
Vol. 46 No. 5 SCIENCE IN CHINA (Series A) September 2003

Extension closure of relative syzygy modules

HUANG Zhaoyong (���)

Department of Mathematics, Nanjing University, Nanjing 210093, China (email: huangzy@nju.edu.cn)

Received May 21, 2002; revised October 29, 2002

Abstract In this paper we introduce the notion of relative syzygy modules. We then study the extension

closure of the category of modules consisting of relative syzygy modules (resp. relative k-torsionfree modules).

Keywords: extension closed, ωω-k-syzygy modules, ωω-k-torsionfree modules.

DOI: 10.1360/02ys0169

1 Introduction

Throughout this paper Λ is a left noetherian ring and Γ is a right noetherian ring, mod Λ
(resp. mod Γ op) is the category of finitely generated left Λ-modules (resp. right Γ -modules). All
modules considered are finitely generated.

Let ΛωΓ be a (Λ,Γ )-bimodule with Λω in mod Λ and ωΓ in mod Γ op .

Definition 1.1. Let A ∈ mod Λ (resp. mod Γ op) and i a non-negative integer. We say that
the grade of A with respect to ω, written gradeωA, is greater than or equal to i if Extj

Λ(A, ω) = 0
(resp. Extj

Γ (A, ω) = 0) for any 0 � j < i. We say that the strong grade of A with respect to ω,
written s.gradeωA, is greater than or equal to i if gradeωB � i for all submodules B of A.

Definition 1.2. Let A ∈ mod Λ (resp. mod Γ op) and k a positive integer. We call A a

ω-k-syzygy module if there is an exact sequence 0 → A → X0 → X1 → · · · fk−1−→ Xk−1 with all
Xi in addΛω (resp. addωΓ ), where addΛω (resp. addωΓ ) denotes the full subcategory of mod Λ
(resp. mod Γ op) consisting of all modules isomorphic to the direct summands of finite direct sums
of copies of Λω (resp. ωΓ ). We further call Cokerfk−1 a ω-k-cosyzygy module. We use Ωk

ω(Λ)
(resp. Ωk

ω(Γ op)) and Ω−k
ω (Λ) (resp. Ω−k

ω (Γ op)) to denote the full subcategory of mod Λ (resp.
mod Γ op) consisting of ω-k-syzygy modules and ω-k-cosyzygy modules, respectively.

For any A ∈ mod Λ, there is an exact sequence P1
f−→ P0 → A → 0 in mod Λ with P0

and P1 projective. Then we have an exact sequence 0 → Aω → Pω
0

fω

−→ Pω
1 → X → 0, where

()ω =Hom(, ω) and X =Cokerfω.

Definition 1.3[1]. Suppose that the natural maps Λ →End(ωΓ ) and Γ op →End(Λω) are
isomorphisms and Exti

Γ (ω, ω) = 0 for any 1 � i � k. Let A and X be as above. A is called a
ω-k-torsionfree module if Exti

Γ (X, ω) = 0 for any 1 � i � k. We use T k
ω (Λ) to denote the full

subcategory of mod Λ consisting of ω-k-torsionfree modules.

Remarks. (1) If Λ is a two-sided noetherian ring and ΛωΓ =Λ ΛΛ, then the notions in Defini-
tions 1.1—1.3 are just the grade, the strong grade, k-syzygy modules and k-torsionfree modules
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in the usual sense[2,3] respectively. Particularly, in this case Ω−k
ω (Λ) =mod Λ for any k � 1.

(2) The definition of ω-k-torsionfree modules above is well-defined[1].
(3) Let σA : A → Aωω be the canonical evaluation homomorphism. A is called a ω-torsionless

module if σA is a monomorphism; and A is called a ω-reflexive module if σA is an isomorphism.
By Lemma 4 of ref. [1], A is ω-torsionless (resp. ω-reflexive) if and only if A is ω-1-torsionfree
(resp. ω-2-torsionfree).

A full subcategory X of mod Λ is said to be extension closed if the middle term B of any
short exact sequence 0 → A → B → C → 0 is in X provided that the end terms A and C are in
X . For any positive integer k, we showed in ref. [1] that a ω-k-torsionfree module is a ω-k-syzygy
module and so T k

ω (Λ) ⊂ Ωk
ω(Λ). In this paper, we mainly discuss the extension closure of Ωk

ω(Λ)
and T k

ω (Λ). This paper is mainly motivated by the work of Auslander and Reiten[3].
In sec. 2 we give some lemmas which will be used later. In sec. 3 we show that

gradeωExti+1
Λ (M, ω) � i for any M ∈ Ω−(i+1)

ω (Λ) and 1 � i � k − 1 if and only if Ω i
ω(Λ) = T i

ω(Λ)
for any 1 � i � k (Theorem 3.1), which is applied to showing that s.gradeωExti+1

Λ (M, ω) � i

for any M ∈ Ω−i
ω (Λ) and 1 � i � k if and only if Ω i

ω(Λ) is extension closed for any 1 � i � k

(Theorem 3.3). These are generalizations of Proposition 2.26 in ref. [2] and Theorem 1.7 in
ref. [3], respectively. In sec. 4 we deal with the extension closure of ω-torsionless modules and
ω-reflexive modules. If k � 2, then T i

ω(Λ) is extension closed for any 1 � i � k if and only if
gradeωExti

Γ (C, ω) � i for any C ∈ mod Γ op (or Ω−i
ω (Γ op)) and 1 � i � k (Theorem 4.1).

In the following, k is a positive integer, ΛωΓ is a faithfully balanced bimodule, that is,
the natural maps Λ →End(ωΓ ) and Γ op →End(Λω) are isomorphisms, satisfying Exti

Λ(ω, ω) =
0 =Exti

Γ (ω, ω) for any 1 � i � k. Under the assumption of ΛωΓ being faithfully balanced, it is
easy to see that any projective module in mod Λ (resp. mod Γ op) and any module in addΛω (resp.
addωΓ ) are ω-reflexive.

2 Some lemmas

In this section we give some lemmas which will be used later.
Lemma 2.1. Let 0 → A

f−→ B
g−→ C → 0 and 0 → X

α−→ Y be two exact sequences in
mod Λ. If HomΛ(g, Y ) is an isomorphism, then HomΛ(g, X) is also an isomorphism.

Proof. Since 0 → HomΛ(C, Y )
HomΛ(g,Y )−→ HomΛ(B, Y )

HomΛ(f,Y )−→ HomΛ(A, Y ) is exact and
HomΛ(g, Y ) is an isomorphism, HomΛ(f, Y ) is a zero homomorphism.

Consider the following exact commutative diagram:

0 HomΛ(C, Y ) HomΛ(B, Y ) HomΛ(A, Y )

0 HomΛ(C, X) HomΛ(B, X) HomΛ(A, X)

� � �

� � �

0 0 0

� � �

� � �

HomΛ(g, Y ) HomΛ(f, Y )

HomΛ(g, X) HomΛ(f, X)

HomΛ(C, α) HomΛ(B, α) HomΛ(A, α)
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Since HomΛ(f, Y ) is a zero homomorphism and HomΛ(A, α) is a monomorphism, HomΛ(f, X)
is also a zero homomorphism. By the exactness of the upper row in the above diagram, HomΛ(g, X)
is an epimorphism and hence an isomorphism.

Lemma 2.2. Let A and B be in mod Λ. If B is ω-torsionless and Aω = 0, then HomΛ(A, B)
= 0.

Proof. Since B is ω-torsionless, there is an embedding 0 → B → ωn with n a positive
integer, and an exact sequence 0 → HomΛ(A, B) → [HomΛ(A, ω)]n = (Aω)n. Hence we are done.

Let A ∈ mod Λ (resp. mod Γ op) and P1
f−→ P0 → A → 0 an exact sequence in mod Λ (resp.

mod Γ op) with P0 and P1 projective (or P0 and P1 in addΛω (resp. addωΓ )). Then we get an
exact sequence

0 → Aω → Pω
0

fω

−→ Pω
1 → X → 0

in mod Γ op (resp. mod Λ), where X =Cokerfω.

Lemma 2.3 (Lemma 2.1 in ref. [4]). Let A and X be as above. Then we have the
following exact sequences:

0 → Ext1Γ (X, ω) → A
σA−→ Aωω → Ext2Γ (X, ω) → 0,

0 → Ext1Λ(A, ω) → X
σX−→ Xωω → Ext2Λ(A, ω) → 0.

The following Lemmas 2.4 and 2.5 have analogous proofs to Lemmas 2.6 and 2.12 of ref. [15]
respectively.

Lemma 2.4. Let 0 → A → H
f−→ B be an exact sequence in mod Λ (resp. mod Γ op) with

H ω-reflexive and B ω-torsionless. Then A ∼= (Cokerfω)ω.

Lemma 2.5. For any A ∈ mod Λ (resp. mod Γ op), the following statements are equivalent.

(1) Aω is ω-reflexive;

(2) Aωω is ω-reflexive;

(3) (CokerσA)ω = 0.

Lemma 2.6. A module M ∈ Ω2
ω(Λ) if and only if there is a module N ∈ mod Γ op such

that M ∼= Nω.

Proof. Suppose M ∼= Nω with N ∈ mod Γ op. Because there is an exact sequence Q1 →
Q0 → N → 0 in mod Γ op with Q0 and Q1 projective, we have an exact sequence 0 → Nω →
Qω

0 → Qω
1 with Qω

0 , Qω
1 ∈ addΛω and M(∼= Nω) ∈ Ω2

ω(Λ). The converse follows from Lemma 2.4.

Lemma 2.7. The following statements are equivalent.

(1) Aω is ω-reflexive for any A ∈ mod Λ.

(1)op Bω is ω-reflexive for any B ∈ mod Γ op.

(2) [Ext2Λ(A, ω)]ω = 0 for any A ∈ mod Λ.

(2)op [Ext2Γ (B, ω)]ω = 0 for any B ∈ mod Γ op.

(3) [Ext2Λ(A, ω)]ω = 0 for any A ∈ Ω−2
ω (Λ).

(3)op [Ext2Γ (B, ω)]ω = 0 for any B ∈ Ω−2
ω (Γ op).

(4) Every module in Ω2
ω(Λ) is ω-reflexive.

(4)op Every module in Ω2
ω(Γ op) is ω-reflexive.



614 SCIENCE IN CHINA (Series A) Vol. 46

Proof. We will prove (1) ⇔ (1)op ⇒ (2) ⇒ (3) ⇒ (1)op and (1)op ⇔ (4). Then by
symmetry, we are done.

(1) ⇔ (1)op The argument for Lemma 2.13 in ref. [5] remains valid here, so we omit it.
(1)op ⇒ (2) By Lemma 2.3, for any A ∈ mod Λ there is an exact sequence X

σX−→ Xωω →
Ext2Λ(A, ω) → 0 with X ∈ mod Γ op, and then 0 → [Ext2Λ(A, ω)]ω → Xωωω σω

X−→ Xω is exact. By
Proposition 20.14 in ref. [6], σω

XσXω = 1Xω , so σω
X is a split epimorphism and hence Xωωω ∼=

Xω
⊕

[Ext2Λ(A, ω)]ω . By (1)op, Xω is ω-reflexive, so we have [Ext2Λ(A, ω)]ω = 0.
(2) ⇒ (3) It is trivial.
(3) ⇒ (1)op For any B ∈ mod Γ op, there is an exact sequence P1

f−→ P0 → B → 0 in mod
Γ op with P0 and P1 projective. Then we have an exact sequence 0 → Bω → Pω

0
fω

−→ Pω
1 → X → 0

in mod Λ with Pω
0 , Pω

1 in addΛω and X ∈ Ω−2
ω (Λ), where X =Cokerfω. By Lemma 2.3, we

have exact sequences B
σB−→ Bωω → Ext2Γ (X, ω) → 0 and 0 → [Ext2Γ (X, ω)]ω → Bωωω σω

B−→ Bω .
Similar to the above argument we have Bωωω ∼= Bω

⊕
[Ext2Γ (X, ω)]ω. [Ext2Γ (X, ω)]ω = 0 by (3),

so Bωωω ∼= Bω and hence Bω is ω-reflexive.
(1)op ⇔ (4) It follows from Lemma 2.6.
Lemma 2.8 (Lemma 4 in ref. [1]). A module in mod Λ is ω-torsionless (resp. ω-reflexive)

if and only if it is ω-1-torsionfree (resp. ω-2-torsionfree).
Lemma 2.9. Let k � 3. Then a ω-reflexive module A in mod Λ is ω-k-torsionfree if and

only if Exti
Γ (Aω , ω) = 0 for any 1 � i � k − 2.

Proof. Let P1
f−→ P0 → A → 0 be a projective resolution of A in mod Λ. Then

0 → Aω → Pω
0

fω

−→ Pω
1 → X → 0 (2.9.1)

is exact in mod Γ op with Pω
0 and Pω

1 in addωΓ , where X =Cokerfω. By Lemma 2.3, A is ω-
reflexive if and only if Ext1Γ (X, ω) = 0 = Ext2Γ (X, ω). On the other hand, from the exactness
of the sequence (2.9.1) we get that Exti−2

Γ (Aω , ω) ∼= Exti
Γ (X, ω) for any 1 � i � k. Now our

conclusion follows easily.

3 Extension closure of ΩΩk
ω(Λ)

In this section we discuss the extension closure of Ωk
ω(Λ).

Theorem 3.1. The following statements are equivalent.
(1) gradeωExti+1

Λ (M, ω) � i for any M ∈ Ω−(i+1)
ω (Λ) and 1 � i � k − 1.

(2) Ω i
ω(Λ) = T i

ω(Λ) for any 1 � i � k.
Proof. Proceed by induction on k. It is not difficult to verify that a module in mod Λ is

ω-torsionless if and only if it is in Ω1
ω(Λ). Then by Lemma 2.8 we have Ω1

ω(Λ) = T 1
ω (Λ). On the

other hand, when k = 1 the assumption of (1) is empty. So the case for k = 1 is trivial. The case
for k = 2 follows from Lemma 2.7. Now suppose k � 3.

(1) ⇒ (2) By Theorem 1 in ref. [1], T k
ω (Λ) ⊂ Ωk

ω(Λ). So we only need to prove T k
ω (Λ) ⊃ Ωk

ω(Λ).
Let L ∈ Ωk

ω(Λ). Then there is an exact sequence 0 → L → Xk−1
f−→ Xk−2 → · · · → X0 →

M → 0 in mod Λ with all Xi ∈ addΛω. Since we have assumed (1) at level k, we also know (1)
at level k − 1, so by induction assumption we have Ω i

ω(Λ) = T i
ω(Λ) for any 1 � i � k − 1. Hence

L ∈ T k−1
ω (Λ).
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Let P1
g−→ P0 → L → 0 be an exact sequence in mod Λ with P0 and P1 projective. Then we

have an exact sequence 0 → Lω → Pω
0

gω

−→ Pω
1 → X → 0 in mod Γ op with Pω

0 and Pω
1 in addωΓ ,

where X =Cokergω. We will show that L is ω-k-torsionfree.

Notice that L ∈ T k−1
ω (Λ) and k � 3, so L is ω-reflexive and hence it suffices to show that

Exti
Γ (Lω, ω) = 0 for any 1 � i � k − 2 by Lemma 2.9.

Put N =Cokerfω. Then, by Lemma 2.4, L ∼= Nω and Lω ∼= Nωω. We claim that Exti
Γ (N, ω) =

0 for any 1 � i � k−2. If k = 3, then Cokerf is a submodule of X0. But X0 is in addΛω, so X0 is ω-
reflexive and Cokerf is ω-torsionless. By Lemma 2.3, Ext1Γ (N, ω) ∼=KerσCokerf = 0. If k = 4, then
Cokerf ∈ Ω2

ω(Λ) (= T 2
ω (Λ)) and Cokerf is ω-reflexive. Thus Ext1Γ (N, ω) ∼=KerσCokerf = 0 and

Ext2Γ (N, ω) ∼=CokerσCokerf = 0 and the case for k = 4 follows. If k � 5, then Cokerf ∈ Ωk−2
ω (Λ)

and Cokerf ∈ T k−2
ω (Λ). Thus Exti

Γ ((Cokerf)ω, ω) = 0 for any 1 � i � k − 4 by Lemma 2.9.

It follows from the exact sequence 0 → (Cokerf)ω → Xω
k−2

fω

−→ Xω
k−1 → N → 0 with Xω

k−2

and Xω
k−1 projective that Exti

Γ (N, ω) = 0 for any 3 � i � k − 2. So Exti
Γ (N, ω) = 0 for any

1 � i � k − 2.

By Lemma 2.3, we have an exact sequence

0 → Ext1Λ(Cokerf, ω) → N
σN−→ Nωω → Ext2Λ(Cokerf, ω) → 0.

Then KerσN
∼= Ext1Λ(Cokerf, ω) ∼= Extk−1

Λ (M, ω) and CokerσN
∼= Ext2Λ(Cokerf, ω) ∼= Extk

Λ(M, ω).
So we get the following exact sequences:

0 → Extk−1
Λ (M, ω) → N

π−→ ImσN → 0, (3.1.1)

0 → ImσN
μ−→ Nωω → Extk

Λ(M, ω) → 0, (3.1.2)

where σN = μπ. Since Exti
Γ (N, ω) = 0 for any 1 � i � k − 2 and gradeωExtk−1

Λ (M, ω) � k − 2,
from the exact sequence (3.1.1) we have Exti

Γ (ImσN , ω) = 0 for any 1 � i � k − 2. Moreover,
since gradeωExtk

Λ(M, ω) � k − 1, from the exact sequence (3.1.2) we get that Exti
Γ (Nωω, ω) = 0

for any 1 � i � k − 2, which yields Exti
Γ (Lω, ω) = 0 for any 1 � i � k − 2.

(2) ⇒ (1) Let M ∈ Ω−k
ω (Λ). Then there is an exact sequence 0 → L → Xk−1

f−→ Xk−2 →
· · · → X0 → M → 0 in mod Λ with all Xi ∈ addΛω. By (2), L ∈ T k

ω (Λ). By induction assumption,
gradeωExti+1

Λ (M, ω) � i for any 1 � i � k − 2. So it remains to show that gradeωExtk
Λ(M, ω) �

k − 1. Put N =Cokerfω. From the proof of (1) ⇒ (2), we have the following facts:

(i) there is exact sequences 0 → Extk−1
Λ (M, ω) → N

π−→ ImσN → 0 and 0 → ImσN
μ−→

Nωω → ExtkΛ(M, ω) → 0, where σN = μπ;

(ii) L ∼= Nω;

(iii) Exti
Γ (N, ω) = 0 for any 1 � i � k − 2;

(iv) Exti
Γ (ImσN , ω) = 0 for any 1 � i � k − 2.

Since L ∈ T k
ω (Λ) and L ∼= Nω, Nω is ω-reflexive and Exti

Γ (Nωω, ω) ∼= Exti
Γ (Lω, ω) = 0 for

any 1 � i � k − 2 by Lemma 2.9. Since Exti
Γ (ImσN , ω) = 0 for any 1 � i � k − 2 and we

have the exact sequence 0 → ImσN
μ−→ Nωω → ExtkΛ(M, ω) → 0, Exti

Γ (Extk
Λ(M, ω), ω) = 0 for

any 2 � i � k − 2. On the other hand, Nω is ω-reflexive, so πωμω = σω
N is an isomorphism by

Proposition 20.14 in ref. [6], and it follows easily that πω and μω are isomorphisms. Moreover,
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we have a long exact sequence:

0 → [Extk
Λ(M, ω)]ω → Nωωω μω

−→ (ImσN )ω → Ext1Γ (Extk
Λ(M, ω), ω) → Ext1Γ (Nωω, ω) = 0.

So [Extk
Λ(M, ω)]ω ∼=Kerμω = 0 and Ext1Γ (Extk

Λ(M, ω), ω) ∼=Cokerμω = 0. Therefore we conclude
that gradeωExtk

Λ(M, ω) � k − 1.
If Λω is a generator in mod Λ (for example, when Λω =Λ Λ), then Ω−k

ω (Λ) =mod Λ for any
k � 1 and we have the following:

Corollary 3.1. If Λω is a generator in mod Λ, then the following statements are equivalent.
(1) gradeωExti+1

Λ (M, ω) � i for any M ∈ mod Λ and 1 � i � k − 1.
(2) Ω i

ω(Λ) = T i
ω(Λ) for any 1 � i � k.

The following theorem is analogous to the result of Theorem 1.1 in ref. [3]. Since the proof
here is similar to that given in ref. [3], we omit it.

Theorem 3.2. Let N ∈ T k
ω (Λ). The following statements are equivalent.

(1) s.gradeωExt1Λ(N, ω) � k.
(2) If 0 → L → M → N → 0 is exact in mod Λ with L in T k

ω (Λ), then M ∈ T k
ω (Λ).

(3) If 0 → ωn → E → N → 0 is exact in mod Λ with n a positive integer, then E ∈ T k
ω (Λ).

The following corollary is an immediate consequence of Theorem 3.2.
Corollary 3.2. The following statements are equivalent.
(1) T i

ω(Λ) is extension closed for any 1 � i � k.
(2) s.gradeωExt1Λ(N, ω) � i for any N ∈ T i

ω(Λ) and 1 � i � k.
Proposition 3.1. If Ω i

ω(Λ) is extension closed for any 1 � i � k, then Ω i
ω(Λ) = T i

ω(Λ) for
any 1 � i � k.

Proof. Proceed by induction on k. There is nothing to do for the case k = 1.
Now suppose k � 2. Then, by induction assumption, Ω i

ω(Λ) = T i
ω(Λ), which is extension

closed for any 1 � i � k − 1. For any M ∈ Ω−(i+1)
ω (Λ) (1 � i � k − 1), there is an exact sequence

Xi
fi−→ · · · → X0 → M → 0 with all Xj in addΛω. Then Imfi ∈ Ω i

ω(Λ) = T i
ω(Λ) (1 � i � k−1) and

Exti+1
Λ (M, ω) ∼=Ext1Λ(Imfi, ω). So we have s.gradeωExti+1

Λ (M, ω) = s.gradeωExt1Λ(Imfi, ω) � i for
any 1 � i � k − 1 by Corollary 3.2. Then by Theorem 3.1 we have that Ωk

ω(Λ) = T k
ω (Λ), which

finishes the proof.
The main result in this section is the following, which is a generalization of Theorem 1.7 in

ref. [3].
Theorem 3.3. The following statements are equivalent.
(1) s.gradeωExti+1

Λ (M, ω) � i for any M ∈ Ω−i
ω (Λ) and 1 � i � k.

(2) Ω i
ω(Λ) is extension closed for any 1 � i � k.

(3) Ω i
ω(Λ) is extension closed and Ω i

ω(Λ) = T i
ω(Λ) for any 1 � i � k.

Proof. (1) ⇒ (2) By (1) and Theorem 3.1 we have Ω i
ω(Λ) = T i

ω(Λ) for any 1 � i � k. Let
N ∈ T i

ω(Λ) (1 � i � k), then N ∈ Ω i
ω(Λ) and there is an exact sequence 0 → N → Xi−1 → · · · →

X0 → M → 0 with all Xj in addΛω. Then Ext1Λ(N, ω) ∼=Exti+1
Λ (M, ω) and M ∈ Ω−i

ω (Λ). So
s.gradeωExt1Λ(N, ω) =s.gradeωExti+1

Λ (M, ω) � i (1 � i � k) by (1) and hence T i
ω(Λ) is extension

closed for any 1 � i � k by Corollary 3.2. Therefore we conclude that Ω i
ω(Λ) is also extension

closed for any 1 � i � k.
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(2) ⇒ (3) By Proposition 3.1.

(3) ⇒ (1) By (3) and Corollary 3.2, s.gradeωExt1Λ(N, ω) � i for any N ∈ T i
ω(Λ) = Ω i

ω(Λ) and
1 � i � k. So s.gradeωExti+1

Λ (M, ω) � i for any M ∈ Ω−i
ω (Λ) and 1 � i � k.

Corollary 3.3. If Λω is a generator in mod Λ, then the following statements are equivalent.

(1) s.gradeωExti+1
Λ (M, ω) � i for any M ∈ mod Λ and 1 � i � k.

(2) Ω i
ω(Λ) is extension closed for any 1 � i � k.

(3) Ω i
ω(Λ) is extension closed and Ω i

ω(Λ) = T i
ω(Λ) for any 1 � i � k.

4 Extension closure of T k
ω (Λ)

In this section we deal with the extension closure of T k
ω (Λ), especially, of T 1

ω (Λ) and T 2
ω (Λ).

We use l.idΛ(ω) to denote the left injective dimension of ω as a left Λ-module.

Proposition 4.1. If l.idΛ(ω) � k, then T k
ω (Λ) is extension closed.

Proof. Let 0 → A
f−→ B → C → 0 be an exact sequence in mod Λ with A and C

ω-k-torsionfree. Consider the following exact commutative diagram with last two rows splitting:

0 0 0
↑ ↑ ↑

0 → A
f−→ B → C −→ 0

↑ ↑ ↑
0 → F0 → F0

⊕
G0 −→ G0 −→ 0

↑ ↑ ↑
0 → F1 → F1

⊕
G1 −→ G1 −→ 0

where all Fi and Gi are projective. Then we get the following exact commutative diagram:

0 0 0

↓ ↓ ↓
0 → Cω → Bω fω

−→ Aω

↓ ↓ ↓
0 → Gω

0 → Gω
0

⊕
Fω

0 −→ Fω
0 −→ 0

↓ ↓ ↓
0 → Gω

1 → Gω
1

⊕
Fω

1 −→ Fω
1 −→ 0

↓ ↓ ↓
Z Y X

↓ ↓ ↓
0 0 0

It follows from the snake lemma that there is an exact sequence 0 → Cω → Bω fω

−→ Aω → Z →
Y → X → 0. Because C is ω-k-torsionfree, C ∈ Ωk

ω(Λ) by Theorem 1 in ref. [1]. On the other
hand, l.idΛ(ω) � k, so Ext1Λ(C, ω) ∼=Extk+1

Λ (Ω−k
ω (C), ω) = 0 and hence fω is epic, which induces

an exact sequence 0 → Z → Y → X → 0. Since A and C are ω-k-torsionfree, Exti
Γ (X, ω) = 0 =

Exti
Γ (Z, ω) for any 1 � i � k. So Exti

Γ (Y, ω) = 0 for any 1 � i � k and hence B is ω-k-torsionfree.

ΛωΓ is called a cotilting bimodule if l.idΛ(ω) < ∞ and r.idΓ (ω) < ∞[7].
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Corollary 4.1. If ΛωΓ is a cotilting bimodule with l.idΛ(ω) � k, then T k
ω (Λ) is extension

closed.
Proposition 4.2. The following statements are equivalent.
(1) T 1

ω (Λ) is extension closed.
(2) gradeωExt1Γ (C, ω) � 1 for any C ∈ mod Γ op.
(3) gradeωExt1Γ (C, ω) � 1 for any C ∈ Ω−1

ω (Γ op).
Proof. (1) ⇒ (2) Let C ∈ mod Γ op and P1

f−→ P0 → C → 0 a projective resolution of C

in mod Γ op. By Lemma 2.3, we have an exact sequence:

0 → Ext1Γ (C, ω) → X
σX−→ Xωω → Ext2Γ (C, ω) → 0,

where X =Cokerfω.
Put Y =ImσX and assume that σX = μπ, where π : X → Y is an epimorphism and μ : Y →

Xωω is a monomorphism. Since πωμω = σω
X is an epimorphism by Proposition 20.14 in ref. [6],

πω is also an epimorphism and hence an isomorphism. So, by applying ()ω to the exact sequence
0 → Ext1Γ (C, ω) → X

π−→ Y → 0, we have KerExt1Λ(π, ω) ∼= [Ext1Γ (C, ω)]ω .
Suppose

η : 0 → ω → K
γ−→ Y → 0

is an element in KerExt1Λ(π, ω), that is, Ext1Λ(π, ω)(η) = 0. Then we have the following pull-back
diagram with the first row splitting:

0 → ω → N
u−→ X −→ 0

‖ ↓ v ↓ π

η : 0 → ω → K
γ−→ Y −→ 0

So there is a homomorphism u
′
: X → N such that uu

′
= 1X and hence π = γ(vu

′
). Notice that

Y is ω-torsionless since Y is a submodule of a ω-torsionless module Xωω. Since ω is ω-torsionless,
K is also ω-torsionless by (1). So we have an embedding 0 → K → ωn with n a positive integer.
Since πω is an isomorphism, HomΛ(π, ωn) is also an isomorphism. It follows from Lemma 2.1 that
HomΛ(π, K) is an isomorphism. Then there is a homomorphism h : Y → K such that vu

′
= hπ

and so π = γ(vu
′
) = γhπ. But π is an epimorphism which implies 1Y = γh. So we conclude that

the exact sequence η splits, which implies that KerExt1Λ(π, ω) = 0 and [Ext1Γ (C, ω)]ω = 0.
(2) ⇒ (3) It is trivial.
(3) ⇒ (1) Let 0 → K

β−→ L
α−→ M → 0 be an exact sequence in mod Λ with K and M

ω-torsionless.
Suppose P1

f−→ P0 → L → 0 is a projective resolution of L in mod Λ. Put N =Cokerfω.
By Lemma 2.3, KerσL

∼=Ext1Γ (N, ω). Since N ∈ Ω−1
ω (Γ op), [Ext1Γ (N, ω)]ω = 0 by (3) and thus

(KerσL)ω = 0. Notice that K is ω-torsionless, so HomΛ(KerσL, K) = 0 by Lemma 2.2. Moreover,
σM is a monomorphism and αωωσL = σMα, so KerσL ⊂Kerα ∼= K and hence KerσL = 0, which
implies that L is ω-torsionless.

Corollary 4.2. If T 1
ω (Λ) is extension closed, then Mω is ω-reflexive for any M ∈ mod Λ.

Proof. Let M ∈ mod Λ and P1
f−→ P0 → M → 0 a projective resolution of M in mod Λ.

Put N =Cokerfω and L =Imfω. By Lemma 2.3, CokerσM
∼=Ext2Γ (N, ω). Since 0 → L → Pω

1 →
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N → 0 is exact with Pω
1 ∈addωΓ , [Ext2Γ (N, ω)]ω ∼= [Ext1Γ (L, ω)]ω = 0 by Proposition 4.2. Thus

(CokerσM )ω = 0 and therefore Mω is ω-reflexive by Lemma 2.5.

Proposition 4.3. The following statements are equivalent.

(1) T i
ω(Λ) is extension closed for 1 � i � 2.

(2) gradeωExti
Γ (C, ω) � i for any C ∈ mod Γ op and 1 � i � 2.

(3) gradeωExti
Γ (C, ω) � i for any C ∈ Ω−i

ω (Γ op) and 1 � i � 2.

(4) Exti−1
Λ (Exti

Γ (C, ω), ω) = 0 for any C ∈ mod Γ op and 1 � i � 2.

(5) Exti−1
Λ (Exti

Γ (C, ω), ω) = 0 for any C ∈ Ω−i
ω (Γ op) and 1 � i � 2.

Proof. (1) ⇒ (2) Let C ∈ mod Γ op and P1
f−→ P0 → C → 0 a projective resolution of C

in mod Γ op. Put B =Cokerfω. By Lemma 2.3, KerσB
∼=Ext1Γ (C, ω) and CokerσB

∼=Ext2Γ (C, ω).
Put L =ImσB and let σB = μπ, where π : B → L is an epimorphism and μ : L → Bωω is a
monomorphism. By Proposition 4.2, gradeωExt1Γ (C, ω) � 1 and [Ext1Γ (C, ω)]ω = 0. By applying
()ω to the exact sequence 0 → Ext1Γ (C, ω) → B

π−→ L → 0, we know that Ext1Λ(π, ω) is a
monomorphism.

Since σω
B = πωμω and πω is an isomorphism (see the proof of (1) ⇒ (2) in Proposition 4.2),

and since σω
B is an epimorphism by Proposition 20.14 in ref. [6], μω is also an epimorphism.

On the other hand, Ext1Λ(σB , ω) =Ext1Λ(μπ, ω) =Ext1Λ(π, ω)Ext1Λ(μ, ω). By applying ()ω to the
exact sequence 0 → L

μ−→ Bωω ν−→ Ext2Γ (C, ω) → 0, KerExt1Λ(σB , ω) ∼=KerExt1Λ(μ, ω) ∼=Ext1Λ
(Ext2Γ (C, ω), ω).

Suppose

ζ : 0 → ω → M
α−→ Bωω → 0

is an element in KerExt1Λ(σB , ω), that is, Ext1Λ(σB , ω)(ζ) = 0. Then we have the following pull-
back diagram with the first row splitting:

0 → ω → N
β−→ B −→ 0

‖ ↓ γ ↓ σB

ζ : 0 → ω → M
α−→ Bωω −→ 0

So there is a homomorphism β
′
: B → N such that ββ

′
= 1B and hence σB = α(γβ

′
). By Corollary

4.2, Bω is ω-reflexive. It follows from Lemma 2.5 that Bωω is ω-reflexive. Since ω is ω-reflexive,
M is also ω-reflexive by (1). Since σM (γβ

′
) = (γβ

′
)ωωσB , σB = α(γβ

′
) = ασ−1

M (γβ
′
)ωωσB .

So (1Bωω − ασ−1
M (γβ

′
)ωω)σB = 0 and hence Kerν =ImσB ⊂Ker(1Bωω − ασ−1

M (γβ
′
)ωω). Then

by Theorem 3.6 in ref. [6] there is a homomorphism δ : Ext2Γ (C, ω) → Bωω such that 1Bωω −
ασ−1

M (γβ
′
)ωω = δν. In addition, [Ext2Γ (C, ω)]ω ∼= (CokerσB)ω = 0 by Lemma 2.5. Then by

Lemma 2.2 HomΛ(Ext2Γ (C, ω), Bωω) = 0 since Bωω is ω-reflexive. So δ = 0 and hence 1Bωω =
ασ−1

M (γβ
′
)ωω, which implies that the exact sequence ζ splits. Thus KerExt1Λ(σB , ω) = 0 and

Ext1Λ(Ext2Γ (C, ω), ω) = 0. So we conclude that gradeωExt2Γ (C, ω) � 2.

(2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are trivial.

(5) ⇒ (1) By Proposition 4.2, T 1
ω (Λ) is extension closed. Let 0 → K → L

α−→ M → 0 be an
exact sequence in mod Λ with K and M ω-reflexive. Then L is ω-torsionless by Proposition 4.2.
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Let P1
f−→ P0 → L → 0 be a projective resolution of L in mod Λ. By Lemma 2.3, CokerσL

∼=
Ext2Γ (N, ω), where N =Cokerfω (∈ Ω−2

ω (Λ)). Consider the following exact commutative digram:

0 → K → L
α−→ M −→ 0

↓ β ↓ σL ↓ σM

0 → Kerαωω → Lωω αωω

−→ Mωω −→ 0

where σM is an isomorphism, σL is a monomorphism and β is an induced homomorphism. By the
snake lemma, we get an exact sequence 0 → K

β−→ Kerαωω → Ext2Γ (N, ω) → 0. By Corollary
4.2, Lω is ω-reflexive. It follows from Lemma 2.5 that [Ext2Γ (N, ω)]ω ∼= (CokerσL)ω = 0. By (5),
Ext1Λ(Ext2Γ (N, ω), ω) = 0. Thus, by applying ()ω to the last exact sequence, we know that βω is an
isomorphism and then βωω is also an isomorphism. On the other hand, βωωσK = σKerαωωβ and σK

is an isomorphism, so σKerαωωβ is an isomorphism which implies that σKerαωω is an epimorphism.
Then σKerαωω is an isomorphism since Kerαωω is clearly ω-torsionless. So we conclude that β is
also an isomorphism, which implies that Ext2Γ (N, ω) = 0 and CokerσL = 0. Thus L is ω-reflexive.

We are now in a position to state the main result in this section.
Theorem 4.1. Let k � 2. The following statements are equivalent.
(1) T i

ω(Λ) is extension closed for 1 � i � k.
(2) gradeωExti

Γ (C, ω) � i for any C ∈ mod Γ op and 1 � i � k.
(3) gradeωExti

Γ (C, ω) � i for any C ∈ Ω−i
ω (Γ op) and 1 � i � k.

(4) Exti−1
Λ (Exti

Γ (C, ω), ω) = 0 for any C ∈ mod Γ op and 1 � i � k.
(5) Exti−1

Λ (Exti
Γ (C, ω), ω) = 0 for any C ∈ Ω−i

ω (Γ op) and 1 � i � k.
Proof. Use Propositions 4.2 and 4.3.
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