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Abstract Let A = kQ/I be a finite-dimensional basic algebra over an algebraically closed field k, which is a

gentle algebra with the marked ribbon surface (SA,MA,ΓA). It is known that SA can be divided into some

elementary polygons {Δi | 1 � i � d} by ΓA, which has exactly one side in the boundary of SA. Let C(Δi)

be the number of sides of Δi belonging to ΓA if the unmarked boundary component of SA is not a side of Δi;

otherwise, C(Δi) = ∞, and let f-Δ be the set of all the non-∞-elementary polygons and FA (resp. f-FA) be

the set of all the forbidden threads (resp. of finite length). Then we have

(1) the global dimension of A is max1�i�d C(Δi)− 1 = maxΠ∈FA
l(Π ), where l(Π ) is the length of Π ;

(2) the left and right self-injective dimensions of A are

⎧
⎪⎨

⎪⎩

0, if Q is either a point or an oriented cycle with full relations,

max
Δi∈f-Δ

{1,C(Δi)− 1} = max
Π∈f-FA

l(Π ), otherwise.

As a consequence, we get that the finiteness of the global dimension of gentle algebras is invariant under Avella-

Geiss (AG)-equivalence. In addition, we get that the number of indecomposable non-projective Gorenstein

projective modules over gentle algebras is also invariant under AG-equivalence.
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1 Introduction

Gentle algebras were introduced by Assem and Skowroński [3] as appropriate context for the study of

algebras derived equivalently to hereditary algebras of type Ãn. Note that every gentle algebra is a

special biserial algebra and all the indecomposable modules over a special biserial algebra were described

by Butler and Ringel [9, Section 3] and Wald and Waschbäsch [28, Proposition 2.3]. Thus, we can portray

all the indecomposable modules over a gentle algebra. To be precise, each indecomposable module over
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a gentle algebra is either a string module or a band module. Moreover, every gentle algebra is also a

string algebra and all the irreducible morphisms between string and band modules over a string algebra

were studied by Butler and Ringel [9], Crawley-Boevey [11] and Krause [21]. In addition, by proving that

the left and right self-injective dimensions of a gentle algebra are equal to the maximal length of certain

paths starting with a gentle arrow and bounded by one, if there is no such arrow, Geiss and Reiten [14]

obtained that every gentle algebra is Gorenstein, i.e., its left self-injective dimension inj.dimAA and right

self-injective dimension inj.dimAA are finite.

The geometric models of gentle algebras were introduced in [6,15,25] and have been extensively studied

in [1, 17, 26] based on the works in [2, 7, 13, 27]. They originated in triangulated surfaces which are used

in the study of cluster algebras and cluster categories, such as [8, 22, 23] and so on. Opper et al. [25]

introduced ribbon graphs and marked ribbon surfaces for gentle algebras. One can calculate all the

objects, morphisms and AG-invariants (a derived invariant defined in [5]) in the derived category of a

gentle algebra by marked ribbon surfaces (see [25, Theorems 2.5, 3.3 and 6.1]). Furthermore, Baur and

Coelho-Simões [6] introduced permissible curves (see Definition 2.5 below) to describe indecomposable

modules, and constructed the geometric model of the category of finitely generated modules over a

gentle algebra; they also provided the depictions of the Auslander-Reiten translate τ and Auslander-

Reiten sequences through the rotations of permissible curves in marked ribbon surfaces. Recently, He

et al. [17] studied the category of finitely generated modules over skew-gentle algebras (a generalization

of gentle algebras) by punctured marked surfaces (a generalization of marked ribbon surfaces). They

provided a dimension formula for calculating morphisms between the indecomposable modules M and

τM by equivalence classes of tagged permissible curves, tagged intersections and intersection numbers.

In addition, by using the Koszul dual, Opper et al. [25, Section 1 and Subsection 1.7] proved that the

global dimension gl.dimA of a gentle algebra A is infinite if and only if its quiver has at least one oriented

cycle with full relations.

The aim of this paper is to give some definite formulae for calculating the global and self-injective

dimensions of a given gentle algebra by marked ribbon surfaces.

Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon surface. Then SA is

divided into some elementary polygons {Δi | 1 � i � d} by ΓA which has exactly one side ⊆ ∂SA (the

boundary of SA). We use C(Δi) to denote the number of sides of Δi belonging to ΓA if the unmarked

boundary component of SA is not a side of Δi; otherwise, C(Δi) = ∞. We use f-Δ to denote the set

of all the non-∞-elementary polygons (see Remark 5.8), and use FA (resp. f-FA) to denote the set of

all the forbidden threads (resp. of finite length) (see Definition 5.9). For any Π ∈ FA, we use l(Π ) to

denote its length. Our main result is as follows.

Theorem 1.1 (= Theorems 5.10 and 6.9). Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA)

be its marked ribbon surface. Then we have

(1) gl.dimA = max1�i�d C(Δi)− 1 = maxΠ∈FA
l(Π );

(2)

inj.dimAA = inj.dimAA =

⎧⎨
⎩
0, if Q is either a point or an oriented cycle with full relations,

max
Δi∈f-Δ

{1,C(Δi)− 1} = max
Π∈f-FA

l(Π ), otherwise.

The rest of this paper is organized as follows. In Section 2, we recall some terminologies and some

preliminary results needed in this paper. In particular, we give the definition of gentle algebras and some

related notions related to their geometric models. In Section 3, we give the descriptions of some short

exact sequences by geometric models, which will be used frequently in the sequel.

Theorem 1.2 (= Theorem 3.12). Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its

marked ribbon surface.

(1) If c, c′ and c′′ are permissible curves such that the positional relationship of them is given by Case I

in Figure 1, then there exists an exact sequence

0 −→ M(c′) −→ M(c) −→ M(c′′) −→ 0.
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Figure 1 (Color online) For each case, the module M ′ corresponding to blue permissible curve(s) is a submodule of M

corresponding to the red permissible curve, and the module M ′′ corresponding to orange permissible curve(s) is isomorphic

to the quotient M/M ′

(2) If c, c′, c′′I and c′′II are permissible curves such that the positional relationship of them is given by

Case II in Figure 1, then there exists an exact sequence

0 −→ M(c′) −→ M(c) −→ M(c′′I ⊕ c′′II) −→ 0.

(3) If c, c′I, c
′
II and c′′ are permissible curves such that the positional relationship of them is given by

Case III in Figure 1, then there exists an exact sequence

0 −→ M(c′I ⊕ c′II) −→ M(c) −→ M(c′′) −→ 0.

In Section 4, we describe the projective covers and injective envelopes of indecomposable modules over

gentle algebras by marked ribbon surfaces (see Theorems 4.6 and 4.9). Then in Section 5, we give the

proof of Theorem 1.1(1).

In Section 6, by describing all the Gorenstein projective modules in geometric models, we give a proof

of the following equalities:

inj.dimAA = inj.dimAA =

⎧⎨
⎩
0, if Q is either a point or an oriented cycle with full relations,

max
Δi∈f-Δ

{1,C(Δi)− 1}, otherwise.

Then by describing minimal projective resolutions of all the injective modules, we obtain a formula

for calculating the left and right self-injective dimensions of A by marked ribbon surfaces (see

Proposition 6.8). As a consequence, we give the proof of Theorem 1.1(2) including another proof of the

above equalities. In addition, we prove that the number of indecomposable non-projective Gorenstein

projective modules over gentle algebras is invariant under AG-equivalence (see Proposition 6.12). In

Section 7, we give some examples to illustrate the obtained results, i.e., we apply Theorem 1.1 to calculate

the global and self-injective dimensions of some gentle algebras.

2 The geometric models of gentle algebras

In this paper, assume that A = kQ/I is a finite-dimensional basic algebra over an algebraically closed

field k, where I is an admissible ideal of kQ and Q = (Q0, Q1) is a finite quiver with Q0 and Q1 the

sets of all the vertices and arrows, respectively. We use s and t to denote two functions from Q1 to Q0

which send each arrow to its source and target, respectively. The multiplication α1α2 of two arrows α1

and α2 in Q1 is defined by the concatenation if t(α1) = s(α2) or zero if t(α1) �= s(α2). For a set X, the

number of elements of X is denoted by �X. We use modA to denote the category of finitely generated

right A-modules, and use gl.dimA to denote the global dimension of A. For a module M ∈ modA, we

use proj.dimM and inj.dimM to denote the projective and injective dimensions of M , respectively, and

use topM , socM and P (M) to denote the top, socle and projective cover of M , respectively. We define

N � M (resp. N �⊕ M) if N is a submodule (resp. direct summand) of M .
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2.1 Marked ribbon surfaces

In gentle algebras, Opper et al. [25] introduced the notion of marked ribbon surfaces by defining ribbon

graphs first. Marked ribbon surfaces are often referred to as marked surfaces, such as [1, 6, 17]. In this

paper, we still use the terminology from [25] (but we do not need the definition of ribbon graphs).

Definition 2.1 (Marked ribbon surfaces [1,6,25]). A marked ribbon surface is a triple (S,M,Γ), where

• S is an oriented connected surface with non-empty boundary, and we use ∂S to denote its boundary;

• M is a finite set of points on ∂S, and each element in M is called a marked point and denoted by

the symbol •;
• Γ is called a full formal •-arc system of S such that the following hold:

− Each element in Γ, called a •-arc (or an arc), is a curve whose ending points belong to M.

− For any two •-arcs γ and γ′, there is no intersection in the inner of S.
− S is divided into some parts {Δi | 1 � i � d} by Γ such that each part is a polygon which has exactly

a side, say a single boundary arc, not belonging to Γ. The set of all the polygons Δ = {Δi | 1 � i � d}
is called an original •-dissection (or original dissection) of S (see [1]), and each polygon Δi above is said

to be elementary. We denote by S(Δi), say the arc set, the set of all the sides of Δi belong to Γ.

We give some supplements to Definition 2.1 as follows.

(1) Each arc in Γ can be seen as a pair (γ, γ−), where γ is a continuous function γ : (0, 1) → S\∂S
such that γ(0+) = limx→0+ γ(x) and γ(1−) = limx→1− γ(x) lie in M, and γ− is the formal inverse of γ,

i.e., γ−(x) = γ(1− x). Based on this, γ = γ(x) and γ− = γ(1− x) correspond to the same arc in Γ. For

the sake of simplicity, we suppose that γ and γ− both are elements in Γ and γ � γ− � (γ, γ−). This

hypothesis can be used to simplify some descriptions, such as Theorem 5.6 and Example 7.1.

(2) If there is some i with 1 � i � d such that Δi is a two-gons, then Δi is one of two forms (i) and (ii)

shown in Figure 2. If Δi is of the form (i), then adding a new point (will be denoted by the symbol ◦
and called an extra point) on the side not belonging to Γ. The set of all the extra points is denoted by E.

(3) The positive direction of ∂S is defined as follows: the interior of S is on the left while walking

along the boundary.

Remark 2.2. (1) In some cases, we do not know whether a point in the surface is a marked point or

an extra point, we use “×××” to express it.

(2) We say that arcs γ1, . . . , γn with a common endpoint p surround p in the clockwise (resp.

counterclockwise) order if γi+1 is right (resp. left) to γi (1 � i � n− 1) at the point p (see Figure 3).

(3) In [1], Amiot et al. defined the ◦-points and ◦-dissection for marked ribbon surfaces. The ◦-point is
either a point belonging to ∂S which lies between two adjacent marked points or a boundary component

of S with no marked point. The ◦-dissection Δ◦ of S, whose elements are called ◦-arcs, is dual of

•-dissection Δ = Δ•, i.e., each ◦-arc is a curve whose endpoints are ◦-points, any two ◦-arcs have no

intersection point in S\∂S, and for every •-arc (resp. ◦-arc), there exists a unique ◦-arc (resp. •-arc)
such that they have only one intersection point in S\∂S. Indeed, Δ◦ is uniquely determined by Δ•, and
it is said to be lamination of S by Opper et al. [25], although their definitions seem different. In this

paper, we do not need the definitions of ◦-point and ◦-dissection, but we need to define the extra points

which are special ◦-points. They are used in the description of some indecomposable modules.

Definition 2.3 (k-algebras of marked ribbon surfaces [1, 25]). Let S = (S,M,Γ) be a marked ribbon

surface. We associate a quiver QS = (Q0, Q1) and a relation IS = 〈R〉 to S as follows:

(1) The vertexes in Q0 correspond to the •-arcs in Γ and this corresponding is one-to-one, denoted by

v : Q0 → Γ, i.e., each •-arc can be seen as a vertex of QS .
(2) For every elementary polygon Δi with two sides u, v ∈ Γ, if v follows u in the counterclockwise

order, then there is an arrow u → v in Q1.

(3) R is the set of all the compositions αβ, where α : u → v and β : v → w satisfy that u, v and w are

sides of the same elementary polygon.

Then the k-algebra AS of the marked ribbon surfaces S is defined by AS := kQS/IS .
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(i) (ii)

Figure 2 (Color online) (i) and (ii) are 2-gons. In (i), we add an extra point on the side not belonging to Γ

p
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γ3

· · ·

γn

p
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· · ·
γ3

γ2

γ1

Figure 3 γ1, . . . , γn with the common endpoint p are surround p in the clockwise (resp. counterclockwise) order

Definition 2.4 (Gentle algebras [1,3,5,25]). A k-algebra A = kQ/I is said to be special biserial if the

following conditions are satisfied:

(1) For each vertex v ∈ Q0, �{α ∈ Q1 | s(α) = v} � 2 and �{α ∈ Q1 | t(α) = v} � 2.

(2) For each arrow β ∈ Q1, �{α ∈ Q1 | s(β) = t(α), αβ /∈ I} � 1 and �{α ∈ Q1 | s(α) = t(β),

βα /∈ I} � 1.

(3) For each arrow β ∈ Q1, there exists a bound n ∈ N
+ such that

• for each path p = β1 · · ·βn−1 where t(p) = s(β), the path pβ contains a subpath in I;

• for each path p′ = β′
1 · · ·β′

n−1 where t(β) = s(p′), the path βp′ contains a subpath in I.

Moreover, A = kQ/I is said to be gentle if it is a special biserial algebra such that the following hold:

(4) Q is a bound quiver.

(5) All the relations in I are paths of length 2.

(6) For each arrow β ∈ Q1, �{α ∈ Q1 | s(β) = t(α), αβ ∈ I} � 1 and �{α ∈ Q1 | s(α) = t(β),

βα ∈ I} � 1.

Notice that a special biserial algebra is finite-dimensional if and only if Q is finite, and thus a gentle

algebra is always finite-dimensional. Moreover, Opper et al. [25, Proposition 1.21] proved that AS :=

kQS/IS is gentle, and there is a bijection between isomorphism classes of gentle algebras and homotopy

classes of marked ribbon surfaces. It should be pointed out that there are different definitions of gentle

algebras. For example, the definition of gentle algebras in [3,5] does not require the fourth condition, so

there are gentle algebras whose quivers are not bound; that of gentle algebras in [1, 25] does not require

the third condition, so there are gentle algebras whose quivers have at least one oriented cycle with no

relations.

2.2 Permissible curves and permissible closed curves

Each curve c in a marked ribbon surface S = (S,M,Γ) can be defined as a function c : [0, 1] → S,
where c(0) and c(1) are its endpoints. We say that c(0) and c(1) are its starting point and ending point,

respectively. In this paper, we only consider such curves whose points lie in the interior of S except

endpoints, i.e., {c(x) | 0 < x < 1} ⊆ S\∂S, and whose endpoints are elements belong to M∪ E. Thus

each non-closed curve can be regarded as a function c : (0, 1) → S\∂S where c(0+) and c(1−) are its

endpoints and each closed curve can be regarded as a function c : [0, 1] → S\∂S where c(0) = c(1) ∈ S\∂S.
In this paper, for each curve c with the endpoints c(0+) and c(1−) on the marked ribbon surface, we
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always suppose that the number of intersections between c and Γ is minimal up to homotopy.

Definition 2.5 (Permissible curves and permissible closed curves [6, Definition 3.1]). Let S =

(S,M,Γ) be a marked ribbon surface.

(1) A curve c : (0, 1) → S\∂S (or a closed curve c : [0, 1] → S\∂S) in S is said to consecutively cross

u, v ∈ Γ if p1 = c ∩ u and p2 = c ∩ v belong to S\∂S, and the segment of c between the points p1 and p2
does not cross any other arc in Γ.

Then each non-closed curve c consecutively crossing γ1, . . . , γr ∈ Γ can be written as c = c1c2 · · · crcr+1,

where each ci (2 � i � r) is a segment between γi−1 and γi which does not cross any other arc in Γ,

and c1 (resp. cr+1) is a segment between c(0+) and γ1 (resp. γr and c(1−)) which does not cross any

other arc in Γ. The segment ci (2 � i � r − 1) is called middle, and the segments c1 and cr are called

end. Similarly, each closed curve c consecutively crossing γ1, . . . , γr ∈ Γ can be written as c = c1c2 · · · cr,
where each ci (2 � i � r) is a segment between γi−1 and γi which does not cross any other arc in Γ, and

c1 is a segment between γr and γ1.

(2) Let B be a boundary component with no marked point of S, called an unmarked boundary

component of S, and let c : (0, 1) → S\∂S be a curve in S. Write c = c1c
′c2, where c1 (resp. c2)

is the end segment between c(0+) (resp. c(1−)) and the first (resp. last) crossing point in Γ. We define

the winding number of ci (i = 1, 2) around B as the minimum number of times travels c̄ around B in

either direction, where c̄ lies in the homotopy class of ci.

(3) A curve c is called permissible if the following conditions are satisfied:

(a) The winding number of c around an unmarked boundary component is either 0 or 1.

(b) If c consecutively crosses two arcs u and v in Γ, then u and v have a common endpoint p, denoted

by p(u, v, c), lying in M, and locally we have a triangle with p a vertex (as shown in Figure 4(I), the

curves c1, c, c
′ and c′′ are permissible).

(4) A permissible closed curve is a closed curve c satisfying the condition (3)(b) (as shown in Figure 4(II),

the algebra of the marked ribbon surface is a 2-Kronecker algebra, and the curve c is a permissible closed

curve).

Definition 2.6 (Equivalence class of permissible curves [6]). Let S = (S,M,Γ) be a marked ribbon

surface. Two permissible curves c, c′ : (0, 1) → S\∂S in S are called equivalent, denoted by c � c′, if one
of the following conditions is satisfied:

(1) c′ is the reverse curve c− of c, i.e., c(x) = c′(1− x) for any x ∈ (0, 1).

(2) There is a sequence of consecutive arcs (ui : (0, 1) → S\∂S)1�i�n in the arc system Γ such that

• all ui (1 � i � n) are sides of the same elementary polygon Δj ;

• c(0+) (resp. c(1−)) is a marked point • or an extra point ◦, c(1−) = u1(0
+) (resp. c(0+) = u1(0

+)),

ui−1(1
−) = ui(0

+) for any 1 � i � n;

• c is homotopic to the concatenation of c′ and (ui)1�i�n;

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

c1

c

c′
c′′

Y1

Y2

c

(I) (II)

Figure 4 (Color online) Some examples of permissible (closed) curves in marked ribbon surfaces
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• c′ starts at an endpoint of un, and the first crossing with Γ of c and c′ are with the same side of Δj .

(3) c(0+) = c′(0+) and c(1−) = c′(1−) (resp. c(0+) = c′(1−) and c(1−) = c′(0+)) are marked points

or extra points, arcs consecutively crossed by c and c′ (c− and c′) are the same, and each segment of c

cut by two arcs is homotopic to that of c′.
(4) c (resp. c′) is either a curve satisfying c ∩ Γ = ∅ (resp. c′ ∩ Γ = ∅) or an arc; in this case, we call c

and c′ are trivial. Thus each arc can be regarded as a trivial permissible curve.

Example 2.7. In Figure 4(I), the curves c, c′ and c′′ are permissible and c � c′ � c′′, but c �� c1.

3 Finitely generated module categories

3.1 The geometric models of string and band modules

Let A = kQ/I be a gentle algebra. For each arrow α ∈ Q1, the formal inverse of α, denoted by α−, is an
arrow with s(α−) = t(α) and t(α−1) = s(α). Obviously, (α−)− = α. We use Q−

1 to denote the set of all

the formal inverses of arrows in Q1. Also, we can define that the formal inverse of any path p = α1 · · ·αn

is p− = α−
n · · ·α−

1 . In this subsection, we recall the definitions of string modules and band modules over

a gentle algebra A (see [9]), and review the description of indecomposable modules in marked ribbon

surfaces (see [6]).

A string s is a reduced walk in the quiver Q with no relations, i.e., s = a1 · · · an with ai ∈ Q1 ∪ Q−
1

has neither subwalks of the form aa− and a−a nor subwalks of the form ab such that ab ∈ I or b−a− ∈ I;

particularly, s = 1v is a path of length 0 corresponding to a vertex v ∈ Q0, and it is called a simple string

(note that 1−v = 1v for each v ∈ Q0). Trivially, we define the trivial string s = 0.

Each string s = a1 · · · an in A corresponds to a module M(s) ∈ modA as follows:

• replacing each vertex of s by a copy of the field k, i.e., for each v ∈ Q0, dimk M(s)1v = 1 if 1v is a

trivial subwalk of s or zero otherwise, and

• the action of an arrow α ∈ Q1 on M(s) is the identity morphism if α is an arrow of s or zero

otherwise.

Obviously, s = 0 yields M(s) = 0; s being simple yields that M(s) is simple; M(s) ∼= M(s′) if and only

if s′ = s− or s′ = s.

A band b = a1 · · · an is a cyclic string (i.e., t(an) = s(a1)) such that each power bn is a string but b is

not a proper power of any string.

Each band b = a1 · · · an in A corresponds to a family of modules M(b, ϕ) ∈ modA as follows:

• ϕ is an indecomposable k-linear automorphism of kn with n � 0 (i.e., ϕ ∈ Aut(kn) is a Jordan block),

• replacing each vertex of s by a copy of the vector space kn, and

• the action of an arrow α ∈ Q1 on M(b, ϕ) is the identity morphism if α = ai for 1 � i � n− 1 or ϕ

if α = an (thus M(b, ϕ)α = 0 if α is not an arrow of b).

Remark 3.1. By [9], we know that each indecomposable A-module is either a string module or a band

module. Baur and Coelho Simões [6] showed that there is a bijection between the equivalence classes

of non-trivial permissible curves in SA and non-zero strings of A, and there is a bijection between the

homotopy classes of permissible closed curves c in SA with |IΓA(c)| � 2 and the powers of bands of A,

where |IΓA(c)| is the number of intersection points of c and ΓA (see [6]). To be precise, we have the

following:

• If [c] is an equivalence class of non-trivial permissible curve, then c = c1 · · · cr, where each ci is

a segment cut by two arcs γi−1 and γi (we suppose that c consecutively crosses γ1, . . . , γr−1), and c

corresponds to such string s = s1 · · · sr that si is one of

− the arrow γi−1 → γi, if c counterclockwise crosses γi−1 and γi around their common endpoint

p(γi−1, γi, c);

− the formal inversion of the arrow γi → γi−1, if c clockwise crosses γi−1 and γi around their common

endpoint p(γi−1, γi, c).

(Note that each arc in Γ can be regarded as a vertex of quiver Q by Definition 2.3.)

Thus c can correspond to the string module of s.
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• If c is a homotopy class of permissible closed curves, then c with an indecomposable invertible linear

transformation ϕ : kn → kn corresponds to a band which induces a band module M(c, ϕ). Band modules

lie in homogeneous tubes of the Auslander-Reiten quiver, and thus the Auslander-Reiten translate τ acts

on them as the identity morphism.

Remark 3.2 (See [6, Theorem 3.8 and Proposition 3.9]). Let [c] (resp. htp(c)) be the equivalence class

of the permissible curve (resp. the homotopy class of permissible closed curve) c. Define the following

three sets:

• Eq-cls(SA) = {[c] | c is a permissible curve}.
• Htp-cls(SA) = {(htp(c), ϕ) | c is a permissible closed curve with |IΓA

(c)| � 2 and ϕ a Jordan block}.
• P(SA) = Eq-cls(SA) ∪Htp-cls(SA).

Then we have a bijection

M : P(SA) → {string modules} ∪ {band modules} = ind(modA), x �→ M(x).

Obviously, each trivial permissible curve corresponds to zero by M .

Definition 3.3 (Formal direct sums). Let SA be the marked ribbon surface of a gentle algebra A. A

formal direct sum of c1, . . . , cn, denoted by
⊕n

i=1 c
i, naturally corresponds to the direct sum of modules⊕n

i=1 M(ci) by the corresponding M in Remark 3.2.

3.2 The geometric models of some short exact sequences

In this subsection, we depict certain short exact sequences by marked ribbon surfaces for gentle algebras,

which are used to describe the minimal projective and injective resolutions of simple modules in Section 5,

and describe the minimal projective resolutions of injective modules in Section 6. First at all, we fix some

terms and notations.

We always assume that each non-trivial permissible curve c : (0, 1) → S\∂S in S = (S,M,Γ)

consecutively crossing arcs γ1, . . . , γr−1 satisfies that γ1 is the first arc crossed by c, i.e., there is a

sequence 0 = x0 < x1 < x2 < · · · < xr = 1 such that c = c1 ∪ c2 ∪ · · · ∪ cr (we write c = c1c2 · · · cr for

simplicity), where each ci = {c(x) | xi−1 � x � xi} is a segment of c satisfying ci ∩ γi = c(xi) = ci+1 ∩ γi
if 2 � i � r − 1; c1 = {c(x) | 0 < x � x1} and cr = {c(x) | xr−1 � x < 1} are the end segments of c

satisfying c1 ∩ γ1 = c(x1) = c2 ∩ γ1 and cr ∩ γr−1 = c(xr−1) = cr−1 ∩ γr−1, respectively.

Let c = c1c2 · · · cr be a permissible curve consecutively crossing γ1, . . . , γr−1. Then it induces a new

permissible curve c′ = cTi−1ci · · · cjcTj+1 for any 2 � i � j � r − 1 such that

(1) cTi−1 and ci−1 lie in the inner of the same elementary polygon of S;
(2) one endpoint of cTi−1 is ci−1 ∩ γi−1 and the other is an endpoint of γi−2;

(3) the dual of the condition (1), i.e., cTj+1 and cj+1 lie in the inner of the same elementary polygon;

(4) the dual of the condition (2), i.e., one endpoint of cTj+1 is cj+1 ∩ γj and the other is an endpoint of

γj+1.

Note that it is a trivial case for cT1 c2 · · · cr−1c
T
r = c1c2 · · · cr−1cr, i.e., c

T
1 = c1, and cTr = cr. We provide

an example in Figure 5, in which c = · · · ci−1cici+1 · · · cj−1cjcj+1 and c′ = cTi ci+1 · · · cj−1c
T
j are the red

and the blue permissible curves, respectively. In this example, c corresponds to the string

γ1 −→ · · · −−− γi−1 −→ γi −→ · · · −→ γj −→ γj+1 −−− · · · ←− γr−1,

and c′ corresponds to the string

γi −→ · · · −→ γj .

A string module which corresponds to the permissible curve c (resp. its equivalence class [c]) is denoted

by M(c) (resp. M([c])); a band module with a Jordan block ϕ ∈ Aut(kn) which corresponds to the

permissible closed curve c (resp. its homotopic class htp(c)) is denoted by M(c, ϕ) (resp. M(htp(c), ϕ)).

For the convenience of describing rotations, we suppose that the positive direction of the boundary ∂S
of the surface S is the following walking direction: walking along ∂S, we see that the inner of S is on the

left.
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p

p′

q′

q

· · ·γm−1

γ2
γ1

γm γi−1
· · ·

γi γj· · · γj+1 γn−2· · · γn−1

· · ·γn

γr−2 γr−1

· · ·

c = c1c2 · · · cr

c1
c2

cm ci−1 cj+1 cn−1

cn
cn+1cTi

cTj

cTi ci+1 · · · cj−1c
T
j = c′

Figure 5 (Color online) Two examples of permissible curves corresponding to strings

Definition 3.4 (Rotations of Type 1). Let c1 = c1 · · · cr be a permissible curve consecutively crossing

γ1, . . . , γr−1, and let c2 be equivalent to c′ci+1 · · · cr (in this case c1(1−) = c2(1−)), where c′ is either

cTi or a curve with an endpoint being an extra point. We say that the permissible curve c3, denoted by

protc1(c
2), is obtained by the positive rotating c2 with respect to c1 if it is given as follows:

Step 1. Move the endpoint of c2 which is the common endpoint of c2 and c1 to the other of c1.

Step 2. Following the positive direction of the boundary, we move the other endpoint of c2 to the

vertex p of Δj , where

− Δj is the elementary polygon such that ci lies in the inner of Δj (in this case, γi−1, γi ∈ S(Δj)),

and

− p is a vertex such that c3 = protc1(c
2) crosses γi−1.

Dually, we can define nrotc1(c
2) obtained by the negative rotating c2 with respect to c1 (see Figure 6).

Definition 3.5 (Rotations of Type 2). Let c1 = c1 · · · cr be a permissible curve consecutively crossing

γ1, . . . , γr−1, and c2 be equivalent to either cTmcm+1 · · · cncTn+1 (2 � m � n + 1 � r − 2) such that

c1 and c2 have an intersection, say x, in S\∂S. Then c2 is divided into two parts c2I and c2II, where

c2I (1
−) = x = c2II(0

+). We say that the permissible curve c3I (resp. c3II), denoted by protc1(c
2
I ) (resp.

protc1(c
2
II)), is obtained by the positive rotating c2I (resp. c2II) with respect to c1 if it is given as follows:

Step 1. Move the endpoint x of c2I (resp. c2II) to the endpoint c1(0+) (resp. c1(1−)).

Step 2. Following the positive direction of boundary, we move the endpoint c2I (0
+) of c2I (resp. the

endpoint c2II(1
−) of c2II) to the next vertex of Δj , where Δj is an elementary polygon such that cm (resp.

cn+1) lies in the inner of Δj (in this case, we have γm−1, γm ∈ S(Δj) (resp., γn, γn+1 ∈ S(Δj))).

Dually, we can define nrotc1(c
2
I ) and nrotc1(c

2
II) obtained by the negative rotating c2I and c2II with respect

to c1, respectively (see Figure 7).

Proposition 3.6. Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon

surface. If there are three permissible curves c, c′ and c′′ such that the following conditions are satisfied

(see Figure 8):

γi−1

γi

××× ×××c1

c2

p
c3 γi−1

γi

..

.

××× ×××c1

c2

p
c3

Figure 6 (Color online) c3 = nrotc1 (c
2), where the point “×××” is either a marked point or an extra point
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××× ×××
c1x

c2I

c2II

c3I

c3II

γmγm−1

γn γn+1

Figure 7 (Color online) c3I ∪ c3II = nrotc1 (c
2), where the point “×××” is either a marked point or an extra point

c

c′
c′′

γ′ γ′′

ms

mt

c

c′′

c′
γ′′ γ′

mt

ms

Figure 8 (Color online) The short exact sequence is described in the marked ribbon surface

(1) c′ and c have a common endpoint ms = c(0+), and c′′ and c have another common endpoint

mt = c(1−).
(2) c consecutively crosses arcs γ′ and γ′′ such that p(γ′, γ′′, c) is on the right of c; c′ crosses γ′ such

that c′ and γ′′ have a common endpoint which is not mt; c
′′ crosses γ′′ such that c′′ and γ′ have a common

endpoint which is not ms.

(3) c′′ � protc(c
′) (equivalently, c′ � nrotc(c

′′)) (see Definition 3.4).

Then we have a short exact sequence

0 −→ M(c′) −→ M(c) −→ M(c′′) −→ 0.

Proof. Notice that c corresponds to such a string which is of the form sc := · · · −− γ′ ←− γ′′ −− · · · .
Then c′ and c′′ correspond to sc′ := · · · −− γ′ and sc′′ := γ′′ −− · · · , respectively. Furthermore, M(c),

M(c′) and M(c′′) are string modules corresponding to sc, sc′ and sc′′ , respectively, and hence

0 −→ M(c′) −→ M(c) −→ M(c′′) −→ 0

is exact.

Lemma 3.7. Let A be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon surface. Let

c = c1 · · · cr : (0, 1) → SA\∂SA be a permissible curve consecutively crossing γ1, . . . , γr−1 such that the

endpoints p and q of γi (1 < i < r − 1) are on the left and right of c, respectively (see Figure 9). Then

for any permissible curve c′ consecutively crossing γm, . . . , γn (1 � m < i < n � r − 1) such that

• γm, . . . , γi have a common endpoint p = p(γm, γm+1, c) = · · · = p(γi−1, γi, c), and

• γi, . . . , γn have a common endpoint q = p(γi, γi+1, c) = · · · = p(γn−1, γn, c),

we have M(c′) � M(c).

Proof. The strings sc and sc′ corresponding to c and c′ are

· · · −→ γm −→ γm+1 −→ · · · −→ γi ←− · · · ←− γn−1 ←− γn ←− · · ·
and

γm −→ γm+1 −→ · · · −→ γi ←− · · · ←− γn−1 ←− γn,

respectively. Then the string module corresponding to sc′ is a submodule of the module corresponding

to sc, and thus M(c′) � M(c).



Liu Y-Z et al. Sci China Math April 2024 Vol. 67 No. 4 743

p

q

γi
γi−1

γi+1· · · · · ·
γm+1

γn−1

γm

γn

c

c′c′′I

c′′II

Figure 9 (Color online) c and c′ are given in Lemma 3.7 corresponding to two modules M(c) and M(c′), and we have

M(c′) � M(c). The formal direct sum c′′I ⊕ c′′II corresponds to the module M(c′′I ⊕ c′′II) which is isomorphic to the quotient

M(c)/M(c′)

Proposition 3.8. Keeping the notations in Lemma 3.7, we have that

c′ = cTmcm+1 · · · cncTn+1 : (0, 1) → SA\∂SA

crosses γi and that c and c′ have an intersection. Assume that

• c′′I is a permissible curve which is given as follows:

− c′ is divided into two parts by c, where denote the part with endpoints c′(0+) and c′ ∩ γi by c′I;
− c′′I � protc(c

′
I) (see Definition 3.5);

• c′′II is a permissible curve which is given as follows:

− c′ is divided into two parts by c, where denote the part with endpoints c′ ∩ γi and c′(1−) by c′II;
− c′′II � protc(c

′
II) (see Definition 3.5).

Then the quotient module M(c)/M(c′) is isomorphic to M(c′′I ⊕ c′′II) (see Figure 10(1)).

Proof. Similar to the proof of Lemma 3.7, we have that M(c)/M(c′) corresponds to two permissible

curves

c̃′′I = c1 · · · cm−1c
T
m and c̃′′II = cTn+1cn+2 · · · cr.

We can see that c̃′′I consecutively crosses arcs γ1, . . . , γm−1 and c̃′′II consecutively crosses arcs γn+1, . . . , γr−1

(1 � m � i � n � r − 1) (see Figure 9). Thus c̃′′I and c̃′′II lie in the equivalence class [c′′I ] and [c′′II],
respectively, and therefore M(c)/M(c′) ∼= M(c̃′′I ⊕ c̃′′II) ∼= M(c′′I ⊕ c′′II).

Remark 3.9. If γ1 = γm = γi (resp. γi = γn = γr), then c′ = cT1 c2 · · · cncTn+1 � c1c2 · · · cncTn+1 (resp.

c′ = cTmcm+1 · · · cr−1c
T
r � cTmcm+1 · · · cr−1cr), and thus c′′I (resp. c′′II) is zero.

The following two results are dual to Lemma 3.7 and Proposition 3.8, respectively.

Lemma 3.10. Let A be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon surface. Let

c = c1 · · · cr : (0, 1) → SA\∂SA be a permissible curve consecutively crossing γ1, . . . , γr−1 such that the

endpoints p and q of γi (1 � i � r−1) are on the right and left of c, respectively. Then for any permissible

curve c′′ consecutively crossing γm, . . . , γn (1 � m < i < n � r − 1) such that

• γm, . . . , γi have a common endpoint p = p(γm, γm+1, c) = · · · = p(γi−1, γi, c), and

• γi, . . . , γn have a common endpoint q = p(γi, γi+1, c) = · · · = p(γn−1, γn, c),

we have that M(c′′) is a quotient module of M(c).

Proposition 3.11. Keeping the notations in Lemma 3.10, we have that

c′′ = cTmcm+1 · · · cncTn+1 : (0, 1) → SA\∂SA

crosses γi and that c and c′′ have an intersection. Assume that

• c′I is a permissible curve which is given as follows:

− c′′ is divided into two parts, where denote the part with endpoints c′′(0+) and c′′ ∩ γi by c′′I ;
− c′I � nrotc(c

′′
I ) (see Definition 3.5);

• c′II is a permissible curve which is given as follows:

− c′′ is divided into two parts, where denote the part with endpoints c′′ ∩ γi and c′′(1−) by c′′II;
− c′II � nrotc(c

′′
II) (see Definition 3.5).

Then M(c′′) is isomorphic to M(c)/M(c′I ⊕ c′II) (see Figure 10(2)).
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c

c′
c′′I

c′′II

(1)

c

c′′
c′I

c′II

(2)

Figure 10 (Color online) The descriptions of short exact sequences given in Propositions 3.8 and 3.11

By Propositions 3.6, 3.8 and 3.11, we get the following theorem.

Theorem 3.12. Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon

surface.

(1) If c, c′ and c′′ are permissible curves satisfying the conditions in Proposition 3.6, then there is a

short exact sequence

0 −→ M(c′) −→ M(c) −→ M(c′′) −→ 0.

(2) If c and c′ are permissible curves satisfy the conditions in Lemma 3.7, and c′′I and c′′II are permissible

curves satisfying the conditions in Proposition 3.8, then there is a short exact sequence

0 −→ M(c′) −→ M(c) −→ M(c′′I ⊕ c′′II) −→ 0.

(3) (The dual of (2)) If c and c′′ are permissible curves satisfying the conditions in Lemma 3.10, and

c′I and c′II are permissible curves satisfying the conditions in Proposition 3.11, then there is a short exact

sequence

0 −→ M(c′I ⊕ c′II) −→ M(c) −→ M(c′′) −→ 0.

4 Special modules

4.1 Simple modules and top (resp. socle) of indecomposable modules

A permissible curve in SA corresponding to a simple A-module is a permissible curve crossing a unique

arc in ΓA, and we call it simple. The top (resp. socle) of an A-module is semi-simple, and thus we can

use a family of simple permissible curves to describe the top (resp. socle) of any A-module. Moreover,

for a permissible curve c consecutively crossing arcs γ and γ′, recall that p(γ, γ′, c) is the marked point

lying in γ ∩ γ′ such that it is the vertex of the triangle decided by γ, γ′ and the segment given by γ and

γ′ cutting c. We will use this notation frequently in the sequel.

Lemma 4.1. Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon surface.

Let c = c1c2 · · · cr be a non-trivial permissible (non-closed) curve in SA consecutively crossing arcs

γ1, γ2, . . . , γr−1 (note: ci is the segment between γi−1 and γi, c1 is the segment between ∂SA and γ1,

and cr is the segment between γr−1 and ∂SA). If there exists some i with 1 � i � r such that one of the

following conditions is satisfied (see Figure 11) :

Case 1 (resp. Case 1′). p(γi−1, γi, c) is on the right (resp. left) of c, and p(γi, γi+1, c) is on the left

(resp. right) of c (2 � i � r − 2);

Case 2 (resp. Case 2′). ci = c1 is an end segment such that p(γ1, γ2, c) is on the left (resp. right)

of c;

Case 3 (resp. Case 3′). ci = cr is an end segment such that p(γr−2, γr−1, c) is on the right (resp.

left) of c,

then M(cγi

simp) �⊕ topM(c) (resp. M(cγi

simp) �⊕ socM(c)), where cγi

simp is the simple permissible curve

crossing γi and M : P(SA) → ind mod A is the bijection given in Remark 3.2.
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c

•p(γi, γi+1, c)

•p(γi−1, γi, c)

γi−1

γi+1

γi

Case 1

c

•p(γ1, γ2, c)

•

×××

γ2

b

γ1

Case 2. b is either an arc

or a side on ∂SA

c

•

•p(γr−2, γr−1, c)

γr−2

×××

b

γr−1

Case 3. b is either an arc

or a side on ∂SA

Figure 11 (Color online) M(c
γi
simp) is a direct summand of topM(c) (the point “×××” is either a marked point or an extra

point), where i = 1 in Case 2 and i = r − 1 in Case 3. Cases 1′, 2′ and 3′ are dual

Proof. We only prove the case for top, and the case for socle is dual. For any string module M , the

source, denoted by i, of the string s corresponding to M is one of the following three types (we denote

by γi the arc corresponding to i):

Type 1: · · · ←− i −→ · · · , Type 2: i −→ · · · , Type 3: · · · ←− i.

Then the module S(i), the simple module corresponding to the vertex i, is a direct summand of topM ,

i.e., S(i) �⊕ topM . On the other hand, the permissible curve c = c1 · · · cr corresponding to s satisfies one

of the conditions in Cases 1–3 accordingly (in Cases 2 and 3, we have i = 1 and i = r − 1, respectively).

Thus S(i) corresponds to the permissible curve cγi

simp and M(cγi

simp) �⊕ topM ∼= topM(c).

Lemma 4.2. Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon

surface. Let c = c1c2 · · · cr be a non-trivial permissible closed curve in SA consecutively crossing

arcs γ1, γ2, . . . , γr−1, γr = γ0 (ci is the segment between γi−1 and γi, where i is i modulo r), and let

ϕ ∈ Aut(km) with m � 1 be a Jordan block. If there exists some i with 1 � i � r such that the following

condition is satisfied:

Case RL (resp. Case LR). p(γi−1, γi, c) is on the right (resp. left) of c and p(γi, γi+1, c) is on the

left (resp. right) of c,

then M(cγi

simp)
⊕m �⊕ top(M(c, ϕ)) (resp. M(cγi

simp)
⊕m �⊕ soc(M(c, ϕ))).

Proof. For any band module M , a source, denoted by i, of the band corresponding to M must be

Type 1 in the proof of Lemma 4.1. Note that M(c, ϕ)ei ∼= km is k-linearly isomorphic to M(cγi

simp)
⊕m,

where ei is the trivial path corresponding to i ∈ Q0. Now, similar to the proof of Lemma 4.1, we have

M(cγi

simp)
⊕m �⊕ topM(c, ϕ). The case for socle is dual.

As a consequence of Lemmas 4.1 and 4.2, we get the following proposition.

Proposition 4.3. (1) Under the assumptions in Lemma 4.1, let

I = {1 � i � r − 1 | i satisfies one of Cases 1, 2 and 3 in Lemma 4.1}
(resp. I = {1 � i � r − 1 | i satisfies one of Cases 1′, 2′ and 3′ in Lemma 4.1}).

Then topM(c) ∼= ⊕
i∈I M(cγi

simp) (resp. socM(c) ∼= ⊕
i∈I M(cγi

simp)).

(2) Under the assumptions in Lemma 4.2, let

I = {1 � i � r − 1 | i satisfies Case RL in Lemma 4.2},
(resp. I = {1 � i � r − 1 | i satisfies Case LR in Lemma 4.2}).

Then topM(c, ϕ) ∼= ⊕
i∈I M(cγi

simp)
⊕m (resp. socM(c, ϕ) ∼= ⊕

i∈I M(cγi

simp)
⊕m).

Proof. (1) Let M ∈ modA be string and

I′ = {1 � i � r − 1 | i is a source which is one of Types 1–3 in the proof of Lemma 4.1}.
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Then

topM ∼= topM(c) ∼=
⊕
i∈I′

S(i) ∼= M

(⊕
i∈I

cγi

simp

)
∼=

⊕
i∈I

M(cγi

simp)

(
⊕

i∈I c
γi

simp is the formal direct sum of cγi

simp, see Definition 3.3).

(2) It is similar to (1).

4.2 Projective modules and projective covers

Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon surface of A. If

s = α1α2 · · ·αn (αi ∈ Q0 ∪ Q−
0 ) is a string corresponding to a projective module, then s is one of the

following cases:

• s is left-maximal inverse, i.e., s is inverse and α−s ∈ I for any α ∈ Q0 with t(α−
1 ) = s(α).

• s is right-maximal direct, i.e., s is direct and sα ∈ I for any α ∈ Q0 with t(αn) = s(α).

• There exists a unique i with 1 � i � n− 1 such that α1 · · ·αi is left-maximal inverse and αi+1 · · ·αn

is right-maximal direct.

Therefore, a permissible curve c : (0, 1) → SA\∂SA (which consecutively crosses arcs γ1, . . . , γr−1)

corresponds to an indecomposable projective module byM : P(SA) → ind( mod A) defined in Remark 3.2

if and only if c is a permissible curve such that the following conditions are satisfied:

• (PQC) (Projective quotient condition) There exits an i with 1 � i � r − 1 such that

− (PQC1) m := p(γ1, γ2, c) = · · · = p(γi−1, γi, c) which is on the right of c, and

− (PQC2) m′ := p(γi, γi+1, c) = · · · = p(γr−2, γr−1, c) which is on the left of c.

• (MC) (Maximal conditions) There are no arcs γ and γ′ such that

− (LMC) γ, γ1, γ2, . . . , γi have a common endpoint m and they surround m in the clockwise order, and

− (RMC) γi, γi+1, . . . , γn, γ
′ have a common endpoint m′ and they surround m′ in the counterclockwise

order.

Figure 12 provides an example of a permissible curve corresponding to a projective module.

Definition 4.4 (Projective permissible curves). Let A = kQ/I be a gentle algebra and SA =

(SA,MA,ΓA) be its marked ribbon surface. For an arc γ ∈ ΓA, a permissible curve c consecutively

crossing arcs γ1, . . . , γr−1 is called a projective permissible curve of γ, denoted by cγproj, if c is decided by

the pair (c1, c2) of two curves c1 : (0, 1] → SA\∂SA and c2 : [0, 1) → SA\∂SA, where

• there is a unique i with 1 � i � r − 1 such that γ = γi,

• c(0+) = c1(0
+), c(1−) = c2(1

−), c1(1) = c2(0) = γ ∩ c,

• c is obtained by connecting c1 and c2, i.e., c = c1 ∪ c2, and

• c1 and c2 consecutively cross arcs γ1, . . . , γi and γi, . . . , γr−1 such that (PQC1), (LMC) and (PQC2),

(RMC) are satisfied, respectively.

We use Pproj(SA) to denote the set of all the equivalence classes of projective permissible curves.

Obviously, we have Pproj(SA) ⊆ Eq-cls(SA).

c

· · · · · ·

Figure 12 (Color online) Each point • is either a marked point or an extra point. The red curve c is a permissible curve

satisfying (PQC) and (MC), and thus the string module corresponding to c is a projective module
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Lemma 4.5 (Projective modules). Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be

its marked ribbon surface. Then there exists a one-to-one mapping between the equivalence classes of

projective permissible curves and the isomorphic classes of indecomposable projective modules which are

given by

M |Pproj(SA) : Pproj(SA) → ind(projA), c �→ M(c).

Proof. A permissible c lies in Pproj(SA) if and only if it corresponds to a string s which is the

connection of a left-maximal (trivial) inverse string s1 and a right-maximal (trivial) direct string s2,

i.e., s = α1α2 · · ·αn is of the form

· �� α
−
1 · �� α−

2 · · · �� α−
i · αi+1 �� · · ·αn−1 �� · αn �� · .

Thus the string module corresponding to s is projective. (If α1 · · ·αi (resp. αi+1 · · ·αn) is trivial, then

the module corresponding to s is P (v) ∼= evA, where v ∈ Q0 is the source of αi+1 (resp. αi) and ev is the

primitive idempotent corresponding to the vertex v.)

Now we consider the projective cover of a module by marked ribbon surfaces of gentle algebras.

Theorem 4.6 (Projective covers of indecomposable modules). Let A = kQ/I be a gentle algebra and

SA = (SA,MA,ΓA) be its marked ribbon surface. Let M = M(c) (resp. M = M(c, ϕ)) be a string module

(resp. band module) which corresponds to the permissible curve c (resp. the permissible closed curve c

with a Jordan block over a k-linear space V ). Then

P (M) ∼=
⊕
i∈I

M(cγi

proj)

(
resp. P (M) ∼=

⊕
i∈I

M(cγi

proj)
⊕ dimk V

)
,

where {γi | i ∈ I} and I are the same as that in Lemma 4.1 and Proposition 4.3(2) (resp. Lemma 4.2

and Proposition 4.3(2)), respectively.

Proof. For each indecomposable module M , its projective cover P (M) is isomorphic to the projective

cover P (topM) of its top. Thus we only need to consider the projective cover of each simple module.

Note that for each simple permissible curve cγsimp, we have P (M(cγsimp)) = M(cγproj). Now suppose

topM ∼= ⊕
i∈I M(cγi

simp) (when M is string, each γi corresponds the vertex of Q such that one of three

cases in Lemma 4.1 holds; when M is band, each γi corresponds to the vertex of Q such that the condition

in Lemma 4.2 holds). If M is a string module, then

P (M) ∼= P (topM) ∼= P

(⊕
i∈I

M(cγi

simp)

)
∼=

⊕
i∈I

P (M(cγi

simp))
∼=

⊕
i∈I

M(cγi

proj).

If M is a band module, then

P (M) ∼= P (topM) ∼= P

(⊕
i∈I

M(cγi

simp)
⊕ dimk V

)
∼=

⊕
i∈I

P (M(cγi

simp)
⊕ dimk V ) ∼=

⊕
i∈I

M(cγi

proj)
⊕ dimk V .

This completes the proof.

4.3 Injective modules and injective envelopes

If a permissible curve c : (0, 1) → SA\∂SA consecutively crosses arcs γ1, . . . , γr−1 and corresponds to an

injective module by M : Eq-cls(SA) ∪ Htp-cls(SA) → ind(modA), then there is a unique i with 1 � i

� n− 1 such that the following conditions are satisfied:

• (ISC) (Injective submodule condition) There exits an i with 1 � i � r − 1 such that

− (ISC1) m := p(γ1, γ2, c) = · · · = p(γi−1, γi, c) which is on the left of c, and

− (ISC2) m′ := p(γi, γi+1, c) = · · · = p(γr−2, γr−1, c) which is on the right of c.

• (MC′) There are no arcs γ and γ′ such that
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− (LMC′) γ, γ1, γ2, . . . , γi have a common endpoint m and they surround m in the counterclockwise

order, and

− (RMC′) γi, γi+1, . . . , γn, γ
′ have a common endpoint m′ and they surround m′ in the clockwise order.

We define injective permissible curves and Pinj(SA) as follows.

Definition 4.7 (Injective permissible curves). Let A = kQ/I be a gentle algebra and SA =

(SA,MA,ΓA) be its marked ribbon surface. For an arc γ ∈ ΓA, a permissible curve c consecutively

crossing arcs γ1, . . . , γr−1 is called an injective permissible curve of γ, denoted by cγinj, if c is decided by

the pair (c1, c2) of two curves c1 : (0, 1] → SA\∂SA and c2 : [0, 1) → SA\∂SA, where

• there is a unique i with 1 � i � r − 1 such that γ = γi,

• c(0+) = c1(0
+), c(1−) = c2(1

−), c1(1) = c2(0) = γ ∩ c,

• c is obtained by connecting c1 and c2, i.e., c = c1 ∪ c2, and

• c1 and c2 consecutively crosses arcs γ1, . . . , γi and γi, . . . , γr−1 such that (ISC1), (LMC′) and (ISC2),

(RMC′) are satisfied, respectively.

We use Pinj(SA) to denote the set of all the equivalence classes of injective permissible curves.

Obviously, we have

Pinj(SA) ⊆ Eq-cls(SA).

The following results are dual to Lemma 4.5 and Theorem 4.6.

Lemma 4.8 (Injective modules). Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its

marked ribbon surface. Then there exists a one-to-one mapping between the equivalence classes of injective

permissible curves and the isomorphic classes of indecomposable injective modules which is given by

P |inj(SA) : Pinj(SA) → ind(injA), c �→ M(c).

Theorem 4.9 (Injective envelopes of indecomposable modules). Let A = kQ/I be a gentle algebra

and SA = (SA,MA,ΓA) be its marked ribbon surface. Let M = M(c) (resp. M = M(c, ϕ)) be a string

module (resp. band module) which corresponds to the permissible curve c (resp. the permissible closed

curve c with a Jordan block over a k-linear space V ). Then

E(M) ∼=
⊕
i∈I

M(cγi

inj)

(
resp. E(M) ∼=

⊕
i∈I

M(cγi

inj)
⊕ dimk V

)
,

where {γi | i ∈ I} and I are the same as that in Lemma 4.1 and Proposition 4.3(2) (resp. Lemma 4.2

and Proposition 4.3(2)), respectively.

5 Global dimension

5.1 The descriptions of projective and injective resolutions of simple modules in geometric

models

In this subsection, we consider the minimal projective and injective resolutions of simple modules through

marked ribbon surfaces.

Definition 5.1 (P-condition and I-condition). Let A = kQ/I be a gentle algebra and SA =

(SA,MA,ΓA) be its marked ribbon surface. Let γ be an arc in ΓA with two endpoints p and q. We say

that γ satisfies the P-condition at p (resp. I-condition at p) if the following conditions are satisfied:

• there are arcs γ1, . . . , γr such that p is the common endpoint of γ and γi (for any 1 � i � r), and

• γ, γ1, . . . , γr (resp. γ1, . . . , γr, γ) surround p in the counterclockwise order.

Furthermore, we say that γ satisfies the P-condition (resp. I-condition) if the P-conditions (resp. I-

conditions) at p and q are satisfied.

Remark 5.2. If an arc γ with endpoints p and q satisfies the P-condition at p or q, then M(cγproj) is

not simple.

We provide an example in Figure 13. In this figure, γ satisfies the P-condition.
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γ

p

q

γ1

γ2

· · ·γrγ′
1

γ′
2

· · · γ′
s

Figure 13 The arc γ satisfying the P-condition

Lemma 5.3. Under the conditions in Definition 5.1, let c = cγsimp be a simple permissible curve, where

γ is an arc in ΓA with endpoints p and q such that the P-condition is satisfied at p (resp. q) but not at

q (resp. p). Then the kernel of the projective cover p(M(cγsimp)) : M(cγproj) � M(cγsimp) is the module

M(c′), where c′ is the permissible curve consecutively crossing γ1, . . . , γr (resp. γ′
1, . . . , γ

′
s).

Proof. We only prove the case for γ satisfying the P-condition at p but not at q, and the argument for

the other case is similar. As shown in Figure 14, let γ = γ̃1, and γj = γ̃j+1 (1 � j � r). Then we may

suppose c = cγproj = cγ̃1

proj � c1c2 · · · cr+2, where each ct (2 � t � r+1) is a segment between γ̃t−1 and γ̃t,

and c1 and cr+2 are end segments of c.

Let c′′ = cγsimp = cγ̃1

simp and c′ be the permissible curve consecutively crossing γ1, . . . , γr. Then c′′ � c1c
T
2

and c′ � nrotc(c
′′) (by Definition 3.4) and the positional relationship of c, c′ and c′′ satisfies the conditions

in Proposition 3.6 (i.e., c consecutively crosses γ̃2 and γ̃1, c
′ crosses only γ̃2, and c′′ crosses γ̃1, where γ̃2

and γ̃1 are viewed as arcs γ′ and γ′′ in Proposition 3.6, respectively). Thus we get the following exact

sequence:

0 −→ M(c′) −→ M(c) −→ M(c′′) −→ 0

by Theorem 3.12(1).

Lemma 5.4. Under the conditions in Definition 5.1, let c = cγsimp be a simple permissible curve, where

γ is an arc in ΓA with endpoints p and q such that the P-condition is satisfied. Then the kernel of the

projective cover p(M(cγsimp)) : M(cγproj) � M(cγsimp) is the module M(c′I ⊕ c′II), where c′I consecutively

crosses γ′
1, . . . , γ

′
s and c′2 consecutively crosses γ1, . . . , γr.

Proof. Let γ′
i = γ̃s−i+1 (1 � i � s), γ = γ̃s+1 and γj = γ̃s+j+1 (1 � j � r). Then we may suppose

c = cγproj = c
γ̃s+1

proj � c1c2 · · · cs+r+2, where each ct (2 � t � s + r + 1) is a segment between γ̃t−1 and γ̃t,

and c1 and cs+r+2 are end segments of c. Let c′′ = cγsimp, and x be the intersection of c and c′′ (note
that �(c ∩ c′′) = 1 in this case) such that c′′I and c′′II are the curves obtained by x dividing c′′. Then

the positional relationship of c, protc(c
′′
I ), protc(c

′′
II) and c′′ satisfies the conditions in Proposition 3.11.

cγsimp

cγproj

×××
c1

• • • • •

×××•

××× ×××

γ

p

q

γ1 = γ1
1

γ2 = γ1
2

· · ·
γr = γ1

r

Figure 14 (Color online) The projective cover p(M(cγsimp)) : M(cγproj) → M(cγsimp) of M(cγsimp) and its kernel

Ker p(M(cγsimp))
∼= M(c1), where c1 � nrotcγproj

(cγsimp) by Proposition 3.11
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We get the following exact sequence:

0 −→ M(protc(c
′′
I )⊕ protc(c

′′
II)) −→ M(c)

p(M(cγsimp))−−−−−−−−→ M(c′′) −→ 0

by Theorem 3.12(3). Notice that protc(c
′′
I ) � c′I and protc(c

′′
II) � c′II, and thus

Kerp(M(cγsimp)) = M(protc(c
′′
I )⊕ protc(c

′′
II))

∼= M(c′I ⊕ c′II).

This completes the proof.

Lemma 5.5. Under the conditions Definition 5.1 and Lemma 5.3, let c1 be the permissible curve

c′ corresponding to Kerp(M(cγsimp)), where p(M(cγsimp)) is given by Lemma 5.3. Then P (M(c1))

= P (M(cγ1

proj)) is indecomposable, and the kernel of P (M(c1)) � M(c1) is M(nrotcγ1proj
(c1)). To be

precise, if γ2
1 , γ

2
2 , . . . , γ

2
s are arcs with the endpoint of γ1 which is not p such that γ, γ1 and γ2

1 are sides of

the same elementary polygon of SA, then nrotcγ1proj
(c1) � c2, where c2 is the permissible curve consecutively

crosses γ2
1 , γ

2
2 , . . . , γ

2
s .

Proof. Let γr−i = γ̃i+1 (0 � i � r − 1) and γ2
j = γ̃r+j (1 � j � s). Then c′′ := c1 = c′′1c

′′
2 · · · c′′r+1,

where each c′′i (2 � i � r) is a segment between γ̃i−1 and γ̃i, and c′′1 and c′′r+1 are its end segments;

c := cγ1

proj = cγ̃r

proj = c1c2 · · · cr+s+1, where each cj (2 � j � r + s) is a segment between γ̃j−1 and γ̃j ,

and c1 and cj are its end segments. Thus c′′ = c′′1c
′′
2 · · · c′′r+1 � c1c2 · · · cTr+1. We have the permissible

curve c′ = cTr+1cr+2 · · · cr+s+1 which consecutively crosses γ̃r+1 = γ2
1 , γ̃r+2 = γ2

2 , . . . , γ̃r+s = γ2
s , and the

positional relationship of c, c′ and c′′ satisfies the conditions in Proposition 3.6. So by Theorem 3.12(1),

we get the following short exact sequence:

0 −→ M(c′) −→ M(c) −→ M(c′′) −→ 0,

where M(c′′) = M(c1), M(c) = M(cγ1

proj) and M(c′) = M(cTr+1cr+2 · · · cr+s+1) ∼= M(nrotcγ1proj
(c1)) (note

that c′ � nrotcγ1proj
(c1) since γ and γ1 are sides of the same elementary polygon).

Keep the notations in Lemma 5.5 and denote by γ1
i the permissible curve γi for any 1 � i � r. In

Figure 15, p(M(cγsimp)) : M(cγproj) � M(cγsimp) is the projective cover of M(cγsimp) which is simple, and

the module M(c1) corresponding to the orange permissible curve c1 is the kernel of p(M(cγsimp)). In

addition, c
γ1
1

proj, the red permissible curve in this figure, provides the projective cover of M(c1), i.e.,

p(M(c1)) : M(c
γ1
1

proj) � M(c1).

Then nrot
c
γ1
1

proj

(c1) is the kernel of p(M(c1)). Furthermore, let

nrot
c
γ1
1

proj

(c1) = c2.

If there are arcs γ3
1 , . . . , γ

3
t having a common endpoint which is the endpoint of γ2

1 but not the common

endpoint of γ2
1 , . . . , γ

2
s such that γ, γ1

1 , γ
2
1 and γ3

1 are sides of the same elementary polygon of SA, then

the kernel of M(c
γ2
1

proj) � M(c2) is isomorphic to M(c3), where

c3 � nrot
c
γ2
1

proj

(c2)

is a permissible curve consecutively crossing γ3
1 , . . . , γ

3
t . Repeating this process, we get the minimal

projective resolution of M(cγsimp) as follows:

· · · −→ M(c
γ2
1

proj) −→ M(c
γ1
1

proj) −→ M(cγproj) −→ M(cγsimp) −→ 0.

Thus we obtain a one-to-one mapping M(c
γt
1

proj) �→ γt
1, where γ0

1 = γ and γ0
1 , γ

1
1 , . . . are sides of the same

elementary polygon of SA (see Figure 16).



Liu Y-Z et al. Sci China Math April 2024 Vol. 67 No. 4 751

cγsimp

cγproj

×××

c1

c
γ1
1

proj

nrot
c
γ1
1

proj

(c1)

××× •

•

• • • • • • • •

×××

××× ×××

γ

p

q

· · ·

γ2
1

γ2
2

· · ·γ2
s

Figure 15 (Color online) The projective cover p(M(cγsimp)) : M(c
γ1
1

proj) → M(cγsimp) of M(cγsimp) and its kernel

Ker p(M(cγsimp))
∼= M(c2), where c2 � nrotcγ1proj

(c1) by Proposition 3.11

cγsimp

cγproj

×××
c1

c
γ1
1

proj

c2 = nrot
c
γ1
1

proj

(c1)

c
γ2
1

proj

c3 = nrot
c
γ2
1

proj

(c2)

××× •

•

• • • • • • • • • • • •

×××

××× ××× ×××

γ

p

q

· · · · · ·

γ3
1

γ3
2

· · ·γ3
t

Figure 16 (Color online) Keep the notations in Figure 15. Then the positional relationship of c2, c
γ2
1

proj and c3 satisfies

the conditions in Proposition 3.11

In the case where γ satisfies the P-condition at q but not at p, we get dually the minimal projective

resolution of M(cγsimp) as follows:

· · · −→ M(c
γ′2
1

proj) −→ M(c
γ′1
1

proj) −→ M(cγproj) −→ M(cγsimp) −→ 0.

Moreover, if γ satisfies the P-condition, then the minimal projective resolution of M(cγsimp) is as follows:

· · · −→ M(c
γ2
1

proj)⊕M(c
γ′2
1

proj) −→ M(c
γ1
1

proj)⊕M(c
γ′1
1

proj) −→ M(cγproj) −→ M(cγsimp) −→ 0.

Proposition 5.6. Let A = kQ/I be a gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon

surface. Let γ0 be an arc γ0 : (0, 1) → SA\∂SA whose endpoints are p := γ0(0+) and q := γ0(1−). As

shown in Figure 17, assume that

• (PD) (resp. (ID)) there are arcs γ1, . . . , γn : (0, 1) → SA\∂SA such that

− (PD1) = (ID1) γ0, γ1, . . . , γn are sides of the same elementary polygon of SA,

− (PD2) = (ID2) γ1(0+) = q and γi−1(1−) = γi(0+) for any 2 � i � n,

− (PD3) (resp. (ID3)) in the clockwise (resp. counterclockwise) order at the common endpoint of γi−1

and γi, γi appears after γi−1 for any 1 � i � n, and

− (PD4) = (ID4) for any γ ∈ ΓA, none of the arcs γ0, γ1, . . . , γn, γ satisfies one of the above three

conditions;

assume that

• (PD′) (resp. (ID′)) there are arcs γ′1, . . . , γ′m : (0, 1) → SA\∂SA such that

− (PD1′) = (ID1′) γ′0 := γ0, γ′1, . . . , γ′m are sides of the same elementary polygon of SA,

− (PD2′) = (ID2′) γ′1(0+) = p and γ′j−1(1−) = γ′j(0+) for any 2 � j � m,

− (PD3′) (resp. (ID3′)) in the counterclockwise (resp. clockwise) order at the common endpoint of

γ′j−1 and γ′j, γ′j appears after γj−1 for any 1 � j � m, and

− (PD4′) = (ID4′) for any γ′ ∈ ΓA, none of the arcs γ′0, γ′1, . . . , γ′m, γ′ satisfies one of the above three

conditions.
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•

•

•

•

•

•

γ0

γ1

γn

∂SA

p = γ0(0+)

q = γ0(1−)

(1) (PD)

•

•

•

•

•

γ′0 = γ0

γ′1

γ′m

∂SA

p = γ0(0+)

q = γ0(1−)

(2) (PD′)

Figure 17 γ0, γ1, . . . , γn are arcs satisfying (PD), and γ′0, γ′1, . . . , γ′m are arcs satisfying (PD′). The figures of (ID) and

(ID′) are dual

Then the projective dimension (resp. the injective dimension) of M(cγ
0

simp) is max{n,m}.
Proof. Notice that M(cγproj) �→ γ for any γ ∈ {γi | 1 � i � n} ∪ {γj | 1 � j � m} ∪ {γ0} by

Lemmas 5.3–5.5, and thus the minimal projective resolution of M(cγ
0

simp) is as follows:

0 −→ M(cγ
max{n,m}

proj )⊕M(cγ
′max{n,m}

proj ) −→ · · ·
−→ M(cγ

2

proj)⊕M(cγ
′2

proj) −→ M(cγ
1

proj)⊕M(cγ
′1

proj) −→ M(cγ
0

proj) −→ M(cγ
0

simp) −→ 0. (5.1)

If m � n, then M(cγ
i

proj) = 0 for any i > n, so proj.dimM(cγ
0

simp) = m. If n � m, then proj.dimM(cγ
0

simp)

= n similarly. Dually, we can prove the case for the injective dimension.

The exact sequence (5.1) is a description of the minimal projective resolution of a simple module in

marked ribbon surfaces. We will give two examples in Section 7 to illustrate it (see Examples 7.1 and 7.2).

5.2 The descriptions of the global dimension in geometric models

Definition 5.7 (Consecutive arcs numbers). Let A = kQ/I be a gentle algebra and SA =

(SA,MA,ΓA) be its marked ribbon surface. Recall from Definition 2.1 that ΓA divides SA to some

elementary polygons {Δi | 1 � i � d} whose sides are arcs in ΓA except one side which is a boundary

arc. We define C(Δi), the consecutive arcs numbers of Δi, as the number of sides belonging to ΓA, if the

unmarked boundary component of SA is not a side of Δi; otherwise, C(Δi) = ∞.

Remark 5.8. An elementary polygon Δi is called an ∞-elementary polygon if Δi has a side which is

an unmarked boundary component b of SA. Obviously, C(Δi) = ∞ if and only if Δi is ∞-elementary. In

this case, for any side belonging to ΓA of Δi, say γ0, there are arcs γ0, γ1, . . . , γn satisfying the conditions

(PD1), (PD2) and (PD3) in Theorem 5.6. Let γt = γ t̄ for all t > n where t̄ equals t modulo n + 1.

Then for any t � 0, γ0, γ1, . . . , γt are arcs such that (PD1), (PD2) and (PD3) hold. Thus the minimal

projective resolution of M(cγ
0

simp) is as follows:

· · · −→ P i −→ · · · −→ P 2 −→ P 1 −→ M(cγ
0

proj) −→ M(cγ
0

simp) −→ 0,

where each M(cγ
i

proj) is a quotient of P i. Therefore, proj.dimM(cγ
0

simp) = ∞.

We recall some notions from [5, Section 2].

Definition 5.9. Let A = kQ/I be a gentle algebra. A non-trivial permitted (resp. forbidden) path is

either a path of length 1, or a path Π = α1 · · ·αm (m � 2) such that αiαi+1 /∈ I (resp. αiαi+1 ∈ I) for

any 1 � i � m − 1. A non-trivial permitted (resp. forbidden) thread is a maximal non-trivial permitted

(resp. forbidden) path, i.e., for each β ∈ Q1 satisfying t(β) = s(α1) we have βα1 ∈ I (resp. βα1 /∈ I),

and for each β′ ∈ Q1 satisfying t(αm) = s(β′) we have αmβ′ ∈ I (resp. αmβ′ /∈ I). A trivial permitted
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(resp. forbidden) thread is a trivial path v ∈ Q0 such that one of the following holds: (i) v is a source

point and �{β ∈ Q1 | t(β) = v} = 0. (ii) v is a sink point and �{β′ ∈ Q1 | s(β′) = v} = 0. (iii)

�{β ∈ Q1 | t(β) = v} = 1 = �{β′ ∈ Q1 | s(β′) = v} and ββ′ /∈ I (resp. ββ′ ∈ I).

We use PA (resp. FA) to denote the set of all the permitted (resp. forbidden) threads. By [25,

Section 1], we have a bijection p : PA → MA (resp. f : FA → {Δi | 1 � i � d}), where p(H) is the

marked point p such that every arc with endpoint p ∈ MA corresponds to a vertex of H ∈ PA (resp.

f(Π ) is the elementary polygons whose sides belonging to ΓA correspond to the vertices of Π ∈ FA).

For any path ℘, we use l(℘) to denote the length of ℘. In particular, for an oriented cycle with the

full relation of the quiver (Q, I) of a gentle algebra A, i.e., an oriented cycle α1α2 · · ·α� (t(α�) = s(α1))

such that αiαi+1 ∈ I where i is equal to i modulo 
, it deduces a forbidden threads of infinite length

· · ·α�α1α2 · · ·α�α1α2 · · · .
Theorem 5.10. Let A = kQ/I be gentle algebra and SA = (SA,MA,ΓA) be its marked ribbon surface,

and let {Δi | 1 � i � d} be the set of all the elementary polygons of SA. Then

gl.dimA = max
1�i�d

C(Δi)− 1 = max
Π∈FA

l(Π ).

Proof. If there exists an elementary polygons Δi which is of the form given in Remark 5.8, then

C(Δi) = ∞. In this case, for each side γ of Δi, we have proj.dimM(cγsimp) = ∞ by Remark 5.8, and the

assertion follows.

Otherwise, for each elementary polygons Δi whose sides are denoted by γ0, γ1, . . . , γmi such that (PD)

holds, then mi+1 = C(Δi). For the arc γ
t (0 � t � mi−1), there is an elementary polygon Δ′

i such that

γt is the unique common side of Δi and Δ′
i. We can find a sequence of arcs, say γ′0(= γt), γ′1, . . . , γ′nit

such that (PD) holds, and thus the minimal projective resolution of M(cγ
t

simp) is as follows:

· · · −→ M(cγ
t+2

proj )⊕M(cγ
′2

proj) −→ M(cγ
t+1

proj )⊕M(cγ
′1

proj) −→ M(cγ
t

proj) −→ M(cγ
t

simp) −→ 0.

It stops from the max{mi − t, nit}-th projective module. Notice that nit � C(Δ′
i)− 1, so

proj.dimM(cγ
t

simp) = max{mi, nit} � max{C(Δi)− 1,C(Δ′
i)− 1},

and hence

gl.dimA � max
1�i�d

{max{C(Δi)− 1,C(Δ′
i)− 1}} = max

1�i�d
C(Δi)− 1.

Let Δ� be the elementary polygon such that

max
1�i�d

C(Δi) = C(Δ�)
denoted by
======m�,

and let γ0, γ1, . . . , γm� : (0, 1) → SA\∂SA be its sides such that γi(1
−) = pi = γi+1(0

+) and γi+1

follows γi around pi in the counterclockwise order (0 � i � m� − 1). Then γ0, γ1, . . . , γm� satisfy the

condition (PD), and thus

gl.dimA � proj.dimM(cγ
0

simp) = m� = C(Δ�)− 1 = max
1�j�d

C(Δj)− 1

by Proposition 5.6. It follows that

gl.dimA = max
1�i�d

C(Δi)− 1.

Since the map f above is bijective, the length l(Π ) of the forbidden thread Π is equal to C(f(Π )) − 1

and gl.dimA = maxΠ∈FA
l(Π ).
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5.3 AG-invariants and AG-equivalence

The AG-invariant of a gentle algebra A = kQ/I introduced by Avella-Alaminos and Geiß [5] is a function

φA : N2 → N with N the set of natural numbers mapping φ[(mt, nt)] to the number of pairs (mt, nt) in

the sequence (mt, nt)1�t�r, where (mi, ni)1�i�r is obtained as follows:

Step 1. Let H0 = α0
1 · · ·α0

u0
(u0 ∈ N) be a (trivial) permitted thread of A.

Step 2. If H0 is non-trivial and there exists a non-trivial forbidden thread F = β0
1 · · ·β0

v0 (v0 ∈ N)

such that t(β0
v0) = t(α0

u0
) and α0

u0
�= β0

v0
, consider Π0 = F ; otherwise, consider the (trivial) forbidden

thread Π0 satisfying t(Π0) = t(H0).

Step 3. If Π0 is non-trivial and there exists a non-trivial permissible thread P = α1
1 · · ·α1

u1
(u1 ∈ N)

such that s(α1
1) = s(β0

1) and α1
1 �= β0

1 , consider H1 = P ; otherwise, consider the (trivial) permitted thread

H1 satisfying s(H1) = s(Π0).

Step 4. If we obtain a permitted thread Hi (resp. forbidden thread Πi), then just as in Step 2

(resp. Step 3), determine the forbidden thread Πi (resp. permitted thread Hi+1). Repeat this step until

Hm1 = H0 first appears, and we induce a pair (m1, n1) where n1 =
∑m1−1

i=0 l(Πi).

Step 5. Until all the permitted threads are considered in Steps 1–4, we obtain a sequence of pairs

(m1, n1), . . . , (mr′ , nr′) with 1 � r′ � r.

Step 6. For every oriented cycle of length 
 having full relations, we add a pair (0, 
) in the sequence

obtained in Step 5 and obtain the sequence (mt, nt)1�t�r, where mt = 0 if and only if t > r′.
The bijection f : FA → {Δi | 1 � i � d} provides a method for calculating AG-invariants by marked

ribbon surfaces. Indeed, each elementary polygon, say Δt
j ∈ {Δi | 1 � i � d}, with a unique single

boundary arc on the boundary component bt of SA corresponds to a forbidden thread f−1(Δt
j), and

�S(Δt
j) is equal to

• either l(f−1(Δt
j)) + 1, if Δt

j is not ∞-elementary,

• or the number of vertices of Δt
j , otherwise.

Thus (mt, nt)1�t�r can be obtained by

mt = the number of marked points on the boundary component bt,

nt =
∑
j∈Jt

(�S(Δt
j)− 1) =

∑
j∈Jt

�S(Δt
j)−mt,

where Jt ⊆ {1, 2, . . . , d} is a set of all the elementary polygons which have a side is on the boundary

component bt (in this case, we have
⋃

1�t�r = {1, 2, . . . , d} and Jt ∩ Jt′ = ∅ holds for all 1 � t �= t′ � r)

(see [24, Theorem 3.3]).

Remark 5.11. The AG-invariant of gentle algebras is an invariant up to derived equivalence, i.e., if

two gentle algebras A and B are derived equivalent, then the number of cycles of A and that of B are

identical and φA = φB . Furthermore, if A and B are gentle one-cycle, i.e., the quivers of A and B both

have at most one cycle, then φA = φB yields that A is derived equivalent to B (see [5, Theorems A and C

and Proposition B]).

We say that two gentle algebras A and A′ are AG-equivalent if φA = φA′ . By [5, Proposition B], derived

equivalence yields AG-equivalence. We know that the finiteness of the global dimension is invariant under

derived equivalence. In the following, we show that it is also invariant under AG-equivalence. We need

the following observation.

Proposition 5.12. For a gentle algebra A = kQ/I, we have gl.dimA = ∞ if and only if there is an


 � 1 such that φA(0, 
) �= 0.

Proof. For a gentle algebra A, if there is an 
 � 1 such that φA(0, 
) = x � 1, then its marked ribbon

surface SA = (SA,MA,ΓA) has x unmarked boundary component(s), say b1, b2, . . . , bx. So SA has x

∞-elementary polygon(s) Δ1,Δ2, . . . ,Δx. Thus, gl.dimA = ∞ by Theorem 5.10.

Conversely, if φA(0, 
) = 0 for any 
 � 1, then each boundary component bt of SA has at least one

marked point and each elementary polygon Δt
j (j ∈ J with J some finite set) whose single boundary
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arc included in bt is not a unmarked boundary component of SA. Then C(Δt
j) < ∞, so gl.dimA

= max1�t�r,j∈J C(Δt
j)− 1 < ∞ by Theorem 5.10.

As a consequence, we get the following corollary, which was proved by Opper et al. [25] by using the

Koszul dual of gentle algebras.

Corollary 5.13 (See [25, Section 1 and Subsection 1.7]). Let A = kQ/I be a gentle algebra. Then

gl.dimA = ∞ if and only if its quiver (Q, I) has at least one oriented cycle with full relations.

Proof. If gl.dimA = ∞, then its marked ribbon surface has at least one ∞-elementary polygon Δj

by Theorem 5.10. Suppose S(Δj) = {γ0, . . . , γ�−1}, where γi(1
−) = γi+1(0

+) for any i � 0 and i is

equal to i modulo 
. Then (Q, I) has an oriented cycle with full relations of length 
 whose vertices are

{v−1(γi) | 0 � i � 
− 1}.
Conversely, if (Q, I) has at least one oriented cycle of length 
 (� 1) with full relations, then φA(0, 
)

> 0, and thus gl.dimA = ∞ by Proposition 5.12.

The following result shows that the finiteness of the global dimension of gentle algebras is invariant

under AG-equivalence.

Corollary 5.14. If two gentle algebras A and A′ are AG-equivalent, then gl.dimA < ∞ if and only if

gl.dimA′ < ∞.

Proof. By Proposition 5.12, we have gl.dimA < ∞ if and only if φA(0, 
) = 0 for any 
 � 1. Suppose

that A and A′ are AG-equivalent and gl.dimA < ∞. Then φA = φA′ and φA′(0, 
) = φA(0, 
) = 0 for any


 � 1. Thus, gl.dimA′ < ∞ by Proposition 5.12.

6 Self-injective dimension

A module G ∈ modA is called Gorenstein projective if there exists an exact sequence of projective

modules

· · · −→ P−2 d−2

−→P−1 d−1

−→P 0 d0

−→P 1 d1

−→P 2 −→ · · · ,
which remains still exact after applying the functor HomA(−, A) such that G ∼= Imd−1 (see [4, 12]).

Obviously, every projective module is Gorenstein projective. For each moduleM , its Gorenstein projective

dimension G-proj.dimM , is defined as

inf{n | there exists an exact sequence 0 → Gn → · · · → G1 → G0 → M → 0

in mod A with all Gi Gorenstein projective}.
6.1 The descriptions of Gorenstein projective modules

For a gentle algebra A = kQ/I, the following theorem shows that all the indecomposable Gorenstein

projective modules can be determined by its quiver (Q, I).

Theorem 6.1 (See [20]). Let A = kQ/I be a gentle algebra. An A-module G is Gorenstein projective if

and only if G is isomorphic to a projective module or an αA where α ∈ Q1 is an arrow on some oriented

cycle with full relations of A (note that αA is a direct summand of radP (s(α)) ∼= rad(es(α)A)).

In this subsection, we depict all the indecomposable Gorenstein projective modules in marked ribbon

surfaces.

Lemma 6.2. Let A = kQ/I be a gentle algebra having an oriented cycle with the full relation, SA =

(SA,MA,ΓA) be its marked ribbon surface, and γ ∈ ΓA be an arc.

(1) If γ is a side of an ∞-elementary polygon Δi of SA, then there is an arc γ′ such that

− γ′ and γ are two adjacent sides of Δi, the common endpoint of them is denoted by p, and

− γ′ and γ surround p in the counterclockwise order.

(2) Moreover, suppose that cγ
′

proj = c1 · · · cr is the projective permissible curve of γ′, where cj (1 � j � r)

is the segment from γ′ to γ. Then the module M(cTj cj+1 · · · cr) is a non-projective Gorenstein projective

module (see Figure 18).
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•

• •

Δi

γ′

γ

cγ
′

proj

c′

×××

×××

Figure 18 (Color online) c′ � cTj cj+1 · · · cr is the permissible curve corresponded by the non-projective Gorenstein-

projective module αA, where α : γ′ → γ is the arrow on the oriented cycle with full relations corresponded by Δi

Proof. (1) Since the quiver (Q, I) of A has an oriented cycle with the full relation, we have gl.dimA = ∞
by Corollary 5.13, and moreover, each oriented cycle of length 
 with the full relation corresponds to a

pair (0, 
) of the AG-invariant φA and an ∞-elementary 
-polygon of the marked ribbon surface SA. Let

q be another endpoint of γ. Obviously, in the case where p = q, we have γ = γ′. If p �= q, then Δi

corresponds to some oriented cycle with the full relation

0
α1−→ 1

α2−→ 2 −→ · · · −→ 
− 1
α�−→ 0

such that the side γ = v−1(x) of Δi corresponds to some vertex x ∈ {0, 1, . . . , 
 − 1} through the map

v : Q0 → ΓA which is defined in Definition 2.3. Then γ′ = v(x− 1), where x− 1 is equal to x − 1

modulo 
.

(2) Following Definition 2.3(1), for simplicity, we use γ to denote the vertex v−1(γ) ∈ Q0. We have

that cγ
′

proj corresponds to the string

· · · α(cj−1)←−−−−− γ′ α(cj)−−−→ γ
α(cj+1)−−−−−→ γ′′ α(cj+2)−−−−−→ · · · ,

where each arrow α(cj) ∈ Q1 is induced by the segment cj for any 1 � j � r − 1 (see Definition 2.3(2)).

Then cTj cj+1 · · · cr, denoted by c, corresponds to the string

γ
α(cj+1)−−−−−→ γ′′ α(cj+2)−−−−−→ · · · .

Thus, M(c) ∼= α(cj)A �⊕ radM(cγ
′

proj) is Gorenstein projective by Theorem 6.1.

On the other hand, the side v(x+ 1) of Δi satisfies that

• γ and v(x+ 1) are two adjacent sides of Δi (the common endpoint of them is denoted by q), and

• γ and v(x+ 1) surround q in the counterclockwise order.

Then c �� cγproj and thus M(c) is not projective by Lemma 4.5.

Proposition 6.3 (Gorenstein projective modules). Let A = kQ/I be a gentle algebra and SA =

(SA,MA,ΓA) be its marked ribbon surface. For a permissible curve c, the indecomposable module M(c)

is Gorenstein projective if and only if one of the following holds:

• (GP1) c is a projective permissible curve.

• (GP2) c � c1 · · · cr consecutively crosses arcs γ1, . . . , γr−1, which have a common endpoint

p = p(γ1, γ2, c) = · · · = p(γr−2, γr−1, c)

such that

− γi+1 appears after γi (1 � i � r − 2) in the counterclockwise order surrounding p;

− γ1 is a side of some ∞-elementary polygon Δj with 1 � j � d;

− the end segment of c between c(0+) and γ1 lies in the inner of Δj.
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Proof. We first prove the sufficiency. By Lemma 4.5, if c is a projective permissible curve, then it is

trivial that M(c) is a Gorenstein projective module.

If c satisfies (GP2), then there is a unique arc γ′ such that γ′ and γ := γ1 satisfy the conditions given

in Lemma 6.2(1). Suppose that cγ
′

proj = c1 · · · cs consecutively crosses γ̃1 · · · γ̃s−1 (s � r + 1). Then there

is a unique h with 1 � h � s− 1 such that γ̃h−1 = γ′, γ̃h = γ1, γ̃h+1 = γ2, . . . , γ̃s−1 = γr−1. To be more

precise, cγ
′

proj corresponds to the following string:

γ̃1 ←− · · · ←− γ̃h−2 ←− γ̃h−1
α−→ γ̃h −→ γ̃h+1 −→ · · · −→ γ̃s−1

(γ̃h−1 = γ′ and γ̃h = γ are adjacent sides of Δj).

We have that c consecutively crosses γ̃h, γ̃h+1, . . . , γ̃s−1, where γ̃h ∈ S(Δj) and γ̃m /∈ S(Δj) for any

h+1 � m � s−1. Thus, M(c) ∼= αA is a Gorenstein projective module satisfying M(c) �⊕ radM(c
γ̃h−1

proj ).

In this case, M(c) is non-projective.

Next, we prove the necessity. By Theorem 6.1, ifM(c) is Gorenstein projective, thenM(c) is isomorphic

to either a projective module or an αA, where α is an arrow on some oriented cycle with full relations.

If M(c) is projective, then c is a projective permissible curve. Now suppose that M(c) is isomorphic

to αA. Let v := s(α). It follows from Lemma 4.5 that

αA ∼= radP (v) ∼= radM(c
γ̃(v)
proj )

for some arc γ̃(v) ∈ ΓA, where c
γ̃(v)
proj = c1 · · · cs is a projective permissible curve consecutively crossing

arcs γ̃1, . . . , γ̃s−1. Then v corresponds to some γ̃h with 2 � h � s−2 through v : Q0 → ΓA, i.e., γ̃h = γ̃(v)

(note that h �= 1 and h �= s − 1 because v is a vertex on the oriented cycle with full relations). Then

c
γ̃(v)
proj = cγ̃h

proj corresponds to the string

γ̃1 ←− · · · ←− γ̃h−1
α1←− γ̃h

α2−→ γ̃h+1 −→ · · · −→ γ̃s−1,

and the arrow α is either α1 or α2. Without loss of generality, suppose α = α1. Since M(c) ∼= α1A

is Gorenstein projective, the arcs γ̃h−1 and γ̃h are adjacent sides of some ∞-elementary polygon Δj of

SA. Let γ̃h−1 = γ1, γ̃h−2 = γ2, . . . , γ̃1 = γh−1. Then the permissible curve c consecutively crossing

γ1, . . . , γh−1 satisfies the condition (GP2).

Example 6.4. Let A be a gentle algebra whose marked ribbon surface SA is given in Figure 19. We

can find 12 indecomposable Gorenstein projective modules including

• 9 indecomposable projective modules (see green permissible curves)
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Figure 19 (Color online) An example for calculating all the indecomposable Gorenstein projective modules
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• 3 indecomposable non-projective Gorenstein projective modules (see pink permissible curves)

2
6
7

(
�⊕ rad

(
4
5

1
2
6
7

))
, 3

8
9

(
�⊕ rad

(
6
7

2
3
8
9

))
, 1

4
5

(
�⊕ rad

(
8
9

3
1
4
5

))
.

6.2 The descriptions of the self-injective dimension

Geiß and Reiten [14, Theorem 3.4] showed that gentle algebras are Gorenstein. In this subsection, we

provide a geometric interpretation of this result by marked ribbon surfaces. We use f-Δ to denote the

set of all the non-∞-elementary polygons, and use f-FA to denote the set of all the forbidden threads of

finite length. We first prove the following proposition.

Proposition 6.5. Let A = kQ/I be a non-simple gentle algebra and SA = (SA,MA,ΓA) be its marked

ribbon surface. Then

inj.dimAA = inj.dimAA =

⎧⎨
⎩
0, if Q is an oriented cycle with full relations,

max
Δi∈f-Δ

{1,C(Δi)− 1}, otherwise.

Proof. If Q is an oriented cycle with full relations, then A is a self-injective Nakayama algebra.

Now suppose that Q is not an oriented cycle with full relations. Since A is a gentle algebra, it follows

from [14, Theorem 3.4] that A is Gorenstein. Then by [18, Theorem] and [19, Theorem 1.4], we have

inj.dimAA = inj.dimAA = sup{G-proj.dimS | S is simple}.
The proof is divided into the following two cases: (i) (Q, I) has at least one oriented cycle with full

relations. (ii) (Q, I) has no oriented cycle with full relations.

(i) Note that if v ∈ Q0 is a vertex on the oriented cycle with full relations, then proj.dimS(v) = ∞.

Consider the arrow α on this oriented cycle with full relations such that its sink is v. We have that αA

is an indecomposable non-projective Gorenstein projective module, and moreover, it is the Gorenstein

projective cover of S(v). In the marked ribbon surface SA, v corresponds to a side, denoted by γ1, of an

∞-elementary polygon Δj and M−1(αA) is such a permissible curve c consecutively crossing γ1, . . . , γr
(r � 1), where γ1, . . . , γr satisfy the condition (GP2) given in Proposition 6.3 and γ1 = v(v).

In the case where r = 1, it is obvious that S(v) is a Gorenstein projective module and G-proj.dimS(v)

= 0. Suppose r > 1. Then there exists an elementary polygon Δj′ such that γ1 and γ2 are two sides of Δj′ .

If Δj′ is not ∞-elementary, then we get G-proj.dimS(v) = C(Δj′)−1 by using an argument similar to that

of Proposition 5.6 (the arcs γ1 and γ2 can be viewed as γ0 and γ1 shown in Proposition 5.6, respectively).

If Δj′ is ∞-elementary, then consider the permissible curve c′ consecutively crossing γ2, . . . , γr (in this

case γ2 ∈ S(Δj′)) where γ2, . . . , γr satisfy (GP2). We have that M(c′) is the kernel of M(c) � S(v)
∼= M(cγ1

simp) by Theorem 3.12(1) because the positional relationship of c′, c and cγ1

simp satisfies the

conditions given in Proposition 3.6. Then G-proj.dimS(v) = 1. Consequently, we have

inj.dimAA = inj.dimAA = max
{
1, max

Δi∈f-Δ
C(Δi)− 1

}
.

(ii) If (Q, I) has no oriented cycle with the relation, then A has finite global dimension by Theorem 5.10.

In this case, we have

inj.dimAA = inj.dimAA = gl.dimA = max
1�i�d

C(Δi)− 1,

where {Δi | 1 � i � d} = f-Δ is the set of all the elementary polygons of SA.

The proof of Proposition 6.5 depends on Theorem 6.1. In the following, we will give another proof

which does not need to use the properties of Gorenstein projective modules. We assume that the quiver

of A is neither an oriented cycle with full relations nor a point.

Lemma 6.6. Let SA = (SA,MA,ΓA) be a marked ribbon surface of a gentle algebra A, and γ be an

arc on SA with endpoints p and q. As shown in Figure 20, suppose that cγinj consecutively crosses arcs

γ0
1 , . . . , γ

0
i−1, γ, γ̃

0
j−1, . . . , γ̃

0
1 , and cγproj consecutively crosses arcs γ̃0

n, . . . , γ̃
0
j+1, γ, γ

0
i+1, . . . , γ

0
m, where p is
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Figure 20 (Color online) The formal direct sum c
γ1
1

proj ⊕ c
γ̃1
1

proj of permissible curves provides the projective cover of the

injective module M(cγinj)

the common endpoint of γ0
1 , . . . , γ

0
m and q is the common endpoint of γ̃0

1 , . . . , γ̃
0
n (1 � i � m, 1 � j � n

and γ = γ0
i = γ̃0

j ). Then

(1) the projective cover of M(cγinj) is p(M(cγinj)) : M(c
γ0
1

proj ⊕ c
γ̃0
1

proj) � M(cγinj);

(2) Kerp(M(cγinj))
∼= M(c′⊕ cγproj⊕ c̃′), where c′ and c′′ are two permissible curves shown in Figure 20.

Proof. (1) This follows from Proposition 4.3 and Theorem 4.6.

(2) Indeed, topM(cγinj) = M(c
γ0
1

simp)⊕M(c
γ̃0
1

simp), and there exists no arc γ0 (resp. γ̃0) with the endpoint p

(resp. q) such that γ0, γ0
1 , . . . , γ

0
i−1, γ (resp. γ, γ̃0

j−1, . . . , γ̃
0
1 , γ̃) surround p (resp. q) in the counterclockwise

order. Thus, M(cγinj) corresponds to the string

γ0
1 −→ γ0

2 −→ · · · −→ γ0
i−1 −→ γ ←− γ̃0

j−1 ←− · · · ←− γ̃0
2 ←− γ̃0

1 ,

and M(c
γ0
1

simp) and M(c
γ̃0
1

simp) correspond to the strings

γ1
r ←− · · · ←− γ1

1 ←− γ0
1 −→ γ0

2 −→ · · · −→ γ0
i−1 −→ γ −→ γ0

i+1 −→ · · · −→ γ0
m

and

γ̃0
n ←− · · · ←− γ̃0

j+1 ←− γ ←− γ̃0
j−1 ←− · · · ←− γ̃0

2 ←− γ̃0
1 −→ γ̃1

1 −→ · · · −→ γ̃1
s ,

respectively. Then the kernel of p(M(cγinj)) is isomorphic to M1 ⊕ M2 ⊕ M3, where M1, M2 and M3

correspond to the strings

γ1
r ←− · · · ←− γ1

1 , γ̃0
n ←− · · · ←− γ̃0

j+1 ←− γ −→ γ0
i+1 −→ · · · −→ γ0

m

and γ̃1
1 −→ · · · −→ γ̃1

s , respectively. Since c
γ0
1

proj (resp. c
γ̃0
1

proj) is projective, both conditions (LMC) and

(RMC) are satisfied. The condition (RMC) (resp. (LMC)) shows that there is no arc γ0
m+1 (resp. γ̃0

n+1)

such that γ0
1 , . . . , γ

0
m, γ0

m+1 (resp. γ̃0
1 , . . . , γ̃

0
n, γ̃

0
n+1) have the same endpoint p (resp. q) and surround p

(resp. q) in the counterclockwise order. Then the string of M2 corresponds to the permissible curve cγproj
which is projective, and the strings of M1 and M3 correspond to c′ and c̃′, respectively.

Remark 6.7. If γ, γ0
1 and γ̃0

1 satisfy the P-condition (we have i < m and j < n in this case), then in

SA\∂SA, c
γ
inj and c

γ0
1

proj have an intersection x, and cγinj and c
γ̃0
1

proj have an intersection y. The permissible

curves c′, c̃′ and cγproj can be understood as obtained by “negative rotating respect to c
γ1
1

proj ⊕ c
γ̃1
1

proj” of
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cγinj. To be precise, cγinj is divided into three parts cI, cII and cIII, x is the common endpoint of cI and cII,

and y is the common endpoint of cII and cIII. Then c′ (resp. c̃′) can be obtained as follows:

Step 1. Following the positive direction of boundary, we move the endpoint of cI (resp. cIII) lying in

MA to the previous vertex of the elementary polygon Δγ0
1
(resp. Δγ̃0

1
), where γ0

1 and γ1
1 (resp. γ̃0

1 and

γ̃1
1) are sides of Δγ0

1
(resp. Δγ̃0

1
).

Step 2. Move x (resp. y) to the endpoint of c
γ1
1

proj (resp. c
γ̃1
1

proj) such that cI (resp. cIII) makes a

negative rotation.

Proposition 6.8. Keeping the notations in Lemma 6.6, we have

proj.dimM(cγinj) = max{1,C(Δγ0
1
)− 1,C(Δγ̃0

1
)− 1},

where Δγ0
1
(resp. Δγ̃0

1
) is the elementary polygon with sides γ0

1 and γ1
1 (resp. γ̃0

1 and γ̃1
1). To be more

precise,

(1) if γ0
1 and γ1

1 (resp. γ̃0
1 and γ̃1

1) exist, then proj.dimM(cγinj) = max{C(Δγ0
1
),C(Δγ̃0

1
)} − 1;

(2) if at least one of γ0
1 and γ1

1 does not exist and at least one of γ̃0
1 and γ̃1

1 does not exist, then

proj.dimM(cγinj) = 1.

Proof. Suppose that γ0
1 and γ1

1 (resp. γ̃0
1 and γ̃1

1) exist. Similar to Proposition 5.6, regard γ0
1 and

γ1
1 as the functions γ0

1 , γ
1
1 : (0, 1) → SA\∂SA, where γ0

1(0
+) = p and γ0

1(1
−) = γ1

1(0
+). If there are

arcs γ2
1 , . . . , γ

θ
1 : (0, 1) → SA\∂SA such that γ0

1 , . . . , γ
θ
1 ∈ C(Δγ0

1
) satisfy (PD1)–(PD3), then the minimal

projective resolution of M(c′) is of the form

· · · −→ M(c
γθ
1

proj) −→ · · · −→ M(c
γ2
1

proj) −→ M(c
γ1
1

proj) −→ M(c′) −→ 0.

We claim that Δγ0
1
is not ∞-elementary. Otherwise, there exists an arc γϑ

1 with ϑ � θ such that

γϑ
1 (1

−) = γ0
1(0

+), and this leads to a contradiction because cγinj is injective. Since �MA < ∞, there is a

sequence of arcs γθ
1 , γ

θ+1
1 , . . . , γd

1 (d � θ) such that γ0
1 , γ

1
1 , . . . , γ

d
1 satisfy (PD) by Proposition 5.6. Then

the minimal projective resolution of M(c′) is as follows:

0 −→ M(c
γd
1

proj) −→ · · · −→ M(c
γ2
1

proj) −→ M(c
γ1
1

proj) −→ M(c′) −→ 0. (6.1)

Without loss of generality, suppose that

• there are arcs γ0
1 , γ

1
1 , . . . , γ

d
1 with d = C(Δγ0

1
) satisfying (PD);

• dually, there are arcs γ̃0
1 , γ̃

1
1 , . . . , γ̃

d̃
1 with d̃ = C(Δγ̃0

1
) satisfying (PD′).

Similarly, we get the minimal projective resolution of M(c̃′) as follows:

0 −→ M(c
γ̃d̃
1

proj) −→ · · · −→ M(c
γ̃2
1

proj) −→ M(c
γ̃1
1

proj) −→ M(c̃′) −→ 0. (6.2)

Thus,

proj.dimM(cγinj) = max{proj.dimM(c′), proj.dimM(c̃′)} − 1 = max{d, d̃} − 1.

Now suppose that at least one of γ0
1 and γ1

1 does not exist and at least one of γ̃0
1 and γ̃1

1 does not exist.

Then M(c
γ1
1

proj) = 0 = M(c
γ̃1
1

proj) in (6.1) and (6.2), and hence M(c′) = 0 = M(c̃′). By Lemma 6.6(2), we

have that Ker p(M(cγinj))
∼= M(cγproj) is projective and proj.dimM(cγinj) = 1.

For any basic finite-dimensional k-algebra A, we know A ∼= ⊕
i∈I eiA and D(A) ∼= ⊕

i∈I D(Aei),

where D = Homk(−, k), {ei | i ∈ I} is a complete set of primitive orthogonal idempotents of A, each eiA

is an indecomposable projective right A-module, and each D(Aei) is an indecomposable injective right

A-module. Thus, Proposition 6.8 provides a method for calculating the projective dimension of D(A).

Similarly, we can establish the dual of Proposition 6.8 and calculate the injective dimension of A.

Theorem 6.9. Let A = kQ/I be a non-simple gentle algebra and SA = (SA,MA,ΓA) be its marked

ribbon surface. If the quiver (Q, I) of A is not an oriented cycle with full relations, then

inj.dimAA = inj.dimAA = max
Δj∈f-Δ

{1,C(Δj)− 1} = max
Π∈f-FA

l(Π ). (6.3)
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Proof. Let A = kQ/I be a gentle algebra. Then inj.dimAA = inj.dimAA = proj.dimD(A). Similar to

the proofs of Proposition 5.6 and Theorem 5.10, we get

proj.dimD(A) = max
{
1, max

Δi∈f-Δ
C(Δi)− 1

}
= max

Δj∈f-Δ
{1,C(Δj)− 1} = max

Π∈f-FA

l(Π )

by Proposition 6.8.

Note that the number of all the elements in C(Δi) is equal to that of all the sides of Δi minus 1.

Thus, Theorem 6.9 shows that the self-injective dimension of A is equal to the number of sides of element

polygon(s) with the largest number of sides minus 2. Moreover, by [14, Theorem 3.4], any gentle algebra

is Gorenstein. Thus, the finitistic dimension of a gentle algebra equals its left and right self-injective

dimensions (see [16]). Thus, Theorem 6.9 provides a description of the finitistic dimension of a gentle

algebra.

6.3 The number of indecomposable Gorenstein projective modules

Recall that an algebra is said to be Cohen-Macaulay (CM)-finite if the number of indecomposable

Gorenstein projective modules (up to isomorphism) is finite. It is known that gentle algebras are

CM-finite [10]. We use ind(nproj-GP(A)) to denote the subcategory of modA consisting of all the

indecomposable non-projective Gorenstein projective modules. In this subsection, we obtain a formula

for calculating �ind(nproj-GP(A)) by AG-invariants.

Lemma 6.10. Let A = kQ/I be a gentle algebra, and c1 = α1α2 · · ·αm and c2 = β1β2 · · ·βn be two

oriented cycles with full relations of A. If c1 and c2 have a common vertex v0, i.e., there are arrows

αh, αh+1, β� and β�+1 such that v0 = t(αh) = t(β�) = s(αh+1) = s(β�+1), then αhA and β�A are

indecomposable Gorenstein projective modules satisfying top(αhA) = top(β�A) ∼= M(cγ0

simp) = S(v0).

Proof. We know that αhA and β�A are indecomposable non-projective Gorenstein projective by

Theorem 6.1. Now we show that top(αhA) = top(β�A) ∼= M(cγ0

simp) = S(v0) by using the marked

ribbon surface SA = (SA,MA,ΓA) of A. Let γ0 be the arc in ΓA corresponding to v0 by the bijection

v : Q0 → ΓA. Then γ0 is a common side of two ∞-elementary polygons Δ1 and Δ2, i.e., there are arcs

γ−1, γ1, γ2, . . . , γa and γ̃−1, γ̃1, γ̃2, . . . , γ̃b such that

• γ−1, γ0γ1, . . . , γa (resp. γ̃−1, γ̃0 = γ0, γ̃1, . . . , γ̃b) have a common endpoint p (resp. q) and γi+1 (resp.

γ̃j+1) appears after γi (resp. γ̃j) for any −1 � i � a− 1 (resp. −1 � j � b− 1);

• γ−1, γ0 ∈ S(Δ2), γ0, γ1 ∈ S(Δ1) and γi /∈ S(Δ1) for any 3 � i � a;

• γ̃−1, γ̃0 ∈ S(Δ1), γ̃0, γ̃1 ∈ S(Δ2) and γj /∈ S(Δ2) for any 3 � j � b;

• v−1(γ1) = t(αh+1) and v−1(γ̃1) = t(β�+1).

For the permissible curve c consecutively crossing γ0, γ1, . . . , γa and c̃ consecutively crossing γ̃0, γ̃1, . . . , γ̃b
such that p = p(γ0, γ1, c) = p(γ1, γ2, c) = · · · = p(γa−1, γa, c) and q = p(γ̃0, γ̃1, c̃) = p(γ̃1, γ̃2, c̃) = · · ·
= p(γ̃b−1, γ̃b, c̃), we have M(c) ∼= αhA, M(c̃) ∼= β�A, and c and c̃ correspond to the strings

v−1(γa) ←− · · · αh+2←−−− v−1(γ1)
αh+1←−−− v−1(γ0) and v−1(γ̃0)

β�+1−−−→ v−1(γ̃1)
β�+2−−−→ · · · −→ v−1(γ̃b),

respectively, where v−1(γ0) = v−1(γ̃0) = v0. So top(αhA) ∼= topM(c) ∼= M(cγ0

simp) and top(β�A)
∼= topM(c̃) ∼= M(cγ̃0

simp). Notice that γ0 = γ̃0, and thus M(cγ0

simp) = M(cγ̃0

simp) is isomorphic to the

simple module S(v−1(γ0)) = S(v0).

Lemma 6.11. Let A = kQ/I be a gentle algebra, and Qocf
0 be the set of all the vertices on the oriented

cycle with full relations. Then the map f : ind(nproj-GP(A)) → Qocf
0 via αA �→ t(α) is surjective;

furthermore, if v ∈ Qocf
0 is a common vertex of two oriented cycles with full relations, then �f−1(v)

= �{αA ∈ ind(nproj-GP(A)) | t(α) = v} = 2; if otherwise, then �f−1(v) = 1.

Proof. For any v ∈ Qocf
0 , there exists at least one oriented cycle with full relations α0 · · ·αl−1 such that

v = t(αi) = s(αi+1) for some 0 � i � l, where i is equal to i modulo l. Then by Theorem 6.1, we have

that αiA is an indecomposable non-projective Gorenstein projective module and f is surjective.
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If v is a common vertex of two oriented cycles with full relations α0α1 · · ·αl−1 and β0β1 · · ·β�−1, then

there are arrows αi, αi+1, βj and βj+1 such that

v = t(αi) = s(αi+1) = t(βj) = s(βj+1),

where i is equal to i modulo l and j is equal to j modulo 
. Thus we have {αiA, βjA} ⊆ f−1(v) by

Lemma 6.10; furthermore, �f−1(v) � 2. Notice that A is gentle, and thus there is no other arrow whose

source or sink is v. Therefore, �f−1(v) � 2 and �f−1(v) = 2.

It is obvious that if there exists a unique oriented cycle s = α0α1 · · ·αl with full relations of A such

that v ∈ Qocf
0 is a vertex of s, then �f−1(v) = 1. Indeed, suppose t(αi) = v with 0 � i � l. Then

f−1(v) = {αiA} ⊆ ind(nproj-GP(A)).

On the marked ribbon surface SA = (SA,MA,ΓA) of a gentle algebraA = kQ/I, for each∞-elementary

polygon, its each side provides an indecomposable non-projective Gorenstein projective module by the

permissible curve satisfying Proposition 6.3(GP2), and the arc which is a common side of two ∞-

elementary polygons provides two indecomposable non-projective Gorenstein projective modules. From

this observation, we can also prove Lemma 6.11. Moreover, we have the following proposition.

Proposition 6.12. Let A = kQ/I be a gentle algebra with the AG-invariant φA, and L ⊆ N
+ be a

finite set such that φA(0, 
) > 0 if 
 ∈ L, and φA(0, 
) = 0 otherwise. Then we have

(1) �ind(nproj-GP(A)) =
∑

�∈L 
·φA(0, 
), i.e., �ind(nproj-GP(A)) is the number of arrows on oriented

cycles with full relations.

(2) Furthermore, if two gentle algebras A and A′ are AG-equivalent, then �ind(nproj-GP(A))

= �ind(nproj-GP(A′)).

Proof. Recall from the proof of Proposition 5.12 that for each 
 ∈ L, the number of oriented cycles

with full relations of length 
 is φA(0, 
). Thus we can suppose that A has t =
∑

�∈L φA(0, 
) oriented

cycles with full relations si = αi
1α

i
2 · · ·αi

�i
with 1 � i � t. Then there exist the following maps:

Qocf
1

g−→∼ ind(nproj-GP(A))
f−→Qocf

0 ,

where Qocf
1 =

⋃
1�i�t{αi

j | 1 � j � 
i} and f is surjective (see Lemma 6.11), and g defined by α �→ αA is

bijective (see Theorem 6.1). Thus, �ind(nproj-GP(A′)) is equal to the number
∑

�∈L 
 ·φA(0, 
) of arrows

on oriented cycles with full relations.

Let A′ be a gentle algebra such that φA′ = φA. Then

�ind(nproj-GP(A′)) =
∑
�∈L


 · φA′(0, 
) =
∑
�∈L


 · φA(0, 
) = �ind(nproj-GP(A)).

The second equality is obtained by φA′ = φA.

Corollary 6.13 (See [10, 20]). Gentle algebras are CM-finite.

Proof. Let A = kQ/I be a gentle algebra. Since (Q, I) is a finite quiver, the number of oriented cycles

with full relations is finite, so there exists a finite set L ⊆ N
+ such that 0 < φA(0, 
) < ∞ for any 
 ∈ L, and

φA(0, 
) = 0 for any 
 /∈ L. By Proposition 6.12, we have �ind(nproj-GP(A)) =
∑

�∈L 
 ·φA(0, 
) < ∞.

7 Examples

7.1 Some examples for calculating the global dimension of gentle algebras

In this subsection, we provide some examples to calculate the global dimension of gentle algebras and

the projective dimension of simple modules.

Example 7.1. For any n � 1, there exists a gentle one-cycle algebra A, i.e., its quiver has exactly one

cycle, such that gl.dimA = n. Indeed, if A is such a gentle one-cycle algebra whose marked ribbon surface

SA is shown in Figure 21(a), then A ∼= kQ/I, where Q0 = {γ0, γ1, . . . , γn−1}, Q is shown in Figure 21(b),

and I = 〈α1α2, α2α3, . . . , αn−1αn〉.
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q3

q2q1

q0 = qn

qn−2 qn−3

p

γ1

γ2

γ3

γn−2

γn−1

γ0

(a)

γ1
α2 �� γ2

α3 ��

γ0

α1

��

γn−1
αn

��
αn−1

��

(b)

Figure 21 (Color online) (b) is the gentle algebra whose marked ribbon surface is shown in (a)

Thus gl.dimA = n by Theorem 5.10. Let γ0 be the arc γ0 : (0, 1) → SA\∂SA such that γ0(0+) = p

and γ0(1−) = q0, and γi be the arc γi : (0, 1) → SA\∂SA such that γi(0+) = qi−1 and γi(1−) = qi

for any 1 � i � n − 1, and γn be the arc γ0(1 − x) (note: γn = γ0(1 − x) � γ0(x) = γ0). Then the

arcs γ0, γ1, . . . , γn−1, γn satisfy the condition (PD), and the minimal projective resolution of the simple

module M(cγ
0

simp) can be determined by Proposition 5.6 as shown in Figure 22, where ci � cγ
i

proj; c
′
i+1 is

the permissible curve corresponding to the kernel of δi (1 � i � n− 1) and cn � c′n � cγ
n

proj.

Furthermore, by (5.1), we obtain

0 −→ M(cγ
n

proj)
δn−→M(cγ

n−1

proj )
δn−1−−−→ · · · δ2−→M(cγ

1

proj)
δ1−→M(cγ

0

proj)
δ0−→M(cγ

0

simp) −→ 0,

where M(cγ
n−1

proj )
∼=

γn−1

γ0

γ1 and Kerδ ∼= γ0

γ1
∼= M(cγ

n

proj). Thus, proj.dimM(cγ
0

simp) = n. Similarly,

proj.dimM(cγ
i

simp) = n− i for any 0 � i � n− 1.

q3

q2q1

q0 = qn

qn−2 qn−3

p

cγ
0

simp

c0

c′1

c1

c′2

c2

c′n−3

cn−3

c′n−2
cn−2

c′n−1

cn−1
cn�c′n

Figure 22 (Color online) The minimal projective resolution of M(cγ
0

simp)
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Example 7.2. See Figure 23(a), which is the marked ribbon surface of the gentle algebra A = kQ/I,

where Q is shown in (b) and

I = 〈a1a3, a5a4, a8a7, a7a6, a10a2, a9a′10, a′10a14, a14a13〉.

The elementary polygon of the marked ribbon surface gives the projective dimension of each simple

module. For example, for the arc S(8), by Proposition 5.6, each term in the minimal projective resolution

of S(8) corresponds to an arc of the elementary polygon Δj whose arc set S(Δj) = {6, 7, 8, 9}. Then the

minimal projective resolution of S(8) is

0 −→ M(c6proj) −→ M(c7proj) −→ M(c8proj) −→ S(8) = M(c8simp) → 0,

and thus proj.dimS(8) = 2. Similarly, we get

proj.dimS(1) = 2, proj.dimS(2) = 0, proj.dimS(4) = 0, proj.dimS(5) = 1, proj.dimS(6) = 2,

proj.dimS(7) = 1, proj.dimS(11) = 1, proj.dimS(12) = 1, proj.dimS(13) = 1, proj.dimS(14) = 2.

The simple module S(9) = M(c9simp) corresponds to the arc 9 which satisfies the P-condition. Its minimal

projective resolution is

0 −→ M(c12proj) −→ M(c6proj)⊕M(c14proj) −→ M(c7proj)⊕M(c14proj)

−→ M(c8proj)⊕M(c10proj) −→ M(c9proj) −→ S(9) = M(c9simp) −→ 0,

and thus proj.dimS(9) = 4. Similarly, we get proj.dimS(3) = 1 and proj.dimS(10) = 3. Consequently,

we conclude that gl.dimA = 4. It should be pointed out that we can get gl.dimA = 4 by Theorem 5.10

directly.

Example 7.3. Let A be a gentle algebra whose marked ribbon surface SA is given in Example 6.4.

Then gl.dimA = ∞ by Theorem 6.9 because SA has an ∞-elementary polygon with the arc set {1, 2, 3}.
Indeed, the minimal projective resolution of S(1) is

· · · → P (3) → P (2) → P (1) → P (3) → P (2) → P (1) → S(1) → 0

by Proposition 5.6, so proj.dimS(1) = ∞.

13
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3

4

1
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914

(a)

13

12 11
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6

5

3

4

1

2

10

914

a1
a2

a3

a4

a5

a6

a7

a8

a9
a10

a11

a12

a13

a14

a′10

(b)

Figure 23 (Color online) (b) is the gentle algebra whose marked ribbon surface is shown in (a)
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7.2 Some examples for calculating the self-injective dimension of gentle algebras

In this subsection, we provide some examples to calculate the projective (resp. injective) dimension of

indecomposable injective (resp. projective) modules, and the self-injective dimension of gentle algebras.

Example 7.4. Consider the gentle algebra A given in Example 7.2. Then gl.dimA = 4. Since

I(8) =
13
12
11 8

9 = M(c8inj)

is an indecomposable injective module with the top M(c13simp)⊕M(c9simp)
∼= S(13)⊕ S(9), its projective

cover is M(c13proj ⊕ c9proj). Consider the elementary polygons Δ9 with sides {9, 10, 14, 13, 12} and Δ12

with the side {12}. We have C(Δ9) = 5 and C(Δ12) = 1, and thus proj.dimI(8) = max{5, 1} − 1 = 4.

Furthermore, by the proof of Proposition 6.8, the minimal projective resolution of I(8) is as follows:

0 −→ M(c12proj) −→ M(c13proj) −→ M(c14proj) −→ M(c8proj)⊕M(c10proj)

−→ M(c13proj)⊕M(c9proj) −→ I(8) → 0.

Thus, we have inj.dimAA = inj.dimAA = proj.dimD(A) = 4 = gl.dimA.

In Example 7.4, for the gentle algebra A, its global and self-injective dimensions are identical. Now we

give two examples of gentle algebras with infinite global dimension.

Example 7.5. (1) Let A be the gentle algebra given in Example 6.4. Then gl.dimA = ∞ by

Example 7.3. Since maxΔj∈f-Δ C(Δj) = 2, we have inj.dimAA = inj.dimAA = maxΔi∈f-Δ{1,C(Δi) − 1}
= 1 by Theorem 6.9.

(2) Let A be the gentle algebra whose marked ribbon surface is shown in the Figure 24(I). Then

gl.dimA = ∞ by Theorem 5.10 (because the elementary polygon with sides {3, 4, 5, 6} and the elementary

polygon with sides {5, 7, 8} are ∞-elementary), and inj.dimAA = inj.dimAA = 2 by Theorem 6.9.

Furthermore, since its AG-invariant φA = [(9, 4), (0, 4), (0, 3)], we have

�ind(nproj-GP(A)) = 4φA(0, 4) + 3φA(0, 3) = 4 · 1 + 3 · 1 = 7

by Proposition 6.12. Indeed, we have ind(nproj-GP(A)) = {3, 4, 5
7
9
, 7

9, 8, 5
6, 6} by Proposition 6.3.

1
2

3

4
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7

6

8 9

10

(I)

1
2

3

4

5

7

6

8 9

10

(II)

Figure 24 (Color online) The marked ribbon surface of gentle algebra given in Example 7.5 (I) and all the permissible

curves corresponding to indecomposable non-projective Gorenstein projective modules (II)
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