Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Relative singularity categories

Huanhuan Li, Zhaoyong Huang*

Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, PR China

ARTICLE INFO

Article history: Received 1 May 2014 Received in revised form 19 December 2014 Available online 11 February 2015 Communicated by S. Koenig

MSC: 18E30; 16E35; 18G25

ABSTRACT

We study the properties of the relative derived category $D^b_{\mathscr{C}}(\mathscr{A})$ of an abelian category \mathscr{A} relative to a full and additive subcategory \mathscr{C} . In particular, when $\mathscr{A} = A$ -mod for a finite-dimensional algebra A over a field and \mathscr{C} is a contravariantly finite subcategory of A-mod which is admissible and closed under direct summands, the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A}) = D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$ is studied. We give a sufficient condition when this category is triangulated equivalent to the stable category of the Gorenstein category $\mathscr{G}(\mathscr{C})$ of \mathscr{C} .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a finite-dimensional algebra over a field. We denote by A-mod the category of finitely generated left A-modules, and A-proj (resp. A-inj) the full subcategory of A-mod consisting of projective (resp. injective) modules. We use $K^b(A)$ and $D^b(A)$ to denote the bounded homotopy and derived categories of A-mod respectively, and $K^b(A-\text{proj})$ (resp. $K^b(A-\text{inj})$) to denote the bounded homotopy category of A-proj (resp. A-inj).

The composition functor $K^b(A\text{-proj}) \to K^b(A) \to D^b(A)$ with the former one the inclusion functor and the latter one the quotient functor is naturally a fully faithful triangle functor, and then one can view $K^b(A\text{-proj})$ as a triangulated subcategory of $D^b(A)$. In fact it is a thick one by [7, Lemma 1.2.1]. Consider the quotient triangulated category $D_{sg}(A) := D^b(A)/K^b(A\text{-proj})$, which is the so-called "singularity category". This category was first introduced and studied by Buchweitz in [7] where A is assumed to be a left and right noetherian ring. Later on Rickard proved in [26] that for a self-injective algebra A, this category is triangle-equivalent to the stable category of A-mod. This result was generalized to Gorenstein algebra by Happel in [19]. Since A has finite global dimension if and only if $D_{sg}(A) = 0$, from this viewpoint $D_{sg}(A)$ measures the homological singularity of the algebra A, we call it the singularity category after [24].

* Corresponding author.

E-mail addresses: lihuanhuan0416@163.com (H. Li), huangzy@nju.edu.cn (Z. Huang).

4091

Besides, other quotient triangulated categories have been studied by many authors. Beligiannis considered the quotient triangulated categories $D^b(R\operatorname{-Mod})/K^b(R\operatorname{-Proj})$ and $D^b(R\operatorname{-Mod})/K^b(R\operatorname{-Inj})$ for arbitrary ring R, where $R\operatorname{-Mod}$ is the category of left $R\operatorname{-modules}$ and $R\operatorname{-Proj}$ (resp. $R\operatorname{-Inj}$) is the full subcategory of $R\operatorname{-Mod}$ consisting of projective (resp. injective) modules (see [5]). Let \mathscr{A} be an abelian category. A full and additive subcategory ω of \mathscr{A} is called *self-orthogonal* if $\operatorname{Ext}^i_{\mathscr{A}}(M,N) = 0$ for any $M, N \in \omega$ and $i \geq 1$; in particular, an object T in \mathscr{A} is called *self-orthogonal* if $\operatorname{Ext}^i_{\mathscr{A}}(M, N) = 0$ for any $i \geq 1$. Chen and Zhang studied in [11] the quotient triangulated category $D^b(A)/K^b(\operatorname{add}_A T)$ for a finite-dimensional algebra Aand a self-orthogonal module T in $A\operatorname{-mod}$, where $\operatorname{add}_A T$ is the full subcategory of $A\operatorname{-mod}$ consisting of direct summands of finite direct sums of T. Recently Chen studied in [10] the relative singularity category $D_{\omega}(\mathscr{A}) := D^b(\mathscr{A})/K^b(\omega)$ for an arbitrary abelian category \mathscr{A} and an arbitrary self-orthogonal, full and additive subcategory ω of \mathscr{A} .

For an abelian category \mathscr{A} with enough projective objects, the Gorenstein derived category $D_{gp}^*(\mathscr{A})$ of \mathscr{A} was introduced by Gao and Zhang in [16], where $* \in \{\text{blank}, -, b\}$. It can be viewed as a generalization of the usual derived category $D^*(\mathscr{A})$ by using Gorenstein projective objects instead of projective objects and \mathscr{GP} -quasi-isomorphisms instead of quasi-isomorphisms, where \mathscr{GP} means "Gorenstein projective". For Gorenstein projective modules and Gorenstein projective objects, we refer to [2,13,14,20,27]. Asadollahi, Hafezi and Vahed studied in [1] the relative derived category $D^*_{\mathscr{C}}(\mathscr{A})$ for an arbitrary abelian category \mathscr{A} with respect to a contravariantly finite subcategory \mathscr{C} , where $* \in \{\text{blank}, -, b\}$, and they pointed out that $K^b(\mathscr{C})$ can be viewed as a triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$.

Given a finite-dimensional algebra A over a field and a full and additive subcategory \mathscr{C} of $\mathscr{A}(=A\text{-mod})$ closed under direct summands, it follows from [6] that $K^b(\mathscr{C})$ is a Krull–Schmidt category and hence can be viewed as a thick triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$. If the quotient triangulated category $D_{\mathscr{C}\text{-sg}}(\mathscr{A}) :=$ $D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$ is considered, then it is natural to ask whether $D_{\mathscr{C}\text{-sg}}(\mathscr{A})$ shares some nice properties of $D_{sg}(A)$. The aim of this paper is to study this question.

In Section 2, we give some terminology and some preliminary results.

In Section 3, for an abelian category \mathscr{A} and a full and additive subcategory \mathscr{C} of \mathscr{A} , we prove that if \mathscr{C} is admissible, then the composition functor $\mathscr{A} \to K^b(\mathscr{A}) \to D^b_{\mathscr{C}}(\mathscr{A})$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor. Let \mathscr{C} be a contravariantly finite subcategory of \mathscr{A} and $\mathscr{D} \subseteq \mathscr{A}$ a subclass of \mathscr{A} . We introduce a dimension denoted by $\mathscr{C}\mathscr{D}$ -dim M which is called the \mathscr{C} -proper \mathscr{D} -dimension of an object M in \mathscr{A} . By choosing a left \mathscr{C} -resolution C^{\bullet}_{M} of M, we get a functor $\operatorname{Ext}^{n}_{\mathscr{C}}(M, -) := H^{n} \operatorname{Hom}_{\mathscr{A}}(C^{\bullet}_{M}, -)$ for any $n \in \mathbb{Z}$. Then by using the properties of this functor we obtain some equivalent characterizations for $\mathscr{C}\mathscr{C}$ -dim M being finite.

In Section 4, we introduce the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A}) := D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$, where $\mathscr{A} = A$ -mod and \mathscr{C} is a contravariantly finite, full and additive subcategory of \mathscr{A} which is admissible and closed under direct summands. We prove that if $\mathscr{C}\mathscr{C}$ -dim $\mathscr{A} < \infty$, then $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$. As a consequence, we get that if A is of finite representation type, then $\mathscr{C}\mathscr{C}$ -dim $\mathscr{A} < \infty$ if and only if $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$. Let $\mathscr{G}(\mathscr{C})$ be the Gorenstein category of \mathscr{C} and ε the collection of all $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complexes of the form: $0 \to L \to M \to N \to 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. By [8] (or [25]) $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category; moreover, it is a Frobenius category with \mathscr{C} the subcategory of projective-injective objects, see [18]. We prove that if $\mathscr{C}\mathscr{G}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$ induces a triangle-equivalence $\theta' : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$, where $\mathscr{G}(\mathscr{C})$ is the stable category of $\mathscr{G}(\mathscr{C})$.

2. Preliminaries

Throughout this paper, \mathscr{A} is an abelian category, $C(\mathscr{A})$ is the category of complexes of objects in \mathscr{A} , $K^*(\mathscr{A})$ is the homotopy category of \mathscr{A} and $D^*(\mathscr{A})$ is the usual derived category by inverting the quasi-isomorphisms in $K^*(\mathscr{A})$, where $* \in \{\text{blank}, -, b\}$. We will use the formula $\text{Hom}_{K(\mathscr{A})}(X^{\bullet}, Y^{\bullet}[n]) = H^n \text{Hom}_{\mathscr{A}}(X^{\bullet}, Y^{\bullet})$ for any $X^{\bullet}, Y^{\bullet} \in C(\mathscr{A})$ and $n \in \mathbb{Z}$ (the ring of integers).

Let

$$X^{\bullet} := \cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \to \cdots$$

be a complex and $f : X^{\bullet} \to Y^{\bullet}$ a cochain map in $C(\mathscr{A})$. Recall that X^{\bullet} is called *acyclic* (or *exact*) if $H^{i}(X^{\bullet}) = 0$ for any $i \in \mathbb{Z}$, and f is called a *quasi-isomorphism* if $H^{i}(f)$ is an isomorphism for any $i \in \mathbb{Z}$.

From now on, we fix a full and additive subcategory $\mathscr C$ of $\mathscr A$.

Definition 2.1. Let X^{\bullet}, Y^{\bullet} and f be as above.

(1) (See [14].) X^{\bullet} in $C(\mathscr{A})$ is called \mathscr{C} -acyclic or $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact if the complex $\operatorname{Hom}_{\mathscr{A}}(C, X^{\bullet})$ is acyclic for any $C \in \mathscr{C}$. Dually, a $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact complex is defined.

(2) f is called a \mathscr{C} -quasi-isomorphism if the cochain map $\operatorname{Hom}_{\mathscr{A}}(C, f)$ is a quasi-isomorphism for any $C \in \mathscr{C}$.

Remark 2.2. (1) We use $\operatorname{Con}(f)$ to denote the mapping cone of $f : X^{\bullet} \to Y^{\bullet}$. It is well known that f is a quasi-isomorphism if and only if $\operatorname{Con}(f)$ is acyclic; analogously, f is a \mathscr{C} -quasi-isomorphism if and only if $\operatorname{Con}(f)$ is \mathscr{C} -acyclic.

(2) We use $\mathscr{P}(\mathscr{A})$ to denote the full subcategory of \mathscr{A} consisting of projective objects. If \mathscr{A} has enough projective objects, then every quasi-isomorphism is a $\mathscr{P}(\mathscr{A})$ -quasi-isomorphism; and if $\mathscr{P}(\mathscr{A}) \subseteq \mathscr{C}$, then every \mathscr{C} -quasi-isomorphism is a quasi-isomorphism.

We use $K_{ac}^*(\mathscr{A})$ (resp. $K_{\mathscr{C}-ac}^*(\mathscr{A})$) to denote the full subcategory of $K^*(\mathscr{A})$ consists of acyclic complexes (resp. \mathscr{C} -acyclic complexes).

Lemma 2.3. Let X^{\bullet} be a complex in $C(\mathscr{A})$. Then X^{\bullet} is \mathscr{C} -acyclic if and only if the complex $\operatorname{Hom}_{\mathscr{A}}(C^{\bullet}, X^{\bullet})$ is acyclic for any $C^{\bullet} \in K^{-}(\mathscr{C})$.

Proof. See [12, Lemma 2.4]. \Box

Lemma 2.4. (1) Let C^{\bullet} be a complex in $K^{-}(\mathscr{C})$ and $f: X^{\bullet} \to C^{\bullet}$ a \mathscr{C} -quasi-isomorphism in $C(\mathscr{A})$. Then there exists a cochain map $g: C^{\bullet} \to X^{\bullet}$ such that fg is homotopic to $\mathrm{id}_{C^{\bullet}}$.

(2) Any C-quasi-isomorphism between two complexes in $K^{-}(C)$ is a homotopy equivalence.

Proof. (1) Consider the distinguished triangle:

$$X^{\bullet} \xrightarrow{f} C^{\bullet} \to \operatorname{Con}(f) \to X^{\bullet}[1]$$

in $K(\mathscr{A})$ with $\operatorname{Con}(f)$ \mathscr{C} -acyclic. By applying the functor $\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, -)$ to it, we get an exact sequence:

$$\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, X^{\bullet}) \xrightarrow{\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, f)} \operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, C^{\bullet}) \to \operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, \operatorname{Con}(f))$$

It follows from Lemma 2.3 that $\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, \operatorname{Con}(f)) \cong H^0 \operatorname{Hom}_{\mathscr{A}}(C^{\bullet}, \operatorname{Con}(f)) = 0$. So there exists a cochain map $g: C^{\bullet} \to X^{\bullet}$ such that fg is homotopic to $\operatorname{id}_{C^{\bullet}}$.

(2) Let $f: X^{\bullet} \to Y^{\bullet}$ be a \mathscr{C} -quasi-isomorphism with X^{\bullet}, Y^{\bullet} in $K^{-}(\mathscr{C})$. By (1), there exists a cochain map $g: Y^{\bullet} \to X^{\bullet}$, such that fg is homotopic to $\mathrm{id}_{Y^{\bullet}}$. By (1) again, there exists a cochain map $g': X^{\bullet} \to Y^{\bullet}$, such that gg' is homotopic to $\mathrm{id}_{X^{\bullet}}$. Thus f = g' in $K(\mathscr{A})$ is a homotopy equivalence. \Box

Definition 2.5. (1) (See [3].) Let $\mathscr{C} \subseteq \mathscr{D}$ be subcategories of \mathscr{A} . The morphism $f: C \to D$ in \mathscr{A} with $C \in \mathscr{C}$ and $D \in \mathscr{D}$ is called a *right* \mathscr{C} -*approximation* of D if for any morphism $g: C' \to D$ in \mathscr{A} with $C' \in \mathscr{C}$, there exists a morphism $h: C' \to C$ such that the following diagram commutes:

If each object in \mathscr{D} has a right \mathscr{C} -approximation, then \mathscr{C} is called *contravariantly finite* in \mathscr{D} .

(2) (See [9].) A contravariantly finite subcategory \mathscr{C} of \mathscr{A} is called *admissible* if any right \mathscr{C} -approximation is epic. In this case, every \mathscr{C} -acyclic complex is acyclic.

The following definition is cited from [8], see also [25] and [23].

Definition 2.6. Let \mathscr{B} be an additive category. A *kernel-cokernel pair* (i, p) in \mathscr{B} is a pair of composable morphisms $L \xrightarrow{i} M \xrightarrow{p} N$ such that i is a kernel of p and p is a cokernel of i. If a class ε of kernel-cokernel pairs on \mathscr{B} is fixed, an *admissible monic* (sometimes called *inflation*) is a morphism i for which there exists a morphism p such that $(i, p) \in \varepsilon$. Admissible epics (sometimes called *deflations*) are defined dually.

An exact category is a pair $(\mathcal{B}, \varepsilon)$ consisting of an additive category \mathcal{B} and a class of kernel-cokernel pairs ε on \mathcal{B} with ε closed under isomorphisms satisfying the following axioms:

- [E0] For any object B in \mathcal{B} , the identity morphism id_B is both an admissible monic and an admissible epic.
- [E1] The class of admissible monics is closed under compositions.
- [E1^{op}] The class of admissible epics is closed under compositions.
- [E2] The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible monic.
- [E2^{op}] The pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible epic.

Elements of ε are called *short exact sequences* (or *conflations*).

Let \mathscr{B} be a triangulated subcategory of a triangulated category \mathscr{K} and S the compatible multiplicative system determined by \mathscr{B} . In the Verdier quotient category \mathscr{K}/\mathscr{B} , each morphism $f: X \to Y$ is given by an equivalence class of right fractions f/s or left fractions $s \setminus f$ as presented by $X \stackrel{s}{\longleftarrow} Z \stackrel{f}{\longrightarrow} Y$ or $X \stackrel{f}{\longrightarrow} Z \stackrel{s}{\longleftarrow} Y$, where the doubled arrow means $s \in S$.

3. *C*-derived categories

For a subclass \mathscr{C} of objects in a triangulated category \mathscr{K} , it is known that the full subcategory $\mathscr{C}^{\perp} = \{X \in \mathscr{K} \mid \operatorname{Hom}_{\mathscr{K}}(C[n], X) = 0 \text{ for any } C \in \mathscr{C} \text{ and } n \in \mathbb{Z}\}$ is a triangulated subcategory of \mathscr{K} and is closed under direct summands, and hence is thick [26]. It follows that $K^*_{\mathscr{C}\operatorname{-ac}}(\mathscr{A})$ is a thick subcategory of $K^*(\mathscr{A})$.

Definition 3.1. (See [28].) The Verdier quotient category $D^*_{\mathscr{C}}(\mathscr{A}) := K^*(\mathscr{A})/K^*_{\mathscr{C}\text{-ac}}(\mathscr{A})$ is called the \mathscr{C} -derived category of \mathscr{A} , where $* \in \{\text{blank}, -, b\}$.

Example 3.2. (1) If \mathscr{A} has enough projective objects and $\mathscr{C} = \mathscr{P}(\mathscr{A})$, then $D^*_{\mathscr{C}}(\mathscr{A})$ is the usual derived category $D^*(\mathscr{A})$.

(2) If \mathscr{A} has enough projective objects and $\mathscr{C} = \mathscr{G}(\mathscr{A})$ (the full subcategory of \mathscr{A} consisting of Gorenstein projective objects), then $D^*_{\mathscr{C}}(\mathscr{A})$ is the Gorenstein derived category $D^*_{ap}(\mathscr{A})$ defined in [16].

(3) Let R be a ring and $\mathscr{A} = R$ -Mod. If $\mathscr{C} = \mathscr{PP}(R)$ (the full subcategory of R-Mod consisting of pure projective modules), then $D^*_{\mathscr{C}}(\mathscr{A})$ is the pure derived category $D^*_{pur}(\mathscr{A})$ in [29].

Proposition 3.3. (See [1].) (1) $D^-_{\mathscr{C}}(\mathscr{A})$ is a triangulated subcategory of $D_{\mathscr{C}}(\mathscr{A})$, and $D^b_{\mathscr{C}}(\mathscr{A})$ is a triangulated subcategory of $D^-_{\mathscr{C}}(\mathscr{A})$.

(2) For any $C^{\bullet} \in K^{-}(\mathscr{C})$ and $X^{\bullet} \in C(\mathscr{A})$, there exists an isomorphism of abelian groups:

 $\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, X^{\bullet}) \cong \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}(C^{\bullet}, X^{\bullet}).$

(3) Let $\mathscr{C} \subseteq \mathscr{A}$ be admissible. Then the composition functor $\mathscr{A} \to K^b(\mathscr{A}) \to D^b_{\mathscr{C}}(\mathscr{A})$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor.

Proof. In the following, each morphism in $D^*_{\mathscr{C}}(\mathscr{A})$ will be denoted by the equivalence class of right fractions, where $* \in \{\text{blank}, -, b\}$.

(1) We only prove the first assertion, the second one can be proved similarly.

Note that $D^-_{\mathscr{C}}(\mathscr{A}) = K^-(\mathscr{A})/K^-(\mathscr{A}) \cap K_{\mathscr{C}\text{-ac}}(\mathscr{A})$ and $D_{\mathscr{C}}(\mathscr{A}) = K(\mathscr{A})/K_{\mathscr{C}\text{-ac}}(\mathscr{A})$. By [17, Proposition 3.2.10], it suffices to show that for any \mathscr{C} -quasi-isomorphism $s: Y^{\bullet} \to X^{\bullet}$ with $X^{\bullet} \in K^-(\mathscr{A})$, there exists a morphism $f: Z^{\bullet} \to Y^{\bullet}$ with $Z^{\bullet} \in K^-(\mathscr{A})$ such that sf is a \mathscr{C} -quasi-isomorphism.

Suppose $X^n \neq 0$ with $X^i = 0$ for any i > n. Then there exists a commutative diagram:

where Ker $d_V^{n+1} \to Y^{n+1}$ is the canonical map. Since both f and s are \mathscr{C} -quasi-isomorphisms, so is sf.

(2) Consider the canonical map $G : \operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, X^{\bullet}) \to \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}(C^{\bullet}, X^{\bullet})$ defined by $G(f) = f/\operatorname{id}_{C^{\bullet}}$. If G(f) = 0, then there exists a \mathscr{C} -quasi-isomorphism $s : Z^{\bullet} \to C^{\bullet}$ such that $fs \sim 0$. By Lemma 2.4(1) there exists a cochain map $g : C^{\bullet} \to Z^{\bullet}$ such that $sg \sim \operatorname{id}_{C^{\bullet}}$, and then $f \sim 0$. On the other hand, let $f/s \in \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}(C^{\bullet}, X^{\bullet})$, that is, it has a diagram of the form $C^{\bullet} \stackrel{s}{\Leftarrow} Z^{\bullet} \stackrel{f}{\to} X^{\bullet}$, where s is a \mathscr{C} -quasi-isomorphism. It follows from Lemma 2.4(1) there exists a cochain map $g : C^{\bullet} \to Z^{\bullet}$ such that $sg \sim \operatorname{id}_{C^{\bullet}}$, which implies that $f/s = (fg)/\operatorname{id}_{C^{\bullet}} = G(fg)$. Thus G is an isomorphism, as desired.

(3) Let $F : \mathscr{A} \to D^b_{\mathscr{C}}(\mathscr{A})$ denote the composition functor, it suffices to show that for any $M, N \in \mathscr{A}$, the map $F : \operatorname{Hom}_{\mathscr{A}}(M, N) \to \operatorname{Hom}_{D^b_{\mathscr{A}}}(\mathscr{A}, N)$ is an isomorphism.

Let $f \in \operatorname{Hom}_{\mathscr{A}}(M, N)$. If F(f) = 0, then there exists a \mathscr{C} -quasi-isomorphism $s : Z^{\bullet} \to M$ such that $fs \sim 0$, and then $H^0(f)H^0(s) = 0$. Since $H^0(s)$ is an isomorphism, $f = H^0(f) = 0$. On the other hand, let $f/s \in \operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, N)$, that is, it has a diagram of the form $M \stackrel{s}{\leftarrow} Z^{\bullet} \stackrel{f}{\to} N$, where s is a \mathscr{C} -quasi-isomorphism. Then $H^0(s) : H^0(Z^{\bullet}) \to M$ is an isomorphism. Put $g := H^0(f)H^0(s)^{-1} \in \operatorname{Hom}_{\mathscr{A}}(M, N)$. Consider the truncation:

$$U^{\bullet} := \cdots \to Z^{-2} \xrightarrow{d_Z^{-2}} Z^{-1} \xrightarrow{d_Z^{-1}} \operatorname{Ker} d^0 \to 0$$

of Z^{\bullet} and the canonical map $i: U^{\bullet} \to Z^{\bullet}$. Since s is a \mathscr{C} -quasi-isomorphism, so is si. We have the following commutative diagram:

where $U^{\bullet} \to H^0(Z^{\bullet})$ is the canonical map, so $gsi = H^0(f)H^0(s)^{-1}si = fi$. Then we get the following commutative diagram of complexes:

which implies $F(g) = g/\operatorname{id}_M = f/s$. \Box

Set $K^{-,\mathscr{C}b}(\mathscr{C}) := \{X^{\bullet} \in K^{-}(\mathscr{C}) \mid \text{there exists } n \in \mathbb{Z} \text{ such that } H^{i}(\operatorname{Hom}_{\mathscr{A}}(C, X^{\bullet})) = 0 \text{ for any } C \in \mathscr{C} \text{ and } i \leq n\}.$

Proposition 3.4. (See [1, Theorem 3.3].) If \mathscr{C} is a contravariantly finite subcategory of \mathscr{A} , then we have a triangle-equivalence $K^{-,\mathscr{C}b}(\mathscr{C}) \cong D^b_{\mathscr{C}}(\mathscr{A})$.

In the rest of this section, we always suppose that \mathscr{C} is a contravariantly finite subcategory of \mathscr{A} unless otherwise specified.

Definition 3.5. Let \mathscr{D} be a subclass of objects in \mathscr{A} and $M \in \mathscr{A}$.

(1) A \mathscr{C} -proper \mathscr{D} -resolution of M is a \mathscr{C} -quasi-isomorphism $f : D^{\bullet} \to M$, where D^{\bullet} is a complex of objects in \mathscr{D} with $D^n = 0$ for any n > 0, that is, it has an associated $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complex $\cdots \to D^{-n} \to D^{-n+1} \to \cdots \to D^0 \xrightarrow{f} M \to 0$.

(2) The \mathscr{C} -proper \mathscr{D} -dimension of M, written $\mathscr{C}\mathscr{D}$ -dim M, is defined as $\inf\{n \mid \text{there exists a} \text{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complex $0 \to D^{-n} \to D^{-n+1} \to \cdots \to D^0 \xrightarrow{f} M \to 0\}$. If no such an integer exists, then set $\mathscr{C}\mathscr{D}$ -dim $M = \infty$.

(3) For a class \mathscr{E} of objects of \mathscr{A} , the \mathscr{C} -proper \mathscr{D} -dimension of \mathscr{E} , written \mathscr{CD} -dim \mathscr{E} , is defined as $\sup\{\mathscr{CD}$ -dim $M \mid M \in \mathscr{E}\}$.

Remark 3.6. (1) If \mathscr{A} has enough projective objects and $\mathscr{C} = \mathscr{P}(\mathscr{A})$, then a \mathscr{C} -proper \mathscr{D} -resolution is just a \mathscr{D} -resolution and the \mathscr{C} -proper \mathscr{D} -dimension of an object $M \in \mathscr{A}$ is just the usual \mathscr{D} -dimension \mathscr{D} -dim M of M.

(2) If $\mathscr{D} = \mathscr{C}$, then a \mathscr{C} -proper \mathscr{D} -resolution is just a \mathscr{C} -proper resolution. In this case, it is also called a *left \mathscr{C}-resolution* and the \mathscr{C} -proper \mathscr{D} -dimension is the left \mathscr{C} -dimension (see [14]).

Let $M \in \mathscr{A}$. Since \mathscr{C} is a contravariantly finite subcategory of \mathscr{A} , we may choose a left \mathscr{C} -resolution $C_M^{\bullet} \to M$ of M. Put $\operatorname{Ext}^n_{\mathscr{C}}(M,N) := H^n \operatorname{Hom}_{\mathscr{A}}(C_M^{\bullet},N)$ for any $N \in \mathscr{A}$ and $n \in \mathbb{Z}$. Note that C_M^{\bullet} is isomorphic to M in $D_{\mathscr{C}}(\mathscr{A})$. By Proposition 3.3(1)(2), we have $\operatorname{Ext}^n_{\mathscr{C}}(M,N) = H^n \operatorname{Hom}_{\mathscr{A}}(C_M^{\bullet},N) = \operatorname{Hom}_{K(\mathscr{A})}(C_M^{\bullet},N[n]) \cong \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}(C_M^{\bullet},N[n]) \cong \operatorname{Hom}_{D_{\mathscr{C}}^{\bullet}(\mathscr{A})}(M,N[n]).$

The following is cited from [14, Chapter 8].

Lemma 3.7. (1) For any $M \in \mathscr{A}$, the functor $\operatorname{Ext}^{n}_{\mathscr{C}}(M, -)$ does not depend on the choices of left \mathscr{C} -resolutions of M.

(2) For any $M \in \mathscr{A}$ and n < 0, $\operatorname{Ext}^{n}_{\mathscr{C}}(M, -) = 0$ and there exists a natural equivalence $\operatorname{Hom}_{\mathscr{A}}(M, -) \cong \operatorname{Ext}^{0}_{\mathscr{C}}(M, -)$ whenever \mathscr{C} is admissible.

(3) If \mathscr{C} is admissible, then every $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complex $0 \to L \to M \to N \to 0$ induces a long $exact \ sequence \ 0 \to \operatorname{Hom}_{\mathscr{A}}(N, -) \to \operatorname{Hom}_{\mathscr{A}}(M, -) \to \operatorname{Hom}_{\mathscr{A}}(L, -) \to \cdots \to \operatorname{Ext}^{n}_{\mathscr{C}}(N, -) \to \operatorname{Ext}^{n}_{\mathscr{C}}(M, -) \to \operatorname$ $\operatorname{Ext}_{\mathscr{C}}^{n}(L,-) \to \operatorname{Ext}_{\mathscr{C}}^{n+1}(N,-) \to \cdots$

Theorem 3.8. Let C be admissible and closed under direct summands, then the following statements are equivalent for any $M \in \mathscr{A}$ and $n \geq 0$.

(1) \mathscr{CC} -dim $M \leq n$.

(2) $\operatorname{Ext}_{\mathscr{C}}^{i}(M, N) = 0$ for any $N \in \mathscr{A}$ and $i \geq n+1$.

(3) $\operatorname{Ext}_{\mathscr{C}}^{n+1}(M, N) = 0$ for any $N \in \mathscr{A}$.

(4) For any left \mathscr{C} -resolution $C_M^{\bullet} \to M$ of M, Ker $d_{C_M}^{-n+1} \in \mathscr{C}$, where $d_{C_M}^{-n+1}$ is the (-n+1)st differential of C_M^{\bullet} .

Proof. (1) \Rightarrow (2) Let $0 \to C^{-n} \to C^{-n+1} \to \cdots \to C^0 \to M \to 0$ be a left \mathscr{C} -resolution of M. Then $\operatorname{Hom}_{\mathscr{A}}(C^{-i}, N) = 0$ for any $N \in \mathscr{A}$ and $i \geq n+1$ and the assertion follows.

 $(2) \Rightarrow (3)$ and $(4) \Rightarrow (1)$ are trivial.

(3) \Rightarrow (4) Let $\cdots \rightarrow C_M^{-n} \xrightarrow{d_{C_M}^{-n}} C_M^{-n+1} \rightarrow \cdots \rightarrow C_M^0 \rightarrow M \rightarrow 0$ be a left \mathscr{C} -resolution of M. Then we get a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence $0 \rightarrow \operatorname{Ker} d_{C_M}^{-n} \rightarrow C_M^{-n} \rightarrow \operatorname{Ker} d_{C_M}^{-n+1} \rightarrow 0$. Since $\operatorname{Ext}_{\mathscr{C}}^{n+1}(M, \operatorname{Ker} d_{C_M}^{-n}) = 0, \operatorname{Ext}_{\mathscr{C}}^1(\operatorname{Ker} d_{C_M}^{-n+1}, \operatorname{Ker} d_{C_M}^{-n}) \cong \operatorname{Ext}_{\mathscr{C}}^{n+1}(M, \operatorname{Ker} d_{C_M}^{-n}) = 0$ by the dimension shifting. Applying $\operatorname{Hom}_{\mathscr{A}}(-, \operatorname{Ker} d_{C_M}^{-n})$ to the exact sequence $0 \rightarrow \operatorname{Ker} d_{C_M}^{-n} \rightarrow C_M^{-n} \rightarrow \operatorname{Ker} d_{C_M}^{-n+1} \rightarrow 0$, it follows from Lemma 3.7(3) that the sequence splits. So $\operatorname{Ker} d_{C_M}^{-n+1}$ is a direct summand of C_M^{-n} and $\operatorname{Ker} d_{C_M}^{-n+1} \in \mathscr{C}$. \Box

4. *C*-singularity categories

In this section, unless otherwise specified, we always suppose that A is a finite-dimensional algebra over a field, $\mathscr{A} = A$ -mod and \mathscr{C} is a full and additive subcategory of \mathscr{A} which is contravariantly finite in \mathscr{A} and is admissible and closed under direct summands.

Recall that an additive category is called a $Krull-Schmidt \ category$ if each of its object X has a decomposition $X \cong X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n$ such that each X_i is indecomposable with a local endomorphism ring. By [6, Proposition A.2] $K^b(\mathscr{C})$ is a Krull-Schmidt category, so it is closed under direct summands and $K^b(\mathscr{C})$ viewed as a full triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$ is thick. It is of interest to consider the quotient triangulated category $D^b_{\mathscr{C}}(\mathscr{A}) / K^b(\mathscr{C})$.

Definition 4.1. We call $D_{\mathscr{C}\text{-sg}}(\mathscr{A}) := D^b_{\mathscr{C}}(\mathscr{A}) / K^b(\mathscr{C})$ the $\mathscr{C}\text{-singularity category}$.

Example 4.2. (1) If $\mathscr{C} = A$ -proj, then $D^b_{\mathscr{C}}(\mathscr{A})$ is the usual bounded derived category $D^b(\mathscr{A})$ and the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A})$ is the singularity category $D_{sg}(A)$ which is called the "stabilized derived category" in [7].

(2) Let $\mathscr{C} = \mathscr{G}(A)$ (the subcategory of A-mod consisting of Gorenstein projective modules). If $\mathscr{G}(A)$ is contravariantly finite in A-mod, for example, if A is Gorenstein (that is, the left and right self-injective dimensions of A are finite) or $\mathscr{G}(A)$ contains only finitely many non-isomorphic indecomposable modules, then the bounded \mathscr{C} -derived category of \mathscr{A} , denoted by $D^b_{\mathscr{G}(A)}(\mathscr{A})$, is the bounded Gorenstein derived category introduced in [16]. The \mathscr{C} -singularity category $D_{\mathscr{G}(A)-sq}(\mathscr{A})$ is the quotient triangulated category $D^{b}_{\mathscr{G}(A)}(\mathscr{A}) / K^{b}(\mathscr{G}(A))$, we call it the Gorenstein singularity category.

Given a complex X^{\bullet} and an integer $i \in \mathbb{Z}$, we denote by $\sigma^{\geq i} X^{\bullet}$ the complex with X^{j} in the *j*th degree whenever $i \geq i$ and 0 elsewhere, and set $\sigma^{\geq i} X^{\bullet} := \sigma^{\geq i+1} X^{\bullet}$. Dually, for the notations $\sigma^{\leq i} X^{\bullet}$ and $\sigma^{\leq i} X^{\bullet}$. Recall that the cardinal of the set $\{X^i \neq 0 \mid i \in \mathbb{Z}\}$ is called the *width* of X^{\bullet} , and denoted by $\omega(X^{\bullet})$.

It is well known that A has finite global dimension if and only if $D_{sq}(A) = 0$. For the \mathscr{C} -singularity category $D^b_{\mathscr{C}-sq}(\mathscr{A})$ we have the following property.

Proposition 4.3. If \mathscr{CC} -dim $\mathscr{A} < \infty$, then $D_{\mathscr{C}\text{-sg}}(\mathscr{A}) = 0$.

Proof. We claim that for every $X^{\bullet} \in K^{b}(\mathscr{A})$ there exists a \mathscr{C} -quasi-isomorphism $C_{X}^{\bullet} \to X^{\bullet}$ such that $C_{X}^{\bullet} \in K^{b}(\mathscr{C})$. We proceed by induction on the width $\omega(X^{\bullet})$ of X^{\bullet} .

Let $\omega(X^{\bullet})=1$. Because \mathscr{C} is contravariantly finite and \mathscr{CC} -dim $\mathscr{A} < \infty$, there exists a \mathscr{C} -quasiisomorphism $C^{\bullet}_X \to X^{\bullet}$ with $C^{\bullet}_X \in K^b(\mathscr{C})$.

Let $\omega(X^{\bullet}) \geq 2$ with $X^j \neq 0$ and $X^i = 0$ for any i < j. Put $X_1^{\bullet} := X^j[-j-1], X_2^{\bullet} := \sigma^{>j}X^{\bullet}$ and $g = d_X^j[-j-1]$. We have a distinguished triangle $X_1^{\bullet} \xrightarrow{g} X_2^{\bullet} \to X^{\bullet} \to X_1^{\bullet}[1]$ in $K^b(\mathscr{A})$. By the induction hypothesis, there exist \mathscr{C} -quasi-isomorphisms $f_{X_1} : C_{X_1}^{\bullet} \to X_1^{\bullet}$ and $f_{X_2} : C_{X_2}^{\bullet} \to X_2^{\bullet}$ with $C_{X_1}^{\bullet}, C_{X_2}^{\bullet} \in K^b(\mathscr{C})$. Then by Remark 2.2(1) and Lemma 2.3, f_{X_2} induces an isomorphism:

$$\operatorname{Hom}_{K^{b}(\mathscr{A})}(C^{\bullet}_{X_{1}}, C^{\bullet}_{X_{2}}) \cong \operatorname{Hom}_{K^{b}(\mathscr{A})}(C^{\bullet}_{X_{1}}, X^{\bullet}_{2}).$$

So there exists a morphism $f^{\bullet}: C^{\bullet}_{X_1} \to C^{\bullet}_{X_2}$, which is unique up to homotopy, such that $f_{X_2}f^{\bullet} = gf_{X_1}$. Put $C^{\bullet}_X = \operatorname{Con}(f^{\bullet})$. We have the following distinguished triangle in $K^b(\mathscr{C})$:

$$C_{X_1}^{\bullet} \xrightarrow{f^{\bullet}} C_{X_2}^{\bullet} \to C_X^{\bullet} \to C_{X_1}^{\bullet}[1].$$

Then there exists a morphism $f_X: C_X^{\bullet} \to X^{\bullet}$ such that the following diagram commutes:

$$C_{X_1}^{\bullet} \xrightarrow{f^{\bullet}} C_{X_2}^{\bullet} \longrightarrow C_X^{\bullet} \longrightarrow C_{X_1}^{\bullet}[1]$$

$$\downarrow f_{X_1} \qquad \qquad \downarrow f_{X_2} \qquad \qquad \downarrow f_X \qquad \qquad \downarrow f_{X_1[1]}$$

$$X_1^{\bullet} \xrightarrow{g} X_2^{\bullet} \longrightarrow X^{\bullet} \longrightarrow X_1^{\bullet}[1].$$

For any $C \in \mathscr{C}$ and any $n \in \mathbb{Z}$, we have the following commutative diagram with exact rows:

where (C, -) denotes the functor $\operatorname{Hom}_{K(\mathscr{A})}(C, -)$. Since f_{X_1} and f_{X_2} are \mathscr{C} -quasi-isomorphisms, $(C, f_{X_1}[n])$ and $(C, f_{X_2}[n])$ are isomorphisms, and hence so is $(C, f_X[n])$ for each n, that is, f_X is a \mathscr{C} -quasi-isomorphism. The claim is proved.

It follows from the claim that every object X^{\bullet} in $D^{b}_{\mathscr{C}}(\mathscr{A})$ is isomorphic to some C^{\bullet}_{X} of $K^{b}(\mathscr{C})$ in $D^{b}_{\mathscr{C}}(\mathscr{A})$. Thus $D_{\mathscr{C}-sq}(\mathscr{A}) = 0$. \Box

As an application of Proposition 4.3, we have the following

Corollary 4.4. (1) \mathscr{CC} -dim $M < \infty$ for any $M \in \mathscr{A}$ if and only if $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$. (2) If A is of finite representation type, then \mathscr{CC} -dim $\mathscr{A} < \infty$ if and only if $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$.

Proof. In both assertions, the necessity follows from Proposition 4.3. In the following, we only need to prove the sufficiency.

(1) Let $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$ and $M \in \mathscr{A}$. Then M = 0 in $D_{\mathscr{C}-sg}(\mathscr{A})$ and M is isomorphic to C^{\bullet} in $D^b_{\mathscr{C}}(\mathscr{A})$ for some $C^{\bullet} \in K^b(\mathscr{C})$. We use the equivalent class of right fractions to denote a morphism in $D^b_{\mathscr{C}}(\mathscr{A})$. Let $f/s: C^{\bullet} \stackrel{s}{\Leftarrow} Z^{\bullet} \stackrel{f}{\to} M$ be an isomorphism in $D^b_{\mathscr{C}}(\mathscr{A})$, where s is a \mathscr{C} -quasi-isomorphism. Then f is a \mathscr{C} -quasi-isomorphism. By Lemma 2.4(1), there exists a \mathscr{C} -quasi-isomorphism $s' : C^{\bullet} \to Z^{\bullet}$. So $fs' : C^{\bullet} \to M$ is also a \mathscr{C} -quasi-isomorphism and hence $H^i \operatorname{Hom}_{\mathscr{A}}(C, C^{\bullet}) = 0$ whenever $C \in \mathscr{C}$ and $i \neq 0$. Consider the truncation:

$$C'^{\bullet} := \cdots \to C^{-2} \to C^{-1} \to \operatorname{Ker} d_C^0 \to 0$$

of C^{\bullet} . Then the composition $C'^{\bullet} \hookrightarrow C^{\bullet} \xrightarrow{fs'} M$ is a \mathscr{C} -quasi-isomorphism. Notice that $C^{\bullet} \in K^{b}(\mathscr{C})$, we may suppose $C^{n} \neq 0$ and $C^{i} = 0$ whenever i > n. Then we have a \mathscr{C} -acyclic complex $0 \to \operatorname{Ker} d_{C}^{0} \to C^{0} \xrightarrow{d_{C}^{0}} C^{1} \to \cdots \to C^{n} \to 0$ with all C^{i} in \mathscr{C} . Because \mathscr{C} is closed under direct summands, $\operatorname{Ker} d_{C}^{0} \in \mathscr{C}$ and \mathscr{CC} -dim $M < \infty$.

(2) Let A be of finite representation type, and let $\{M_i \mid 1 \leq i \leq n\}$ be the set of all non-isomorphic indecomposable modules in \mathscr{A} . By (1) \mathscr{CC} -dim $M_i < \infty$ for any $1 \leq i \leq n$. Now set $m = \sup\{\mathscr{CC}$ -dim $M_i \mid 1 \leq i \leq n\}$. Since \mathscr{A} is Krull–Schmidt, every module $M \in \mathscr{A}$ can be decomposed into a finite direct sum of modules in $\{M_i \mid 1 \leq i \leq n\}$. Then it is easy to see that \mathscr{CC} -dim $M \leq m$ and \mathscr{CC} -dim $\mathscr{A} \leq m < \infty$. \Box

As a consequence of Corollary 4.4(1), we have the following

Corollary 4.5. If A is Gorenstein, then $D_{\mathscr{G}(A)-sq}(\mathscr{A}) = 0$.

Proof. Let A be Gorenstein. Because A-proj $\subseteq \mathscr{G}(A)$, we have that $\mathscr{G}(A)$ is admissible in A-mod by [14, Remark 11.5.2]. By [21, Theorem], we have $\mathscr{G}(A)$ -dim $M < \infty$ for any $M \in \mathscr{A}$. So $D_{\mathscr{G}(A)-sg}(\mathscr{A}) = 0$ by [4, Proposition 4.8] and Corollary 4.4(1). \Box

Put $\mathscr{G}(\mathscr{C}) = \{M \cong \operatorname{Im}(\mathbb{C}^{-1} \to \mathbb{C}^0) \mid \text{there exists an acyclic complex} \cdots \to \mathbb{C}^{-1} \to \mathbb{C}^0 \to \mathbb{C}^1 \to \cdots \text{ in } \mathscr{C}, \text{ which is both } \operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)\text{-exact and } \operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})\text{-exact}\}, \text{ see [27], where it is called the$ *Gorenstein category* $of <math>\mathscr{C}$. This notion unifies the following ones: modules of Gorenstein dimension zero [2], Gorenstein projective modules, Gorenstein injective modules [13], V-Gorenstein projective modules, V-Gorenstein injective modules [15], and so on. Set $\mathscr{G}^1(\mathscr{C}) = \mathscr{G}(\mathscr{C})$ and inductively set $\mathscr{G}^n(\mathscr{C}) = \mathscr{G}(\mathscr{G}^{n-1}(\mathscr{C}))$ for any $n \geq 2$. It was shown in [27] that $\mathscr{G}(\mathscr{C})$ possesses many nice properties when \mathscr{C} is self-orthogonal. For example, in this case, $\mathscr{G}(\mathscr{C})$ is closed under extensions and \mathscr{C} is a projective generator and an injective cogenerator for $\mathscr{G}(\mathscr{C})$, which induce that $\mathscr{G}^n(\mathscr{C}) = \mathscr{G}(\mathscr{C})$ for any $n \geq 1$, see [27] for more details. Later on, Huang generalized this result to an arbitrary full and additive subcategory \mathscr{C} of \mathscr{A} , see [22].

Denote by ε the class of all $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complexes of the form: $0 \to L \xrightarrow{i} M \xrightarrow{p} N \to 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. We have the following fact.

Proposition 4.6. $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category.

Proof. We will prove that all the axioms in Definition 2.6 are satisfied. It is trivial that the axiom [E0] is satisfied. In the following, we prove that the other axioms are satisfied.

For [E1^{op}], let $f: G_1 \to G_2$ and $g: G_2 \to G_3$ be admissible epics in $\mathscr{G}(\mathscr{C})$. Then it is easy to see that gf is also an admissible epic. By Lemma 3.7(3), the following Hom $\mathscr{A}(\mathscr{C}, -)$ -exact sequence:

$$0 \to \operatorname{Ker} gf \to G_1 \xrightarrow{gf} G_3 \to 0$$

is also $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact. It follows from [22, Proposition 4.7] that $\operatorname{Ker} gf \in \mathscr{G}(\mathscr{C})$.

For $[E2^{op}]$, let $f: G_2 \to G_3$ be an admissible epic in $\mathscr{G}(\mathscr{C})$ and $g: G'_2 \to G_3$ an arbitrary morphism in $\mathscr{G}(\mathscr{C})$. We have the following pull-back diagram with the second row in ε :

For any $C \in \mathscr{C}$ and any morphism $\varphi : C \to G'_2$, there exists a morphism $\phi : C \to G_2$ such that $g\varphi = f\phi$. Notice that the right square is a pull-back diagram, so there exists a morphism $\phi' : C \to X$ such that $\varphi = f'\phi'$ and hence the exact sequence $0 \to G_1 \xrightarrow{h'} X \xrightarrow{f'} G'_2 \to 0$ is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. It follows from Lemma 3.7(3) that this sequence is also $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact. By [22, Proposition 4.7], $X \in \mathscr{G}(\mathscr{C})$, which implies that $0 \to G_1 \xrightarrow{h'} X \xrightarrow{f'} G'_2 \to 0$ lies in ε .

For [E2], let $f: G_1 \to G_2$ be an admissible monic in $\mathscr{G}(\mathscr{C})$ and $g: G_1 \to G'_2$ an arbitrary morphism in $\mathscr{G}(\mathscr{C})$. We have the following push-out diagram with the first row in ε :

For any $C \in \mathscr{C}$ and any morphism $\varphi : C \to G_3$, there exists a morphism $\phi : C \to G_2$ such that $\varphi = h\phi = h'g'\phi$. So the exact sequence $0 \to G'_2 \xrightarrow{f'} D \xrightarrow{h'} G_3 \to 0$ is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. It follows from Lemma 3.7(3) that this sequence is also $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact. By [22, Proposition 4.7], $D \in \mathscr{G}(\mathscr{C})$, which implies that $0 \to G'_2 \xrightarrow{f'} D \xrightarrow{h'} G_3 \to 0$ lies in ε .

Now let $0 \to G_0 \xrightarrow{i} G_1 \to G_2 \to 0$ and $0 \to G_1 \xrightarrow{j} G'_1 \to G''_1 \to 0$ lie in ε . We have the following push-out diagram:

By [E2], the rightmost column lies in ε . For any $C \in \mathscr{C}$, applying the functor $(C, -) := \operatorname{Hom}_{\mathscr{A}}(C, -)$ to the commutative diagram we get the following commutative diagram:

By the snake lemma, the morphism $(C, G'_1) \to (C, G'_2)$ is epic. Then $0 \to G_0 \xrightarrow{ji} G'_1 \to G'_2 \to 0$ lies in ε , and [E1] follows. \Box

By Proposition 4.6, we have the following

Corollary 4.7. $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is a Frobenius category, that is, $(\mathscr{G}(\mathscr{C}), \varepsilon)$ has enough projective objects and enough injective objects such that the projective objects coincide with the injective objects.

Proof. Because \mathscr{C} is the class of (relative) projective–injective objects in $\mathscr{G}(\mathscr{C})$, the assertion follows from Proposition 4.6. \Box

For $M, N \in \mathscr{A}$, let $\mathscr{C}(M, N)$ denote the subspace of A-maps from M to N factoring through \mathscr{C} . Put $^{\perp_{\mathscr{C}}}\mathscr{C} = \{M \in \mathscr{A} \mid \operatorname{Ext}^{i}_{\mathscr{C}}(M, C) = 0 \text{ for any } C \in \mathscr{C} \text{ and } i \geq 1\}$. By definition, it is clear that $\mathscr{C} \subseteq \mathscr{G}(\mathscr{C}) \subseteq ^{\perp_{\mathscr{C}}}\mathscr{C}$.

Lemma 4.8. For any $M \in {}^{\perp_{\mathscr{C}}} \mathscr{C}$ and $N \in \mathscr{A}$, we have a canonical isomorphism of abelian groups:

$$\operatorname{Hom}_{\mathscr{A}}(M,N)/\mathscr{C}(M,N) \cong \operatorname{Hom}_{D_{\mathscr{C}}\circ \mathscr{A}}(\mathcal{A})(M,N)$$

Proof. In the following, a morphism from M to N in $D_{\mathscr{C}-sg}(\mathscr{A})$ is denoted by the equivalent class of left fractions $s \setminus a : M \xrightarrow{a} Z^{\bullet} \xleftarrow{s} N$, where $Z^{\bullet} \in D^{b}_{\mathscr{C}}(\mathscr{A})$ and $\operatorname{Con}(s) \in K^{b}(\mathscr{C})$. We have a distinguished triangle in $D^{b}_{\mathscr{C}}(\mathscr{A})$:

$$N \stackrel{s}{\Longrightarrow} Z^{\bullet} \to \operatorname{Con}(s) \to N[1]. \tag{1}$$

Consider the canonical map $G : \operatorname{Hom}_{\mathscr{A}}(M, N) \to \operatorname{Hom}_{D_{\mathscr{C}} \circ g(\mathscr{A})}(M, N)$ defined by $G(f) = \operatorname{id}_N \setminus f$. We first prove that G is surjective. For any $N \in \mathscr{A}$, we have the following left \mathscr{C} -resolution of N:

$$\cdots \to C^{-n} \xrightarrow{d_C^{-n}} C^{-n+1} \to \cdots \xrightarrow{d_C^{-1}} C^0 \xrightarrow{d_C^0} N \to 0.$$

Then in $D_{\mathscr{C}}(\mathscr{A})$, N is isomorphic to the complex $C^{\bullet} := \cdots \to C^{-n} \xrightarrow{d_{C}^{-n}} C^{-n+1} \to \cdots \xrightarrow{d_{C}^{-1}} C^{0} \to 0$, and so is isomorphic to the complex $0 \to \operatorname{Ker} d_{C}^{-l} \to C^{-l} \xrightarrow{d_{C}^{-l}} C^{-l+1} \to \cdots \xrightarrow{d_{C}^{-1}} C^{0} \to 0$ for any $l \ge 0$. Hence we have a distinguished triangle in $D^{b}_{\mathscr{C}}(\mathscr{A})$:

$$\operatorname{Ker} d_C^{-l}[l] \to \sigma^{\geq -l} C^{\bullet} \xrightarrow{d_C^{\bullet}} N \xrightarrow{s'} \operatorname{Ker} d_C^{-l}[l+1], \tag{2}$$

where $\operatorname{Con}(s') \in K^b(\mathscr{C})$. Since $\operatorname{Con}(s) \in K^b(\mathscr{C})$, it follows from Proposition 3.3 that there exists $l_0 \gg 0$ such that for any $l \geq l_0$, we have

$$\operatorname{Hom}_{D^{b}_{\mathscr{Q}}(\mathscr{A})}(\operatorname{Con}(s),\operatorname{Ker} d_{C}^{-l}[l+1])=0.$$

Take $l = l_0$ in (2). On one hand, applying the functor $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(-, \operatorname{Ker} d_C^{-l_0}[l_0 + 1])$ to (1) we get $h : Z^{\bullet} \to \operatorname{Ker} d_C^{-l_0}[l_0 + 1]$ such that s' = hs. So we have $s \setminus a = s' \setminus (ha)$. On the other hand, applying $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, -) := (M, -)$ to (2) we get an exact sequence

$$(M,N) \xrightarrow{(M,s')} (M, \operatorname{Ker} d_C^{-l_0}[l_0+1]) \to (M, (\sigma^{\geq -l_0}C^{\bullet})[1]).$$

Since $M \in {}^{\perp_{\mathscr{C}}}\mathcal{C}$, by using induction on $\omega(\sigma^{\geq -l_0}C^{\bullet})$ we have $(M, (\sigma^{\geq -l_0}C^{\bullet})[1]) = 0$, and hence there exists $f : M \to N$ such that ha = s'f. Therefore we have $s \setminus a = s' \setminus (ha) = s' \setminus (s'f) = \operatorname{id}_N \setminus f$, that is, G is surjective.

Next, if $f: M \to N$ satisfies $G(f) = \operatorname{id}_N \setminus f = 0$ in $D_{\mathscr{C}-sg}(\mathscr{A})$, then there exists $s: N \to Z^{\bullet}$ with $\operatorname{Con}(s) \in K^b(\mathscr{C})$ such that sf = 0 in $D^b_{\mathscr{C}}(\mathscr{A})$. Use the same notations as in (1) and (2), by the above argument we have s' = hs, so s'f = 0. Applying $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, -)$ to (2) we get that there exists $f': M \to \sigma^{\geq -l_0}C^{\bullet}$ such that $f = d^0_C f'$.

Put $\sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet} := 0 \to C^{-l_0} \to C^{-l_0+1} \to \cdots \to C^{-1} \to 0$. We have the following distinguished triangle:

$$(\sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet})[-1] \longrightarrow C^0 \xrightarrow{\pi} \sigma^{\geq -l_0}C^{\bullet} \rightarrow \sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet}$$

in $D^b_{\mathscr{C}}(\mathscr{A})$, where π is the canonical map. By applying the functor $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, -)$ to this triangle, it follows from $M \in {}^{\perp_{\mathscr{C}}}\mathscr{C}$ that $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, \sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet}) = 0$, and hence there exists $g: M \to C^0$ such that $f' = \pi g$. So $f = d^0_C \pi g$ in $D^b_{\mathscr{C}}(\mathscr{A})$. By Proposition 3.3(3), \mathscr{A} is a full subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$. So f factors through C^0 in \mathscr{A} , and hence $\operatorname{Ker} G \subseteq \mathscr{C}(M, N)$. Since $\mathscr{C}(M, N) \subseteq \operatorname{Ker} G$ trivially, $\operatorname{Ker} G = \mathscr{C}(M, N)$, which means that $\operatorname{Hom}_{\mathscr{A}}(M, N)/\mathscr{C}(M, N) \cong \operatorname{Hom}_{D^{d-sg}(\mathscr{A})}(M, N)$. \Box

Let $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ be the composition of the following three functors: the embedding functors $\mathscr{G}(\mathscr{C}) \hookrightarrow \mathscr{A}, \ \mathscr{A} \hookrightarrow D^b_{\mathscr{C}}(\mathscr{A})$ and the localization functor $D^b_{\mathscr{C}}(\mathscr{A}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$, and let $\underline{\mathscr{G}(\mathscr{C})}$ denote the stable category of $\mathscr{G}(\mathscr{C})$.

Proposition 4.9. θ induces a fully faithful functor $\theta' : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-sg}}(\mathscr{A}).$

Proof. Since $\mathscr{G}(\mathscr{C}) \subseteq {}^{\perp}\mathscr{C}$, the assertion follows from Lemma 4.8. \Box

Recall from [10] that a ∂ -functor is an additive functor F from an exact category $(\mathscr{B}, \varepsilon)$ to a triangulated category \mathcal{C} satisfying that for any short exact sequence $L \xrightarrow{i} M \xrightarrow{p} N$ in ε , there exists a morphism $\omega_{(i,p)}: F(N) \to F(L)[1]$ such that the triangle

$$F(L) \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(N) \xrightarrow{\omega_{(i,p)}} F(L)[1]$$

in C is distinguished; moreover, the morphism $\omega_{(i,p)}$ is "functorial" in the sense that any morphism between two short exact sequences in ε :

the following is a morphism of triangles:

$$\begin{split} F(L) & \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(N) \xrightarrow{\omega_{(i,p)}} F(L)[1] \\ & \downarrow F(f) & \downarrow F(g) & \downarrow F(h) & \downarrow F(f)[1] \\ F(L') & \xrightarrow{F(i')} F(M') \xrightarrow{F(p')} F(N') \xrightarrow{\omega_{(i',p')}} F(L')[1]. \end{split}$$

By [18, Chapter I, Theorem 2.6] and Corollary 4.7, $\underline{\mathscr{G}(\mathscr{C})}$ and $D_{\mathscr{C}-sg}(\mathscr{A})$ are triangulated categories. Moreover, we have

Proposition 4.10. The functor θ' in Proposition 4.9 is a triangle functor.

Proof. We first claim that θ is a ∂ -functor. In fact, let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complex with all terms in $\mathscr{G}(\mathscr{C})$. Then it induces a distinguished triangle in $D_{\mathscr{C}-sg}(\mathscr{A})$, saying $\theta(L) \xrightarrow{\theta(f)} \theta(M) \xrightarrow{\theta(g)} \theta(N) \xrightarrow{\omega_{(f,g)}} \theta(L)[1]$. It is clear that $\omega_{(f,g)}$ is "functorial". This shows that θ is a ∂ -functor.

Note that every object in \mathscr{C} is zero in $D_{\mathscr{C}-sg}(\mathscr{A})$. So θ vanishes on the projective-injective objects in $\mathscr{G}(\mathscr{C})$. It follows from [10, Lemma 2.5] that the induced functor θ' is a triangle functor. \Box

By Propositions 4.9 and 4.10 the natural triangle functor $\mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$ is fully faithful. It is of interest to make sense when it is essentially surjective (or dense). We have the following

Theorem 4.11. If $\mathscr{CG}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-sg}}(\mathscr{A})$ is essentially surjective (or dense).

Proof. Let $X^{\bullet} \in D^{b}_{\mathscr{C}}(\mathscr{A})$. By Proposition 3.4, there exists $C^{\bullet}_{0} = (C^{i}_{0}, d^{i}_{C_{0}}) \in K^{-,\mathscr{C}b}(\mathscr{C})$ such that $X^{\bullet} \cong C^{\bullet}_{0}$ in $D^{b}_{\mathscr{C}}(\mathscr{A})$. So there exists $n_{0} \in \mathbb{Z}$ such that $H^{i}(\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, C^{\bullet}_{0})) = 0$ for any $i \leq n_{0}$. Let $K^{i} = \operatorname{Ker} d^{i}_{C_{0}}$. Then C^{\bullet}_{0} is isomorphic to the complex:

$$0 \to K^i \to C_0^i \xrightarrow{d_{C_0}^i} C_0^{i+1} \xrightarrow{d_{C_0}^{i+1}} C_0^{i+2} \to \cdots$$

in $D^b_{\mathscr{C}}(\mathscr{A})$ for any $i \leq n_0$. It induces a distinguished triangle in $D^b_{\mathscr{C}}(\mathscr{A})$, hence a distinguished triangle in $D_{\mathscr{C}-sg}(\mathscr{A})$ of the following form:

$$K^i[-i] \to \sigma^{\geq i} C_0^{\bullet} \to C_0^{\bullet} \to K^i[-i+1].$$

Since $\sigma^{\geq i}C_0^{\bullet} \in K^b(\mathscr{C}), C_0^{\bullet} \cong K^i[-i+1]$ in $D_{\mathscr{C}-sg}(\mathscr{A})$. Take $l_0 = i$ and $Y = K^i$. Then $C_0^{\bullet} \cong Y[-l_0+1]$ in $D_{\mathscr{C}-sg}(\mathscr{A})$. By assumption we may assume that $\mathscr{CG}(\mathscr{C})$ -dim $Y = m_0 < \infty$. Let $C_1^{\bullet} \to Y$ be the left \mathscr{C} -resolution of Y. We claim that for any $n \leq -m_0 + 1$, Ker $d_{C_1}^n \in \mathscr{G}(\mathscr{C})$, where $d_{C_1}^n$ is the *n*th differential of C_1^{\bullet} .

We have a \mathscr{C} -acyclic complex:

$$0 \to G^{-m_0} \to G^{-m_0+1} \to \dots \to G^{-1} \to G^0 \to Y \to 0$$

with $G^j \in \mathscr{G}(\mathscr{C})$ for any $-m_0 \leq j \leq 0$. Let G^{\bullet} be the complex $0 \to G^{-m_0} \to G^{-m_0+1} \to \cdots \to G^{-1} \to G^0 \to 0$. By Lemma 2.3, there exists a \mathscr{C} -quasi-isomorphism $C_1^{\bullet} \to G^{\bullet}$ lying over id_Y , and hence its mapping cone is \mathscr{C} -acyclic. So for any $n \leq -m_0 + 1$, we get the following \mathscr{C} -acyclic complex:

$$0 \to \operatorname{Ker} d_{C_1}^n \to C_1^n \to \dots \to C_1^{-m_0} \to C_1^{-m_0+1} \oplus G^{-m_0} \to \dots \to C_1^0 \oplus G^{-1} \to G^0 \to 0.$$

Note that this complex is acyclic because \mathscr{C} is admissible. Put $K = \text{Ker}(C_1^0 \oplus G^{-1} \to G^0)$, we get a $\text{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence $0 \to K \to C_1^0 \oplus G^{-1} \to G^0 \to 0$. By Lemma 3.7(3), we get an exact sequence:

$$0 \to \operatorname{Hom}_{\mathscr{A}}(G^0, C) \to \operatorname{Hom}_{\mathscr{A}}(C_1^0 \oplus G^{-1}, C) \to \operatorname{Hom}_{\mathscr{A}}(K, C) \to \operatorname{Ext}^1_{\mathscr{C}}(G^0, C)$$

for any $C \in \mathscr{C}$. Since $G^0 \in \mathscr{G}(\mathscr{C})$, $\operatorname{Ext}^1_{\mathscr{C}}(G^0, C) = 0$ and so the exact sequence $0 \to K \to C_1^0 \oplus G^{-1} \to G^0 \to 0$ is $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact. Because both $C_1^0 \oplus G^{-1}$ and G^0 are in $\mathscr{G}(\mathscr{C})$, $K \in \mathscr{G}(\mathscr{C})$ by [22, Proposition 4.7]. Iterating this process, we get that $\operatorname{Ker} d_{C_1}^n \in \mathscr{G}(\mathscr{C})$ for any $n \leq -m_0 + 1$. The claim is proved.

Choose a left \mathscr{C} -resolution C_1^{\bullet} of Y and put $X = \operatorname{Ker} d_{C_1}^{-m_0+1}$. By the above claim we have a \mathscr{C} -acyclic complex:

$$0 \to X \to C_1^{-m_0+1} \to C_1^{-m_0+2} \to \dots \to C_1^0 \to Y \to 0$$

with $X \in \mathscr{G}(\mathscr{C})$. Then $Y \cong X[m_0]$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ and $X^{\bullet} \cong C_0^{\bullet} \cong Y[-l_0+1] \cong X[m_0-l_0+1]$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$. We may assume that $X^{\bullet} \cong C_0^{\bullet} \cong X[r_0]$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ for $r_0 > 0$. Because $X \in \mathscr{G}(\mathscr{C})$, we get a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence $0 \to X \to C^0 \to C^1 \to \cdots \to C^{r_0-1} \to X' \to 0$ with $X' \in \mathscr{G}(\mathscr{C})$ and $C^i \in \mathscr{C}$ for any $0 \leq i \leq r_0 - 1$. It follows that $X \cong X'[-r_0]$ and $X^{\bullet} \cong C_0^{\bullet} \cong X[r_0] \cong X'$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$. This completes the proof. \Box

The following is the main result of this paper.

Theorem 4.12. If $\mathscr{GG}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$ induces a triangleequivalence $\theta' : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}-sg}(\mathscr{A})$.

Proof. It follows directly from Propositions 4.9, 4.10 and Theorem 4.11. \Box

The following result is the dual version of Happel's result, see [19, Theorem 4.6].

Corollary 4.13. If A is Gorenstein, then the canonical functor $\mathscr{G}(A) \to D_{sg}(A)$ induces a triangle-equivalence $\mathscr{G}(A) \to D_{sg}(A)$.

Proof. Let A be Gorenstein and $\mathscr{C} = A$ -proj. Then $\mathscr{CG}(\mathscr{C})$ -dim $\mathscr{A} < \infty$ by [21, Theorem]. Now the assertion is an immediate consequence of Theorem 4.12. \Box

Acknowledgements

This research was partially supported by NSFC (Grant No. 11171142) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referee for the helpful suggestions.

References

- J. Asadollahi, R. Hafezi, R. Vahed, Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra 218 (2014) 888–903.
- [2] M. Auslander, M. Bridger, Stable module theory, Mem. Am. Math. Soc., vol. 94, Amer. Math. Soc., Providence, RI, 1969.
- [3] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991) 111–152.
- [4] L.L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. Lond. Math. Soc. 85 (2002) 393–440.
- [5] A. Beligiannis, The homological theory of contravariantly finite subcategories: Gorenstein categories, Auslander–Buchweitz contexts and (co-)stabilization, Commun. Algebra 28 (2000) 4547–4596.

- [6] I. Burban, Y.A. Drozd, Derived categories of nodal algebras, J. Algebra 272 (2004) 46–94.
- [7] R.O. Buchweitz, Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings, 1986, unpublished manuscript.
- [8] T. Bühler, Exact categories, Expo. Math. 28 (2010) 1-69.
- [9] X.W. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010) 2718–2731.
- [10] X.W. Chen, Relative singularity categories and Gorenstein-projective modules, Math. Nachr. 284 (2011) 199–212.
- [11] X.W. Chen, P. Zhang, Quotient triangulated categories, Manuscr. Math. 123 (2007) 167–183.
- [12] L.W. Christensen, A. Frankild, H. Holm, On Gorenstein projective, injective and flat dimensions—a functorial description with applications, J. Algebra 302 (2006) 231–279.
- [13] E.E. Enochs, O.M.G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995) 611-633.
- [14] E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., vol. 30, Walter de Gruyter, Berlin, New York, 2000.
- [15] E.E. Enochs, O.M.G. Jenda, J.A. López-Ramos, Covers and envelopes by V-Gorenstein modules, Commun. Algebra 33 (2005) 4705–4717.
- [16] N. Gao, P. Zhang, Gorenstein derived categories, J. Algebra 323 (2010) 2041–2057.
- [17] S.I. Gelfand, Y.I. Manin, Methods of Homological Algebra, second edition, Springer Monogr. Math., Springer-Verlag, Berlin, 2003.
- [18] D. Happel, Triangulated Categories in Representation Theory of Finite Dimensional Algebras, Lond. Math. Soc. Lect. Notes Ser., vol. 119, Cambridge University Press, Cambridge, 1988.
- [19] D. Happel, On Gorenstein algebras, in: Representation Theory of Finite Groups and Finite-Dimensional Algebras, Proc. Conf. at Bielefeld, 1991, in: Prog. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 389–404.
- [20] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004) 167–193.
- [21] M. Hoshino, Algebras of finite self-injective dimension, Proc. Am. Math. Soc. 112 (1991) 619-622.
- [22] Z.Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013) 142–169.
- [23] B. Keller, Chain complexes and stable categories, Manuscr. Math. 67 (1990) 379-417.
- [24] D. Orlov, Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math. 246 (2004) 227–248.
- [25] D. Quillen, Higher Algebraic K-Theory I, Lect. Notes Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85–147.
- [26] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989) 303–317.
- [27] S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. 77 (2008) 481–502.
- [28] J.L. Verdier, Catégories dérivées, Etat 0, Lect. Notes Math., vol. 569, Springer-Verlag, Berlin, 1977, pp. 262–311.
- [29] Y.F. Zheng, Z.Y. Huang, On pure derived categories, preprint, available at http://math.nju.edu.cn/~huangzy/.