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1 Introduction

It is well known that triangulated categories play an important role in representation theory of
algebras, see [1–3, 7–11, 13–15] and references therein.

Beligiannis developed in [2] a relative version of homological algebra in triangulated cat-
egories in analogy to relative homological algebra in abelian categories, in which the notion
of a proper class of exact sequences is replaced by a proper class of exact triangles. Later on,
Asadollahi and Salarian extended the Beligiannis’ theory in [1] by combining it with Gorenstein
homological theory for abelian categories; in particular, they introduced Gorenstein objects in
triangulated categories and gave estimates on certain Gorenstein projective dimensions. Some
further investigations of Gorenstein homological theory and proper classes of triangles for trian-
gulated categories were carried in [11] and [13–15]. On the other hand, Huang introduced and
studied in [6] relative preresolving subcategories and precoresolving subcategories of an abelian
category and homological dimensions and codimensions relative to these subcategories respec-
tively, and unified some important properties possessed by some known homological dimensions.
Motivated by these, in this paper we introduce and study (pre)resolving subcategories of a tri-
angulated category and the homological dimension relative to these subcategories. The paper
is organized as follows.

In Section 2, we give some terminology and some preliminary results.
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In Section 3, we first give the definition of (pre)resolving subcategories of a triangulated cate-
gory. Then we give some criteria for computing homological dimensions relative to (pre)resolving
subcategories. Let E be an additive and full subcategory of a triangulated category T and ξ

a proper class of triangles in T , and let J be an E-preresolving subcategory of T admit-
ting a ξ-proper generator C. Assume that 0 �� M �� T1

�� T0
�� A �� 0 is a ξ-exact

complex in T with both T0 and T1 objects in J . Then there exists a ξ-exact complex
0 �� M �� T �� C �� A �� 0 in T with T an object in J and C an object in C; and
furthermore, if the former complex is T (E ,−)-exact, then so is the later one. As an application
of this result, we get that the JE -dimension of an object A in T is at most n if and only if there
exists a T (E ,−)-exact ξ-exact complex 0 �� Kn

�� Cn−1
�� · · · �� C1

�� C0
�� A �� 0

in T with all Ci objects in C and Kn an object in J . Let C ⊆ E be subcategories of
T and J an E-resolving subcategory of T admitting a ξ-proper generator C, and let A be
an object of T with JE -dimension at most n. Then for any T (E ,−)-exact ξ-exact complex
0 �� Kn

�� Cn−1
�� · · · �� C1

�� C0
�� A �� 0 in T with all Ci objects in C, we have

that Kn is an object in J ; moreover, if X �� C �� A �� ΣX is a T (E ,−)-exact triangle in
ξ with C an object in C, then the JE -dimension of X is at most n − 1.

Let C and E be subcategories of T . In Section 4, we introduce (E , C)-Gorenstein category
GCE(ξ). Let C ⊆ E . Then we prove that GCE(ξ) is an E-resolving and E-coresolving subcategory
of T ; furthermore, if C is closed under direct summands, then for any object A in T with finite
CE -dimension, the GCE(ξ)E -dimension and the CE -dimension of A are identical.

2 Preliminaries

Let T be an additive category with Σ an autoequivalence of T . A subcategory C of T is called
Σ-stable if ΣC = C. We use Diag(T , Σ) to denote the category whose objects are the sequences
of morphisms

X −→ Y −→ Z −→ ΣX,

and morphisms between X
u �� Y

v �� Z
w �� ΣX and X ′ u′

�� Y ′ v′
�� Z ′ w′

�� ΣX ′ are a triple
(α, β, γ) such that the following diagram commutes.

X
u ��

α

��

Y
v ��

β

��

Z
w ��

γ

��

ΣX

Σα

��
X ′ u′

�� Y ′ v′
�� Z ′ w′

�� ΣX ′.

A triple (T , Σ, Δ) is called a pre-triangulated category ([10]), where Δ is a full subcategory of
Diag(T , Σ) which satisfies the following axioms. The elements of Δ are then called triangles.

(TR1) Every sequence of morphisms which is isomorphic to a triangle is a triangle. For

every object X in T , the sequence of morphisms X
1 �� X �� 0 �� ΣX is a triangle. Every

morphism u : X �� Y in T can be embedded into a triangle X
u �� Y �� Z �� ΣX.

(TR2) If X
u �� Y

v �� Z
w �� ΣX is a triangle, then so is Y

v �� Z
w �� ΣX

−Σu�� ΣY.

(TR3) Given triangles X
u �� Y

v �� Z
w �� ΣX and X ′ u′

�� Y ′ v′
�� Z ′ w′

�� ΣX ′ , then each
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commutative diagram

X
u ��

f

��

Y
v ��

��

Z
w �� ΣX

Σf

��
X ′ u′

�� Y ′ v′
�� Z ′ w′

�� ΣX ′

can be completed to a morphism of triangles (but not necessarily uniquely).

Moreover, a pre-triangulated category (T , Σ, Δ) is called a triangulated category if Δ satisfies
the equivalent conditions in the following proposition.

Proposition 2.1 ([2, Proposition 2.1] and [8]) Let (T , Σ, Δ) be a pre-triangulated category.
Then the following statements are equivalent.

(1) (TR4) The octahedral axiom. For any two morphisms u : X �� Y and v : Y �� Z,

there exists a commutative diagram

X
u �� Y

u′
��

v

��

Z ′ u′′
��

α

��

ΣX

X
vu ��

u

��

Z
w �� Y ′ w′

��

β

��

ΣX

Σu

��
Y

v ��

��

Z
v′

��

0

��

X ′ v′′
��

(Σu′)v′′

��

ΣY

��
0 �� ΣZ ′ ΣZ ′ �� 0,

in which all rows and columns are triangles in Δ.

(2) Base change. For any triangle X
u �� Y

v �� Z
w �� ΣX in Δ and any morphism

α : Z ′ �� Z, there exists the following commutative diagram

0 ��

��

X ′

β′

��

X ′ ��

β

��

0

��
X

u′
�� Y ′ v′

��

α′

��

Z ′ w′
��

α

��

ΣX

X
u ��

��

Y
v ��

γ′

��

Z
w ��

γ

��

ΣX

��
0 �� ΣX ′ ΣX ′ �� 0,

in which all rows and columns are triangles in Δ.

(3) Cobase change. For any triangle X
u �� Y

v �� Z
w �� ΣX in Δ and any morphism
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β : X �� X ′, there exists the following commutative diagram

0 ��

��

Σ−1Z ′

−Σ−1γ

��

Σ−1Z ′ ��

−Σ−1γ′

��

0

��
Σ−1Z

−Σ−1w �� X
u ��

β

��

Y
v ��

β′

��

Z

Σ−1Z
−Σ−1w′

��

��

X ′ u′
��

α

��

Y ′ v′
��

α′

��

Z

��
0 �� Z ′ Z ′ �� 0,

in which all rows and columns are triangles in Δ.

From now on, T = (T , Σ, Δ) is a triangulated category with Σ the suspension functor and
Δ the triangulation, and all subcategories of T are additive, full, closed under isomorphisms
and Σ-stable.

Definition 2.2 ([2]) A triangle

X
u �� Y

v �� Z
w �� ΣX

is called split if it is isomorphic to the triangle

X
(1
0) �� X ⊕ Z

(0, 1) �� Z
0 �� ΣX.

We use Δ0 to denote the full subcategory of Δ consisting of the split triangles.

Definition 2.3 ([2]) Let ξ be a class of triangles in T .
(1) ξ is said to be closed under base change (resp. cobase change) if for any triangle

X
u �� Y

v �� Z
w �� ΣX

in ξ and any morphism α : Z ′ �� Z (resp. β : X �� X ′ ) as in Proposition 2.1 (2) (resp.
Proposition 2.1 (3)), the triangle

X
u′

�� Y ′ v′
�� Z ′ w′

�� ΣX (resp. X ′ u′
�� Y ′ v′

�� Z
w′

�� ΣX ′ )

is in ξ.
(2) ξ is said to be closed under suspension if for any triangle

X
u �� Y

v �� Z
w �� ΣX

in ξ and any i ∈ Z (the set of all integers), the triangle

ΣiX
(−1)iΣiu �� ΣiY

(−1)iΣiv �� ΣiZ
(−1)iΣiw�� Σi+1X

is in ξ.
(3) ξ is called saturated if in the situation of base change as in Proposition 2.1 (2), whenever

the third vertical and the second horizontal triangles are in ξ, then the triangle

X
u �� Y

v �� Z
w �� ΣX

is in ξ.
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Definition 2.4 ([2]) A class ξ of triangles in T is called proper if the following conditions
are satisfied.

(1) ξ is closed under isomorphisms, finite coproducts and Δ0 ⊆ ξ.
(2) ξ is closed under suspensions and is saturated.
(3) ξ is closed under base and cobase changes.

In the following, ξ is a proper class of triangles in T .

Definition 2.5 ([2]) Let

X
u �� Y

v �� Z
w �� ΣX

be a triangle in ξ. Then the morphism u (resp. v) is called ξ-monic (resp. ξ-epic), and u (resp.
v) is called the hokernel of v (resp. the hocokernel of u).

Lemma 2.6 ([13, Proposition 2.7]) Let u : X �� Y and v : Y �� Z be morphisms in T .
If vu is ξ-monic (resp. ξ-epic), then so is u (resp. v).

Lemma 2.7 ([13, Proposition 2.4]) Given a commutative diagram

0 ��

��

Z ′

α′

��

Z ′ ��

α

��

0

��
Σ−1Z

−Σ−1w′
�� X ′ u′

��

β′

��

Y ′ v′
��

β

��

Z

Σ−1Z
−Σ−1w ��

��

X
u ��

γ′

��

Y
v ��

γ

��

Z

��
0 �� ΣZ ′ ΣZ ′ �� 0,

in which all rows and columns are triangles in Δ.
(1) If the third vertical triangle and the triangle X

u �� Y
v �� Z

w �� ΣX are in ξ, then so

is the triangle X ′ u′
�� Y ′ v′

�� Z
w′

�� ΣX ′.

(2) If the second vertical triangle and the triangle X ′ u′
�� Y ′ v′

�� Z
w′

�� ΣX ′ are in ξ, then
so is the third vertical triangle.

Definition 2.8 Let E be a subcategory of T .
(1) A triangle

X �� Y �� Z �� ΣX

in ξ is called T (E ,−)-exact (resp. T (−, E)-exact) if for any object E in E, the induced complex

0 −→ T (E, X) −→ T (E, Y ) −→ T (E, Z) −→ 0

(resp. 0 −→ T (Z, E) −→ T (Y, E) −→ T (X, E) −→ 0)

is exact.
(2) ([1]) A ξ-exact complex is a complex

· · · �� Xn+1
dn+1 �� Xn

dn �� Xn−1
�� · · · (2.1)
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in T such that for any n ∈ Z, there exists a triangle

Kn+1
gn �� Xn

fn �� Kn
hn�� ΣKn+1 (2.2)

in ξ and the differential dn is defined as dn = gn−1fn. A ξ-exact complex as (2.1) is called
T (E ,−)-exact (resp. T (−, E)-exact) if the triangle (2.2) is T (E ,−)-exact (resp. T (−, E)-exact)
for any n ∈ Z.

We need the following easy and useful observation.

Lemma 2.9 Let C be an object in T and

0 ��

��

X ′

α′

��

X ′ ��

α

��

0

��
X �� Y

u′
��

β′

��

Z ��

β

��

ΣX

X ��

��

Y ′ u ��

��

Z ′ ��

��

ΣX

��
0 �� ΣX ′ ΣX ′ �� 0

be a commutative diagram in T in which all rows and columns are triangles in Δ.
(1) If T (C, β) is epic, then so is T (C, β′). Moreover, if the third vertical triangle is T (C,

−)-exact, then so is the second vertical triangle.
(2) If T (u′, C) is epic, then so is T (u, C). Moreover, if the triangle Y �� Z �� ΣX ��ΣY

is T (−, C)-exact, then so is the triangle Y ′ �� Z ′ �� ΣX �� ΣY ′.
(3) If the third vertical and the second horizontal triangles are T (−, C)-exact, then so are

the second vertical and the third horizontal triangles.
(4) If the triangles Y �� Y ′ �� ΣX ′ �� ΣY and Y ′ �� Z ′ �� ΣX �� ΣY ′ are T (C,

−)-exact, then so are the triangles Y �� Z �� ΣX �� ΣY and Z �� Z ′ �� ΣX ′ �� ΣZ.

Proof (1) The first assertion has been proved in [15, Lemma 2.1], so the second one is clear.
Similarly, we get the assertions (2), (3) and (4). �

3 (Pre)resolving Subcategories and Homological Dimension

Before giving the definition of (pre)resolving subcategories of a triangulated category, we give
the following

Definition 3.1 Let C, E and J be subcategories of T with C ⊆ J . Then C is called a ξ-proper
generator for J if for any object Z in J , there exists a T (E ,−)-exact triangle

X �� C �� Z �� ΣX

in ξ with C an object in C and X an object in J . Dually, a ξ-coproper cogenerator for J is
defined.

Now we introduce the notion of (pre)resolving subcategories of a triangulated category T .

Definition 3.2 Let E and J be subcategories of T . Then J is called an E-preresolving
subcategory of T if the following conditions are satisfied.
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(1) J admits a ξ-proper generator C.
(2) J is closed under ξ-proper extensions, that is, for any T (E ,−)-exact triangle

X �� Y �� Z �� ΣX

in ξ, if X and Z are in J , then so is Y .
An E-preresolving subcategory J is called E-resolving if the following condition is satisfied.
(3) J is closed under hokernels of ξ-proper epimorphisms, that is, for any T (E ,−)-exact

triangle

X �� Y �� Z �� ΣX

in ξ, if Y and Z are in J , then so is X.
Dually, an E-(pre)coresolving subcategory of T is defined.

The following two results play an important role in the sequel.

Proposition 3.3 Let J be an E-preresolving subcategory of T admitting a ξ-proper generator
C, and let

0 �� M �� T1
�� T0

�� A �� 0 (3.1)

be a ξ-exact complex in T with both T0 and T1 objects in J . Then
(1) There exists a ξ-exact complex

0 �� M �� T �� C �� A �� 0 (3.2)

in T with T an object in J and C an object in C.
(2) If (3.1) is T (E ,−)-exact, then so is (3.2).

Proof (1) Since C is a ξ-proper generator for J , there exists a T (E ,−)-exact triangle

T ′
0

�� C �� T0
�� ΣT ′

0

in ξ with C an object in C and T ′
0 an object in J . By assumption, we have the following two

triangles

M �� T1
�� K1

�� ΣM and K1
�� T0

�� A �� ΣK1.

Applying base change for the triangle Σ−1A �� K1
�� T0

�� A along the morphism C �� T0,

we get the following commutative diagram

0 ��

��

T ′
0

h

��

T ′
0

��

f

��

0

��
Σ−1A �� W

g ��

h′

��

C ��

f ′

��

A

Σ−1A ��

��

K1
g′

��

��

T0
��

��

A

��
0 �� ΣT ′

0 ΣT ′
0

�� 0.

(3.3)

Because gh = f is ξ-monic, h is ξ-monic by Lemma 2.6. So the triangle

T ′
0

�� W �� K1
�� ΣT ′

0
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is in ξ. Notice that the third vertical triangle is T (E ,−)-exact, so the second vertical tri-
angle is also T (E ,−)-exact by Lemma 2.9. Since the third vertical triangle and the trian-
gle K1

�� T0
�� A �� ΣK1 are in ξ, the triangle

W �� C �� A �� ΣW

is in ξ by Lemma 2.7 (1). Applying base change for the triangle M �� T1
�� K1

�� ΣM

along the morphism W �� K1, we get the following commutative diagram

0 ��

��

T ′
0

u

��

T ′
0

��

h

��

0

��
M �� T

v ��

u′

��

W ��

h′

��

ΣM

M ��

��

T1
v′

��

��

K1
��

��

ΣM

��
0 �� ΣT ′

0 ΣT ′
0

�� 0.

(3.4)

Because vu = h is ξ-monic, u is ξ-monic by Lemma 2.6. So the second vertical triangle is in ξ.
Notice that the third vertical triangle is T (E ,−)-exact, so the second vertical triangle is also
T (E ,−)-exact by Lemma 2.9. Since J is closed under ξ-proper extensions, we have that T is
an object in J . Since ξ is closed under base change, the triangle

M �� T �� W �� ΣM

is in ξ. Thus

0 �� M �� T �� C �� A �� 0

is a ξ-exact complex.
(2) By assumption, the triangles M �� T1

�� K1
�� ΣM and K1

�� T0
�� A �� ΣK1

are both T (E ,−)-exact. Notice that in the diagram (3.3), the third vertical triangle is T (E ,−)-
exact, so the triangle

W �� C �� A �� ΣW

is T (E ,−)-exact by Lemma 2.9 and the snake lemma. Because the third horizontal triangle in
the diagram (3.4) is T (E ,−)-exact, the triangle

M �� T �� W �� ΣM

is also T (E ,−)-exact by Lemma 2.9. Therefore, we conclude that the ξ-exact complex (3.2) is
T (E ,−)-exact. �

Furthermore, we have the following

Proposition 3.4 Let J be an E-preresolving subcategory of T admitting a ξ-proper generator
C and n ≥ 1. Let

0 �� M �� Tn−1
�� · · · �� T1

�� T0
�� A �� 0 (3.5)

be a ξ-exact complex in T with all Ti objects in J . Then
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(1) There exist a ξ-exact complex

0 �� N �� Cn−1
�� · · · �� C1

�� C0
�� A �� 0 (3.6)

in T with all Ci objects in C and a T (E ,−)-exact triangle

T �� N �� M �� ΣT

in ξ with T an object in J .
(2) If (3.5) is T (E ,−)-exact, then so is (3.6).

Proof Since C is a ξ-proper generator for J , there exists a T (E ,−)-exact triangle

T ′
0

�� C0
�� T0

�� ΣT ′
0

in ξ with C0 an object in C and T ′
0 an object in J .

We proceed by induction on n. The case for n = 1 has been proved in the proof of
Proposition 3.3. Now suppose n ≥ 2. By assumption, we have the following two ξ-exact
complexes

0 �� M �� Tn−1
�� Tn−2

�� · · · �� T2
�� K2

�� 0,

0 �� K2
�� T1

�� T0
�� A �� 0.

By Proposition 3.3, we get a ξ-exact complex

0 �� K2
�� T ′

1
�� C0

�� A �� 0,

in T with T ′
1 an object in J and C0 an object in C with both K2

�� T ′
1

�� K ′
1

�� ΣK2

and K ′
1

�� C0
�� A �� ΣK ′

1 triangles in ξ. Then we get a ξ-exact complex

0 �� M �� Tn−1
�� Tn−2

�� · · · �� T2
�� T ′

1
�� K ′

1
�� 0.

By the induction hypothesis, we get a ξ-exact complex

0 �� N �� Cn−1
�� Cn−2

�� · · · �� C2
�� C1

�� K ′
1

�� 0,

and
0 �� N �� Cn−1

�� Cn−2
�� · · · �� C2

�� C1
�� C0

�� A �� 0

is the desired ξ-exact complex.
(2) It follows inductively from Proposition 3.3 (2). �
We introduce the homological dimension and codimension of an object in T relative to

subcategories of T as follows.

Definition 3.5 Let C and E be subcategories of T and A an object in T . The CE -dimension
of A, written CE -dim A, is defined by

CE -dim A = inf{n ≥ 0 | there exists a T (E ,−)-exact ξ-exact complex
0 �� Cn

�� · · · �� C0
�� A �� 0 in T with all Ci objects in C}.

Dually, the CE -codimension of A, written CE -codimA, is defined by

CE -codim A = inf{n ≥ 0 | there exists a T (−, E)-exact ξ-exact complex
0 �� A �� C0 �� · · · �� Cn �� 0 in T with all Ci objects in C}.



1522 Ma X. et al.

In the case for C = E , we write C-dim A := CE -dim A and C-codim A := CE -codim A.
The following result gives a criterion for computing the JE -dimension of an object in T .

Theorem 3.6 Let J be an E-preresolving subcategory of T admitting a ξ-proper generator C.
Then for any object A in T and n ≥ 0, the following statements are equivalent.

(1) JE-dim A ≤ n.
(2) There exists a T (E ,−)-exact ξ-exact complex

0 �� Kn
�� Cn−1

�� · · · �� C1
�� C0

�� A �� 0

in T with all Ci objects in C and Kn an object in J .

Proof (2) ⇒ (1) is trivial.
(1) ⇒ (2) We proceed by induction on n. The case for n = 0 is trivial. If n = 1, then by

Proposition 3.3 with M = 0, we get the desired T (E ,−)-exact ξ-exact complex

0 �� T �� C �� A �� 0

in T with T an object in J and C an object in C.
Now suppose n ≥ 2. By assumption, we have the following two T (E ,−)-exact ξ-exact

complexes

0 �� Tn
�� Tn−1

�� Tn−2
�� · · · �� T2

�� K2
�� 0,

0 �� K2
�� T1

�� T0
�� A �� 0.

By Proposition 3.3, we get a T (E ,−)-exact ξ-exact complex

0 �� K2
�� T ′

1
�� C0

�� A �� 0

in T with T ′
1 an object in J and C0 an object in C with both K2

�� T ′
1

�� K ′
1

�� ΣK2

and K ′
1

�� C0
�� A �� ΣK ′

1 T (E ,−)-exact triangles in ξ. Thus

0 �� Tn
�� Tn−1

�� Tn−2
�� · · · �� T2

�� T ′
1

�� K ′
1

�� 0

is a T (E ,−)-exact ξ-exact complex. Then by the induction hypothesis, we get a T (E ,−)-exact
ξ-exact complex

0 �� Kn
�� Cn−1

�� Cn−2
�� · · · �� C2

�� C1
�� K ′

1
�� 0.

Thus we get the desired T (E ,−)-exact ξ-exact complex

0 �� Kn
�� Cn−1

�� Cn−2
�� · · · �� C2

�� C1
�� C0

�� A �� 0.

The following three results generalize [15, Theorems 2.3, 2.7 and 2.9]. The arguments here
are similar to that in [15], so we omit them.

Theorem 3.7 Let C ⊆ E be subcategories of T and

X �� X0 �� X1 �� ΣX

a T (E ,−)-exact triangle in ξ. Assume that C is closed under hokernels of ξ-proper epimor-
phisms, and let

· · · �� C0
n

�� C0
n−1

�� · · · �� C0
1

�� C0
0

�� X0 �� 0
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and

· · · �� C1
n

�� C1
n−1

�� · · · �� C1
1

�� C1
0

�� X1 �� 0

be T (E , −)-exact ξ-exact complexes with all C0
i , C1

i objects in C. Then there exist a T (E ,

−)-exact ξ-exact complex

· · · �� C1
n+1 ⊕ C0

n
�� C1

n ⊕ C0
n−1

�� · · · �� C1
2 ⊕ C0

1
�� C �� X �� 0

and a T (E ,−)-exact triangle

C �� C1
1 ⊕ C0

0
�� C1

0
�� ΣC

in ξ.

Theorem 3.8 Let C ⊆ E be subcategories of T and

X1
�� X0

�� X �� ΣX1 (3.7)

a triangle in ξ. Let

· · · �� Cn
0

�� Cn−1
0

�� · · · �� C1
0

�� C0
0

�� X0
�� 0 (3.8)

and

· · · �� Cn
1

�� Cn−1
1

�� · · · �� C1
1

�� C0
1

�� X1
�� 0 (3.9)

be T (E ,−)-exact ξ-exact complexes with all Ci
0, Ci

1 objects in C. Then
(1) If (3.7) is T (E ,−)-exact, then we have the following T (E ,−)-exact ξ-exact complex

· · · �� Cn
0 ⊕ Cn−1

1
�� · · · �� C2

0 ⊕ C1
1

�� C1
0 ⊕ C0

1
�� C0

0
�� X �� 0. (3.10)

(2) If (3.7)–(3.9) are T (−, E)-exact, then so is (3.10).

Theorem 3.9 Let C ⊆ E be subcategories of T and

Y �� Y 0 �� Y 1 �� ΣY (3.11)

a triangle in ξ. Let

0 �� Y 0 �� C0
0

�� C0
1

�� · · · �� C0
n

�� · · · (3.12)

and

0 �� Y 1 �� C1
0

�� C1
1

�� · · · �� C1
n

�� · · · (3.13)

be T (−, E)-exact ξ-exact complexes with all C0
i , C1

i objects in C. Then
(1) If the triangle (3.11) is T (−, E)-exact, then we have the following T (−, E)-exact ξ-exact

complex

0 �� Y �� C0
0

�� C1
0 ⊕ C0

1
�� C1

1 ⊕ C0
2

�� · · · �� C1
n−1 ⊕ C0

n
�� · · · (3.14)

(2) If (3.11)–(3.13) are T (E ,−)-exact, then so is (3.14).

The following lemma is similar to Horseshoe Lemma, which plays an important role in this
paper.
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Lemma 3.10 Let E be a subcategory of T and

X �� Y �� Z �� ΣX (3.15)

a triangle in ξ.
(1) Consider the following commutative diagram

KX
1

��

KZ
1

��
CX

0
��

��

CX
0 ⊕ CZ

0
��

��

CZ
0

0 ��

��

ΣCX
0

��
X ��

��

Y �� Z ��

��

ΣX

ΣKX
1 ΣKZ

1 ,

in which the first vertical and the third vertical triangles are in ξ. Then we have the following
commutative diagram except the middle square on the top which anticommutes

KX
1

��

��

W1
��

��

KZ
1

��

��

ΣKX
1

��
CX

0
��

��

CX
0 ⊕ CZ

0
��

��

CZ
0

��

��

ΣCX
0

��
X ��

��

Y ��

��

Z ��

��

ΣX

��
ΣKX

1
�� ΣW1

�� ΣKZ
1

�� Σ2KX
1 ,

in which the first horizontal and the second vertical triangles are in ξ. Moreover,
(i) If the first vertical and the third vertical triangles and the triangle (3.15) are T (E ,−)-

exact, then so are the first horizontal and the second vertical triangles.
(ii) If the first vertical and the third vertical triangles and the triangle (3.15) are T (−, E)-

exact, then so are the first horizontal and the second vertical triangles.
(2) Consider the following commutative diagram

Σ−1K1
X

��

Σ−1K1
Z

��
X ��

��

Y ��

��

Z ��

��

ΣX

��
C0

X
��

��

C0
X ⊕ C0

Z
�� C0

Z
0 ��

��

ΣC0
X

K1
X K1

Z ,
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in which the triangles X �� C0
X

�� K1
X

�� ΣX and Z �� C0
Z

�� K1
Z

�� ΣZ are in ξ.
Then we have the following commutative diagram except the middle square on the bottom which
anticommutes

X ��

��

Y ��

��

Z ��

��

ΣX

��
C0

X
��

��

C0
X ⊕ C0

Z
��

��

C0
Z

��

��

ΣC0
X

��
K1

X
��

��

W 1 ��

��

K1
Z

��

��

ΣK1
X

��
ΣX �� ΣY �� ΣZ �� Σ2X,

in which the third horizontal and the second vertical triangles are in ξ. Moreover,

(i) If the first vertical and the third vertical triangles and the triangle (3.15) are T (E ,−)-
exact, then so are the third horizontal and the second vertical triangles.

(ii) If the first vertical and the third vertical triangles and the triangle (3.15) are T (−, E)-
exact, then so are the third horizontal and the second vertical triangles.

Proof It is similar to the proof of [2, Proposition 4.11], so we omit it. �
The following results give some relations of JE -dimension with the terms of a triangle

X �� Y �� Z �� ΣX in ξ.

Proposition 3.11 Let C ⊆ E be subcategories of T and J an E-resolving subcategory of T
admitting a ξ-proper generator C, and let

X �� Y �� Z �� ΣX

be a T (E ,−)-exact triangle in ξ with Z an object in J . Then JE-dim X = JE-dim Y .

Proof Because J is E-resolving by assumption, we have that JE -dim X = 0 if and only if
JE -dim Y = 0.

Now suppose that JE -dim X = n ≥ 1 and

KX
1

�� T0
�� X �� ΣKX

1

is a T (E ,−)-exact triangle with T0 an object in J and JE -dim KX
1 ≤ n − 1. Since J admits a

ξ-proper generator C, there exists a T (E ,−)-exact triangle

K1
�� C0

�� Z �� ΣK1

in ξ with C0 an object in C and K1 an object in J . By [15, Lemma 2.2], we get the following
commutative diagram

T0
��

��

T0 ⊕ C0
��

��

C0
0 ��

��

ΣT0

��
X �� Y �� Z �� ΣX.
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By Lemma 3.10, we get the following commutative diagram except the middle square on the
top which anticommutes

KX
1

��

��

W1
��

��

K1
��

��

ΣKX
1

��
T0

��

��

T0 ⊕ C0
��

��

C0
��

��

ΣT0

��
X ��

��

Y ��

��

Z ��

��

ΣX

��
ΣKX

1
�� ΣW1

�� ΣK1
�� Σ2KX

1 ,

in which the first horizontal and the second vertical triangles are in ξ, and the first horizontal
and the second vertical triangles are T (E ,−)-exact. Note that T0⊕C0 is an object in J . By the
induction hypothesis, we have JE -dim Y ≤ JE -dim W1 + 1 ≤ JE -dimKX

1 + 1 ≤ n = JE -dim X.
Conversely, suppose that JE -dim Y = n ≥ 1 and

KY
1

�� T0
�� Y �� ΣKY

1

is a T (E ,−)-exact triangle with T0 an object in J and JE -dim KY
1 ≤ n − 1. Applying base

change for the triangle Σ−1Z �� X �� Y �� Z along the morphism T0
�� Y, we have the

following commutative diagram

0 ��

��

KY
1

h

��

KY
1

��

f

��

0

��
Σ−1Z �� T

g ��

��

T0
��

��

Z

Σ−1Z ��

��

X ��

��

Y ��

��

Z

��
0 �� ΣKY

1 ΣKY
1

�� 0.

Since gh = f is ξ-monic, by Lemma 2.6 we have that h is ξ-monic and the second vertical triangle
is in ξ. Since the third vertical triangle and the triangle X �� Y �� Z �� ΣX are in ξ, the
triangle T �� T0

�� Z �� ΣT is also in ξ by Lemma 2.7 (1). Since the third vertical triangle
and the triangle X �� Y �� Z �� ΣX are T (E ,−)-exact, the second vertical triangle and
the triangle T �� T0

�� Z �� ΣT are T (E ,−)-exact by Lemma 2.9 and the snake lemma.
Moreover, since J is closed under hokernels of ξ-proper epimorphisms, T is an object in J .
Thus JE -dim X ≤ JE -dim KY

1 + 1 ≤ n = JE -dim Y . �
As a consequence of Proposition 3.11, we get the following

Corollary 3.12 Let C ⊆ E be subcategories of T and J an E-resolving subcategory of T
admitting a ξ-proper generator C. If JE-dim K = n for an object K in T , then JE-dim K⊕M =
n for any object M in J .



Resolving Subcategories of Triangulated Categories and Relative Homological Dimension 1527

Proof Applying Proposition 3.11 to the triangle K �� K ⊕ M �� M �� ΣK in ξ, we have
JE -dim K ⊕ M = JE -dimK = n. �

Proposition 3.13 Let C ⊆ E be subcategories of T and J an E-resolving subcategory admit-
ting a ξ-proper generator C. Let

X �� Y �� Z �� ΣX

be a T (E ,−)-exact triangle in ξ with X an object in J and neither Y nor Z in J . Then
JE-dim Y = JE-dim Z.

Proof Suppose that JE -dim Y = n ≥ 1 and

KY
1

�� TY
0

�� Y �� ΣKY
1

is a T (E ,−)-exact triangle in ξ with TY
0 an object in J and JE -dim KY

1 ≤ n−1. Applying base
change for the triangle Σ−1Z �� X �� Y �� Z along the morphism TY

0
�� Y, we have

the following commutative diagram

0 ��

��

KY
1

h

��

KY
1

��

f

��

0

��
Σ−1Z �� T

g ��

��

TY
0

��

��

Z

Σ−1Z ��

��

X ��

��

Y ��

��

Z

��
0 �� ΣKY

1 ΣKY
1

�� 0.

Since gh = f is ξ-monic, by Lemma 2.6 we have that h is ξ-monic and the second vertical triangle
is in ξ. Since the third vertical triangle and the triangle X �� Y �� Z �� ΣX are in ξ, the

triangle T �� TY
0

�� Z �� ΣT is also in ξ by Lemma 2.7 (1). Since the third vertical triangle

and the triangle X �� Y �� Z �� ΣX are T (E ,−)-exact, the second vertical triangle and

the triangle T �� TY
0

�� Z �� ΣT are T (E ,−)-exact by Lemma 2.9 and the snake lemma.
It follows from Proposition 3.11 that JE -dim Z ≤ JE -dim T + 1 = JE -dim KY

1 + 1 ≤ n = JE -
dimY .

Conversely, suppose that JE -dim Z = n ≥ 1 and

KZ
1 → TZ

0 → Z → ΣKZ
1

is a T (E ,−)-exact triangle in ξ with TZ
0 an object in J and JE -dim KZ

1 ≤ n−1. Applying base
change for the triangle X �� Y �� Z �� ΣX along the morphism TZ

0
�� Z, we have the
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following commutative diagram

0 ��

��

KZ
1

h

��

KZ
1

��

f

��

0

��
X �� W

g ��

��

TZ
0

��

��

ΣX

X ��

��

Y ��

��

Z ��

��

ΣX

��
0 �� ΣKZ

1 ΣKZ
1

�� 0,

in which the second horizontal triangle is in ξ. Since the third vertical and the third horizontal
triangles are T (E ,−)-exact, the second vertical and the second horizontal triangles are also
T (E ,−)-exact by Lemma 2.9. Since J is closed under ξ-proper extensions, we have that W is
an object in J and JE -dimY ≤ JE -dim KZ

1 + 1 ≤ n = JE -dimZ. �
The following result gives a sufficient condition such that for an object A in T , if JE -

dimA ≤ n, then all “n-C-syzygies” of A are objects in J .

Theorem 3.14 Let C ⊆ E be subcategories of T and J an E-resolving subcategory of T
admitting a ξ-proper generator C, and let A be an object of T with JE -dim A ≤ n. Then we
have

(1) For any T (E ,−)-exact ξ-exact complex

0 �� Kn
�� Cn−1

�� · · · �� C1
�� C0

�� A �� 0

in T with all Ci objects in C, we have that Kn is an object in J .

(2) If

X �� C �� A �� ΣX

is a T (E ,−)-exact triangle in ξ with C an object in C, then JE-dim X ≤ n − 1.

Proof Let JE -dim A ≤ n. By Theorem 3.6, there exists a T (E ,−)-exact ξ-exact complex

0 �� Tn
�� C ′

n−1
�� C ′

n−2
�� · · · �� C ′

2
�� C ′

1
�� C ′

0
�� A �� 0 (3.16)

with Tn an object in J and all C ′
i objects in C.

(1) Applying Theorem 3.8 to a T (E ,−)-exact triangle A �� A �� 0 �� ΣA in ξ, we get
a T (E ,−)-exact ξ-exact complex

0 �� Kn
�� Tn ⊕ Cn−1

�� C ′
n−1 ⊕ Cn−2

�� · · · �� C ′
1 ⊕ C0

�� C ′
0

�� 0.

Since J is closed under ξ-proper epimorphisms, Kn is an object in J .

(2) From (3.16) we get a T (E ,−)-exact ξ-exact triangle

K1
�� C ′

0
�� A �� ΣK1

in ξ with JE -dim K1 ≤ n − 1. Applying base change for the triangle X �� C �� A �� ΣX
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along the morphism C ′
0

�� A , we get the following commutative diagram

0 ��

��

K1

u

��

K1
��

w

��

0

��
X �� W

v ��

��

C ′
0

��

��

ΣX

X ��

��

C ��

��

A ��

��

ΣX

��
0 �� ΣK1 ΣK1

�� 0,

in which the second horizontal triangle is in ξ. Since the third vertical and the third horizontal
triangles are T (E ,−)-exact, the second vertical and the second horizontal triangles are also
T (E ,−)-exact by Lemma 2.9. Because C is an object in C(⊆ E), we have that the second
vertical triangle splits and W ∼= K1 ⊕ C. Since ξ is closed under isomorphisms, the triangle

X �� K1 ⊕ C �� C ′
0

�� ΣX is in ξ with C ′
0 an object in C(⊆ J ). By Proposition 3.11 and

Corollary 3.12, we have JE -dim X = JE -dim K1 ⊕ C = JE -dim K1 ≤ n − 1. �
We use JE -dim≤n to denote the subcategory of T consisting of objects with JE -dimension

at most n.

Corollary 3.15 Let C ⊆ E be subcategories of T and J an E-resolving subcategory of T
admitting a ξ-proper generator C. If J is closed under direct summands, then so is JE-dim≤n

for any n ≥ 0.

Proof We proceed by induction on n. The case n = 0 is trivial. Let n ≥ 1 and let X be an
object in T with JE -dim X ≤ n and X = X1⊕X2. By Theorem 3.6, there exists a T (E ,−)-exact
ξ-exact complex

0 �� Kn
�� Cn−1

�� Cn−2
�� · · · �� C2

�� C1
�� C0

�� X �� 0

in T with Kn an object in J and all Ci objects in C. Now applying base change for the
triangle Σ−1X1

�� X2
�� X �� X1 along the morphism C0

�� X, we get the following
commutative diagram

0 ��

��

K1

��

K1
��

��

0

��
Σ−1X1

�� W1
��

��

C0
��

��

X1

Σ−1X1
��

��

X2
��

��

X ��

��

X1

��
0 �� ΣK1 ΣK1

�� 0.

Since the third vertical triangle and the triangle X2
�� X �� X1

�� ΣX2 are in ξ, the
triangle W1

�� C0
�� X1

�� ΣW1 is also in ξ by Lemma 2.7 (1). Since the third vertical
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triangle and the triangle X2
�� X �� X1

�� ΣX2 are T (E ,−)-exact, the triangle

W1
�� C0

�� X1
�� ΣW1

is T (E ,−)-exact by Lemma 2.9 and the snake lemma. Similarly, we get a T (E ,−)-exact triangle

W2
�� C0

�� X2
�� ΣW2

in ξ. By Theorem 3.8, we get the following two T (E ,−)-exact triangles

C0 ⊕ C1
�� C0

�� X1
�� Σ(C0 ⊕ C1),

C0 ⊕ C1
�� C0

�� X2
�� Σ(C0 ⊕ C1)

in ξ. Repeating this process, we get the following two T (E ,−)-exact ξ-exact complexes

0 �� Y1
�� ⊕n−1

i=1 Ci
�� ⊕n−2

i=1 Ci
�� · · · �� C0 ⊕ C1

�� C0
�� X1

�� 0,

0 �� Y2
�� ⊕n−1

i=1 Ci
�� ⊕n−2

i=1 Ci
�� · · · �� C0 ⊕ C1

�� C0
�� X2

�� 0.

Since ξ is closed under finite coproducts, we get a T (E ,−)-exact ξ-exact complex

0 �� Y1 ⊕ Y2
�� ⊕n−1

i=1 Ci ⊕
⊕n−1

i=1 Ci
�� ⊕n−2

i=1 Ci ⊕
⊕n−2

i=1 Ci
��

· · · �� C0 ⊕ C1 ⊕ C0 ⊕ C1
�� C0 ⊕ C0

�� X �� 0.

By Theorem 3.14, Y1 ⊕ Y2 is an object in J . Because J is closed under direct summands by
assumption, both Y1 and Y2 are objects in J . Thus JE -dim X1 ≤ n and JE -dim X2 ≤ n. �

4 Relative Gorenstein Categories

In this section, we give some applications of the results obtained in Section 3. We first introduce
the following

Definition 4.1 Let C and E be subcategories of T and X an object in T . A complete CE(ξ)-
resolution of X is a T (E ,−)-exact and T (−, E)-exact ξ-exact complex

· · · �� C1
�� C0

�� C0 �� C1 �� · · ·

in T with all Ci, Ci objects in C such that both

K1
�� C0

�� X �� ΣK1 and X �� C0 �� K1 �� ΣX

are corresponding triangles in ξ. The (E , C)-Gorenstein category is defined as

GCE(ξ) = {X is in T | X admits a complete CE(ξ)-resolution}.

Recall from [2] that an object P (resp. I) in T is called ξ-projective (resp. ξ-injective) if
for any triangle X �� Y �� Z �� ΣX in ξ, the induced complex

0 �� T (P, X) �� T (P, Y ) �� T (P, Z) �� 0

(resp. 0 �� T (Z, I) �� T (Y, I) �� T (X, I) �� 0)

is exact. We use P(ξ) (resp. I(ξ)) to denote the full subcategory of T consisting of ξ-projective
(resp. ξ-injective) objects.
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Remark 4.2 (1) If E = C, then GCE(ξ) = GC(ξ), where GC(ξ) is the Gorenstein category
defined in [15].

(2) If E = C = P(ξ) (resp. C = E = I(ξ)), then GCE(ξ) coincides with GP(ξ) (resp. GI(ξ)),
where GP(ξ) (resp. GI(ξ)) is the full subcategory of T consisting of ξ-Gorenstein projective
(resp. injective) objects in [1].

We have the following result.

Theorem 4.3 Let C ⊆ E be subcategories of T . Then we have
(1) GCE(ξ) is an E-resolving subcategory of T .
(2) GCE(ξ) is an E-coresolving subcategory of T .

Proof (1) By assumption, for any object X in GCE(ξ), there exists a T (E ,−)-exact triangle

KX
1

�� CX
0

�� X �� ΣK1

in ξ with KX
1 an object in GCE(ξ) and CX

0 an object in C. So C is a ξ-proper generator for
GCE(ξ).

Let

X �� Y �� Z �� ΣX

be a T (E ,−)-exact triangle in ξ. Suppose that Z is an object in GCE(ξ). Then there exists a
T (E ,−)-exact and T (−, E)-exact triangle

KZ
1

�� CZ
0

�� Z �� ΣKZ
1

in ξ with KZ
1 an object in GCE(ξ) and CZ

0 an object in C. Applying base change for the triangle

X �� Y �� Z �� ΣX along the morphism CZ
0

�� Z, we get the following commutative
diagram

0 ��

��

KZ
1

��

KZ
1

��

��

0

��
X �� W ��

��

CZ
0

��

��

ΣX

X ��

��

Y ��

��

Z ��

��

ΣX

��
0 �� ΣKZ

1 ΣKZ
1

�� 0,

in which the second horizontal triangle is in ξ. Since the third horizontal triangle is T (E ,−)-
exact, so is the second horizontal triangle by Lemma 2.9. Because CZ

0 is an object in C(⊆ E),
the second horizontal triangle splits and is T (−, E)-exact. Because the third vertical triangle is
also T (−, E)-exact, so is the third horizontal triangle by Lemma 2.9.

Claim 1 If X and Z are objects in GCE(ξ), then so is Y .
Since X and Z are objects in GCE(ξ), there exist T (E ,−)-exact and T (−, E)-exact triangles

KX
1

�� CX
0

�� X �� ΣKX
1 , X �� C0

X
�� K1

X
�� ΣX,

KZ
1

�� CZ
0

�� Z �� ΣKZ
1 , Z �� C0

Z
�� K1

Z
�� ΣZ
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with CX
0 , C0

X , CZ
0 , C0

Z objects in C and KX
1 , K1

X , KZ
1 , K1

Z objects in GCE(ξ). By [15,
Lemma 2.2], we have the following commutative diagram

CX
0

��

��

CX
0 ⊕ CZ

0
��

��

CZ
0

0 ��

��

ΣCX
0

��
X �� Y �� Z �� ΣX.

By Lemma 3.10, we get the following commutative diagram except the middle square on the
top which anticommutes

KX
1

��

��

W1
��

��

KZ
1

��

��

ΣKX
1

��
CX

0
��

��

CX
0 ⊕ CZ

0
��

��

CZ
0

��

��

ΣCX
0

��
X ��

��

Y ��

��

Z ��

��

ΣX

��
ΣKX

1
�� ΣW1

�� ΣKZ
1

�� Σ2KX
1 ,

in which the first horizontal and the second vertical triangles are in ξ, and the first horizontal
and the second vertical triangles are T (E ,−)-exact and T (−, E)-exact.

Again by [15, Lemma 2.2], we have the following commutative diagram

X ��

��

Y ��

��

Z ��

��

ΣX

��
C0

X
�� C0

X ⊕ C0
Z

�� C0
Z

0 �� ΣC0
X .

By Lemma 3.10, we get the following commutative diagram except the middle square on the
bottom which anticommutes

X ��

��

Y ��

��

Z ��

��

ΣX

��
C0

X
��

��

C0
X ⊕ C0

Z
��

��

C0
Z

��

��

ΣC0
X

��
K1

X
��

��

W 1 ��

��

K1
Z

��

��

ΣK1
X

��
ΣX �� ΣY �� ΣZ �� Σ2X

in which the third horizontal and the second vertical triangles are in ξ, and the third horizontal
and the second vertical triangles are T (E ,−)-exact and T (−, E)-exact. Continuing this process,
we get a complete CE(ξ)-resolution of Y . Thus Y is an object in GCE(ξ).

Claim 2 If Y and Z are in GCE(ξ), then so is X.
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By Theorem 3.9, we have a T (E ,−)-exact and T (−, E)-exact ξ-exact complex

0 �� X �� C0
X

�� C1
X

�� · · · �� Cn
X

�� · · · (4.1)

with all Ci
X objects in C.

Since Y is an object in GCE(ξ), there exists a T (E ,−)-exact and T (−, E)-exact triangle
KY

1
�� CY

0
�� Y �� ΣKY

1 in ξ with KY
1 an object in GCE(ξ) and CY

0 an object in C. Ap-

plying base change for the triangle Σ−1Z �� X �� Y �� Z along the morphism CY
0

�� Y,

we get the following commutative diagram

0 ��

��

KY
1

��

KY
1

��

��

0

��
Σ−1Z �� W1

��

��

CY
0

��

��

Z

Σ−1Z ��

��

X ��

��

Y ��

��

Z

��
0 �� ΣKY

1 ΣKY
1

�� 0.

Since the third vertical triangle and the triangle X �� Y �� Z �� ΣX are in ξ, by Lemma 2.7

(1) we have that the triangle W1
�� CY

0
�� Z �� ΣW1 is also in ξ and it is T (E ,−)-exact

and T (−, E)-exact. Also we have that the second vertical triangle is T (E ,−)-exact and T (−, E)-
exact. Since Z is an object in GCE(ξ), there exists a T (E ,−)-exact and T (−, E)-exact triangle
KZ

1
�� CZ

0
�� Z �� ΣKZ

1 in ξ with KZ
1 an object in GCE(ξ) and CZ

0 an object in C. By [7,
Axioms B′ and E], we get the following commutative diagram

Σ−1Z �� KZ
1

��

��

CZ
0

��

��

Z

Σ−1Z �� W1
�� CY

0
�� Z

with KZ
1

�� CZ
0 ⊕ W1

�� CY
0

�� ΣKZ
1 a triangle in Δ. By [13, Proposition 2.1], we have

that this triangle is in ξ. So it is T (E ,−)-exact and T (−, E)-exact. Because KZ
1 and CY

0 are
objects in GCE(ξ), we have a T (E ,−)-exact and T (−, E)-exact ξ-exact complex of CZ

0 ⊕W1 by
Claim 1. Applying Theorem 3.8 to the triangle CZ

0
�� CZ

0 ⊕ W1
�� W1

�� ΣCZ
0 , we get a

T (E ,−)-exact and T (−, E)-exact ξ-exact complex

· · · �� CW1
n

�� CW1
n−1

�� · · · �� CW1
0

�� W1
�� 0

with all CW1
i objects in C.

Applying Theorem 3.8 to the triangle KY
1

�� W1
�� X �� ΣKY

1 , we get a T (E ,−)-exact
and T (−, E)-exact ξ-exact complex

· · · �� CX
n

�� CX
n−1

�� · · · �� CX
0

�� X �� 0 (4.2)

with all CX
i objects in C.
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Combining (4.1) and (4.2), we get a complete CE(ξ)-resolution of X. Thus X is an object
in GCE(ξ).

(2) It is dual to (1). �
As an immediate consequence of Theorem 4.3, we get the following

Corollary 4.4 Let C be a subcategory of T . Then GC(ξ) is a C-resolving and C-coresolving
subcategory of T . In particular, GP(ξ) is a P(ξ)-resolving and P(ξ)-coresolving subcategory of
T , and GI(ξ) is an I(ξ)-resolving and I(ξ)-coresolving subcategory of T .

Now we are in a position to prove the following

Theorem 4.5 Let C ⊆ E be subcategories of T with C closed under direct summands, and let
A be an object in T with CE -dim A < ∞. Then GCE(ξ)E -dimA = CE -dim A.

Proof Clearly, GCE(ξ)E -dim A ≤ CE -dim A. In the following we prove CE -dim A ≤ GCE(ξ)E -
dimA. Let GCE(ξ)E -dim A = n < ∞ and CE -dimA = m < ∞. If m > n, then consider the
following T (E ,−)-exact ξ-exact complex

0 �� Cm
�� Cm−1

�� Cm−2
�� · · · �� C2

�� C1
�� C0

�� A �� 0

in T with all Ci objects in C. By Theorem 3.14, we get a T (E ,−)-exact ξ-exact complex

0 �� Kn
�� Cn−1

�� Cn−2
�� · · · �� C2

�� C1
�� C0

�� A �� 0

in T with Kn an object in GCE(ξ). Since GCE(ξ) is closed under hokernels of ξ-proper epi-
morphisms, Ki is an object in GCE(ξ) for any n ≤ i ≤ m; in particular, Km−1 is an object in
GCE(ξ). Thus there exists a T (E ,−)-exact and T (−, E)-exact triangle

T �� C �� Km−1
�� ΣT

in ξ with C an object in C and T an object in GCE(ξ). Now applying base change for the triangle
Cm

�� Cm−1
�� Km−1

�� ΣCm along the morphism C �� Km−1, we have the following
commutative diagram

0 ��

��

T

h

��

T ��

f

��

0

��
Cm

u �� W
g ��

v

��

C ��

��

ΣCm

Cm
w ��

��

Cm−1
��

��

Km−1
��

��

ΣCm

��
0 �� ΣT ΣT �� 0.

Since gh = f and vu = w are ξ-monic, we have that h and u are ξ-monic by Lemma 2.6. So the
second vertical and the second horizontal triangles are in ξ. Since the third vertical and the third
horizontal triangles are T (E ,−)-exact, the second vertical and the second horizontal triangles
are also T (E ,−)-exact by Lemma 2.9. So the second horizontal triangle splits, and hence is
T (−, E)-exact. Because the third vertical triangle is T (−, E)-exact, by Lemma 2.9 we have that
the third horizontal triangle is T (−, E)-exact, and hence splits. Thus Cm−1

∼= Cm ⊕ Km−1.
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Because C is closed under direct summands by assumption, Km−1 is an object in C. Repeating
this process, we get that Kn is in C and CE -dim A ≤ n, which is a contradiction. Thus m ≤ n. �

Putting E = C in Theorem 4.5, we get the following

Corollary 4.6 Let C be a subcategory of T closed under direct summands, and let A be an
object in T with C-dim A < ∞. Then GC(ξ)C-dim A = C-dim A.
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