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Abstract We explore the assignment of norms to A-modules over a finite-dimensional algebra A, resulting in
the establishment of normed A-modules. Our primary contribution lies in constructing two new categories .forP
and /P, where each object in Afor? is a normed A-module N limited by a special element vy € N and a special
A-homomorphism §p : NomA N, the morphism in Aor? is a A-homomorphism 6 : N — M such that
O(vn) = vy and 06y = EMH@Qde, and /P is a full subcategory of AforP generated by all Banach modules.
By examining the objects and morphisms in these categories, we establish a framework for understanding the
categorification of integration, series expansions, and derivatives. Furthermore, we obtain the Stone-Weierstrass
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1 Introduction

Mathematical analysis, encompassing branches such as integrations, differentiations, and series expan-
sions, is an integral component of mathematics and serves as an indispensable tool in various scientific
domains including physics, engineering, and life sciences. Traditionally founded on the e—¢ definition of
limits and the theory of completeness of the real numbers, mathematical analysis provides a rich and
diverse array of research topics within its sub-disciplines. However, adaptation to different applications
often obscures a unified understanding of its branches and their interconnections. For example, Lebesgue
integration, introduced by Lebesgue in 1902 (see [28]), represents a critical advancement in mathematical
analysis. Understanding Lebesgue’s approach to integrability on the real line involves methodical and
incremental steps beginning with the definition of measurable sets and null sets, followed by exploring
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measure convergence. The journey continues through the exploration of step functions and simple
functions, progressing to sequences of their convergence and culminating in the sophisticated construction
of spaces for integrable functions and consistent integration methods. This path, while comprehensive,
paves a detailed route to fully appreciate the depth of Lebesgue integration, as discussed in foundational
texts such as [9,23]. However, the intricate methodologies developed do not directly translate to other
branches of analysis, making it challenging to apply these achievements uniformly across the field.

Category theory has evolved far beyond its original scope, now permeating nearly all branches of
mathematics. Initially formulated by Eilenberg and Mac Lane [13] in the mid-20th century within
the realm of algebraic topology, a category fundamentally consists of objects and morphisms. This
framework facilitates a systematic and structural approach to analyzing a wide range of mathematical
entities, from algebraic structures to complex topological spaces. The true utility of category theory
lies in its ability to abstractly model and examine mathematical concepts through functors and natural
transformations. Functors are the “morphisms between categories”, systematically relating the objects
and morphisms of one category to those of another, thereby uncovering deep interconnections within
mathematical frameworks. Natural transformations extend this by mapping between functors themselves,
ensuring consistency across categorical representations. This level of abstraction proves invaluable in
various mathematical applications, including the categorical descriptions of integration [10,11,22,38] and
differentiation [1,7,8,20,24, 30, 31], the categorical semantics of differential linear logic [6,7], the Taylor
series within Cartesian differential categories [32], preliminary categorifications of automorphic forms
and the analytic continuation of L-functions [27], as well as providing cohesive frameworks for tackling
complex problems such as quotient spaces, direct products, completions, and duality. Furthermore,
recent research has begun to explore the synergy between category theory and mathematical analysis
in the context of artificial intelligence. These advancements leverage categorical structures to enhance
machine learning models and develop more abstract frameworks for AI algorithms [12]. Additionally,
categorical semantics are being applied to better understand and design Al systems, providing a
robust mathematical foundation for their development and analysis [39]. Through category theory,
mathematicians gain a powerful tool for unifying and elucidating the intricacies of diverse mathematical
concepts. Building on the foundational work of Leinster [29], we describe integration, series expansions,
and differentiation using the unified category «/?. Note that the Rota-Baxter algebra [5,33,34] provides
another algebraic description of integration, but it is different from the categorification of integration
given by the category «7P.

As the landscape of integration theory expands, so too does the exploration into its algebraic facets,
marking a significant evolution in the approach to integration. Algebraic approaches to integration can
be traced back at least to Segal’s work [38]. Building upon the foundational works of Escardé and
Simpson [14], Freyd [16] and Leinster [29] constructed a special category «/?, where p is a real number
at least 1. In this category, objects are triples consisting of a Banach space V', an element v in V' with
|[v] < 1, and a k-linear map § : V @, V — V that satisfies §(v,v) = v. Here, the notation Vi &, V
represents the direct sum of two normed spaces V; and V5, where the norm is defined as

(1, 02)] = <;(U1|”+ |UQP))1/p.

Furthermore, Leinster established three significant results as follows:
(1) (L,([0,1]),1,7) is the initial object in &P, where

7 Lp([0,1]) ©p Lp([0,1]) = Ly ([0, 1])

is a special k-linear map (indeed, v is the map gt given in Corollary 10.2);
(2) (R,1,m) is an object in &, where m : R @1 R — R sends (z,y) to 3(z +y);
(3) there exists a unique morphism

H: (L1([0,1]),1,7) — (R,1,m) in &/
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(see [29, Theorem 2.1 and Proposition 2.2]). The homomorphism H : L;1([0,1]) — k is a k-linear map
sending any function f in L;([0,1]) to its Lebesgue integral, i.e.,

1
H(f) = (L) / Fdu,

where p1, denotes the Lebesgue measure on R. This profound relationship illustrates that Lebesgue
integrability and integration are not merely abstract constructs; rather, they naturally emerge from
the foundational principles of Banach spaces. Consequently, it can be logically inferred that the
categorification of Lebesgue integration is inherently connected to, and can be derived from, the
categorification of Banach spaces. However, we have discovered that Leinster’s work can be extended to
a more general setting of finite-dimensional algebras, and it encompasses not only definite and indefinite
integrals, but also includes key areas of mathematical analysis such as weak derivatives, series expansions,
and the Stone-Weierstrass approximation theorem.

Building upon Leinster’s foundational work, we extend his categorical framework to encompass finite-
dimensional algebras, thereby creating a more versatile and unified approach to integration theory. By
incorporating normed modules over these algebras into our analysis, we bridge the gap between algebraic
structures and analytical methods. This extension allows us to reinterpret classical concepts of integration,
differentiation, and series expansions within a broader categorical context. Furthermore, our approach
facilitates the seamless integration of algebraic techniques with analytical processes, offering a cohesive
framework that enhances the applicability and depth of mathematical analysis. This novel categorical
perspective not only unifies disparate areas of analysis but also opens new avenues for research and
application in related scientific fields.

This study aims to explore and construct a comprehensive theoretical framework specifically tailored
for normed modules in finite-dimensional algebras. We introduce and dissect a novel category, denoted
by AorP, alongside its fully characterized subcategory, 2/P. This research endeavors to systematically
categorize normed modules and their operations, aiming to enhance our understanding of fundamental
mathematical procedures such as integration, series expansions, and differentiation. The specific research
questions addressed are as follows.

Question 1.1. (1) How does the new categorical framework improve our comprehension of norm
structures within various normed modules over an algebra?

(2) What contributions do morphisms in the subcategory /P make towards advancing classical
integration techniques?

(3) What implications does the categorification of normed modules hold for the broader mathematical
analysis landscape and its practical applications?

The investigation of these questions not only broadens the scope of category theory in mathematical
analysis and abstract algebra but also introduces novel theoretical tools and perspectives, potentially
benefiting other disciplines such as physics and automation engineering. To comprehensively address the
aforementioned questions, we delineate the following key topics in subsequent sections.

Firstly, we introduce functions defined on a finite-dimensional algebra A, along with the norm defined
on A and any A-module M. It is pertinent to note that all A-modules considered in this paper are left
A-modules. The specifics of these structures are elaborated in Subsections 3.1 and 4.1, respectively. A
pivotal motivation for us to introduce normed modules is the pursuit of an integration definition that
transcends the conventional reliance on L, spaces. This approach is rooted in the understanding that
an equivalent definition of L, spaces can emerge through the integration itself. However, as highlighted
by Leinster, the notion of Lebesgue integrals is intrinsically linked to Banach spaces. Consequently,
our investigation also necessitates considering the completions of normed finite-dimensional algebras and
normed modules (see Subsections 3.2 and 4.2).

Secondly, for a special subset I, of A, denoted by I, C A, we construct the category AorP in
Subsection 5.1. Its object has the form (INV,v,d), where N is a normed A-module, v is an element
in N satisfying |v| < u(l4), p is an arbitrary measure defined on I, and § : N®2" — N is a A-
homomorphism sending (v,...,v) to v. The morphism h : (N,v,0) — (N’,v’,4’) is induced by a special
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A-homomorphism N — N’ satisfying hé = & (h®»?"). Furthermore, we consider the full subcategory
P of NorP, where each object (N,v,d) consists of a Banach A-module N, an element v € N and a
A-homomorphism § : N¥»2" — N.

Thirdly, we investigate the set S;(I4) of elementary simple functions (a special step function defined
on A), where 7 is a homomorphism between two k-algebras. We demonstrate its structure as a A-module
(Lemma 4.9). Consequently, we obtain an object (S-(I4),1,7¢) (Lemma 5.5) in Aor? and an object
(Sf(ﬂ), 1,7¢) in &/P, where ST(E) is the completion of S (I4) and ¢ is induced by .

Fourthly, we prove our main result in Section 6 to answer Question 1.1(1), which provides a unique
homomorphism from the initial object in .&/? to any normed module to describe the properties of normed
representations of algebra.

Theorem 1.2 (Theorem 6.4 and Remark 6.5).  The triple (S;(I4),1,7¢) is an «/P-initial object in
orP, i.e., for any object (N,v,0) in &P, there exists a unique morphism

h € HomJVOT'p((ST(HA)’ 1775)7 (N,’U, 5))

such that the diagram

(ST(HA)’ 17:}/\5)

commutes, where h is given by the completion of h : S;(Ix) — N.

Sections 7-9 realize integrations, series expansions and derivatives as three morphisms in 27*.

In Section 7, we construct an object (k, u(I4), m) in o/P, where m : k®»2" — k is a A-homomorphism
whose definition is given in this section. Taking (N,v,d) = (k, u(I4),m) as in Theorem 1.2, we obtain
the following result to answer Question 1.1(2), which describes numerous integrations by using category
/P in a unified way since p is an arbitrary measure.

Theorem 1.3 (Theorem 7.6). Ifk = (k,|-|,=) is an extension of R, then there exists a unique
A-homomorphism T : S.(I4) — k such that

T2 (S, (I4),1,7%6) = (& iu(a), m)

is a morphism in Hom_sorr ((S7(I4),1,7e), (k, u(Ia),m)) and the diagram

(Sr(14), 1,7) ———— (K, u(La), m)
R

(S- (1), 1,7)

commutes, where T is the unique morphism lying in Homg{p((ST(ﬂ), 1,7%), (k, p(I1),m)). Furthermore,
if p=1, then we have the following three properties of T by the direct limits

@Ti:f:thi—)k

(the definitions of E; and T; are given in Notation 5.3 and Section T, respectively):
(1) (Formula (7.1)) T(1) = p(14).

(2) (Lemma 7.1) T : S-(I4) — k is a homomorphism of A-modules.
(3) (Proposition 7.5) |T'(f)| < T(|f])-

The morphism T provides a categorification of integration, and we define

~

T(f) = (") | fdp. (1.1)

Ia
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The above (1)—(3) show that

(%1)/ Ldp = p(La),

Ix

(%1)/ (Mfr+ Aafo)dp =M - () [ frdp+ o (1) | fadp, Ay Ao € 4, (1.2)

Iy Ix Ia

and
o) [ gau] < @) [ 17
Ia I
respectively.
Let k[X4,...,Xn] (= k[X] for short) be the N variables polynomial ring over a field k with N >
dimy A = n. Then k[X] can be seen as a normed left A-module, where the norm || - ||yx) is either (8.1)
or (8.3). In Section 8, we get two corollaries as follows to answer Question 1.1(3).

Corollary 1.4. Let </P satisfy p=1.
(1) (Corollary 8.2/Weierstrass approximation theorem) If N =n and || - |[xx) is defined by (8.1), then
the unique morphism in

o —

EPOW € Homﬂl((ST(H/l)7 1”75)7 (k[X]7 1,&2|HX\]>)

shows that for any function f € S;(I4), there exists a sequence {P;}ien of polynomials such that

—

EPOW(f) = l(inpl

(2) (Corollary 8.5) If k = C, N = 2n and || - |[x;x] is defined by (8.3), then the unique morphism in

Erou € Homdl ((ST(HA)7 1, ’Yf)a ((C[e:i:Qﬂ'iX], 1, %LC[@X]))

shows that for any function f € S;(14), there exists a sequence {P;}ien of triangulated polynomials such
that

Erou(f) = LimP,.

Furthermore, we show the Stone-Weierstrass approximation theorem in Subsection 8.3 (see Corol-
lary 8.8).

Corollary 1.5 (Corollary 8.8, Stone-Weierstrass approximation theorem).  There exists a unique
morphism

Es_w: (ST(HA)a 177{) - (Wv 17@)
in Hom 5,1 ((S+(I4),1,7¢), (W, 1,7¢1)) such that the diagram

Es_w

(S+(Ia), 1»’7{) — (W, la’@)

=

—

(S+(I4),1,7¢)

commutes, where the definition of W is a direct limit defined in Subsection 8.3; E/SIV is the unique

extension of Es_w lying in Homﬂl((m), 1,7¢), (W, 1,7¢)).

In Section 9, we recall some works of Leinster and Meckes (see [29]). Based on their work, we show
the following theorem.
Theorem 1.6. Letp=1, A=R=k, 7=id:R—->Rz— 2,1, =[0,1 and { = %; for simplification,

—

we write S 1= S, (Ia).

(1) (Theorem 9.3) (i) A morphism in Hom1 ((S,1,51), (N, v,8)) is zero if and only if v = 0.

1
2
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(ii) Furthermore, there is no morphism in </ starting with (g, 1ﬁ%) such that this morphism sends
daf

rrE R

(2) (Theorem 9.5) The differentiation D is a morphism in &/¥ ending with the initial object (S,1,71).

any almost everywhere differentiable function f(x) to its weak derivative

Recall that any function f : I, =[0,1] — R in S is a step function, i.e., there is a dissection [0, 1] =
Ui, I of [0,1] with I; N'T; =  for any 1 < i # j < t, such that each f,(z) is a constant in R. Then
% almost everywhere equals 0. It follows that the completion D of % sends every function in S to
zero. Furthermore, if D is a morphism in Homgﬂ((/s\, l,ﬁ%), (N,v,9)), then we have v = D(1) = 0,
and it follows that D = 0 by Theorem 1.6(1)(i), which is a contradiction. Therefore, Theorem 1.6(1)(i)
shows that differentiation, i.e., the homomorphism D, is not a morphism in /! with the domain the
initial object of &'. Then we obtain Theorem 1.6(1)(ii). Naturally, we would ask whether D can be
characterized by «/P? To do this, we prove Theorem 1.6(2) in Subsection 9.3, and show that D is a

morphism in a category <7/P.

Finally, we provide some applications for our main results in Section 10. In Subsection 10.1, we
assume k =R, (4, <,[|-||l4) = R, <, |- |), Be={1},n: Bgr = {1} CR>° Iz = [0,1], £ = %, ko(r) = 3,
ki(z) = ZH and 7 = idg : R — R, and let py, be the Lebesgue measure. Then (1.1) is a Lebesgue
integration

1
1 _
() /HR_[OJ] Fdur, = (L) /0 fdur,

and (1.2) shows that Lebesgue integration is R-linear. This result provides a categorification of Lebesgue
integration. In Subsection 10.2, we provide two examples for Corollary 1.4 to show that the Taylor series
and Fourier series can be realized as two morphisms in .&/! with the domain the initial object.

2 Preliminaries

In this section, we recall some concepts in the category theory and representation theory of algebras,
including limits in the category theory (see [35, Chapter 5] and [26, Chapter III, pp. 62-74]), k-algebras
(see [2, Chapter I]), and some methods to establish topologies on algebras (see [3, Chapter 10]). These
concepts are familiar to algebraists but may not be as familiar to those in the field of analysis.

2.1 Categories and limits

Recall that a category C consists of three ingredients: a class of objects, a set Home (X,Y) of morphisms
for any objects X and Y in C, and the composition Home(X,Y) x Home (Y, Z) — Home (X, Z), denoted
by

(f: X=>Y,g9:Y>2)—gf: X > Z,

for any objects X, Y and Z in C. These ingredients are subject to the following axioms:
(1) The Hom sets are pairwise disjoint.
(2) For any object X, the identity morphism 1x : X — X in Hom¢ (X, X)) exists.
(3) The composition is associative: given morphisms

f g

U 1% h

w X

)

we have
h(gf) = (hg)[.
Next, we review the limits in the category theory.

Definition 2.1 (See [35, Chapter 5, Subsection 5.2]). Let J = (J, <) be a partially ordered set, and
let C be a category. A direct system in C over J is an ordered pair ((M;)ic3, (¢ij)i=;), where (M;);cs is
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an indexed family of objects in C and (p;; : M; — M;),;<; is an indexed family of morphisms for which
@i = 1y, for all 4, such that the diagram

M, ——F% g,

RN

commutes whenever ¢ < j < k. Furthermore, for the above direct system ((M;)icy, (vij)i<;), the direct
limidt (also called inductive limit or colimit) is an object, i.e., ligMi7 and insertion morphisms (a; : M; —
@Mi)iej such that

(1) ajpij = a; whenever i =< j;

(2) for any object X in C such that there are given morphisms f; : M; — X satisfying f;p;; = f; for
all 4 < j, there exists a unique morphism 6 : 11_n>JMZ — X making the diagram

commutes.

Example 2.2. Let {x,},en+ be a monotonically increasing sequence of real numbers, and let R be
the partially ordered category (R, <), in which the elements are real numbers and the morphisms are of
the form <,ppy: 71 — 72 (r2 <7r1). If {z,}hen+ has limit z as in analysis, i.e., for any € > 0, there exists
N e Nt such that |z, — x| < € holds for all n > N, then z = @mn Indeed, for any z’ € R such that the
morphisms (o; =<gz,4: ; — 2');en+ exist, there is a morphism 6 =<,/ : * — 2’ such that the diagram

commutes. It is clear that the morphism 6 is unique in this example. Furthermore, x < 2’ holds because
if 2 < z, then we can find some x; such that z; > 2/, ie., ay € Hom(Rg)(x ,x¢) = 0, which is a
contradiction.

Definition 2.3 (See [35, Chapter 5, Subsection 5.2]). Let J = (J, <) be a partially ordered set, and
let C be a category. An inverse system in C over J is an ordered pair ((M;)ic3, (¥ij);=q), where (M;)ics
is an indexed family of objects in C and (v;; : M; — M;),=; is an indexed family of morphisms for which
i = 1y, for all 4, such that the diagram



578 Liu Y-Z et al. Sci China Math  March 2026 Vol. 69 No.3

commutes whenever i < j < k. Furthermore, for the above direct system ((M;)ie3, (vi;);=i), the inverse
limidt (also called projective limit or limit) is an object, say @Mi, and projects morphisms (o : @Mi —
M;)ie5 such that

(1) ¥j;0;j = a; whenever ¢ < j;

(2) for any object X in C such that there are given morphisms f; : X — M; satisfying ¢;; f; = f; for
all 4 < j, there exists a unique morphism ¢ : X — hﬂMZ making the diagram

(m)Twm fi
ye

J

§\

commutes.

Example 2.4. Let {z,},en+ be a monotonically decreasing sequence of real numbers, and let R be
the partially ordered category (R, <). If {x,, },en+ has limit x as in analysis, then we have 2 = @mn by
a way similar to that in Definition 2.3.

2.2 k-algebras and their completions

Let k be a field. In this subsection, we recall the definitions of k-algebras and the completions of k-
algebras. All concepts in this subsection are parallel to those in [3, Chapter 10, Subsection 10.1] which
extracts some important results about the completions of Abelian groups.

2.2.1 k-algebras
Definition 2.5. A k-algebra A defined over k is both a ring and a k-vector space such that

k(aa") = (ka)a' = a(ka’).

In particular,

(1) if A is a commutative ring, i.e., ajas = aga; holds for all a;,as € A, then we call that A is
commutative; otherwise, we call that it is non-commutative;

(2) if the k-dimension dimg A of A, i.e., the dimension of A as a k-vector space, is finite, then we call
that A is a finite-dimensional k-algebra; otherwise, we call that it is an infinite-dimensional k-algebra.

In this paper, we do not require the commutativity of k-algebras, but we always suppose that every
k-algebra in our paper is a finite-dimensional k-algebra with identity 1.

Recall that an idempotent of a k-algebra A is an element e in A such that e? = e. Obviously, 0 and 1
are idempotents. If an idempotent e has a decomposition

! !
e=¢€ +¢€

such that

(1) ¢ and €” are non-zero idempotents;

(2) ¢ and €” are orthogonal, i.e., e'e” =0 =¢"¢,
then we call e decomposable. We call e a pmmztwe tdempotent if it is not decomposable. Furthermore,
one can prove that 1 has a decomposition

l=e +ex+---+e

such that all e; are primitive idempotents and e;e; = 0 holds for all i # j, and we call {e1,...,e;} a
complete set of primitive orthogonal idempotents (see [2, Chapter I, p. 18]).
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Let eq,...,e; be the complete set of primitive orthogonal idempotents. Then A has a decomposition
A= @1;1 Ae;, where each direct summand Ae; is an indecomposable left A-module. We say that A is
basic if Ae; 2 Aej for all 1 <i# j <t.

Example 2.6. The set M, (k) of all n x n matrices over k, the polynomial ring k[z1,...,2,], and
the field k itself are k-algebras. In particular, M, (k) and k are finite-dimensional, and k[z1,...,2,] is
infinite-dimensional.

Recall that a quiver is a quadruple Q = (Qy, 91,5, t), where Qy is the set of vertices, Q; is the set of
arrows, and s,t: Q1 — Qg are functions respectively sending each arrow to its starting point and ending
point. Then any vertex v € Qg can be seen as a path on Q whose length is zero, and any arrow o € Q1
can be seen as a path on Q whose length is one. A path p of length [, denoted by ¢(p), is the composition
aq - -agaq of arrows asg, ..., qp, where t(o;) = s(a;4+1) for all 1 < i < [. Then, naturally, we define the
composition of two paths g1 = a;--- a1 and @2 = B¢+ -+ 31 as

a1 =P Prog g

provided that the ending point t(p1) of p; coincides with the starting point s(p2) of po; otherwise (i.e.,
t(p1) # s(p2)), the composition is defined to be zero. Consequently, let Q; be the set of all paths of
length [. Then kQ := spank(Ul>0 Q;), known as the path algebra of Q, is a k-algebra whose multiplication
is defined as follows:

kikso - if t =
kQ xkQ — kQ via (k1p17]{;2p2>'_>{01 2 - o201, if t(p1) = 5(p2),

, otherwise.

The following result shows that we can describe all finite-dimensional k-algebras using quivers (see [36,
p.43] and [4, Theorem 1.9]). The idea of such a graphical representation seems to go back to Gabriel [17],
Grothendieck [21], and Thrall [40], but it became widespread in the early seventies, mainly due to
Gabriel [18,19].

Theorem 2.7 (See [2, Chapter II, Theorem 3.7]).  For any finite-dimensional k-algebra A, there is
a finite quiver Q, i.e., the vertex set and arrow set are finite sets, and an admissible ideal” T of kQ
such that the module category of A is equivalent to that of kQ/Z. Furthermore, if A is basic, we have
A>kQ/T.

Remark 2.8. We provide a remark for the isomorphism A = kQ/Z given in Theorem 2.7 here: the
existence of the quiver Q is unique if A is basic and 7 is admissible; the definition of admissible can be
found in [2, Chapter I, Subsection 1.6].

2.2.2  Topologies on k-algebras

Now we recall the topologies of k-algebras A (not necessarily basic or finite-dimensional). Let i(A) be the
set of all ideals of A, which forms a partially ordered set i(A) = (i(A4), =) with the partial order defined
by the inclusion, i.e., for any A;, Ay € i(A), we have

Ay = Ay if and only if Ay C As.

Notice that A has two trivial ideal 0 and A, and then we have i(A) # @ and have a descending chain
Ag=A > A1 =0 Ay =0 = ---. Thus, there is at least one descending chain of ideals. Let J be a
descending chain

A=A A1 = Ay = -+

of ideals. We say that a subset U of A satisfies the N-condition, if it meets the following criteria:
(N1) U contains the zero of A;

1) An admissible ideal Z of kQ is an ideal such that RS CTC R2Q holds for some m > 2 (see [2, Chapter II, Subsection II.1,
p-53]), where RtQ is the ideal of kQ generated by all paths of length greater than or equal to t.
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(N2) there exists some j € N such that U D A;.
Furthermore, we denote by 44 (0) the set of all subsets satisfying the N-condition, which forms a partially
ordered set with the partial order < given by C.

Lemma 2.9.  The set 4(0) 4s a topology defined on A; in other words, it satisfies the following four
conditions:

(1) For any U € 44(0), we have 0 € U.

(2) Ua(0) is closed under finite intersection, i.e., for any Uy, ..., U € U4(0), we have

() Uj € 4a(0).

1<t

(3) If U € Uu(0) and U CV C A, then V € $14(0).
(4) If U € 84 (0), then there is a set V € U4(0) such that V CU and U —y:={u—y|u € U} € LUy (0)
forallyeV.

Proof.  First, (1) is trivial by the condition (N1).

Second, for arbitrary two subset U; and Us, there are A;, and Aj, such that U; 2 A;, and Uy D A4j,.

Then Uy NUz 2 Aj, N Aj,. By the definition of A;, we have Aj, N Aj, = Aningj, ju)» 1€,
U1 NU2 2 Anin{jy jo} -
Since 0 € Uy N Uy trivially, we have U; N U; € 44(0). By induction, we obtain (2).

Third, assume U € $4(0) and U C V C A. By the definition of #14(0), we have 0 € U and U 2 A, for
some j. Thus, 0 € V and V O A;, so we obtain (3).

Finally, for each U € $44(0), we can find V in the following way. There exists an index j such that
UZ2Aj1andU2DA; DA 2. Take V=, 4; (= A, CU). For any y € V, we have (N1), ie.,
O=y—yeU—-y={u—y|ueU}byyeV CU, and have (N2) since a = (a + y) — y holds for any
a €V and a+y € V. Then we obtain U — y € $14(0), i.e., (4) holds. O

Definition 2.10. The set 44(0) is called the J-topology of A. Furthermore, we can define open sets
on A.
(1) The subset in 4(0) is called a neighborhood of 0. For any U € 44(0), the union (J;, V of all
subsets V' given in Lemma 2.9(4) is called the interior of U and denote | J,, V by U°.
(2) A neighborhood U is called open if U = U°. An open set O defined on A is one of the following
cases:
(a) O equals either A or (;
(b) O is the intersection of a finite number of open neighborhoods;
(c) O is the union of any number of open neighborhoods.
It induces the definitions of continuous homomorphisms of k-algebras.
Definition 2.11. Let A; and As be two k-algebras, and let J; and J2 be two descending chains of
ideals in Ay and As, respectively. Let 4, (0) and L4, (0) be the Ji-topology and Ja-topology given by
J1 and 7, respectively. A homomorphism h : Ay — A, of k-algebras is called continuous if the preimage
of an arbitrary open set on As is an open set on Aj.
Lemma 2.12. Let A be a k-algebra with a J-topology. Then the addition + : A x A — A and each
k-linear transformation hy : A — A defined by a — Aa (A € A) are continuous.
Proof. It is obvious that idy = hy : A — A via a — a is continuous. The continuity of h) can be given
by id 4.
Let J be
A=Ag = Ay = Ay =

For any open neighborhood U of 0, its preimage is

+_1(U):{($1,$2)|5E1+$2 EU} =: (7
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We need to show that U € 804, 4((0,0)) and U° = U in the case for A x A being a k-algebra, where the
descending chain, i.e., Jaxa, of A x A is induced by J as follows:

AXA:AOXAOEAlXAliAQXAQE'H,

First of all, the zero element of A x A is (0,0) which satisfies 0 € U and 040 = 0 € U, and then (0,0) € U.
Secondly, since U is a neighborhood of 0, there exists an ideal A; of J such that U D A;. Then for
any 1, %2 € Aj, we have z1 +x2 € A; C U, e, (z1,22) € U. Tt follows that AjxA; C U. We obtain
U € Hax4((0,0)). _ _
Thirdly, for any (y1,y2) € U, we have y1 + y2 € U by the definition of U, and then

(0,0) = (Y1 — y1,52 — ¥2) € U — (y1,90) = {(x1 — y1, 2 — y2) | 21 + 22 € U},

i.e., (N1) holds. On the other hand, for any (21,22) € A; x A;, we have

(21,22) = ((z1 +y1) — y1, (22 + y2) — y2).

Note that z1 +y1 + 22 +y2 = (y1 + y2) + (21 + 22) is an element lying in U + (21 + 22). Since U is open,
we have

U+ (z1+22)=U°—(—(21+22)) ={u+ (21 + 22) |ue U} € Us(0)
by Lemma 2.9(4) and Definition 2.10, i.e., U + (21 + 22) is a set satisfying Lemma 2.9(4). Then

U° = U VOU+ (21 + 22),

VCU, V satisfies

Lemma 2.9(4)
and so we obtain (y1+y2)+(21+22) € U+(21+22) CU®, ie., (y1+y2)+(21+22) € U. Thus, (21,22) € U.
It follows that A; x A; C U — (y1,y2), and thus (N2) holds. Therefore, U — (y1,y2) € 44x4((0,0)). In
summary, we have that U satisfies Lemma 2.9(4), and so by Definition 2.10, it is clear that U° =U. O

Definition 2.13 (See [3, Chapter 10, p.101]). A topological k-algebra is a k-algebra equipped with
a topology such that the addition + : A x A — A and each k-linear transformation —h; : A — A via
a — —a are continuous.

The following result is a consequence of Lemma 2.12.

Proposition 2.14.  Given an arbitrary k-algebra A and its descending chain J of ideals, then A
becomes a topological k-algebra with the J-topology $14(0).

In this paper, we refer to A as a J-topological k-algebra.

2.2.3  Completions induced by J-topologies

Assume that | -| : k — R>? is a norm defined on the field k in this subsection, i.e., | -| is a map satisfying

(1) |k] = 0 if and only if k = 0;

(2) |k1k2| = |k1]||k2| holds for all kq, ko € k;

(3) the triangle inequality |k1 + k2| < |k1| + |k2| holds for all kq, ks € k.

Then {B, = {a € k | |a]| < r} | r € RT} induces a standard topology Ux(0) on k whose elements are
called the neighborhoods of 0 € k.

Let A be a J-topological k-algebra whose dimension is finite and let By = {b1,...,b,} be a basis of
A. Then, naturally, we can define the Cauchy sequence by the J-topology. More precisely, a sequence
{z;}ien in A is called a J-Cauchy sequence if for any U, lying in 44 (0), and containing some subset
o ub; of A with u; € U (0) (1 < i < n), there is m € N such that z, — 2, € U holds for all s, > m.
Two J-Cauchy sequences {z; };en and {y; }icn are called equivalent, denoted by {x;}ien ~ {¥i}ien, if for
any U € U4(0), there is an integer m € N such that x; — y; € U holds for all i > m. It is easy to see
that “~” is an equivalence relation. We use [{x;}ien] to denote the equivalence class containing {z; }ien,
and use €7 (A) to denote the set of all equivalence classes of J-Cauchy sequences. Then we have three
families of A-homomorphisms:
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(1) (wji : AJA; = A/A;)j>i, where all ¢j; are naturally induced by A; O Aj;

(2) (p; : €7(A) = AJA))ien, where pi(xo,...,%i—1, %, Tit1,...) = x; + A; (p; is called the i-th
projection);

(3) (ui : AJA; = €7(A))ien, where u;(a+4;) = (0,... ,161, a, 1—61, 0...) (u; is called the i-th injection).
Let X be the category whose object set is {A/A; | i € N}U{€7(A)} and the morphism set is the collection
of all A-homomorphisms as above. Then we obtain the following commutative diagram:

Uh

/
Pi \ (igj)T%‘i /Whj
N /
~N v
AJA;.
It follows from the above construction that the following proposition holds.

Proposition 2.15 (See [3, Chapter 10, p.103]).  Using the notations as above, we have
ImA/A; = €7 (A).

We write A = €7(A) and call it the completion of A. We say that A is complete if A=A In
particular, if A =k, then the descending chain J : Ag = k = A; = 0 induces a J-topology

$1x(0) = {the neighborhood of 0}

of k. In this case, the J-Cauchy sequence coincides with the usual Cauchy sequence.

Proposition 2.16. Let A be a basic finite-dimensional k-algebra and let J be the descending chain
Ao=A=rad’A = A; =radA = Ay =rad®A = ---.

Then A is complete (in the sense of J-topology) if and only if k is complete.

Proof. Let A be a basic finite-dimensional k-algebra. Then, by Theorem 2.7, there are a finite quiver
Q and an ideal 7 of kQ such that

A=kQ/T = Pk

leN

Thus, up to isomorphism, each element ¢ € A can be written as E?Zl kjg;, where n is the dimension of
A, k, € k and p, is a path on Q.

Assume that k is complete. Since A is finite-dimensional, we have rad' A = span, {Q, | i > {}. Thus,
radf™1 A = 0, where L = maxgeo., (), i-e.,

J=ArradA=rad?A= - =rad®A=0>=0>=---.

Let {z; = Z;.L:l kijp;}ien be a J-Cauchy sequence in A. Take

U= { Z ko ’ k,, lie in some neighborhood in le(O)} (2 rad“tt A =0).
Lp)=L

Then, there is N(U) € N such that

Ty — Ty = si — Kei)pi € ra olds for all s, > .
> (ksj — kij)p; € rad” A holds for all N(U)

j=1

Thus, ks; — ki; lies in some neighborhood in $4(0), and so for all ¢, {k;; }ien is a Cauchy sequence in k.
Then it is clear that A is complete.
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Conversely, if A is complete, we assume that k is not complete, and k is the completion of k. Then we
have a natural k-linear embedding ¢ : k — k sending k € k to {k;};en, where k; = ko = --- = k. Then
there is a Cauchy sequence {z; };en € k\e(k). Consider the sequence {z; - p}ien in A, where p € rad” A is
a path of length L. Then {z; - p}ien is a J-Cauchy sequence in A. However, we have {z; - p}ien € E\A
in this case, which contradicts that A is complete. O

2.3 The total order of k-algebras

Recall that a field k equipped with a total order < is an ordered field if it satisfies the following four
conditions:

(1) for any a,b € k, either a < b, b < a or a = b holds;

(2) if a X band b < ¢, then a < ¢;

(3)if a < b, then a +c <X b+ c for all ¢ € k;

(4) if a = b and 0 =< ¢, then ac < be.
In order to give the definition of integration defined on a finite-dimensional k-algebra A, we need to
assume that k is a field with the total order <. However, it is well known that k might not always
be an ordered field, as the case for k being the complex field C. Interestingly, for our purposes, the
existence of such a total order is not a prerequisite. We only require that the finite-dimensional k-algebra
involved in our study encompasses certain partially ordered subsets. Specifically, the subset 1,4 outlined
in Subsection 3.3 is sufficient. For the sake of simplicity, we assume that k is fully ordered, although this
assumption does not sacrifice generality. This simplification aids in our definition of integration within
the context of category theory.

Remark 2.17. We provide a remark to show that if k is totally ordered, then any finite-dimensional
k-algebra A can be endowed with a total order. Let By = {b; | 1 < ¢ < n} be a k-basis of A. If B, is
totally ordered (assuming b; < b; if and only if ¢ < j), then we can define a total order for A as follows.

Step 1.  For any two elements a,a’ € A, we define a <, o' if and only if p(a) < p(a’), where ¢ is a
map ¢ : A — RZ? (for example, ¢ is the norm || - ||, defined in Section 3).

Step 2.  Assumea =) .- kb; and @’ =" kib; (0 < m < n) such that k; = & holds for all i < m.

i=1"

If p(a) = p(a'), then we define a <, ¢’ if and only if k,,, < kJ,.

3 Normed k-algebras

In this section, let 4 be a finite-dimensional k-algebra with a k-basis By = {b; | 1 < ¢ < n}. Then any
element a € A is of the form a = > | k;b;. In this section, we define some algebraic structures on A.

3.1 Norms of k-algebras

For a map n: By — R* and any p > 1, we have || - ||, : 4 — R>? as the function

Zn: kib;
i=1

Proposition 3.1.  Any triple (A,n, || - ||p) (= 4 for short) is a normed k-vector space.

Proof.  First of all, for any a = Y1, k;b; € A, we have [ja||, > 0 because n(b;) > 0 and |k;| > 0
(1 < i< n). In particular, if ||a||, = 0, then

= (k1 |n(00)P + - + (knln(b,))?)7. (3.1)

p

lall, =

(k[0 (01))? + - - + ([kn[n(bn))” = 0.

Since |k;|n(b;) > 0 and n(b;) > 0 hold for all 1 < ¢ < n, we obtain |k;|n(b;) = 0, and so k; = 0. Thus,
a =" ,0b; =0. Then it is easy to see that ||a||, = 0 if and only if a = 0.
Next, for any k € k and a = > | k;b; € A, we have

Hka”p = ||k(k1by + -+ + knbn)Hp
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_ (iﬂkk In(b; ) <Z|k|p ([Kiln (bs )

n 1

e (Zukm(bw) " = k|- llall

i=1

Finally, we prove the triangle inequality ||a + &', < |la|l, + ||@’||, for arbitrary two elements a =
i kb and o/ =37 | klb;. It can be induced by the discrete Minkowski inequality

(Zn:m?y, + (iyfy > (i(xri-yi)p);

=1 =1
as follows:
n 1 n %
lally + lla’ll, = ( (kb ) (Z (K (b )
=1 =1
n v
> (Zak n(b:) + kén(bM’)
=1
n 1
_ (qu () ) ~ Jla+dll,
=1
Therefore, (4,n,] -||p) is a normed space. O

Definition 3.2. A normed k-algebra is a triple (A,n,|| - ||,), where n : By — R* and || - ||, : 4 — R>°
are called the normed basis function and norm of A, respectively.

3.2 Completions of normed k-algebras
We can define open neighborhoods B(0,7) of 0 for any normed k-algebra (A, n, || - ||,) by
B0,r) :=={aec A |all, <7}

Let 45(0) be the class of all subsets U of A satisfying the following conditions:

(1) U is the intersection of a finite number of B(0,r).

(2) U is the union of any number of B(0,r).
Then $45(0) is a topology defined on A called the || - ||,-topology, and we can define Cauchy sequences
called || - ||,-Cauchy sequences by the above topology.

Recall that A has a J-topology 44(0) given by the descending chain

A =rad’4 = rad*A = rad®A = --- .
Thus, we obtain two completions 42 and A by the Il 1lp- -topology and the J-topology, respectively. The

following lemma establishes the relation between AB and 4 in the case of k being complete.

Proposition 3.3.  Assume that k is complete. Let A = (A,n,| -||,) be an n-dimensional normed
k-algebra with the J-topology $44(0) given by A = rad’A = rad'A = rad®A = --- (|| - ||, is the norm
defined on A given in Proposition 3.1). Then AB = 4.

Proof.  Similar to Proposition 2.16, we can show that AB =4 (i.e., A is complete) if and only if k =k.
By using Proposmon 2.16 again, we have that A= Aif and only if k = k. Then k = k if and only if
AB = A=A Equivalently,

T \B n o
B _ (Zka) =Y kb= kb = 4.
=1 =1 =1

This completes the proof. O
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Remark 3.4. (1) Note that the norms defined on A is not unique. In Section 4, we introduce normed
A-modules N over any finite-dimensional normed k-algebra A. In this case, we need a homomorphism
7 : A — A’ between two finite-dimensional normed k-algebras A and A’, and the norms || - || and || - ||’
respectively defined on 4 and A’ may not necessarily be of the form | - ||,.

(2) If A = k and n(1) = 1, then the norm | - ||, given in Proposition 3.1 is the norm | - |, i.e.,

1
lall, = (la]?)> = lal.
3.3 Elementary simple functions

Let T be a subset of k. Denote I4 by the subset

{ i kib;
i=1

of A. A function defined on 14 is a map f : Iy — k. Since (4,n,| - ||,) is a normed space, 4 is also a
topological space induced by the norm || - ||,, and so is I,. Thus, we can define an open set for every
subset of A, including I4. The function f is said to be continuous if the preimage of any open subset of

n

kieH}MHHx{b}

=1

k is an open set of I 4.

Let I := [a, b]x be a fully ordered subset of k whose minimal element and maximal element are a and
b, respectively. In our paper, we assume that k and [a,b]x are infinite sets and consider only the case
for T = [a,b]x with @ < b such that there exists an element & with a < £ < b and the order-preserving
bijections kg : I — [a,&]x and kp : T — [, b]x exist (for example, the case of the cardinal number of T is
either Ny or Nyp).

An elementary simple function on I, is a finite sum Zle kily,, where

(1 )forany1<z t, ki €k;
(2) I; = I;1 x -+ X Ijy, and for any 1 < j < n, I;; is a subset of I which is one of the following forms:
(a) (cij,d; )k—{k€k|cw<k<dm}
(b) [eijs dij) :={k €k | cij 2 k < di;},
(c) (cij dijli == {k € k| cij <k =X di;},

(d) [esj, dijli == {k € k| cij =k X dij},

where a < ¢;; < di; = b;

(3) 1y, is the function I; — {1} such that I; N I; = @ holds for all 1 < i #j <t
We denote by S(I4) the set of all elementary simple functions. Then S(I4) is a k-vector space, and S(I4)
induces the direct sum S(I;)®2" whose element can be seen as the sequence

{f@l,_._,gn,) (Zkb)} — fe Ea),
i=1 (81,.y0n)E{a,b} x---x{a,b}

o, kib; is written as (ki,...,ky) since {by | 1 < i < n} = By is the k-basis of A. Then we can
characterize S(I4) together with two further pieces of data: the function 1y, : Ty — {1} and the map

Ye : S(I4) P2 — S(Ia), (3.2)
called the juztaposition map, sending f to the function

7§(f)(kla7kn) = Z 1%51(H)><"'><H5n(]1) 'f(él,.., (H(Sl (kl) (kn)) (k'l %537]@77.7&5)3

(81,.0,0n)

where £ is an element with a < £ < b such that the order-preserving bijections
Ko : 1= [a, &k and &y : 1 — [€, bk

exist.
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Example 3.5. (1) Take A be the k-algebra whose dimension is 2, and assume that {b;, b2} is a basis
of A. Then 14 2 [a, blxb1 X [a, blxkbs. For any element

= Flaa) fib.a)s fan) fop) € S,

where f(5, 5,) : I4 — k is a function in S(I4) sending each k1by 4 k2b2 to the element f(5, s5,)(k1, k2) in k,
and (617 62) € {CL, b} X {a'a b} = {(CL, Cl), (ba Cl), (CL, b)7 (ba b)}a Ye juxtaposes f(a,a)y f(b,a)a .f(a,b) and f(b,b) into

a new function

Ve(faays Fvays Feamys fony) (B1ok2) = Fraay (ks ko) + Fipay (k1 k2) + Framy (k1o ko) + frop) (K1, k2)

as shown in Figure 1, where

Fiaa)(B1.k2) = Lo ey () * Flanay (gt (k1) kgt (k2)),
Foay (k1 k2) = L px(ae)  Fvay (55 (k1) kgt (k2)),
Fiawy (k1.k2) = Liagyien) * Faw) (5a (K1), iyt (k2)),
Fom (k1k2) = Lienwien) - o) (5 k), 5y (ko))

(2) This example is used to establish the relation between Banach spaces and Lebesgue intersections
n [29]. Take k =R, I =[0,1], £ = 1, 4 = R and the order-preserving bijections ro : I = [0,1] = k =R
and k1 : 1= [0,1] — k = R are given by  ~— £ and 132, respectively. Then S(Ig) = S([0, 1]) is a normed
space together with two further pieces of data: the function 1y ) : [0,1] — {1} and the juxtaposition

map

71 :5([0,1]) @ S([0,1]) — S([0,1])
b b
S
f(a,b)
Rp
aa R b aa b
b
®
S S
Fdlay g S(14)
a b
a (o
b Ra b Rp
I{(I ’{a
f(a.a) = Jo.0
S(I4)®*
aa b aa b

Figure 1 (Color online) The juxtaposition map
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sending (f1, f2) to the following function:
Y1 (f1s f2) (@) = Ligo.0)) - f1(kg " (2)) + Ly o1y - 1k (2)

R22),  wer([0,1) = [o, ;)

F2(20—1), z€r((0,1])= (;1}

Lemma 3.6.  The map ¢ is a k-linear map.

Proof. Take a,b € k, f,g € S(I4) and let (k;);, 1 and (6;); be the element (ky, ..., k,) in S(I,)%%",
the identity function Los, (M- xrs, (I) and the n-multiple (d; X - -+ X d,,), respectively. Then

velaf +bg)((k:)i) = Y 1+ (af +bg)s,), (55" (k:)):)
(63)i
=Y (1 afio), (55 (ki)i) + 1 byqs,), (55 (K:))i))
(6:):
=a Y 1 fion, (k5 (Ri))) +0 > 1 g,y (55 (Ki)):)
(i) (84)s

= ave(f)((ki)i) + bve(g)((Ki)i)-
Thus, v¢ is a k-linear map. O

4 Normed modules over k-algebras

Let I be a subset of the field k = (k, %) with totally ordered <. Then I is also a totally ordered set. For
simplicity, we denote by [z, y]k the set of all elements k € k with x < k <y, i.e.,

[,ylk ={kek|z =<k Sy}

In particular, if 2 = y then [z,y]x = {x} = {y} is a set containing only one element.
In this section, we introduce the category AorP, which is used to explore the categorification of
integration.

4.1 Norms of A-modules

Recall that a left A-module (= A-module for short) over a k-algebra A is a k-vector space V with a k-linear
map h : A — EndgV sending a to h,. Thus, h provides a right action A x V- — V, (a,v) — va := hy(v)
which satisfies the following properties:

(1) a(v+v") =av + av’ for any v,v’ € V and a € A;

(2) (a+ad)v=av+dvforany v € V and a,ad’ € 4;

(3) @’(av) = (a’a)v for any v € V and a,a’ € A;
(4) lv = v for any v € V;

(5) (ka)v = k(av) = a(kv) for any v € V, a € A and k € k.
Take A = A to be the normed k-algebra whose norm || - ||, : 4 — R™ given by (3.1), where the k-basis of
Ais By ={b; |1 <i<n=dimgA}.
Definition 4.1. Let 7 : A — k be a homomorphism between two normed k-algebras (4, || - ||,) and
(k,|-]). A 7-normed A-module is a A-module M with a norm || - || : M — R>? such that

llam|| = |7(a)| - ||m]| holds for all a € k and m € M. (4.1)

Thus, each normed A-module can be seen as a triple (M, h, || - ||) of the k-vector space M, the k-linear
map h : M — EndyM and a norm || - || : M — RZ°. For simplification, 7-normed modules are called
normed modules.
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The norms of A-modules yield the following fact.

Fact 4.2. (1) Note that || - ||, defined by (3.1) is the norm of A as a k-vector space. It is easy to see
that A is also a left A-module, called the reqular module, where the scalar multiplication is given by the
multiplication A x A — A, (a,z) — az of A as a finite-dimensional k-algebra. Thus, it is natural to ask
whether || -, is a norm of A as a A-module. Indeed, the norm of A as a finite-dimensional k-algebra may
not be equal to the norm || - || of A as a regular module. However, if A as the left A-module defined by

AxA— A, (a,z)— a*z:=7(a)z, (4.2)

where 7(a)z is defined by the scalar multiplication of A as the k-vector space g/, then for any = =
S kib; € A, we obtain

=

lax ], =

T(a)ékibi , = (§|T(a)ki|”n(bi)p)

~r@I( X o) = @il

To be more precise, A is a (A4, A)-bimodule with two norms, and A is a normed module satisfying
Definition 4.1 when it is considered as a module defined in (4.2).

(2) For any A-homomorphism f : M — N of two A-modules M and N, if M and N are normed
A-modules, i.e., M = (M, hp, || - ||amr) and N = (N, hy, || - ||n), then we have

[f(am)l[x = llaf(m)|n = [r(a)] - [|f(m)]~-

kO
A= .
k k
Then a k-basis of A is By = {E11, E21,Ea}, where E11 = (3 ), Ea1 = (9 9) and Eg = (§ 9). Take n to

be the map B4 — R defined by n(E11) = n(Es1) = n(Ex) = 1, and then for any element z = (1! 2 )

in A, we have ||z[|, = (|k11[" + |k21|? + |k22|p)%. There are three indecomposable A-modules up to

A-isomorphisms:
k 0 0k 00
P(1) = = (") pey=(07).
kO 0k 0k

and the cokernel coker (P(2) — P(1)-(9})). Then each A-module M is isomorphic to the direct sum
P(1)% @ P(2)%2 @ (P(1)/P(2))®" for some ti,t2,t3 € N. Assume that M = (M, hyy, || - ||a) and
N = (N,hn,| - ||n) are two normed A-modules. Then, naturally, M & N is also a A-module, where the
left A-action is the map

Example 4.3. Let

ha O

hM@hN:Z(O ):AXM@N—)M@N

hn

which sends (a, (7)) to (" h(;v () = (EZ“Nl)):((Z)‘)) = (™). Furthermore, we can use the 7-norms of M

and N, i.e., || -|lar and || - || v, to define a 7-norm || - | prgn of M & N by
I(m,m)llaren = (kI(ImlG, + Inll%))7  for given k € k\{0}.
Then we have
la(m, m)lasen = (EI(lamllf, + llan3))7 = (7@ Plmlf, + (@) [n]R)?
= [7(@)] (K|l + [nl8)* = [7(@)][[(m, 7] aren

for any a € A.
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Example 4.4. The quiver of the k-algebra A given in Example 4.3 is
[0
Q=1—2.
By representation theory, all A-modules M can be represented by
Pa
Ml e MQ,

where M; and M are two k-vector spaces and ¢, is a k-linear map. Indeed, the identity element of A is
E = Eq 1+ Eq, where {E11,E5,} is the complete set of primitive orthogonal idempotents. Thus, M, as a
k-vector space, has a decomposition M = E11 M @ E3;M (because E11E5; = 0 yields E1; MNE9M = 0).
For any a = k11E11 + kooFEos + ko1 Eo1 and m € M, we have

am = (k11E11 + koaFEos + ko1 E21 ) (E11m + Eaam)
= knE1(E1im) + kaaEa(Eaam) + ka1 Bz (E11m)
= k11 (hm) gy, (B1im) + kaz(har) Bay (B22m) + ko1 (ha) Eo, (B11m)
= (ha)Ey, (k11E1im) + (har) koo Eon (B22m) + (har) B,y (K1 E1im), (4.3)

where

(a) has + A — EndgM is a homomorphism of k-algebras sending a to (has)a, which satisfies 15, =
(ha)E = (hat)Eyy + (hat)Eos

() (ha)E,; = 1E,m (i =1,2);

(¢) (har)Ey, : BE1aM — E33M is a k-linear map (this is equivalent to (4.3)).
Therefore, we obtain that the representation corresponding to M = E11M & Eoo M is

E21
E11M e EQQM.

Generally,

My — s M,

corresponds to the module M; & My, where the A-action A x My & My — M, & M is defined by
Eqi1(my,ma) = (m1,0), Esa(mi,me) = (0,m2) and Ei2(mi,ma) = (0,04(m1)). Without loss of
generality, for any representation

Pa

M1 e M2
of Q, we assume that M; = k% My, = k%2 and ¢, € Mats, s, (k) (up to A-isomorphism), and
for any ¢ = 1,2, M; is a normed space equipping with the norm || - ||, : M; = k®% — R* sending
m; = (Mij)1< <t 1O (23:1 |m;;|?)». Then we can define a norm || - || s, enm, by

1
[(m1, m2) s ear, = (KI([mallhy, + lmally,)) 7,

where k is a given element in k\{0}. The direct sum @ of k-vector spaces is the p powers of the norm
preserving in the case for k = 1, i.e., ||(ml,7712)||§\’/[1@M2 = ||m1||§\’/[1 + ||m2||ﬁ/12. Furthermore, if || - | s,
and || - ||a, are 7-norms of M; and Ma, respectively, then for any a € A, we have

3=

la(my, m2)llanens, = (Ikl(lamallf;, + llamz|f,,))
(1l (@)Plmallhy, + ()P mallfy,))

(@)l (kI (llma i, + [Imalliy,)) "
.

)
IT(a)llla(ma, ma2)|| vy @, -

=
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4.2 Completions of normed A-modules

Let N = (N,h,|| - ||) be a normed A-module. In this subsection, we construct its completion. For us,
we only need the completion in the finite-dimensional k-algebra A case. Otherwise, there is at least one
A-module which is not complete, for example, A is a non-complete A-module. Therefore, we assume that
k is complete in this subsection by Propositions 2.16 and 3.3.

Similar to finite-dimensional k-algebras, we can define open neighborhoods B(0, ) of 0 for any normed
A-module N = (N, h, | -||) by

B(0,r):={z e N ||| <r}.

Let U%.(0) be the class of all subsets U of N satisfying the following conditions:

(1) U is the intersection of a finite number of B(0, r);

(2) U is the union of any number of B(0,r).
Then 4% (0) is a topology defined on N, and we can define the Cauchy sequence by the above topology.

Lemma 4.5. Let €*(N) be the set of all Cauchy sequences in the normed A-module N = (N, h, || - ).
Then €*(N) is a A-module.

Proof.  First of all, €(N) is a k-vector space whose addition and k-action are given by {z;}ien +

{vitien = {zi + vitien (V{zi}ien, {vitien € € (N)) and k{z;}ien = {kz;}ien (VK € k), respectively.
Furthermore, define

AXE(N) = C(N), (a,{zi}ien) = a-{zi}ien = {a - zi}ien,

where a - z; = ho(x;). Then €*(N) is a A-module. O

Two Cauchy sequences {x;};en and {y; }ien in N are called equivalent, denoted by {z;}ien ~ {¥yi}ien,
if for any U € {5 (0), there is r € N such that 25—z, € U holds for all s, > r. It is easy to see that “~”
is an equivalence relation. Let [{z;};cn] be the equivalent class of Cauchy sequences containing {x; };en
and let €(N) be the set of all equivalent classes. We naturally obtain a map

h:€(N)—= €(N), {xi}ien— [{xi}ien]-

We can show that €(N) is a A-module by using an argument similar to that in the proof of Lemma 4.5,
and further obtain Ker(h : €*(N) — €(N)) = [{0};en]. Thus we have

¢(N) = & (N)/[{0}ien]-

Then €(N) is complete, and we call it the completion of N. We use N to denote the completion C(N)
of N. The A-module N is a normed A-module, where the norm defined on N is induced by the norm
|- |l : N — R>° defined on N.

Definition 4.6.  Assume that A is complete. A normed A-module N is called a Banach A-module if
N = N (i.e., N is complete).

4.3 o-algebras and the elementary simple function set S (1)

Lemma 4.7. Take 7 to be a homomorphism of k-algebras 7 : A — k. Then the elementary simple
function set S(I14) with the above homomorphism 7, denoted by S;(14), is a A-module, where the A-action
A x S(I,) — SI4) is given by

t

t
(a,f = ZkilI@') —af = Zr(a)kilh.
i=1

i=1

Proof. Foralla € A, a' € A, kek, f=3 kil €S(Ix)and f' =3, ki1y € S(I4), the following
conditions are satisfied: ‘

(1) a(f + f') = af + af’ (trivial).
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(2) (a+d)f =af +df (trivial).
(3) (ad’)f = a(d’ f) because

(ad’ Zk 1y, —Z (aa’)k;17, —ZT(G)T(al)kilji

—az Nkilp, :a(a Zk 11) :ia(a’f).

(4) 1f = f (trivial).

(5) We have

o (ka)f = (ka) 3_; kily, = >, T(ka)(kily,);

o k(af) =k(ad ; kilr) = k) ;m(a)kily, =3 k(7(a)(kilr,));
o a(kf) =adl k(kily) =32 m(a)(k(kily,)).

Since 7 is a homomorphism of k-algebras, we have

7(ka)(kils,) = k(r(a)(kilr,)) = > 7(a)(k(kily,)) Z ki (

for all . Then (ka)f = k(af) = a(kf). O

Now, we introduce a norm for S, (I4) such that it is a normed A-module. To do this, we first recall the
definition of o-algebras. The main use of g-algebras is in the definition of measures. It is important in
mathematical analysis and probability theory. In mathematical analysis, it is the foundation for Lebesgue
integration, and in probability theory, it is interpreted as the collection of events that can be assigned
probabilities (see, for example, [15, p.12], [25, p.10] and [37, p. 8]).

Definition 4.8. Let S be a set and let P(S) be the set of all subsets of S, which is called the power
set of S. A o-algebra is a subset A of P(S) satisfying the following conditions:

(1) @ and S lie in A;

(2) for any X € A, the complement set X¢ := S\ X of X lies in A4;

(3) for any Xi,...,X,,... € A, the union J;-, X; is an element in A.
For a class C of some sets lying in P(S), we call A a o-algebra generated by C if A is the minimal o-algebra
containing C.

Let Yy be the o-algebra generated by {(a,b)x, [a,b)k, (a, blk, [a,b]x | @ < b}, and let p : B — RZ? be a
measure such that p({k}) = 0 holds for any k € k, i.e., u is a function satisfying the following conditions:

(1) p(0) = 0;

(2) (Uien Xi) = > sen #(Xi) holds for all sets X1, Xo, ... satisfying X; N X; =0 (i # j).

Any two functions f and g in S(I,) are called equivalent if

p({k = (k... kn) € kO | (k) # g(k)}) = 0.

The equivalent class containing f is written as [f]. Then we obtain an epimorphism
S(Ia) = S(Ia) == A{[f] | f € S(Ia)}

sending each function to its equivalent classes. It is easy to see that the kernel of the above epimorphism
is [0]. Then we have

S(Ix) = S(I4)/[0].
For simplification, we do not differentiate between two equivalent functions under the above isomorphism.
Therefore, we treat S(I4) and the quotient S(I4) equivalently.

Lemma 4.9. Let 7: A — k be a homomorphism between two k-algebras. Then the A-module S;(14)

with the map
t 1

t
Il Sr(Ma) > RZ, [ = kil v (leil“(””p)
=1 i=1

1s mormed.
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Proof.  Let f be an arbitrary function lying in S(I,). It is trivial that || f||, is non-negative. Let a be
an arbitrary element in A and assume f = Zle kilr,. We have

Jafl, = | Z ows], = (3 |T<a>kz—|m<1n>p)'lj
=1

~ il (3 kﬂu(lL.,)p)" — (@) [l

=1

which satisfies the formula (4.1). In particular, if || f||, = 0, then so is (|k;|u(L;))P = 0 for all 4, and we
have |k;| = 0 in the case for p(I;) # 0. If p(I;) = 0 holds for some j € J (C {1,2,...,t}), then we have

f= ZjEJ kj].]]. Clearly,
p({z € Ta | f(z) #0}) = u(l;)

JjedJ

ie., f =0 in treating S(I1) and the quotient S(I,) equivalently. Thus, ||f||, = 0 if and only if f = 0.
Next, we prove the triangle inequality. For two arbitrary functions f =}, k17, and g =}, 1,1 15, we
have

f+g—Zk111\U 1/+Zl1]\u It Z kl]mI'Jrll]mp) (4.4)
J LNI;#0

by I; N1, =0 (Vi#1) and I} NI =0 (Vj # 3). Then we can compute the norm of f + g by (4.4) as the
following formula:
1
If +9gllp =(R+ G+ B)r,

where
p
R=SIPu(1AUL )
i J

p
6= uPu(m\Un)
7 i
B= Y (b + P01y

LNI;#0

On the other hand, we have the following inequality by the discrete Minkowski inequality:

171+ gl = (Z |ki|pﬂ(fi)p>?’ e (S Il,)p>é
(Z"“'p o ) )1:6. s

Since by the definition of measure, u(X UY) = u(X) 4+ p(Y) holds for any X and Y with X NY =0, we
obtain

(X UY)P = p(X)P + p(Y)”, (4.6)
and then . )
M(Ii)p>ﬂ(li\uljl‘> +M<IiﬂUIJ'~> .

Thus,

i an(n ) e

7
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_ R+§i: ki|p< > ul ﬂf§)>p

J

(4.6)
> R+ Y |kl 0P, (4.7)
LNI;#0
Similarly,
SOILPWIN? =G+ Y Pul) N L)P. (4.8)
J NI #0

Notice that

Skl + > GPuI L)Y = > (kP + | (L0 )P = B,

and then (4.7)+(4.8) induces &” > R+ G + B. Thus, the triangle inequality ||f|l, + llgll, = IIf + gll»
holds. O

5 The categories .for? and &/”

Recall that a measure defined on ¥y is a countable additive function p : ¥ — RZ? with u(0) = 0.
Naturally, it induces a measure, still written as p, defined on some o-algebra of A such that for any
S, Libi (I; € B is measurable), the equation p(Y ., I;b;) = [, #(L;) holds.

Let dimg A = n, and let N be a normed A-module equipped with two additional pieces of data: an
element v € N such that |lv|| < u(I4), and a continuous A-homomorphism & : N®»2" — N. Here, @,
denotes the direct sum of 2" normed A-modules X1, ..., Xon with the norm defined as follows:

2m n 2" 1
I p
-1y p Xi = R, (21,22, 220) = ((“”) > ||37i|p> :
i=1 1(Ia) i1
5.1 The categories .forP and /"

Let A0rP be a class of triples which are of the form (N,v,d), where N is a normed A-module, v € N
is an element with [jv]|, < p(I4) and § : N¥»2" — N is a A-homomorphism satisfying §(v,v,...,v) = v
such that for any Cauchy sequence {x;};cy € N®»2" = N®»2" | the commutativity

limd (;) = 6 (Jima;) (5.1)

of the inverse limit and the A-homomorphism holds. For any two triples (N, v,d) and (N’/,v’,4") in Aor?,
we define the morphism (N,v,d) — (N',v',d’) to be the A-homomorphism 6 : N — N’ with 0(v) = o/
such that the diagram

n B
N®»2 N
0
0692” = T . 0
0
2n inNIEBPQ" N’
5

commutes, i.e., for any (v1,...,van) € N®2" 0(5(vy,...,van)) = &' (0(v1),...,0(van)). Then it is easy
to check that Aor? is a category.



594 Liu Y-Z et al. Sci China Math  March 2026 Vol. 69 No.3

Lemma 5.1. Let

(1) € be an element in I = [a, bk with a < & < b such that the order-preserving bijections K, : 1 — [a, £]k
and kp : 1 — [€,b]y exist;

(2) 1 be the identity function 1y, : Iy — {1};

(3) e be the map given in (3.2);

(4) 7: A =k be the homomorphism of k-algebras given in Lemma 4.9.
Then the following statements hold:

(a) 7¢(1,1,...,1) =1;

(b) v¢ is a A-homomorphism.

First, we provide a remark for the above lemma.

Remark 5.2. Indeed, (S-(I4),1,7¢) is an object in the category .#or?. However, Lemma 5.1 points

out that v¢(1,1,...,1) = 1 and 7¢ is a A-homomorphism. Thus, we need to show that the commutativity

of the inverse limit and ~y, holds. We prove this result in the following content, as shown in Lemma 5.5.
Next, we prove Lemma 5.1.

Proof of Lemma 5.1.  (a) We have that S;(I4) is a normed A-module by Lemma 4.9, and ~ is a k-linear
map by Lemma 3.6. The formula ¢(1,...,1) = 1 can be directly induced by the definition of .

(b) Take A € A, f € S(I) and let (k;);, 1 and (8;); be an arbitrary element (k1,...,k,) in S(I,)®2",
the identity function Los, (Mx-xrs, (I) and the n-multiple (§; X - -+ X d,), respectively. Then we have

YeA- P)((B)i) =D 1 (7N Fs, (55 (Ri):)
(64):
= T(AN)ye(f)((ki);) (similar to Lemma 3.6)

=X 7e(/)((Ri)i)-
Thus ~¢ is a A-homomorphism. O

Let o7 denote a class of triples which are of the form (.7/\7' ,U, 5A), where N is a Banach A-module (see
Definition 4.6), v € N is an element with |Jv| < u(I4) and § : N®2" — N is a A-homomorphism
satisfying (v, v,...,v) = v. Obviously, &P is a full subcategory of AorP.

5.2 The triple (S-(I4),1,7¢)

Let (N,v,d) be an object in Aor? and N be the completion of the A-module N. Then ]V, as a k-
vector space, is a Banach space which is a Banach A-module. In addition, naturally, we obtain the
A-homomorphism

5:N®?2" 4 N

induced by the A-homomorphism §. Furthermore, we have that (N LU, g) is also an object in AorP, and
there is a naturally embedding morphism

emb : (N,v,8) < (N,v,0)

which is induced by N C N.

Notation 5.3. Keep the notations £ =: {11, Kq, kb, 1, V¢ and 7 as in Lemma 5.1. Then &;; divides
I =: IV into two subsets [a, &), =: IMD and [€11, bl =: 112, Next, let &30 = £11 (= £), and denote by
&1 and &o3 the two elements in T4 such that

0 0 < &1 = Raka(b) = Kakp(a) = Kpka(a) = Ka(€11) < E22;

o £on < Loz = Kpkp(a) = Kpka(b) = Kpka(b) = Kp(&11) < b.
Then I is divided into four subsets, which are of the form I **1) = [£y, & 11]k (0 < t < 3) by
a = €0 < Ea1 < Ea9 < €3 < £94 = b. Repeating the above step ¢ times, we obtain a sequence of 2! — 1
elements lying in I 4:

a=2¢&0 <&1 <&2 < <& =0,
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all 2! subsets which are of the form I(* **1) = [¢, & s11]k, and 2! order-preserving bijections rg,, :

H(t s+1) — H(Ol).

For any family of subsets (I“"));<;<,, (1 < v; < 2%), we denote by 1(,,,,); the function

n
1, z€ I_I]I(“i”i)7
i=1

0, otherwise,

1(uw’i)i = 1]1A|1—HL:1 T(uiv) * HA — {0, 1}, €T

where I(%ivi) 22 [(wivi) 5 {p;} C T4 holds for all i and By = {b; | 1 < i < n} is the k-basis of A.
Let E, be the set of all step functions constant on each of [, I(%¥) (1 < v; < 2% for all i), i.e.,
every step function in E,, is of the form

D Fuon Lo

(uivi)i

where each k(,,.,), lies in k, the number of summands is (2“)" = 2", and each (u;v;); corresponds to the
Cartesian product [}, I(#v) Then it is easy to check that each E, is a normed submodule of S(I4),
and E, C E,4; because each step function constant on each of I(“%) is equivalent to a step function
constant on each of I(**1 v) Thus,

o —

k~EyCE C---CE C---CS(Iy) CS(Iy).

Moreover, for any 1(4?) = [€u v—1, &uvk, Wwe have two cases (i) £y < € and (ii) € < &, ,—1 by the definition
of E,. Therefore, we obtain a map

a, 1) lies in the case (i),

A1) |y e N} = {a,b}, 1) —
pid | b et} b, 1) lies in the case (ii).

Now we use the above map to prove the following lemma.
Lemma 5.4.  The map ¢ : S(I4)®»2" — S(I4) induces the following k-linear map:
Vet EE?" =5 Bupa

which is an isomorphism of A-modules.

Proof.  The k-vector space E, is a A-module, where A x E,, — F, is defined by

<a,f;1~11i> r—>a~f:;'r(a)-11i.

Then it is easy to see that 7¢ is a A-homomorphism. Since Ker(ye¢) = 0, we have that v, is injective.
Next, we prove that it is also surjective.
Any step function f :k®" — k lying in E, 1 can be written as

flhy, o kn) = Y fi= > (1)

(uivi)i (w1,...,.wn)E{a,b} X+ x{a,b}
where
L4 fz = k(ulvl)ll(ulvl)lv
[ ]
f(wl,...,wn)(kla"~7kn) = Z fia

7 p (1)) = (w1, own)

and thus the number of all summands of it is (2*)" = 2"";
e the number of all summands of Z(W17~~-,wn,)e{a7b}><"'X{a,b} S, 18 2™ (thus the number of all
summands of 37, fi is 24" - 2" = g(utt)n),
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Then
f(wl ..... w,,,)(kh ceey kn) = f(wl,...,wn)("{';ll(kl)v ceey K;:(kn)) S Eua

and e sends { f(w, .. wn) Fwrswn)e{ab} xx{a,p} t0 f by the definition of ¢ (see (3.2)). We obtain that
e is surjective. Therefore, v¢ is a A-isomorphism. O

By Lemma 5.4, the following result holds.

Lemma 5.5.  The commutativity of the inverse limit and the map 7 : S, (14)%r2" — S.(I4) induced by
the completion of S, (I4) holds, i.e., for any sequence {f;}ien+ in S, (I14)®r2", if its inverse limit exists,
then we have

Ve (imf;) = lim7e(fs).
Furthermore, (S-(I4),1,7¢) is an object in NorP.
Proof.  Since ¢ is a A-isomorphism, it is clear that 7 is also a A-isomorphism. Then, the commutativity

of the inverse limit and the map 7¢ holds. Thus, for any sequence {f;};en+ in S; (I4)®»2" | if its inverse

limit exists, then this inverse limit is also an element in S,(I,)®»?", and so

Ye(limf;) =Fe(limf,) £ lime (f;) = e (£:),

where # holds since 7 is a A-isomorphism (see Lemma 5.4). Therefore, by Lemma 5.1, (S;(I4),1,7e) is
an object in AorP. O

5.3 S, (I,) is a direct limit

Let norA be the category of normed A-modules and A-homomorphisms between them. Then it is easy
to check that all E, are objects in norA. Furthermore, for any u < v, we have a A-homomorphism
Yuv © By — E, which is induced by E, C E,. Thus we obtain a direct system ((E;)ien, (Yuv)ugov)
in norA over N. Let Ban(A) be the category of Banach A-modules and continuous A-homomorphisms
between them. Then Ban(A) is a full subcategory of nor(A), and so, naturally, we obtain a direct system
((Ei)ien, (Puv)ugw) in Ban(A) if A is a complete k-algebra.

The following lemma establishes the relation between E,, and S(I,).

Lemma 5.6. Let A be a complete k-algebra. Consider the category Ban(A) and take (o; : E; —

o — L —

S-(I4))ien, where every «; is the embedding given by E; C S, (I4). Then

Proof.  Let X be an arbitrary object in norA such that there is (f; : E; — X);en satisfying fip;; = f;

—

for all ¢ < j. Then we can find the A-homomorphism 6 : S.(I4) — X in the following way.

For any = € S;(I41), there exists a sequence {x}+cn in |J; F; such that {||z; — x|, }+ is a monotonically
decreasing sequence of positive real numbers. Then we have

@{Hlft —allpte =0

by Example 2.4 which induces limz; = x. Since a;, a; and ¢;; (Vi < j) are A-homomorphisms induced
by C (thus they are k-linear maps induced by C) and every z; has a preimage in some E,q), A4-
homomorphisms (f;)ien send {z;}sen to a sequence {fy ) (2¢)}ien in X. By the completeness of X,
lim f,,4)(2:) € X holds. Define

9(‘%') = @fu(t) (xt) = @f|Eu,(1)(xt) = I&Hf(xt)ﬂ
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where f is the map mEu — X induced by the direct limit of ((E;)ien, (¢uv)ugo)- Then one can check
that 6 is well-defined and is a A-homomorphism making the following diagram commute:

N
N

YN (ijj)i%j
\
N

Next, we show that the existence of 6 is unique. Assume that ¢’ is also a A-homomorphism with
0'a; = f; for all i. Note that all morphisms in Ban(A) are continuous, which ensure the commutativity

@ﬁ(mi) = ﬁ(l&n%) between the inverse limit and any morphism ¢ starting from ST(E) Then for any
T e m), taking the sequence {z¢}scn in |J; E; satisfying @xt = z, we have

0 (x) = 9’(@0@(&)) = im0’ (o (x¢)) = im fi(2¢) = lim6(ci(z1)) = Q(Lal(xt)) =0(z),

—

i.e., 8 = 0'. Therefore, by the definition of direct limits, we have lim F; = S-(Iy). O

6 The «/P-initial object in for?

Let C be a category. Recall that an object O in C is an initial object if for any object Y, we have that
Home (0, Y) contains only one morphism, i.e., there is a unique morphism O — Y in C. Obviously, if C
has initial objects, then the initial object is unique up to isomorphism (see [35, Chapter 5, Lemma 5.3]).
Let D be a full subcategory of C. An object C' € C is called a D-initial object if for any D € D, there is a
unique morphism h € Home(C, D) such that the diagram

DI

commutes, where D’ is an initial object in D and A’ is a morphism in D (see [35, p.216]). It is trivial
that an initial object in C is a C-initial object.

Let A be a complete k-algebra. In this section, we show that (ST(E), 1,7¢) is an «/P-initial object in
AorP. The proof is divided into two parts: (1) there is at least one morphism from (ST(EL 1,7¢) to any
object in &7/?; (2) the above morphism is unique.

6.1 The existence of morphism from (ST(E), 1,79¢)

L —

In this subsection, we show that Homg»((S-(I4),1,7¢), (V,v,0)) is not empty for every object (V,v,d)
in o/P.
Lemma 6.1.  For any object (V,v,6) € &P, we have

—

Hom g» ((S7 (L), 17375)7 (Viv,6)) # 0.

Proof.  For each u € N, consider the map 6, : £, — V as follows:
(i) Oy : Eg — V is a map induced by the k-linear map k — V sending 1 to v (note that Ey = k). Then
one can check that 6 is a A-homomorphism.
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(ii) @y41 is induced by 6,, through the composition

—1 n
Ve n 092 w0
Oui1 i= (Byp1 —— EP#? Vo2 V),

where the inverse Ve 1 of the map e is given in Lemma 5.4.
Notice that 'ygl(f) € B,y forany f € E, C E,41, and then for the case u = 0, we have that f = klg,
is a constant defined on Fy, and

01(f) = (68 (ve () = 6(B0(k1i,), B0(k1i,), - - -, bo(k1i,)) = kv,

i.e., 0 is an extension of fy. It yields 61(1p,) = v by 6y(1g,) = v (see (i)). Furthermore, we can check
that 6,41 is an extension of #,, and

0.(1g,) =v (Vu €N) (6.1)

\\

a1‘+1 u+1
Qlqy u+1
e
Eu+1

by induction, i.e., the diagram

commutes, where «; : F; — h_rr;El and oy; 1 By — B (i < j) are the embeddings induced by E; C liglEi
and E; C Ej, respectively. Then, for any ¢ < j, there is a unique A-homomorphism 6 such that the
diagram

commutes. By Lemma 5.6, we have that 6 : hglEl ~ S, (Ip) — V is a A-homomorphism in

Hom A(ST(E), V).
Next, we prove that 6 is a morphism in AforP. First of all, we have

6(1) = limf| 5, (15,) = limf((Lg,)) = limé,(15,) 22 limo = .

In the following, we show that the diagram

S, (L)% 2~ S (I,)
92" l 0 (6.2)
Ve — v
commutes. Notice that each f = (f1,..., fon) € S; (HA) can be seen as the inverse limit @fl of

some sequence {f; = (fis,..., fani) bien in Uyey Eq?” , where f;; € E,, (1 <j<2"), u; € N such that



Liu Y-Z et al. Sci China Math  March 2026 Vol. 69 No.3

for any ¢ < j, we have u; < u;. Thus, naturally, we need to consider the diagram

@, 2" Vel E??’Qn
Eulp Eul +1

/ zn &uﬂ\
9@2" ST\)@pQ" e S, (HA) | Ou,
\M l le

VEBpQ" M

—

where (ey, : By, — S;+(I4)) is the embedding induced by E,, C S, ( 4). Since

= lim O(ve (e (£2)))
= lim (eui+1(75|E®p2" () (eel?” = ewp17el pener)
= lim Ou, (vl goran (£1)) (e =0y,
=1lim §(057" (f3) (Ou,ve| poon = 0057
= lim §(09%" (e (£2))) (057" = 0%%"e3?")

= 5(6%%" (lim €%, (£2))) = 6(6%%" (f)) (by (5.1)),

the assertion follows.

6.2 The uniqueness of morphism from (ST(E), 1.9¢)

Now, we show that for any object (V,v,d) in &P, if the morphism in the category </? from (Sf(ﬁ)7 1

exists, then it is unique.
Lemma 6.2. Let (V,v,0) € &P be an object in o/P. If

—

Homﬂﬂ’((ST(HA)ﬂ 17:?5)7 (‘/7 v, 6)) # (Z)a

then Homgyp((ST(E), 1,7¢), (V,v,6)) contains a unique morphism.

Proof.  Let 6 and ¢’ be two A-homomorphisms from (S;(I4),1,7¢) to (V,v,6) in o/P. Then §(1) =

6’(1). Since 0 and 6’ are maps in 7P, the square

"/5\E3;2n

®p2"
Eup —_— Eu+1

(GlEuGIEu)®2nl \LeEuJA 79,‘Eu+1

Ve —— -y

commutes. Then for any f € E, 1, we have

OlEs = 0'1500) () = (00 Bls, = 0'5,)% 0 (el goon ) (),

ie., 0 Bui1 — o’ e, — ke
0'|g, : Eg — V are defined by 6y(1g,) = v, we have

Byt

(0|Eo - Hl‘Eo)(klEo) = k(9|E0(1E0) - HllEo(lEo)) = k(?) - U) =0.

Therefore, 0|g, — 0'|g, = 0 for all u € N by induction.

599

Te)

Considering the case for v = 0, since 0|g, and
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-

On the other hand, considering the embeddings e, : E,, — S;(I4) and ey, : B, = E, (v < v) induced
by C and the direct system
(BS Juer, (2" B = S, (L) )uew),

u

we have the following commutative diagram:

’ —
/ 0lp;—0"|g;=0

Since
lim B = (lim ) #0222 S, (1) %%,

there is a unique A-homomorphism ¢ : S, (I4)®»2" — V such that the diagram

commutes. Since (0 — 6")e$?" = 0|g, — 0’|, we know that the case for ¢ = 6 — ¢’ makes the above
diagram commute. On the other hand, the case for ¢ = 0 makes the above diagram commute. Thus
0—6"=0and 6 =06 O

6.3 The «/P-initial object in .forP

Lemma 6.3. Let C be a category and D be a subcategory of C, and let D' be an initial object in D. If
an object C' is a subobject of D' in C, then C is a D-initial object.

Proof.  For any object D in D, there is a unique morphism h’ € Homp(D’, D) since D’ is an initial
object in D. Let e be the embedding C — D’ obtained by C' being a subobject of D’. Then we obtain a
morphism h'e € Home(C, D). Next, we assume that hg is any morphism in Home(C, D) such that the

diagram
c—™ .p
i i
D/

commutes, where h{, is a morphism in D. Since D’ is an initial object in D, we have hj, = h/, and thus
ho = hie = h'e. O

Now, we can prove the following main result of this paper.

Theorem 6.4.  The triple (S;(I4),1,7¢) is an </P-initial object in AorP.
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L —

Proof.  For any object (V,v,d) in 7P, the existence of morphisms in Homg»((S;(I4),1,7¢), (V,v,0))
is proved in Lemma 6.1, and its uniqueness is proved in Lemma 6.2. Thus, the triple (ST(E), 1,7¢), as
an object in &7P, is an initial object in /7. It follows that (S-(I4),1,7¢) is an o/P-initial object in Afor?
by Lemma 6.3. O

We give a remark for Theorem 6.4.
Remark 6.5. For any object (V,v,0) in /P, there is a unique morphism
h: (S-,—(]IA), 1,’)/5) — (V, v, (5)

—

in Aor?, which can be extended to h : (S+(I4),1,7¢) — (V,v,6). In other words, if there exists a
morphism h making the diagram

(Sr (L), 1,79¢) ——> (V,0,8)

|

(ST(HA)7 17:)75)

commute, then the existence of h is guaranteed to be unique.

>)

7 The categorification of integration

Take k = (k, | - |, %) to be an extension of R and p = 1. Recall the symbols given in Notation 5.3, any
step function f in E, can be written as

f= Z k(“i“i)il(uivi)i'
(wivi)i
We define the map T, : E, — k by
(wiv4i)i i

(note that if all coefficients k(,,.,) are equal to 1, then T, (f) = p(Ey)).
Then the A-isomorphism < shown in Lemma 5.4 points out the following fact: there is a map my, :
k®r2" — k such that the diagram

e

I Eu+1
Ts};z"i lTqul (72)

k®»2" —k

-
EDr

commutes. Indeed, for the function fj = ﬁlh with k € k, we have
k k
Tu(fx :Tu<1]1 ) = ——Tu(1,) =k
=BGt i

by (7.1). Then for any k = (ky,...,kan) € k2" fro = (fu,, s frgn) € E?”TL is a preimage of k under
the k-linear map 792", We define j,, as follows:

M (k) = Tuir (e (Fr))-

It is easy to see that m, is a k-linear map. In particular, for the constant function 1p, given by the
measure (1) of T4, we obtain that f,(g,) is a preimage of u(I4) € k, and then

mU(M(HA)a s aM(]IA)) = Tu+1'7€(111/1’ ) 1]1/1) = Z L M(Hﬂ(uivi)> = M(H/l)'

(uivi);
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Lemma 7.1. Letk = (k,|-|,=<) be an extension of R. Then T, : E,, — k is a A-homomorphism.
Proof.  Note that k is a A-module given by

Axk—ok, (k)= A ki=7r(\k

For arbitrary two elements A1, A2 € A and arbitrary two functions f =3, kil;, and g =3, K1, € Ey,
we have

Tu(M-f+X-g) = Tu<z7’(>\1)ki1]i + ZT()\Q)kéllj’.)
J

%

=7\ (Zk11>+7>\2 (Zk’lp)

=7(M)Tu(f) + 7(A2)Tu(g)
=1 - Tu(f) + X2 - Tu(9).

This completes the proof. O

Lemma 7.2. Letk = (k,|-|, =) be an extension of R and let m,, be the k-linear map given in the
diagram (7.2). Then m,, is a A-homomorphism.

Proof.  We can prove that m,, is a A-homomorphism by using an argument similar to proving that T,
is a k-linear mapping as in Lemma 7.1. 0

Remark 7.3. Since g C F; C --- C E, C --- C S, (I4) C S, (I ) lﬂE“ we have that pu is
independent of . Thus, we can use m to present all maps m,, (u € N) because mg = m; = mg =

Proposition 7.4. Letk = (k, ||, <) be an extension of R. Then the triple (k, u(I4), m) is an object in
NorP. Furthermore, since A is complete, so isk. Then k®»" is a Banach A-module, and so (k, u(I4), m)
is an object in </P.

Proof. It follows from Lemmas 7.1 and 7.2 and Remark 7.3. O

The following proposition shows that T, satisfies the triangle inequality.

Proposition 7.5. Ifk = (k,|-|, =) is an extension of R, then for any f € E,, the following inequality
holds for all uw € N:

I Tu () < Tullf))- (7.3)

Proof.  Assume that f =3, k;1;, € E,, where I; NI; = () for all i # j. Then |f| =

step function in F,, and we have
)
=1, E |ki|11i

Tu(|f]) = <‘ Zk 1y,
- pkim(gmwi)
(I )| = mco

where (%) is given by I; N I; = 0. O

Theorem 7.6. Ifk = (k,|-|,=X) is an extension of R, then there exists a unique morphism

T: (ST(HA)vlu’Vﬁ) - (knu(]l/l)vm)
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in Hom _sor» ((S+ (1), 1, 7ve), (k, 1(Ia), m)) such that the diagram

(S- (L), 1,79¢) ———— (k, u(Ia), m)

gl /

—

(S+(Ia),1,%)

commutes, where T is the is the unique extension of T lying in Homdp((ST(E), 1.79), (k, u(Ia), m)).
Furthermore, T is given by the direct limit limT; : limE; — k.

Proof. Denote by o;; : E; — E; (1 < j) and o; : E; — @EZ the monomorphism induced by
E,CE; C hﬂEZ Then there is a unique morphism @Ti : h_n;EZ — k such that the diagram

—

commutes. By Lemma 5.6, we have h_H;EZ >~ S, (I4), and then h_n;Tl induces a morphism in &P from
(S (Ia),1,7) to (k, p(I4),m). Theorem 6.4 and Remark 6.5 show that limT; = Tand T = f|57(h). O

Definition 7.7. Let k be a field with the norm |- | : k — R?? and the total ordered <, and let

f : 14 — k be a function in S;(I4). We call that f is an integrable function on I,, and its integral,
denoted by (<7'!) fHA fdu, is defined as follows:

(o) [ fdui=T(5).
Ia
By using the limit h_H;TZ : h_H;EZ — k given in Theorem 7.6, we see that the formula (7.1),
Lemma 7.1 and Proposition 7.5 show that

(%1)/ ldp = p(ly),

Ix

(ﬂl)/(Al-f1+A2-fz)u=A1~(~<zfl) Pt o (@) [ fom Oy de € 4)

I Ix Ia

and
,;afl du| < ,@71 dpu,
‘( )/HAf/L‘<( )/HA|f|N

respectively.
In Subsection 10.1, we point out that Theorem 7.6 and Definition 7.7 provide a categorification of
Lebesgue integration.

8 Series expansions of functions

Set n := dimg A and define the n variables polynomial ring k[ X1, ..., Xn] (= k[X] for short) over k to
be the set of all N variables polynomial rings (N > n). Then k[X] is a left A-module whose left A-action
is defined as

A xKk[X] = Kk[X], (a,P(z)) v 7(a)P(z).
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8.1 Realizing power series expansions of functions as morphisms in .&/?

Take N = n. In this subsection, we define the map

-0 :wx] 5 ', P (@) [ PP (5.1)

Iy

where |P| is defined by the norm |- | : k — R>? defined on k and |P(X)| for any X € I, C A.
Lemma 8.1.  The polynomial ring k[ X| with the map (8.1) is a normed left A-module.

Proof.  Each polynomial can be seen as a function lying in ST(E) Then, by using the norm |- | : k —
R0, the map (8.1) induces a norm as required since ||a - P|| = ||7(a)P|| = |7(a)| - | P||. O

By using Lemma 8.1, we see that the Banach left A-module k[X], as the completion of k[X], provides
a triple (k[X], 1, 7}\@), which is an object of &/1. Thus, by Theorem 7.6, the following result holds.

Corollary 8.2 (Weierstrass approximation theorem).  There exists a unique morphism
Bpow © (S+(I), 1,7¢) = (K[X], 1, %)
in Hom 51 ((S+(Ia), 1,7¢), (]k/[)?], 1,7}|®)) such that the diagram

Epow

(S (1), L 7e) (k[X], 1, %]

Ci /
Epow

—

(ST(]IA)7 11'/7\5)

%)

—
commutes, where Epoy is the unique extension of Eyow lying in

Hom,y+ (8- (L), 1,3), (KX, 1, 7el ).
The above corollary shows that for any function f € ST(E), there exists a sequence {P;};cn of
polynomials such that

—

Epow(f) = ImP; € k[X] C k[[X]].
This formula is called a power series expansion of f.

Remark 8.3. In the case for N = 2n, if k[X] = k[Yj,Yj_l | 1 < j < nl, where X,, =Y, holds for any

1<u<n, and X,y = YJl holds for any 1 < v < n, then we can obtain the Laurent series of analytic
functions.
8.2 Realizing Fourier series expansions of functions as morphisms in &?

Consider the case for N = 2n and k = C in this subsection. Let A be the C-linear map

A : C[X] — Cl[et?™X] .= Cle*?™ X |1 < j < n]

induced by
2miX; f1 g g
X; O BASIS (8.2)
e 22X ifn4+ 1< < 2n,
and define the map
1
el > B o (@) [ 16 Prda)” (83
A



Liu Y-Z et al. Sci China Math  March 2026 Vol. 69 No.3 605

Lemma 8.4.  The C-linear map A is a A-isomorphism, and C[X] = C[e**™X] with the map (8.3) is
a normed left A-module.

Proof. It is trivial that A is a C-linear isomorphism by (8.2). Thus, the assertion that A is a A-
isomorphism follows from the fact that the formula

A(a-P)=A(r(a)P) =7(a) A (P) =a- A(P)
holds for any a € A. Furthermore, we can prove that the polynomial ring k[X] with the map (8.3) is a
normed left A-module by the way similar to that in Lemma 8.1. O

Next, by Lemma 8.4, we obtain that

((C[X]v 1, ’?\Elc[gﬁxﬂ = ((C[e:tQﬂ'iX]’ 1»%|C[@X])
is an object in &/P. Then the following corollary follows from Theorem 7.6.

Corollary 8.5.  There exists a unique morphism
Eron + (8-(10),1,7%6) = (CI=2X], 1, 2| o)

in Hom 5,1 ((S7(14), 1,7¢), (Cle®2m1X], 1,'75|C[e/-i2;x])) such that the diagram

E ou /\' A~
(S+(La), 1,7¢) ——= (Cle*"X], 1, Fe| i)

| _
Erou

—

(ST(HA)7 17/7\5)

—_—
commutes, where Epyy, is the unique extension of Egoy lying in

—

Hom g1 ((ST(]IA)7 1, ;7\5)7 ((C[ei}n'iX]? 1, %|C[e/ﬂ?x]))

—

The above corollary shows that for any function f € S,(I,), there exists a sequence {P;};en of
triangulated polynomials such that

Epou(f) = lmP; € Cle*2miX].
This formula is called a Fourier series expansion of f.

8.3 Stone-Weierstrass theorem in &P

Let Wy be a normed left A-module generated by some functions lying in S;(I,4) such that \/N'\o and

-

S-(I4), as left A-modules, are isomorphic preserving 1. For any u € N, define

W = Felwo (F) 1 = (fireons fon) e WL

Then we obtain a family of canonical embeddings

c c c c —

Wy W, W, - (€ 8-(Ia)),

which induced a direct limit
@Wu = W.
Lemma 8.6.  For any complete extension Wi of W, i.e., the Banach A-module satisfying W C Wy,
there exists a A-monomorphism o
Es_w:S:(Ia) - Wy

—

between two left A-modules S;(I4) and W such that Es_w (1) =1 holds in the case for 1 € W.
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Proof. _Since W; € W; € W for any i, j € N with i < j, we have W, C W; C W. On the other hand,
WCS., (]IA) yields W CS, (I4). Tt follows that

o — —

S, (1) 2 Wy C W, CW CS.(I).

Therefore, we get a A-isomorphism S, (]I 1) =W (= {7\\7) since the isomorphism S, (H 1) = W preserves 1.
The composition

— = c

S (1) W W,

is the desired A-monomorphism. O

Lemma 8.7.  There exists a A-homomorphism 7y : W?”Qn — W such that the diagram

®p2" 7

S (Ly) ~ >S.(Ia)

Eg?fzv l J{Esw

W?;ﬂ” . WT
Yet

commutes and Ye+(1,...,1) =1 holds.
Proof.  The composition J¢; := Es_w o 7¢ o (E$%y) " is the desired A-homomorphism. O

Corollary 8.8 (Stone-Weierstrass approximation theorem).  There exists a unique morphism

ES—W : (ST(HA)? 1775) — (W717§§\T)
in Hom 5,1 ((S+(I4),1,7¢), (W, 1,7¢1)) such that the diagram

Es_w
(ST(HA)a177£) :

=

—

(ST(HA)’ 17:}/\5)

(W, 1,7)

commutes, where Es_w is the unique extension of Es_w lying in Hom g ((S-(I4),1,7¢), (W, 1,7¢1)).

9 Differentiations

In this section, let /P satisfy A = k which is an extension of R, and take 7 = id, £ = % W= U,
I, =10,1], and £ = 5. In this case, the initial object of &/? is (S, 1,7%), where S = Sia ([0, 1)).

9.1 Realizing variable upper limit integration as a morphism in &'

We recall some works of Leinster [29, Section 2]. Let C.(]0,1]) be the set of all continuous functions
F :[0,1] — k such that F(0) = 0, with the sup norm

-1 Cu(0,1]) = RZ?, fes sup [f(2)].
z€[0,1]
Then the triple (C.([0,1]),id, ) of the k-module C.([0,1]), the identity function id(z) = =z, and the
k-homomorphism & : C, ([0, 1])®2 — C,(]0, 1]) defined by

1 1

§F1(2$), nggi,
K(Fl,FQ) = 1 1

§(F1(1)+F2(2x—1)), 3 <z<l,

is an object in /1. Then the following proposition, first proved by Meckes (see [29]), holds.
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Proposition 9.1 (See [29, Proposition 2.4]).  There exists a unique morphism

-

Tio s ¢ (8, 1,73) = (C([0,1]),1d, R)

in Hom g1 ((/S\, 1,71), (Cm]), id, R)) sending each function f € S to the variable upper limit integration
Fo) = (L) 2 fdp.

9.2 Realizing differentiation as a preimage of a morphism in &'

It follows from Proposition 9.1 that for any function F € Im(ﬁ07m]), there exists an element f € S such
that
(1) if F is a differentiable function (in the classical sense), then
dF
— = f holds for all z € [0,1];
dx
here, f is seen as a function in some equivalence class lying in §, and, strictly speaking, % is an element
lying in the equivalence class containing f;
(2) otherwise, there exists a function f such that

/0 F(z)¢(z)dpr, = — /f z)dpr,

holds for any differentiable function @ : [0,1] — k (in the classical sense) satisfying ¢(0) = ¢(1) = 0.
Thus, we can define the weak derivatives for functions lying in Im (7} 4) by using the preimage of the
k-homomorphism f[o 2] as follows.

Definition 9.2. All functions lying in the preimage T[o ]( ) of F € Im(T 0,2]) are called weak
dF

derivatives of F, and written T[o,x] (F(x)) as .
The following theorem shows /:chat we cannot define the weak derivatives of a function by using the
morphism in &1 starting with (S, 1,91).
Theorem 9.3. (1) A morphism in Homdl((g, l,ﬁ%), (N,v,0)) is zero if and only if v = 0.
(2) Furthermore, there is no morphism D in </ starting with (§

everywhere differentiable function f(x) to its weak derivative %,

Proof. (1) For any h € Homdl((/S\, 1,?%), (N,v,0)), the diagram

%) such that D sends any almost

~ 5~
S92 __ -8

|

commutes.

If v = 0, then h(1) = v =0, and the map 0 : S — N, f +— 0 is a k-homomorphism such that the above
diagram commutes. By using Hom g1 ((§7 1, ﬁé), (N,v,9d)) to be a set containing only one morphism (see
Theorem 6.4), we obtain h = 0.

Conversely, if h = 0, then by the definition of morphism in /', we have v = h(1) = 0.

(2) If there is an object (N,v,8) such that D : (S, 1,91) = (N,v,6) is a morphism in o/ sending
each almost everywhere differentiable function f(z) to its weak derivative %, then by the definition
of morphism in @', we have v = D(1) = g—; = 0. It follows from (1) that D = 0, which is a
contradiction. O
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9.3 Realizing differentiation as a morphism in «*

In this subsection, we provide a description of differentiation by another morphism in </!.

~

Consider the triple (S, id, %), where id : [0,1] — k,z — « is the function given in Subsection 9.1, and
% : S92 5 S is a k-homomorphism defined as

1

—F(22), 0<z<
R(Fy, Fy) = )

E(Fl(l) + F2(2x — 1)),

which is a natural extension of the k-homomorphism x (the definition of x is given in Subsection 9.1).
Lemma 9.4.  The triple (S,id,R) is an object in o/*.

Proof. It is clear that E sends (id, id) to id by using the definition of K. Now, let {(F1 n, F2n)}nen be
any Cauchy sequence in S®? whose limits is (Fy, Fz). We need to prove

@H(Fl,nvFZn) = H(Y&H(Fl,n7F2,n))~

Indeed, we have

DN |

1.

' il#mFLn(Qx), 0<z<
@K(Flm, F2,n) = 1
2
1
§F1(2x),
1

§(F2(1) + o (22 — 1)),

H(Fl, FQ)
H(@(Fl,szn))»

as required. 0

(F2,n(1) + ]-<i£1F2,n(2x - 1)),

VAN I

o
/N
8

I
N —
VAN
&
VAN
—_

Theorem 9.5.  There exists a morphism

D € Hom,1 ((S,id, %), (S,1,71))

1
2

in o/ sending each element f € S to its weak derivative.
Proof.  First of all, the diagram

S®2_~ . g

D®2l

S#2 . §
Y

D

-~

commutes since for any Fi (), Fa(z) € S, we have

1d
5%171(2%),

1d

5%(511(1) + Fa(22 - 1)),

1
fl(2m)7 nggg,

o
N
8
N
N | =

Do k(Fy, Fy) =

N | =
VA
S
VA
—

fa(22 — 1), <z <1
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=3(f1, f2) =7 o D*(Fy, F»),

where L Fj(z) = f;(z) and i € {1,2}. Moreover, it is obvious that D(id) = £id = 1, and thus D is a
morphism in o1, O

10 Applications and examples

10.1 Lebesgue integration

We assume the following assumption holds in this subsection.
Assumption 10.1. Take k =R, (4,<,] [l4) = (R, <, |- |r), Bz = {1} and n : Bg — {1} C RO,
Then dimR = 1, R is a normed R-algebra with the norm ||-||g = |-| : R — R>° sending each real number
7 to its absolute value |r|, and any normed R-module is a normed k-vector space. Take Ig = [0,1], £ = %,
ko(z) = £, k1(x) = ! and 7 = idg : R — R. Then any object (N, v,d) in AorP is a triple of a normed
k-module N = (N, hn, || - ||), an element v € N with ||v||; and the k-linear map § : N @; N — N, where
the norm || - || satisfies ||rz| = |[7(r)| - ||z|| = |r| - ||z|| for any r € A =R and z € N.

Under the above assumption, we have the following properties for for?.

(L1) The normed k-module S;(I4) = S1,([0,1]) (= S for short) is a k-vector space of all elementary
simple functions which are of the form

t
f = Z kil[wi,yi]a

where [z;,y;] N [x;,y;] = 0 for any i # j, and for any f(r),g(r) € S, it holds that

f(2r), 1<r<
71(f,9) =
9(27‘ - 1)7

by the definition of v¢ (see (3.2)).

(L2) &P is a full subcategory, (S, 1[071],7%) is an object in A0rP, but is not an object in «/P because
S is not complete.

(L3) Let S be the completion of S, and let Q% be the map S@:S — S induced by Vi Then (g, 1j0,11,7
is an object in &/P.

By Theorem 6.4, we obtain the following result directly.
Corollary 10.2.  The triple (§, 1[0’1],3%) is an /P-initial object in AorP.

)

1
2

~

Remark 10.3. It follows from Theorem 6.4 that (S, 1[0, 1],3%) is an initial object in «/P, and then
Corollary 10.2 holds. In [29], Leinster showed that the initial object in @/* is (LP([0,1]), 1(0,1,71). Then

we obtain LP([0,1]) 2 S by the uniqueness (up to isomorphism) of initial objects in arbitrary categories.

Consider the triple (R, 1,m) of the normed R-module R, the constant function and the map

m:R@, R =R
sending (z,y) to 2(z 4+ y). Then (R,1,m) is an object in &/, and there is a family of R-linear maps
(L; : E; = k);en such that the diagram

N
L@y By —— FEi

(2] 2

N

commutes, where E; is the set of all step function constants on each (t;l , 21), Li sends f =3 kila, b,

to >, kilbi — a;|, and m = hﬂml Furthermore, we have the following result.
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Corollary 10.4.  There exists a unique morphism
L: (S7 1[0,1],7%) - (R7 17 m)
in Hom _yp,1 ((S, 1[071],7%), (R,1,m)) such that the diagram

L
(S7 1[0,1]77%) - = (R7 lym)

R

(S, 10,171
commutes, where L is the unique extension of L lying in Homdp((g, 1[071],ﬁ%), (R,1,m)). Furthermore,

L is given by the direct limit liﬂLi : @EZ — k.

Proof. It is an immediate consequence of Theorem 7.6. O
The morphism L induces a k-linear map sending f to Z( f). Furthermore, if p = pur, is a Lebesgue

measure, then Z(f) is Lebesgue integration (L)/ of f,i.e.,

— (1) /0 ' fdp.

where py, is the Lebesgue measure in this case (see [29, Proposition 2.2]).
Next, as an application, we establish the Cauchy-Schwarz inequality for the morphism 7" in Aor!. We
need the following lemma for arbitrary complete finite-dimensional R-algebras.

Lemma 10.5. Iff €S, (HA) is non-negative, then so is T(f), e., [ =0 yields

() | fdu=0

Ia

Proof. By S;(Ix) = limF,, there is a monotonically increasing sequence {ft}ten+ of non-negative

functions with f; = Efutl kiily,, € E.,, such that Ip; N I;; = 0 for any i # j, t1 < to yields us, < uy, and
f, < fr,,and f = lﬂ ft- Thus, for any 1 < i < 2"t and ¢ € NT, we have k>0, and then the inequality

24t

(ft Ty, ft Zktzﬂ Itz >

holds. Furthermore, we obtain

T(f) = imTy, (f;) = imT)p,, (f) = imT(f;) >0

as required, where

h_n>“T(ft) = tlﬂl@o T(f)
is the usual limit in R in analysis. O

Proposition 10.6 (Cauchy-Schwarz inequality).  Let f and g be two functions lying in m) Then

((M) /H fgdu)2 < (@%) /]1 deu) (w) /]1 deu) (10.1)

Proof. Indeed, consider the quadratic function

o(t) =T(f*) -2 +2T(fg) -t + T(¢*) (t € R).
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Notice that T is a A-homomorphism, and thus it is also an R-linear map. Then

p(t) = T(f* - (t1)* +2fg - (1) + ¢°) = T((f - (t1r) + 9)*).

Notice that (f - (t1g) + g)?, written as h, is also a function defined on I, lying in S,(I4), and thus for
any x € I, we have h(x) = (tf(z) + g(z))? = 0. Then p(t) > 0 by Lemma 10.5. It follows that the
discriminant (27'(fg))? — 4T (f*)T(g?) of ¢(z) is at most zero, i.e., (10.1) holds. O

The above inequality yields that if .#or? satisfies the conditions (L1)—(L3) given in the subsection,
then the Cauchy-Schwarz inequality

(@] 1 fgduL)2 <(wf 1 ram) (© [ 192duL)

10.2 Series expansions of functions

holds.

We provide two examples for Corollaries 8.2 and 8.5 in this subsection.

Example 10.7 (Taylor series).  Assume that &/ satisfies Assumption 10.1. Then the A-homomorphism
Epow in Corollary 8.2 is

—

Epow : (S,l,;}/\ ) - (k[x]’]'?@‘]k/[;])

N|=

Now we show that for any analytic function f(z) € §, we have

+o0 1 dkf i

EpOW . f(m) — y W 70.’1]
k=0 =

To do this, let Ay be the set of all analytic functions defined on [0, 1], and define
Au={7(f.9) | (f.9) € AT}
for any u € N. Then we have
k[z] C Ag C Ay C--- CS=L([0,1).
Let & : Ag — S be the map sending each analytic function f (z) to its Taylor series

1ty
k! dzF
k=0

2* € Kk[z].

r=

Then €, is a k-linear map since for any a,b € A = R and f, g € S, the R-linear formula Eola-f+b-g) =
a®o(f) + b&y(g) holds. Furthermore, one can check that &g is a A-homomorphism. For any u € N, any
function f in A, can be seen as two functions f; and f5 lying in A,_; such that

f1(2z), 0z < %,
f:ﬁ%(flafﬂ— 1
f2(2$—1), §<$<1

Thus, we can inductively define

—

6u . Au — k[l’], f = ’/y\%(gufl(fl% eu71<f2))-

Let A be the direct limit limA,, given by Ag € Ay C ---. The following statements (a) and (b) show

—

that & := @Gu : A — k[z], induced by @Au = A, is a homomorphism in .for!.
(a) First of all, it is obvious that (1) = lim&, (1) = lim1 = 1.
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(b) Next, for any two functions fi(x) and fa(z) in A, the diagram

Aila

A®2 2

(5¢) ¢
@2 O
kz] T>H<[x]
commutes since
€(f(2z)), 0z < %
EH1la(f(2),9(x))) = 1

eg2e-1), ;<v<1

=71 (€(f(x)), €(g(z))).

1
2

Thus, the completion A of A induces a A-homomorphism C:A ]k/[;] which provides a morphism

—

€ € Hom /1 (A, 1,71 ]a), (k[z], 1,7} [ua))

in the category </!.
On the other hand, for any polynomial P(z) € k|[x], there exists a monotonically increasing sequence
{si(z)};55 of elementary simple functions such that ws,(m) = P(x). Then we obtain that k[z] is dense

in S. It follows that A is dense in S by k[z] C A. Thus, we have an isomorphism

and an isomorphism

in the category 27! such that

Eponr(F) = (€07 V)20 (1) = &) = Y 15 7

holds for any analytic function f by using (§, lﬁ%) to be an initial object of /! (see Theorem 6.4).

Example 10.8 (Fourier series).  Assume that &/ satisfies Assumption 10.1. Then the A-homomorphism
FEgoy, in Corollary 8.5 is

Erou : (S,1,71) = (Cle*™], 1,71 | rozamiay):

which sends each function f satisfying the Dirichlet condition to its Fourier series. The proof of the
above statement is similar to that of Example 10.7 by using C[e*?™*] to be a dense subspace of S. In
particular, Eroy, induces an isomorphism in «7!.

11 Conclusions

In this paper, we have significantly expanded the theoretical landscape of mathematical analysis by
extending the domain of classical Lebesgue integration beyond the real numbers and establishing a
robust framework for the major branches of analysis—differentiation, integration, and series—over finite-
dimensional k-algebras. By developing the categories Aor? and /P, we have introduced a structured
methodology for examining norms and integration within an algebraic context. This approach not only
enhances our understanding of these processes but also provides a unified perspective across various
analytical branches.
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Our study has not only reinforced existing mathematical theories within a generalized algebraic setting,
but has also paved the way for exploring how these concepts interact within the realms of category
theory. The categorification of key analytical operations such as differentiation and integration through
normed modules and their morphisms in /7 illustrates a significant theoretical advance, bridging various
analytical disciplines through a common categorical framework.

The implications of this work extend beyond the theoretical, suggesting applications in fields that
benefit from a deep understanding of the algebraic underpinnings of analysis, such as computational
mathematics and theoretical physics. Looking forward, the exploration of higher-dimensional normed
modules within this categorical framework promises to open new research avenues in areas such as
quantum field theory and numerical methods for differential equations.

In summary, our research not only deepens the mathematical understanding of the interplay between
algebra and analysis, but also lays a solid foundation for further explorations. Future work can extend
these methods to more complex algebraic structures and explore their practical applications in science
and engineering, thereby continuing to bridge the gap between abstract theory and real-world problem-
solving.
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