor HomK(A )(C, −). Since fX1 and fX2 are C -quasi-isomorphisms, (C, fX1 [n])
and (C, fX2 [n]) are isomorphisms, and hence so is (C, fX [n]) for each n, that is, fX is a C -quasi-isomorphism. 
The claim is proved.

It follows from the claim that every object X• in Db
C (A ) is isomorphic to some C•

X of Kb(C ) in Db
C (A ). 

Thus DC -sg(A ) = 0. �
As an application of Proposition 4.3, we have the following

Corollary 4.4. (1) C C -dimM < ∞ for any M ∈ A if and only if DC -sg(A ) = 0.
(2) If A is of finite representation type, then CC -dim A < ∞ if and only if DC -sg(A ) = 0.

Proof. In both assertions, the necessity follows from Proposition 4.3. In the following, we only need to prove 
the sufficiency.

(1) Let DC -sg(A ) = 0 and M ∈ A . Then M = 0 in DC -sg(A ) and M is isomorphic to C• in Db
C (A )

for some C• ∈ Kb(C ). We use the equivalent class of right fractions to denote a morphism in Db
C (A ). Let 

f/s : C• s⇐= Z• f−→ M be an isomorphism in Db
C (A ), where s is a C -quasi-isomorphism. Then f is a 
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C -quasi-isomorphism. By Lemma 2.4(1), there exists a C -quasi-isomorphism s′ : C• → Z•. So fs′ : C• → M

is also a C -quasi-isomorphism and hence Hi HomA (C, C•) = 0 whenever C ∈ C and i 
= 0. Consider the 
truncation:

C ′• := · · · → C−2 → C−1 → Ker d0
C → 0

of C•. Then the composition C ′• ↪→ C• fs′−−−→ M is a C -quasi-isomorphism. Notice that C• ∈ Kb(C ), we 
may suppose Cn 
= 0 and Ci = 0 whenever i > n. Then we have a C -acyclic complex 0 → Ker d0

C →
C0 d0

C−−→ C1 → · · · → Cn → 0 with all Ci in C . Because C is closed under direct summands, Ker d0
C ∈ C

and C C -dimM < ∞.
(2) Let A be of finite representation type, and let {Mi | 1 ≤ i ≤ n} be the set of all non-isomorphic 

indecomposable modules in A . By (1) C C -dimMi < ∞ for any 1 ≤ i ≤ n. Now set m = sup{C C -dimMi |
1 ≤ i ≤ n}. Since A is Krull–Schmidt, every module M ∈ A can be decomposed into a finite direct sum of 
modules in {Mi | 1 ≤ i ≤ n}. Then it is easy to see that C C -dimM ≤ m and C C -dim A ≤ m < ∞. �

As a consequence of Corollary 4.4(1), we have the following

Corollary 4.5. If A is Gorenstein, then DG (A)-sg(A ) = 0.

Proof. Let A be Gorenstein. Because A-proj ⊆ G (A), we have that G (A) is admissible in A-mod by [14, 
Remark 11.5.2]. By [21, Theorem], we have G (A)-dimM < ∞ for any M ∈ A . So DG (A)-sg(A ) = 0 by [4, 
Proposition 4.8] and Corollary 4.4(1). �

Put G (C ) = {M ∼= Im(C−1 → C0) | there exists an acyclic complex · · · → C−1 → C0 → C1 →
· · · in C , which is both HomA (C , −)-exact and HomA (−, C )-exact}, see [27], where it is called the Goren-
stein category of C . This notion unifies the following ones: modules of Gorenstein dimension zero [2], Goren-
stein projective modules, Gorenstein injective modules [13], V -Gorenstein projective modules, V -Gorenstein 
injective modules [15], and so on. Set G 1(C ) = G (C ) and inductively set G n(C ) = G (G n−1(C )) for any 
n ≥ 2. It was shown in [27] that G (C ) possesses many nice properties when C is self-orthogonal. For 
example, in this case, G (C ) is closed under extensions and C is a projective generator and an injective 
cogenerator for G (C ), which induce that G n(C ) = G (C ) for any n ≥ 1, see [27] for more details. Later on, 
Huang generalized this result to an arbitrary full and additive subcategory C of A , see [22].

Denote by ε the class of all HomA (C , −)-exact complexes of the form: 0 → L i−→ M
p−→ N → 0 with 

L, M, N ∈ G (C ). We have the following fact.

Proposition 4.6. (G (C ), ε) is an exact category.

Proof. We will prove that all the axioms in Definition 2.6 are satisfied. It is trivial that the axiom [E0] is 
satisfied. In the following, we prove that the other axioms are satisfied.

For [E1op], let f : G1 → G2 and g : G2 → G3 be admissible epics in G (C ). Then it is easy to see that gf
is also an admissible epic. By Lemma 3.7(3), the following HomA (C , −)-exact sequence:

0 → Ker gf → G1
gf−−→ G3 → 0

is also HomA (−, C )-exact. It follows from [22, Proposition 4.7] that Ker gf ∈ G (C ).
For [E2op], let f : G2 → G3 be an admissible epic in G (C ) and g : G′

2 → G3 an arbitrary morphism in 
G (C ). We have the following pull-back diagram with the second row in ε:
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0 G1
h′

X
f ′

g′

G′
2

g

0

0 G1
h

G2
f

G3 0.

For any C ∈ C and any morphism ϕ : C → G′
2, there exists a morphism φ : C → G2 such that gϕ = fφ. 

Notice that the right square is a pull-back diagram, so there exists a morphism φ′ : C → X such that 
ϕ = f ′φ′ and hence the exact sequence 0 → G1

h′−−→ X
f ′
−−→ G′

2 → 0 is HomA (C , −)-exact. It follows from 
Lemma 3.7(3) that this sequence is also HomA (−, C )-exact. By [22, Proposition 4.7], X ∈ G (C ), which 

implies that 0 → G1
h′−−→ X

f ′
−−→ G′

2 → 0 lies in ε.
For [E2], let f : G1 → G2 be an admissible monic in G (C ) and g : G1 → G′

2 an arbitrary morphism in 
G (C ). We have the following push-out diagram with the first row in ε:

0 G1
f

g

G2
h

g′

G3 0

0 G′
2

f ′

D
h′

G3 0.

For any C ∈ C and any morphism ϕ : C → G3, there exists a morphism φ : C → G2 such that ϕ =
hφ = h′g′φ. So the exact sequence 0 → G′

2
f ′
−−→ D h′−−→ G3 → 0 is HomA (C , −)-exact. It follows from 

Lemma 3.7(3) that this sequence is also HomA (−, C )-exact. By [22, Proposition 4.7], D ∈ G (C ), which 

implies that 0 → G′
2

f ′
−−→ D h′−−→ G3 → 0 lies in ε.

Now let 0 → G0
i−→ G1 → G2 → 0 and 0 → G1

j−→ G′
1 → G′′

1 → 0 lie in ε. We have the following 
push-out diagram:

0 0

0 G0
i

G1

j

G2 0

0 G0
ji

G′
1 G′

2 0

G′′
1 G′′

1

0 0.

By [E2], the rightmost column lies in ε. For any C ∈ C , applying the functor (C, −) := HomA (C, −) to the 
commutative diagram we get the following commutative diagram:
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0 0

0 (C,G0)
(C,i)

(C,G1)

(C,j)

(C,G2) 0

0 (C,G0)
(C,ji)

(C,G′
1) (C,G′

2)

(C,G′′
1) (C,G′′

1)

0 0.

By the snake lemma, the morphism (C, G′
1) → (C, G′

2) is epic. Then 0 → G0
ji−−→ G′

1 → G′
2 → 0 lies in ε, 

and [E1] follows. �
By Proposition 4.6, we have the following

Corollary 4.7. (G (C ), ε) is a Frobenius category, that is, (G (C ), ε) has enough projective objects and enough 
injective objects such that the projective objects coincide with the injective objects.

Proof. Because C is the class of (relative) projective–injective objects in G (C ), the assertion follows from 
Proposition 4.6. �

For M, N ∈ A , let C (M, N) denote the subspace of A-maps from M to N factoring through C . Put 
⊥C C = {M ∈ A | ExtiC (M, C) = 0 for any C ∈ C and i ≥ 1}. By definition, it is clear that C ⊆ G (C ) ⊆
⊥C C .

Lemma 4.8. For any M ∈ ⊥C C and N ∈ A , we have a canonical isomorphism of abelian groups:

HomA (M,N)/C (M,N) ∼= HomDC-sg(A )(M,N).

Proof. In the following, a morphism from M to N in DC -sg(A ) is denoted by the equivalent class of left 
fractions s\a : M a−→ Z• s⇐= N , where Z• ∈ Db

C (A ) and Con(s) ∈ Kb(C ). We have a distinguished 
triangle in Db

C (A ):

N
s=⇒ Z• → Con(s) → N [1]. (1)

Consider the canonical map G : HomA (M, N) → HomDC-sg(A )(M, N) defined by G(f) = idN \f . We first 
prove that G is surjective. For any N ∈ A , we have the following left C -resolution of N :

· · · → C−n d−n
C−−−→ C−n+1 → · · · d−1

C−−−→ C0 d0
C−−→ N → 0.

Then in DC (A ), N is isomorphic to the complex C• := · · · → C−n d−n
C−−−→ C−n+1 → · · · d−1

C−−−→ C0 → 0, and 

so is isomorphic to the complex 0 → Ker d−l
C → C−l d−l

C−−−→ C−l+1 → · · · d−1
C−−−→ C0 → 0 for any l ≥ 0. Hence 

we have a distinguished triangle in Db
C (A ):

Ker d−l
C [l] → σ≥−lC• d0

C−−→ N
s′=⇒ Ker d−l

C [l + 1], (2)
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where Con(s′) ∈ Kb(C ). Since Con(s) ∈ Kb(C ), it follows from Proposition 3.3 that there exists l0  0
such that for any l ≥ l0, we have

HomDb
C (A )(Con(s),Ker d−l

C [l + 1]) = 0.

Take l = l0 in (2). On one hand, applying the functor HomDb
C (A )(−, Ker d−l0

C [l0 + 1]) to (1) we get 
h : Z• → Ker d−l0

C [l0 + 1] such that s′ = hs. So we have s\a = s′\(ha). On the other hand, applying 
HomDb

C (A )(M, −) := (M, −) to (2) we get an exact sequence

(M,N) (M,s′)−−−−−→ (M,Ker d−l0
C [l0 + 1]) → (M, (σ≥−l0C•)[1]).

Since M ∈ ⊥C C , by using induction on ω(σ≥−l0C•) we have (M, (σ≥−l0C•)[1]) = 0, and hence there exists 
f : M → N such that ha = s′f . Therefore we have s\a = s′\(ha) = s′\(s′f) = idN \f , that is, G is 
surjective.

Next, if f : M → N satisfies G(f) = idN \f = 0 in DC -sg(A ), then there exists s : N → Z• with 
Con(s) ∈ Kb(C ) such that sf = 0 in Db

C (A ). Use the same notations as in (1) and (2), by the above 
argument we have s′ = hs, so s′f = 0. Applying HomDb

C (A )(M, −) to (2) we get that there exists f ′ : M →
σ≥−l0C• such that f = d0

Cf
′.

Put σ<0(σ≥−l0)C• := 0 → C−l0 → C−l0+1 → · · · → C−1 → 0. We have the following distinguished 
triangle:

(σ<0(σ≥−l0)C•)[−1] −→ C0 π−→ σ≥−l0C• → σ<0(σ≥−l0)C•

in Db
C (A ), where π is the canonical map. By applying the functor HomDb

C (A )(M, −) to this triangle, it 
follows from M ∈ ⊥C C that HomDb

C (A )(M, σ<0(σ≥−l0)C•) = 0, and hence there exists g : M → C0 such 
that f ′ = πg. So f = d0

Cπg in Db
C (A ). By Proposition 3.3(3), A is a full subcategory of Db

C (A ). So f factors 
through C0 in A , and hence KerG ⊆ C (M, N). Since C (M, N) ⊆ KerG trivially, KerG = C (M, N), which 
means that HomA (M, N)/C (M, N) ∼= HomDC-sg(A )(M, N). �

Let θ : G (C ) → DC -sg(A ) be the composition of the following three functors: the embedding functors 
G (C ) ↪→ A , A ↪→ Db

C (A ) and the localization functor Db
C (A ) → DC -sg(A ), and let G (C ) denote the 

stable category of G (C ).

Proposition 4.9. θ induces a fully faithful functor θ′ : G (C ) → DC -sg(A ).

Proof. Since G (C ) ⊆ ⊥C C , the assertion follows from Lemma 4.8. �
Recall from [10] that a ∂-functor is an additive functor F from an exact category (B, ε) to a triangulated 

category C satisfying that for any short exact sequence L i−→ M
p−→ N in ε, there exists a morphism 

ω(i,p) : F (N) → F (L)[1] such that the triangle

F (L) F (i)−−−→ F (M) F (p)−−−→ F (N) ω(i,p)−−−−→ F (L)[1]

in C is distinguished; moreover, the morphism ω(i,p) is “functorial” in the sense that any morphism between 
two short exact sequences in ε:

L
i

f

M
p

g

N

h

L′ i′

M ′ p′

N ′,
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the following is a morphism of triangles:

F (L)
F (i)

F (f)

F (M)
F (p)

F (g)

F (N)

F (h)

ω(i,p)
F (L)[1]

F (f)[1]

F (L′)
F (i′)

F (M ′)
F (p′)

F (N ′)
ω(i′,p′)

F (L′)[1].

By [18, Chapter I, Theorem 2.6] and Corollary 4.7, G (C ) and DC -sg(A ) are triangulated categories. 
Moreover, we have

Proposition 4.10. The functor θ′ in Proposition 4.9 is a triangle functor.

Proof. We first claim that θ is a ∂-functor. In fact, let 0 → L f−→ M
g−→ N → 0 be a HomA (C , −)-exact 

complex with all terms in G (C ). Then it induces a distinguished triangle in DC -sg(A ), saying θ(L) θ(f)−−−→
θ(M) θ(g)−−−→ θ(N) ω(f,g)−−−−→ θ(L)[1]. It is clear that ω(f,g) is “functorial”. This shows that θ is a ∂-functor.

Note that every object in C is zero in DC -sg(A ). So θ vanishes on the projective–injective objects in 
G (C ). It follows from [10, Lemma 2.5] that the induced functor θ′ is a triangle functor. �

By Propositions 4.9 and 4.10 the natural triangle functor G (C ) → DC -sg(A ) is fully faithful. It is of 
interest to make sense when it is essentially surjective (or dense). We have the following

Theorem 4.11. If C G (C )-dim A < ∞, then the natural functor θ : G (C ) → DC -sg(A ) is essentially 
surjective (or dense).

Proof. Let X• ∈ Db
C (A ). By Proposition 3.4, there exists C•

0 = (Ci
0, d

i
C0

) ∈ K−,C b(C ) such that X• ∼= C•
0

in Db
C (A ). So there exists n0 ∈ Z such that Hi(HomA (C , C•

0 )) = 0 for any i ≤ n0. Let Ki = Ker diC0
. Then 

C•
0 is isomorphic to the complex:

0 → Ki → Ci
0

di
C0−−−→ Ci+1

0
di+1
C0−−−→ Ci+2

0 → · · ·

in Db
C (A ) for any i ≤ n0. It induces a distinguished triangle in Db

C (A ), hence a distinguished triangle in 
DC -sg(A ) of the following form:

Ki[−i] → σ≥iC•
0 → C•

0 → Ki[−i + 1].

Since σ≥iC•
0 ∈ Kb(C ), C•

0
∼= Ki[−i + 1] in DC -sg(A ). Take l0 = i and Y = Ki. Then C•

0
∼= Y [−l0 + 1]

in DC -sg(A ). By assumption we may assume that CG (C )-dim Y = m0 < ∞. Let C•
1 → Y be the left 

C -resolution of Y . We claim that for any n ≤ −m0 + 1, Ker dnC1
∈ G (C ), where dnC1

is the nth differential 
of C•

1 .
We have a C -acyclic complex:

0 → G−m0 → G−m0+1 → · · · → G−1 → G0 → Y → 0

with Gj ∈ G (C ) for any −m0 ≤ j ≤ 0. Let G• be the complex 0 → G−m0 → G−m0+1 → · · · → G−1 →
G0 → 0. By Lemma 2.3, there exists a C -quasi-isomorphism C•

1 → G• lying over idY , and hence its mapping 
cone is C -acyclic. So for any n ≤ −m0 + 1, we get the following C -acyclic complex:

0 → Ker dnC → Cn
1 → · · · → C−m0

1 → C−m0+1
1 ⊕G−m0 → · · · → C0

1 ⊕G−1 → G0 → 0.

1
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Note that this complex is acyclic because C is admissible. Put K = Ker(C0
1 ⊕ G−1 → G0), we get a 

HomA (C , −)-exact exact sequence 0 → K → C0
1 ⊕ G−1 → G0 → 0. By Lemma 3.7(3), we get an exact 

sequence:

0 → HomA (G0, C) → HomA (C0
1 ⊕G−1, C) → HomA (K,C) → Ext1C (G0, C)

for any C ∈ C . Since G0 ∈ G (C ), Ext1C (G0, C) = 0 and so the exact sequence 0 → K → C0
1⊕G−1 → G0 → 0

is HomA (−, C )-exact. Because both C0
1 ⊕ G−1 and G0 are in G (C ), K ∈ G (C ) by [22, Proposition 4.7]. 

Iterating this process, we get that Ker dnC1
∈ G (C ) for any n ≤ −m0 + 1. The claim is proved.

Choose a left C -resolution C•
1 of Y and put X = Ker d−m0+1

C1
. By the above claim we have a C -acyclic 

complex:

0 → X → C−m0+1
1 → C−m0+2

1 → · · · → C0
1 → Y → 0

with X ∈ G (C ). Then Y ∼= X[m0] in DC -sg(A ) and X• ∼= C•
0

∼= Y [−l0 + 1] ∼= X[m0 − l0 + 1] in 
DC -sg(A ). We may assume that X• ∼= C•

0
∼= X[r0] in DC -sg(A ) for r0 > 0. Because X ∈ G (C ), we get a 

HomA (C , −)-exact exact sequence 0 → X → C0 → C1 → · · · → Cr0−1 → X ′ → 0 with X ′ ∈ G (C ) and 
Ci ∈ C for any 0 ≤ i ≤ r0 − 1. It follows that X ∼= X ′[−r0] and X• ∼= C•

0
∼= X[r0] ∼= X ′ in DC -sg(A ). This 

completes the proof. �
The following is the main result of this paper.

Theorem 4.12. If C G (C )-dim A < ∞, then the natural functor θ : G (C ) → DC -sg(A ) induces a triangle-
equivalence θ′ : G (C ) → DC -sg(A ).

Proof. It follows directly from Propositions 4.9, 4.10 and Theorem 4.11. �
The following result is the dual version of Happel’s result, see [19, Theorem 4.6].

Corollary 4.13. If A is Gorenstein, then the canonical functor G (A) → Dsg(A) induces a triangle-equivalence 
G (A) → Dsg(A).

Proof. Let A be Gorenstein and C = A-proj. Then C G (C )-dim A < ∞ by [21, Theorem]. Now the assertion 
is an immediate consequence of Theorem 4.12. �
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