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Abstract We explore the assignment of norms to Λ-modules over a finite-dimensional algebra Λ, resulting in
the establishment of normed Λ-modules. Our primary contribution lies in constructing two new categories Norp

and A p, where each object in Norp is a normed Λ-module N limited by a special element vN ∈ N and a special
Λ-homomorphism δN : N⊕2dim Λ → N , the morphism in Norp is a Λ-homomorphism θ : N → M such that
θ(vN ) = vM and θδN = δMθ⊕2dim Λ , and A p is a full subcategory of Norp generated by all Banach modules.
By examining the objects and morphisms in these categories, we establish a framework for understanding the
categorification of integration, series expansions, and derivatives. Furthermore, we obtain the Stone-Weierstrass
approximation theorem in the sense of A p.
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1 Introduction

Mathematical analysis, encompassing branches such as integrations, differentiations, and series expan-
sions, is an integral component of mathematics and serves as an indispensable tool in various scientific
domains including physics, engineering, and life sciences. Traditionally founded on the ε–δ definition of
limits and the theory of completeness of the real numbers, mathematical analysis provides a rich and
diverse array of research topics within its sub-disciplines. However, adaptation to different applications
often obscures a unified understanding of its branches and their interconnections. For example, Lebesgue
integration, introduced by Lebesgue in 1902 (see [28]), represents a critical advancement in mathematical
analysis. Understanding Lebesgue’s approach to integrability on the real line involves methodical and
incremental steps beginning with the definition of measurable sets and null sets, followed by exploring
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measure convergence. The journey continues through the exploration of step functions and simple
functions, progressing to sequences of their convergence and culminating in the sophisticated construction
of spaces for integrable functions and consistent integration methods. This path, while comprehensive,
paves a detailed route to fully appreciate the depth of Lebesgue integration, as discussed in foundational
texts such as [9, 23]. However, the intricate methodologies developed do not directly translate to other
branches of analysis, making it challenging to apply these achievements uniformly across the field.

Category theory has evolved far beyond its original scope, now permeating nearly all branches of
mathematics. Initially formulated by Eilenberg and Mac Lane [13] in the mid-20th century within
the realm of algebraic topology, a category fundamentally consists of objects and morphisms. This
framework facilitates a systematic and structural approach to analyzing a wide range of mathematical
entities, from algebraic structures to complex topological spaces. The true utility of category theory
lies in its ability to abstractly model and examine mathematical concepts through functors and natural
transformations. Functors are the “morphisms between categories”, systematically relating the objects
and morphisms of one category to those of another, thereby uncovering deep interconnections within
mathematical frameworks. Natural transformations extend this by mapping between functors themselves,
ensuring consistency across categorical representations. This level of abstraction proves invaluable in
various mathematical applications, including the categorical descriptions of integration [10,11,22,38] and
differentiation [1, 7, 8, 20, 24, 30, 31], the categorical semantics of differential linear logic [6, 7], the Taylor
series within Cartesian differential categories [32], preliminary categorifications of automorphic forms
and the analytic continuation of L-functions [27], as well as providing cohesive frameworks for tackling
complex problems such as quotient spaces, direct products, completions, and duality. Furthermore,
recent research has begun to explore the synergy between category theory and mathematical analysis
in the context of artificial intelligence. These advancements leverage categorical structures to enhance
machine learning models and develop more abstract frameworks for AI algorithms [12]. Additionally,
categorical semantics are being applied to better understand and design AI systems, providing a
robust mathematical foundation for their development and analysis [39]. Through category theory,
mathematicians gain a powerful tool for unifying and elucidating the intricacies of diverse mathematical
concepts. Building on the foundational work of Leinster [29], we describe integration, series expansions,
and differentiation using the unified category A p. Note that the Rota-Baxter algebra [5,33,34] provides
another algebraic description of integration, but it is different from the categorification of integration
given by the category A p.

As the landscape of integration theory expands, so too does the exploration into its algebraic facets,
marking a significant evolution in the approach to integration. Algebraic approaches to integration can
be traced back at least to Segal’s work [38]. Building upon the foundational works of Escardó and
Simpson [14], Freyd [16] and Leinster [29] constructed a special category A p, where p is a real number
at least 1. In this category, objects are triples consisting of a Banach space V , an element v in V with
|v| ⩽ 1, and a k-linear map δ : V ⊕p V → V that satisfies δ(v, v) = v. Here, the notation V1 ⊕p V2
represents the direct sum of two normed spaces V1 and V2, where the norm is defined as

|(v1, v2)| =
(
1

2
(|v1|p + |v2|p)

)1/p

.

Furthermore, Leinster established three significant results as follows:
(1) (Lp([0, 1]), 1, γ) is the initial object in A p, where

γ : Lp([0, 1])⊕p Lp([0, 1])→ Lp([0, 1])

is a special k-linear map (indeed, γ is the map γ 1
2

given in Corollary 10.2);
(2) (R, 1,m) is an object in A 1, where m : R⊕1 R→ R sends (x, y) to 1

2 (x+ y);
(3) there exists a unique morphism

H : (L1([0, 1]), 1, γ)→ (R, 1,m) in A 1
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(see [29, Theorem 2.1 and Proposition 2.2]). The homomorphism H : L1([0, 1]) → k is a k-linear map
sending any function f in L1([0, 1]) to its Lebesgue integral, i.e.,

H(f) = (L)

∫ 1

0

fdµL,

where µL denotes the Lebesgue measure on R. This profound relationship illustrates that Lebesgue
integrability and integration are not merely abstract constructs; rather, they naturally emerge from
the foundational principles of Banach spaces. Consequently, it can be logically inferred that the
categorification of Lebesgue integration is inherently connected to, and can be derived from, the
categorification of Banach spaces. However, we have discovered that Leinster’s work can be extended to
a more general setting of finite-dimensional algebras, and it encompasses not only definite and indefinite
integrals, but also includes key areas of mathematical analysis such as weak derivatives, series expansions,
and the Stone-Weierstrass approximation theorem.

Building upon Leinster’s foundational work, we extend his categorical framework to encompass finite-
dimensional algebras, thereby creating a more versatile and unified approach to integration theory. By
incorporating normed modules over these algebras into our analysis, we bridge the gap between algebraic
structures and analytical methods. This extension allows us to reinterpret classical concepts of integration,
differentiation, and series expansions within a broader categorical context. Furthermore, our approach
facilitates the seamless integration of algebraic techniques with analytical processes, offering a cohesive
framework that enhances the applicability and depth of mathematical analysis. This novel categorical
perspective not only unifies disparate areas of analysis but also opens new avenues for research and
application in related scientific fields.

This study aims to explore and construct a comprehensive theoretical framework specifically tailored
for normed modules in finite-dimensional algebras. We introduce and dissect a novel category, denoted
by Norp, alongside its fully characterized subcategory, A p. This research endeavors to systematically
categorize normed modules and their operations, aiming to enhance our understanding of fundamental
mathematical procedures such as integration, series expansions, and differentiation. The specific research
questions addressed are as follows.
Question 1.1. (1) How does the new categorical framework improve our comprehension of norm
structures within various normed modules over an algebra?

(2) What contributions do morphisms in the subcategory A p make towards advancing classical
integration techniques?

(3) What implications does the categorification of normed modules hold for the broader mathematical
analysis landscape and its practical applications?

The investigation of these questions not only broadens the scope of category theory in mathematical
analysis and abstract algebra but also introduces novel theoretical tools and perspectives, potentially
benefiting other disciplines such as physics and automation engineering. To comprehensively address the
aforementioned questions, we delineate the following key topics in subsequent sections.

Firstly, we introduce functions defined on a finite-dimensional algebra Λ, along with the norm defined
on Λ and any Λ-module M . It is pertinent to note that all Λ-modules considered in this paper are left
Λ-modules. The specifics of these structures are elaborated in Subsections 3.1 and 4.1, respectively. A
pivotal motivation for us to introduce normed modules is the pursuit of an integration definition that
transcends the conventional reliance on Lp spaces. This approach is rooted in the understanding that
an equivalent definition of Lp spaces can emerge through the integration itself. However, as highlighted
by Leinster, the notion of Lebesgue integrals is intrinsically linked to Banach spaces. Consequently,
our investigation also necessitates considering the completions of normed finite-dimensional algebras and
normed modules (see Subsections 3.2 and 4.2).

Secondly, for a special subset IΛ of Λ, denoted by IΛ ⊆ Λ, we construct the category Norp in
Subsection 5.1. Its object has the form (N, v, δ), where N is a normed Λ-module, v is an element
in N satisfying |v| ⩽ µ(IΛ), µ is an arbitrary measure defined on IΛ and δ : N⊕p2

n → N is a Λ-
homomorphism sending (v, . . . , v) to v. The morphism h : (N, v, δ)→ (N ′, v′, δ′) is induced by a special
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Λ-homomorphism N → N ′ satisfying hδ = δ′(h⊕p2
n

). Furthermore, we consider the full subcategory
A p of Norp, where each object (N, v, δ) consists of a Banach Λ-module N , an element v ∈ N and a
Λ-homomorphism δ : N⊕p2

n → N .
Thirdly, we investigate the set Sτ (IΛ) of elementary simple functions (a special step function defined

on Λ), where τ is a homomorphism between two k-algebras. We demonstrate its structure as a Λ-module
(Lemma 4.9). Consequently, we obtain an object (Sτ (IΛ),1, γξ) (Lemma 5.5) in Norp and an object
(Ŝτ (IΛ),1, γ̂ξ) in A p, where Ŝτ (IΛ) is the completion of Sτ (IΛ) and γ̂ξ is induced by γξ.

Fourthly, we prove our main result in Section 6 to answer Question 1.1(1), which provides a unique
homomorphism from the initial object in A p to any normed module to describe the properties of normed
representations of algebra.
Theorem 1.2 (Theorem 6.4 and Remark 6.5). The triple (Sτ (IΛ),1, γξ) is an A p-initial object in
Norp, i.e., for any object (N, v, δ) in A p, there exists a unique morphism

h ∈ HomNorp((Sτ (IΛ),1, γξ), (N, v, δ))

such that the diagram
(Sτ (IΛ),1, γξ)

h //

⊆
��

(N, v, δ)

(Ŝτ (IΛ),1, γ̂ξ)
ĥ

55kkkkkkkkkkkkk

commutes, where ĥ is given by the completion of h : Sτ (IΛ)→ N .
Sections 7–9 realize integrations, series expansions and derivatives as three morphisms in A 1.
In Section 7, we construct an object (k, µ(IΛ),m) in A p, where m : k⊕p2

n → k is a Λ-homomorphism
whose definition is given in this section. Taking (N, v, δ) = (k, µ(IΛ),m) as in Theorem 1.2, we obtain
the following result to answer Question 1.1(2), which describes numerous integrations by using category
A p in a unified way since µ is an arbitrary measure.
Theorem 1.3 (Theorem 7.6). If k = (k, | · |,�) is an extension of R, then there exists a unique
Λ-homomorphism T : Sτ (IΛ)→ k such that

T : (Sτ (IΛ),1, γξ)→ (k, µ(IΛ),m)

is a morphism in HomNorp((Sτ (IΛ),1, γξ), (k, µ(IΛ),m)) and the diagram

(Sτ (IΛ),1, γξ)
T //

⊆
��

(k, µ(IΛ),m)

(Ŝτ (IΛ),1, γ̂ξ)
T̂

55jjjjjjjjjjjjjj

commutes, where T̂ is the unique morphism lying in HomA p((Ŝτ (IΛ),1, γ̂ξ), (k, µ(IΛ),m)). Furthermore,
if p = 1, then we have the following three properties of T̂ by the direct limits

lim−→Ti : T̂ = lim−→Ei → k

(the definitions of Ei and Ti are given in Notation 5.3 and Section 7, respectively):
(1) (Formula (7.1)) T̂ (1) = µ(IΛ).
(2) (Lemma 7.1) T̂ : Sτ (IΛ)→ k is a homomorphism of Λ-modules.
(3) (Proposition 7.5) |T̂ (f)| ⩽ T̂ (|f |).
The morphism T̂ provides a categorification of integration, and we define

T̂ (f) =: (A 1)

∫
IΛ
fdµ. (1.1)
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The above (1)–(3) show that

(A 1)

∫
IΛ
1dµ = µ(IΛ),

(A 1)

∫
IΛ
(λ1f1 + λ2f2)dµ = λ1 · (A 1)

∫
IΛ
f1dµ+ λ2 · (A 1)

∫
IΛ
f2dµ, λ1, λ2 ∈ Λ, (1.2)

and ∣∣∣∣(A 1)

∫
IΛ
fdµ

∣∣∣∣ ⩽ (A 1)

∫
IΛ
|f |dµ,

respectively.
Let k[X1, . . . , XN ] (= k[XXX] for short) be the N variables polynomial ring over a field k with N ⩾

dimk Λ = n. Then k[XXX] can be seen as a normed left Λ-module, where the norm ‖ · ‖k[XXX] is either (8.1)
or (8.3). In Section 8, we get two corollaries as follows to answer Question 1.1(3).
Corollary 1.4. Let A p satisfy p = 1.

(1) (Corollary 8.2/Weierstrass approximation theorem) If N = n and ‖ · ‖k[XXX] is defined by (8.1), then
the unique morphism in

Êpow ∈ HomA 1((Ŝτ (IΛ),1, γξ), (k̂[XXX],1, γ̂ξ|k̂[XXX]
))

shows that for any function f ∈ Ŝτ (IΛ), there exists a sequence {Pi}i∈N of polynomials such that

Êpow(f) = lim←−Pi.

(2) (Corollary 8.5) If k = C, N = 2n and ‖ · ‖k[XXX] is defined by (8.3), then the unique morphism in

ÊFou ∈ HomA 1((Sτ (IΛ),1, γξ), ( ̂C[e±2πiXXX ],1, γ̂ξ| ̂C[e±2πiXXX ]
))

shows that for any function f ∈ Ŝτ (IΛ), there exists a sequence {Pi}i∈N of triangulated polynomials such
that

ÊFou(f) = lim←−Pi.

Furthermore, we show the Stone-Weierstrass approximation theorem in Subsection 8.3 (see Corol-
lary 8.8).
Corollary 1.5 (Corollary 8.8, Stone-Weierstrass approximation theorem). There exists a unique
morphism

ES−W : (Sτ (IΛ),1, γξ)→ (W,1, γ̂ξ†)

in HomNor1((Sτ (IΛ),1, γ̂ξ), (W,1, γ̂ξ†)) such that the diagram

(Sτ (IΛ),1, γξ)
ES−W //

⊆
��

(W,1, γ̂ξ†)

(Ŝτ (IΛ),1, γ̂ξ)
ÊS−W

55kkkkkkkkkkkkkk

commutes, where the definition of W is a direct limit defined in Subsection 8.3; ÊS−W is the unique
extension of ES−W lying in HomA 1((Ŝτ (IΛ),1, γ̂ξ), (W,1, γ̂ξ†)).

In Section 9, we recall some works of Leinster and Meckes (see [29]). Based on their work, we show
the following theorem.
Theorem 1.6. Let p = 1, Λ = R = k, τ = id : R→ R, x 7→ x, IΛ = [0, 1] and ξ = 1

2 ; for simplification,
we write Ŝ := Ŝτ (IΛ).

(1) (Theorem 9.3) (i) A morphism in HomA 1((Ŝ,1, γ̂ 1
2
), (N, v, δ)) is zero if and only if v = 0.
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(ii) Furthermore, there is no morphism in A 1 starting with (Ŝ,1, γ̂ 1
2
) such that this morphism sends

any almost everywhere differentiable function f(x) to its weak derivative df
dx .

(2) (Theorem 9.5) The differentiation D is a morphism in A p ending with the initial object (Ŝ,1, γ̂ 1
2
).

Recall that any function f : IΛ = [0, 1] → R in S is a step function, i.e., there is a dissection [0, 1] =⋃t
i=1 Ii of [0, 1] with Ii ∩ Ij = ∅ for any 1 ⩽ i 6= j ⩽ t, such that each f |Ii(x) is a constant in R. Then

df
dx almost everywhere equals 0. It follows that the completion D of d

dx sends every function in Ŝ to
zero. Furthermore, if D is a morphism in HomA 1((Ŝ,1, γ̂ 1

2
), (N, v, δ)), then we have v = D(1) = 0,

and it follows that D = 0 by Theorem 1.6(1)(i), which is a contradiction. Therefore, Theorem 1.6(1)(i)
shows that differentiation, i.e., the homomorphism D, is not a morphism in A 1 with the domain the
initial object of A 1. Then we obtain Theorem 1.6(1)(ii). Naturally, we would ask whether D can be
characterized by A p? To do this, we prove Theorem 1.6(2) in Subsection 9.3, and show that D is a
morphism in a category A p.

Finally, we provide some applications for our main results in Section 10. In Subsection 10.1, we
assume k = R, (Λ,≺, ‖ · ‖Λ) = (R,⩽, | · |), BR = {1}, n : BR → {1} ⊆ R⩾0, IR = [0, 1], ξ = 1

2 , κ0(x) = x
2 ,

κ1(x) = x+1
2 and τ = idR : R → R, and let µL be the Lebesgue measure. Then (1.1) is a Lebesgue

integration

(A 1)

∫
IR=[0,1]

fdµL = (L)

∫ 1

0

fdµL,

and (1.2) shows that Lebesgue integration is R-linear. This result provides a categorification of Lebesgue
integration. In Subsection 10.2, we provide two examples for Corollary 1.4 to show that the Taylor series
and Fourier series can be realized as two morphisms in A 1 with the domain the initial object.

2 Preliminaries

In this section, we recall some concepts in the category theory and representation theory of algebras,
including limits in the category theory (see [35, Chapter 5] and [26, Chapter III, pp. 62–74]), k-algebras
(see [2, Chapter I]), and some methods to establish topologies on algebras (see [3, Chapter 10]). These
concepts are familiar to algebraists but may not be as familiar to those in the field of analysis.

2.1 Categories and limits

Recall that a category C consists of three ingredients: a class of objects, a set HomC(X,Y ) of morphisms
for any objects X and Y in C, and the composition HomC(X,Y )×HomC(Y, Z)→ HomC(X,Z), denoted
by

(f : X → Y, g : Y → Z) 7→ gf : X → Z,

for any objects X, Y and Z in C. These ingredients are subject to the following axioms:
(1) The Hom sets are pairwise disjoint.
(2) For any object X, the identity morphism 1X : X → X in HomC(X,X) exists.
(3) The composition is associative: given morphisms

U
f // V

g // W
h // X,

we have
h(gf) = (hg)f.

Next, we review the limits in the category theory.
Definition 2.1 (See [35, Chapter 5, Subsection 5.2]). Let I = (I,�) be a partially ordered set, and
let C be a category. A direct system in C over I is an ordered pair ((Mi)i∈I, (ϕij)i⪯j), where (Mi)i∈I is
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an indexed family of objects in C and (ϕij : Mi → Mj)i⪯j is an indexed family of morphisms for which
ϕii = 1Mi

for all i, such that the diagram

Mi

φij !!B
BB

BB
BB

B
φik // Mk

Mj

φjk

=={{{{{{{{

commutes whenever i � j � k. Furthermore, for the above direct system ((Mi)i∈I, (ϕij)i⪯j), the direct
limit (also called inductive limit or colimit) is an object, i.e., lim−→Mi, and insertion morphisms (αi :Mi →
lim−→Mi)i∈I such that

(1) αjϕij = αi whenever i � j;
(2) for any object X in C such that there are given morphisms fi : Mi → X satisfying fjϕij = fi for

all i � j, there exists a unique morphism θ : lim−→Mi → X making the diagram

lim−→Mi
θ

(∃!)
//_______ X

Mi

αi

bbFFFFFFFF fi

>>~~~~~~~~

φij(i⪯j)

��
Mj

αj

RR

fj

NN

commutes.
Example 2.2. Let {xn}n∈N+ be a monotonically increasing sequence of real numbers, and let R be
the partially ordered category (R,⩽), in which the elements are real numbers and the morphisms are of
the form ⩽r2r1 : r1 → r2 (r2 ⩽ r1). If {xn}n∈N+ has limit x as in analysis, i.e., for any ε > 0, there exists
N ∈ N+ such that |xn−x| < ε holds for all n > N , then x = lim−→xn. Indeed, for any x′ ∈ R such that the
morphisms (αi =⩽xix′ : xi → x′)i∈N+ exist, there is a morphism θ =⩽xx′ : x→ x′ such that the diagram

x
θ=⩽xx′ //_________ x′

xi
⩽xix

__@@@@@@@@@@@@ ⩽xix
′

>>}}}}}}}}}}}}

⩽xixj

��
xj

⩽xjx

OO

⩽xjx
′

OO

commutes. It is clear that the morphism θ is unique in this example. Furthermore, x ⩽ x′ holds because
if x′ < x, then we can find some xt such that xt > x′, i.e., αt ∈ Hom(R,⩽)(x

′, xt) = ∅, which is a
contradiction.
Definition 2.3 (See [35, Chapter 5, Subsection 5.2]). Let I = (I,�) be a partially ordered set, and
let C be a category. An inverse system in C over I is an ordered pair ((Mi)i∈I, (ψij)j⪯i), where (Mi)i∈I

is an indexed family of objects in C and (ψij :Mj →Mi)j⪯i is an indexed family of morphisms for which
ψii = 1Mi for all i, such that the diagram

Mi aa

ψij BB
BB

BB
BB
oo ψik

Mk

Mj

}} ψjk

{{{{{{{{
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commutes whenever i � j � k. Furthermore, for the above direct system ((Mi)i∈I, (ψij)j⪯i), the inverse
limit (also called projective limit or limit) is an object, say lim←−Mi, and projects morphisms (αi : lim←−Mi →
Mi)i∈I such that

(1) ψjiαj = αi whenever i � j;
(2) for any object X in C such that there are given morphisms fi : X → Mi satisfying ψjifj = fi for

all i � j, there exists a unique morphism ϑ : X → lim−→Mi making the diagram

lim←−Mi
oo ϑ

(∃!)
_______ X

Mi

""
αi

FFFFFFFF ~~ fi

~~~~~~~~

OO
ψij(i⪯j)

Mj

##

αj

}}

fj

commutes.
Example 2.4. Let {xn}n∈N+ be a monotonically decreasing sequence of real numbers, and let R be
the partially ordered category (R,⩽). If {xn}n∈N+ has limit x as in analysis, then we have x = lim←−xn by
a way similar to that in Definition 2.3.

2.2 k-algebras and their completions

Let k be a field. In this subsection, we recall the definitions of k-algebras and the completions of k-
algebras. All concepts in this subsection are parallel to those in [3, Chapter 10, Subsection 10.1] which
extracts some important results about the completions of Abelian groups.

2.2.1 k-algebras
Definition 2.5. A k-algebra A defined over k is both a ring and a k-vector space such that

k(aa′) = (ka)a′ = a(ka′).

In particular,
(1) if A is a commutative ring, i.e., a1a2 = a2a1 holds for all a1, a2 ∈ A, then we call that A is

commutative; otherwise, we call that it is non-commutative;
(2) if the k-dimension dimkA of A, i.e., the dimension of Λ as a k-vector space, is finite, then we call

that A is a finite-dimensional k-algebra; otherwise, we call that it is an infinite-dimensional k-algebra.
In this paper, we do not require the commutativity of k-algebras, but we always suppose that every

k-algebra in our paper is a finite-dimensional k-algebra with identity 1.
Recall that an idempotent of a k-algebra A is an element e in A such that e2 = e. Obviously, 0 and 1

are idempotents. If an idempotent e has a decomposition

e = e′ + e′′

such that
(1) e′ and e′′ are non-zero idempotents;
(2) e′ and e′′ are orthogonal, i.e., e′e′′ = 0 = e′′e′,

then we call e decomposable. We call e a primitive idempotent if it is not decomposable. Furthermore,
one can prove that 1 has a decomposition

1 = e1 + e2 + · · ·+ et

such that all ei are primitive idempotents and eiej = 0 holds for all i 6= j, and we call {e1, . . . , et} a
complete set of primitive orthogonal idempotents (see [2, Chapter I, p. 18]).
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Let e1, . . . , et be the complete set of primitive orthogonal idempotents. Then A has a decomposition
A =

⊕t
i=1Aei, where each direct summand Aei is an indecomposable left A-module. We say that A is

basic if Aei 6∼= Aej for all 1 ⩽ i 6= j ⩽ t.
Example 2.6. The set Mn(k) of all n × n matrices over k, the polynomial ring k[x1, . . . , xn], and
the field k itself are k-algebras. In particular, Mn(k) and k are finite-dimensional, and k[x1, . . . , xn] is
infinite-dimensional.

Recall that a quiver is a quadruple Q = (Q0,Q1, s, t), where Q0 is the set of vertices, Q1 is the set of
arrows, and s, t : Q1 → Q0 are functions respectively sending each arrow to its starting point and ending
point. Then any vertex v ∈ Q0 can be seen as a path on Q whose length is zero, and any arrow α ∈ Q1

can be seen as a path on Q whose length is one. A path ℘ of length l, denoted by `(℘), is the composition
αl · · ·α2α1 of arrows α1, . . . , αl, where t(αi) = s(αi+1) for all 1 ⩽ i < l. Then, naturally, we define the
composition of two paths ℘1 = αl · · ·α1 and ℘2 = βℓ · · ·β1 as

℘2℘1 = βℓ · · ·β1αl · · ·α1

provided that the ending point t(℘1) of ℘1 coincides with the starting point s(℘2) of ℘2; otherwise (i.e.,
t(℘1) 6= s(℘2)), the composition is defined to be zero. Consequently, let Ql be the set of all paths of
length l. Then kQ := spank(

⋃
l⩾0Ql), known as the path algebra of Q, is a k-algebra whose multiplication

is defined as follows:

kQ× kQ → kQ via (k1℘1, k2℘2) 7→

{
k1k2 · ℘2℘1, if t(℘1) = s(℘2),

0, otherwise.

The following result shows that we can describe all finite-dimensional k-algebras using quivers (see [36,
p. 43] and [4, Theorem 1.9]). The idea of such a graphical representation seems to go back to Gabriel [17],
Grothendieck [21], and Thrall [40], but it became widespread in the early seventies, mainly due to
Gabriel [18, 19].
Theorem 2.7 (See [2, Chapter II, Theorem 3.7]). For any finite-dimensional k-algebra A, there is
a finite quiver Q, i.e., the vertex set and arrow set are finite sets, and an admissible ideal1) I of kQ
such that the module category of A is equivalent to that of kQ/I. Furthermore, if A is basic, we have
A ∼= kQ/I.
Remark 2.8. We provide a remark for the isomorphism A ∼= kQ/I given in Theorem 2.7 here: the
existence of the quiver Q is unique if A is basic and I is admissible; the definition of admissible can be
found in [2, Chapter I, Subsection I.6].

2.2.2 Topologies on k-algebras
Now we recall the topologies of k-algebras A (not necessarily basic or finite-dimensional). Let i(A) be the
set of all ideals of A, which forms a partially ordered set i(A) = (i(A),�) with the partial order defined
by the inclusion, i.e., for any A1, A2 ∈ i(A), we have

A1 � A2 if and only if A1 ⊆ A2.

Notice that A has two trivial ideal 0 and A, and then we have i(A) 6= ∅ and have a descending chain
A0 = A � A1 = 0 � A2 = 0 � · · · . Thus, there is at least one descending chain of ideals. Let J be a
descending chain

A0 = A � A1 � A2 � · · ·

of ideals. We say that a subset U of A satisfies the N-condition, if it meets the following criteria:
(N1) U contains the zero of A;

1) An admissible ideal I of kQ is an ideal such that Rm
Q ⊆ I ⊆ R2

Q holds for somem ⩾ 2 (see [2, Chapter II, Subsection II.1,
p. 53]), where Rt

Q is the ideal of kQ generated by all paths of length greater than or equal to t.
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(N2) there exists some j ∈ N such that U ⊇ Aj .
Furthermore, we denote by UA(0) the set of all subsets satisfying the N -condition, which forms a partially
ordered set with the partial order � given by ⊆.
Lemma 2.9. The set UA(0) is a topology defined on A; in other words, it satisfies the following four
conditions:

(1) For any U ∈ UA(0), we have 0 ∈ U .
(2) UA(0) is closed under finite intersection, i.e., for any U1, . . . , Ut ∈ UA(0), we have⋂

1⩽j⩽t
Uj ∈ UA(0).

(3) If U ∈ UA(0) and U ⊆ V ⊆ A, then V ∈ UA(0).
(4) If U ∈ UA(0), then there is a set V ∈ UA(0) such that V ⊆ U and U −y := {u−y | u ∈ U} ∈ UA(0)

for all y ∈ V .
Proof. First, (1) is trivial by the condition (N1).

Second, for arbitrary two subset U1 and U2, there are Aj1 and Aj2 such that U1 ⊇ Aj1 and U2 ⊃ Aj2 .
Then U1 ∩ U2 ⊇ Aj1 ∩Aj2 . By the definition of Aj , we have Aj1 ∩Aj2 = Amin{j1,j2}, i.e.,

U1 ∩ U2 ⊇ Amin{j1,j2}.

Since 0 ∈ U1 ∩ U2 trivially, we have U1 ∩ U2 ∈ UA(0). By induction, we obtain (2).
Third, assume U ∈ UA(0) and U ⊆ V ⊆ A. By the definition of UA(0), we have 0 ∈ U and U ⊇ Aj for

some j. Thus, 0 ∈ V and V ⊇ Aj , so we obtain (3).
Finally, for each U ∈ UA(0), we can find V in the following way. There exists an index  such that

U 6⊇ Aȷ−1 and U ⊇ Aȷ ⊇ Aȷ+1 ⊇ · · · . Take V =
⋂
j⩽ȷAj (= Aȷ ⊆ U). For any y ∈ V , we have (N1), i.e.,

0 = y − y ∈ U − y = {u − y | u ∈ U} by y ∈ V ⊆ U , and have (N2) since a = (a + y) − y holds for any
a ∈ V and a+ y ∈ V . Then we obtain U − y ∈ UA(0), i.e., (4) holds.

Definition 2.10. The set UA(0) is called the J -topology of A. Furthermore, we can define open sets
on A.

(1) The subset in UA(0) is called a neighborhood of 0. For any U ∈ UA(0), the union
⋃
V V of all

subsets V given in Lemma 2.9(4) is called the interior of U and denote
⋃
V V by U◦.

(2) A neighborhood U is called open if U = U◦. An open set O defined on A is one of the following
cases:

(a) O equals either A or ∅;
(b) O is the intersection of a finite number of open neighborhoods;
(c) O is the union of any number of open neighborhoods.

It induces the definitions of continuous homomorphisms of k-algebras.
Definition 2.11. Let A1 and A2 be two k-algebras, and let J1 and J2 be two descending chains of
ideals in A1 and A2, respectively. Let UA1

(0) and UA2
(0) be the J1-topology and J2-topology given by

J1 and J2, respectively. A homomorphism h : A1 → A2 of k-algebras is called continuous if the preimage
of an arbitrary open set on A2 is an open set on A1.
Lemma 2.12. Let A be a k-algebra with a J -topology. Then the addition + : A × A → A and each
k-linear transformation hλ : A→ A defined by a 7→ λa (λ ∈ A) are continuous.
Proof. It is obvious that idA = h1 : A→ A via a 7→ a is continuous. The continuity of hλ can be given
by idA.

Let J be
A = A0 � A1 � A2 � · · · .

For any open neighborhood U of 0, its preimage is

+−1(U) = {(x1, x2) | x1 + x2 ∈ U} =: Ũ .
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We need to show that Ũ ∈ UA×A((0, 0)) and Ũ◦ = Ũ in the case for A×A being a k-algebra, where the
descending chain, i.e., JA×A, of A×A is induced by J as follows:

A×A = A0 ×A0 � A1 ×A1 � A2 ×A2 � · · · .

First of all, the zero element of A×A is (0, 0) which satisfies 0 ∈ U and 0+0 = 0 ∈ U , and then (0, 0) ∈ Ũ .
Secondly, since U is a neighborhood of 0, there exists an ideal Aj of J such that U ⊇ Aj . Then for

any x1, x2 ∈ Aj , we have x1 + x2 ∈ Aj ⊆ U , i.e., (x1, x2) ∈ Ũ . It follows that Aj × Aj ⊆ Ũ . We obtain
Ũ ∈ UA×A((0, 0)).

Thirdly, for any (y1, y2) ∈ Ũ , we have y1 + y2 ∈ U by the definition of Ũ , and then

(0, 0) = (y1 − y1, y2 − y2) ∈ Ũ − (y1, y2) = {(x1 − y1, x2 − y2) | x1 + x2 ∈ U},

i.e., (N1) holds. On the other hand, for any (z1, z2) ∈ Aj ×Aj , we have

(z1, z2) = ((z1 + y1)− y1, (z2 + y2)− y2).

Note that z1 + y1 + z2 + y2 = (y1 + y2) + (z1 + z2) is an element lying in U + (z1 + z2). Since U is open,
we have

U + (z1 + z2) = U◦ − (−(z1 + z2)) = {u+ (z1 + z2) | u ∈ U} ∈ UA(0)

by Lemma 2.9(4) and Definition 2.10, i.e., U + (z1 + z2) is a set satisfying Lemma 2.9(4). Then

U◦ =
⋃

V ⊆U, V satisfies
Lemma 2.9(4)

V ⊇ U + (z1 + z2),

and so we obtain (y1+y2)+(z1+z2) ∈ U+(z1+z2) ⊆ U◦, i.e., (y1+y2)+(z1+z2) ∈ U . Thus, (z1, z2) ∈ Ũ .
It follows that Aj × Aj ⊆ Ũ − (y1, y2), and thus (N2) holds. Therefore, Ũ − (y1, y2) ∈ UA×A((0, 0)). In
summary, we have that Ũ satisfies Lemma 2.9(4), and so by Definition 2.10, it is clear that Ũ◦ = Ũ .

Definition 2.13 (See [3, Chapter 10, p. 101]). A topological k-algebra is a k-algebra equipped with
a topology such that the addition + : A × A → A and each k-linear transformation −h1 : A → A via
a 7→ −a are continuous.

The following result is a consequence of Lemma 2.12.
Proposition 2.14. Given an arbitrary k-algebra A and its descending chain J of ideals, then A

becomes a topological k-algebra with the J -topology UA(0).
In this paper, we refer to A as a J -topological k-algebra.

2.2.3 Completions induced by J -topologies
Assume that | · | : k→ R⩾0 is a norm defined on the field k in this subsection, i.e., | · | is a map satisfying

(1) |k| = 0 if and only if k = 0;
(2) |k1k2| = |k1||k2| holds for all k1, k2 ∈ k;
(3) the triangle inequality |k1 + k2| ⩽ |k1|+ |k2| holds for all k1, k2 ∈ k.

Then {Br = {a ∈ k | |a| < r} | r ∈ R+} induces a standard topology Uk(0) on k whose elements are
called the neighborhoods of 0 ∈ k.

Let A be a J -topological k-algebra whose dimension is finite and let BA = {b1, . . . , bn} be a basis of
A. Then, naturally, we can define the Cauchy sequence by the J -topology. More precisely, a sequence
{xi}i∈N in A is called a J -Cauchy sequence if for any U , lying in UA(0), and containing some subset∑n
i=1 uibi of A with ui ∈ Uk(0) (1 ⩽ i ⩽ n), there is m ∈ N such that xs − xt ∈ U holds for all s, t ⩾ m.

Two J -Cauchy sequences {xi}i∈N and {yi}i∈N are called equivalent, denoted by {xi}i∈N ∼ {yi}i∈N, if for
any U ∈ UA(0), there is an integer m ∈ N such that xi − yi ∈ U holds for all i ⩾ m. It is easy to see
that “∼” is an equivalence relation. We use [{xi}i∈N] to denote the equivalence class containing {xi}i∈N,
and use CJ (A) to denote the set of all equivalence classes of J -Cauchy sequences. Then we have three
families of A-homomorphisms:
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(1) (ϕji : A/Aj → A/Ai)j⩾i, where all ϕji are naturally induced by Ai ⊇ Aj ;
(2) (pi : CJ (A) → A/Ai)i∈N, where pi(x0, . . . , xi−1, xi, xi+1, . . .) = xi + Ai (pi is called the i-th

projection);
(3) (ui : A/Ai → CJ (A))i∈N, where ui(a+Ai) = (0, . . . ,

i−1
0 , a,

i+1
0 , 0 . . .) (ui is called the i-th injection).

Let X be the category whose object set is {A/Ai | i ∈ N}∪{CJ (A)} and the morphism set is the collection
of all A-homomorphisms as above. Then we obtain the following commutative diagram:

CJ (A) oo
uh

(∃!)
_________ A/Ah.

A/Ai
$$

pi

IIIIIIIII zz
φhi

vvvvvvvvv

OO
φji(i⩽j)

A/Aj .
$$

pj

zz

φhj

It follows from the above construction that the following proposition holds.
Proposition 2.15 (See [3, Chapter 10, p. 103]). Using the notations as above, we have

lim←−A/Ai
∼= CJ (A).

We write Â := CJ (A) and call it the completion of A. We say that A is complete if Â = A. In
particular, if A = k, then the descending chain J : A0 = k � A1 = 0 induces a J -topology

Uk(0) = {the neighborhood of 0}

of k. In this case, the J -Cauchy sequence coincides with the usual Cauchy sequence.
Proposition 2.16. Let A be a basic finite-dimensional k-algebra and let J be the descending chain

A0 = A = rad0A � A1 = radA � A2 = rad2A � · · · .

Then A is complete (in the sense of J -topology) if and only if k is complete.
Proof. Let A be a basic finite-dimensional k-algebra. Then, by Theorem 2.7, there are a finite quiver
Q and an ideal I of kQ such that

A ∼= kQ/I =
⊕
l∈N

kQl.

Thus, up to isomorphism, each element a ∈ A can be written as
∑n
j=1 kj℘j , where n is the dimension of

A, ku ∈ k and ℘u is a path on Q.
Assume that k is complete. Since A is finite-dimensional, we have radlA = spank{Qi | i ⩾ l}. Thus,

radL+1A = 0, where L = max℘∈Q⩾0
`(℘), i.e.,

J = A � radA � rad2A � · · · � radLA � 0 � 0 � · · · .

Let {xi =
∑n
j=1 kij℘j}i∈N be a J -Cauchy sequence in A. Take

U =

{ ∑
ℓ(℘)=L

k℘℘

∣∣∣∣ k℘ lie in some neighborhood in Uk(0)

}
() radL+1A = 0).

Then, there is N(U) ∈ N such that

xs − xt =
n∑
j=1

(ksj − ktj)℘j ∈ radLA holds for all s, t ⩾ N(U).

Thus, ksj − ktj lies in some neighborhood in Uk(0), and so for all i, {kij}i∈N is a Cauchy sequence in k.
Then it is clear that A is complete.
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Conversely, if A is complete, we assume that k is not complete, and k̂ is the completion of k. Then we
have a natural k-linear embedding e : k → k̂ sending k ∈ k to {ki}i∈N, where k1 = k2 = · · · = k. Then
there is a Cauchy sequence {xi}i∈N ∈ k̂\e(k). Consider the sequence {xi ·℘}i∈N in A, where ℘ ∈ radLA is
a path of length L. Then {xi · ℘}i∈N is a J -Cauchy sequence in A. However, we have {xi · ℘}i∈N ∈ Â\A
in this case, which contradicts that A is complete.

2.3 The total order of k-algebras

Recall that a field k equipped with a total order � is an ordered field if it satisfies the following four
conditions:

(1) for any a, b ∈ k, either a � b, b � a or a = b holds;
(2) if a � b and b � c, then a � c;
(3) if a � b, then a+ c � b+ c for all c ∈ k;
(4) if a � b and 0 � c, then ac � bc.

In order to give the definition of integration defined on a finite-dimensional k-algebra Λ, we need to
assume that k is a field with the total order �. However, it is well known that k might not always
be an ordered field, as the case for k being the complex field C. Interestingly, for our purposes, the
existence of such a total order is not a prerequisite. We only require that the finite-dimensional k-algebra
involved in our study encompasses certain partially ordered subsets. Specifically, the subset IΛ outlined
in Subsection 3.3 is sufficient. For the sake of simplicity, we assume that k is fully ordered, although this
assumption does not sacrifice generality. This simplification aids in our definition of integration within
the context of category theory.
Remark 2.17. We provide a remark to show that if k is totally ordered, then any finite-dimensional
k-algebra Λ can be endowed with a total order. Let BΛ = {bi | 1 ⩽ i ⩽ n} be a k-basis of Λ. If BΛ is
totally ordered (assuming bi � bj if and only if i ⩽ j), then we can define a total order for Λ as follows.
Step 1. For any two elements a, a′ ∈ Λ, we define a ≺p a′ if and only if ϕ(a) < ϕ(a′), where ϕ is a
map ϕ : Λ→ R⩾0 (for example, ϕ is the norm ‖ · ‖p defined in Section 3).
Step 2. Assume a =

∑m
i=1 kibi and a′ =

∑m
i=1 k

′
ibi (0 ⩽ m ⩽ n) such that ki = k′i holds for all i < m.

If ϕ(a) = ϕ(a′), then we define a �p a′ if and only if km � k′m.

3 Normed k-algebras

In this section, let Λ be a finite-dimensional k-algebra with a k-basis BΛ = {bi | 1 ⩽ i ⩽ n}. Then any
element a ∈ Λ is of the form a =

∑n
i=1 kibi. In this section, we define some algebraic structures on Λ.

3.1 Norms of k-algebras

For a map n : BΛ → R+ and any p ⩾ 1, we have ‖ · ‖p : Λ→ R⩾0 as the function

‖a‖p =
∥∥∥∥ n∑
i=1

kibi

∥∥∥∥
p

:= ((|k1|n(b1))p + · · ·+ (|kn|n(bn))p)
1
p . (3.1)

Proposition 3.1. Any triple (Λ, n, ‖ · ‖p) (= Λ for short) is a normed k-vector space.
Proof. First of all, for any a =

∑n
i=1 kibi ∈ Λ, we have ‖a‖p ⩾ 0 because n(bi) > 0 and |ki| ⩾ 0

(1 ⩽ i ⩽ n). In particular, if ‖a‖p = 0, then

(|k1|n(b1))p + · · ·+ (|kn|n(bn))p = 0.

Since |ki|n(bi) ⩾ 0 and n(bi) > 0 hold for all 1 ⩽ i ⩽ n, we obtain |ki|n(bi) = 0, and so ki = 0. Thus,
a =

∑n
i=1 0bi = 0. Then it is easy to see that ‖a‖p = 0 if and only if a = 0.

Next, for any k ∈ k and a =
∑n
i=1 kibi ∈ Λ, we have

‖ka‖p = ‖k(k1b1 + · · ·+ knbn)‖p
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=

( n∑
i=1

(|kki|n(bi))p
) 1

p

=

( n∑
i=1

|k|p(|ki|n(bi))p
) 1

p

= |k|
( n∑
i=1

(|ki|n(bi))p
) 1

p

= |k| · ‖a‖p.

Finally, we prove the triangle inequality ‖a + a′‖p ⩽ ‖a‖p + ‖a′‖p for arbitrary two elements a =∑n
i=1 kibi and a′ =

∑n
i=1 k

′
ibi. It can be induced by the discrete Minkowski inequality( n∑

i=1

xpi

) 1
p

+

( n∑
i=1

ypi

) 1
p

⩾
( n∑
i=1

(xi + yi)
p

) 1
p

as follows:

‖a‖p + ‖a′‖p =
( n∑
i=1

(|ki|n(bi))p
) 1

p

+

( n∑
i=1

(|k′i|n(bi))p
) 1

p

⩾
( n∑
i=1

(|ki|n(bi) + k′in(bi))
p

) 1
p

=

( n∑
i=1

(|ki + k′i|n(bi))p
) 1

p

= ‖a+ a′‖p.

Therefore, (Λ, n, ‖ · ‖p) is a normed space.

Definition 3.2. A normed k-algebra is a triple (Λ, n, ‖ · ‖p), where n : BΛ → R+ and ‖ · ‖p : Λ→ R⩾0

are called the normed basis function and norm of Λ, respectively.

3.2 Completions of normed k-algebras

We can define open neighborhoods B(0, r) of 0 for any normed k-algebra (Λ, n, ‖ · ‖p) by

B(0, r) := {a ∈ Λ | ‖a‖p < r}.

Let UBΛ (0) be the class of all subsets U of Λ satisfying the following conditions:
(1) U is the intersection of a finite number of B(0, r).
(2) U is the union of any number of B(0, r).

Then UBΛ (0) is a topology defined on Λ called the ‖ · ‖p-topology, and we can define Cauchy sequences
called ‖ · ‖p-Cauchy sequences by the above topology.

Recall that Λ has a J -topology UΛ(0) given by the descending chain

Λ = rad0Λ � rad1Λ � rad2Λ � · · · .

Thus, we obtain two completions Λ̂B and Λ̂ by the ‖ · ‖p-topology and the J -topology, respectively. The
following lemma establishes the relation between Λ̂B and Λ̂ in the case of k being complete.
Proposition 3.3. Assume that k is complete. Let Λ = (Λ, n, ‖ · ‖p) be an n-dimensional normed
k-algebra with the J -topology UΛ(0) given by Λ = rad0Λ � rad1Λ � rad2Λ � · · · (‖ · ‖p is the norm
defined on Λ given in Proposition 3.1). Then Λ̂B = Λ̂.
Proof. Similar to Proposition 2.16, we can show that Λ̂B = Λ (i.e., Λ is complete) if and only if k̂ = k.
By using Proposition 2.16 again, we have that Λ̂ = Λ if and only if k̂ = k. Then k̂ = k if and only if
Λ̂B = Λ = Λ̂. Equivalently,

Λ̂B =

( n̂∑
i=1

kbi
)B

=

n∑
i=1

k̂bi =
n̂∑
i=1

kbi = Λ̂.

This completes the proof.
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Remark 3.4. (1) Note that the norms defined on Λ is not unique. In Section 4, we introduce normed
Λ-modules N over any finite-dimensional normed k-algebra Λ. In this case, we need a homomorphism
τ : Λ → Λ′ between two finite-dimensional normed k-algebras Λ and Λ′, and the norms ‖ · ‖ and ‖ · ‖′
respectively defined on Λ and Λ′ may not necessarily be of the form ‖ · ‖p.

(2) If Λ = k and n(1) = 1, then the norm ‖ · ‖p given in Proposition 3.1 is the norm | · |, i.e.,
‖a‖p = (|a|p)

1
p = |a|.

3.3 Elementary simple functions

Let I be a subset of k. Denote IΛ by the subset{ n∑
i=1

kibi

∣∣∣∣ ki ∈ I
}

1−1←→
n∏
i=1

(I× {bi})

of Λ. A function defined on IΛ is a map f : IΛ → k. Since (Λ, n, ‖ · ‖p) is a normed space, Λ is also a
topological space induced by the norm ‖ · ‖p, and so is IΛ. Thus, we can define an open set for every
subset of Λ, including IΛ. The function f is said to be continuous if the preimage of any open subset of
k is an open set of IΛ.

Let I := [a, b]k be a fully ordered subset of k whose minimal element and maximal element are a and
b, respectively. In our paper, we assume that k and [a, b]k are infinite sets and consider only the case
for I = [a, b]k with a ≺ b such that there exists an element ξ with a ≺ ξ ≺ b and the order-preserving
bijections κa : I → [a, ξ]k and κb : I → [ξ, b]k exist (for example, the case of the cardinal number of I is
either ℵ0 or ℵ1).

An elementary simple function on IΛ is a finite sum
∑t
i=1 ki1Ii , where

(1) for any 1 ⩽ i ⩽ t, ki ∈ k;
(2) Ii = Ii1 × · · · × Iin, and for any 1 ⩽ j ⩽ n, Iij is a subset of I which is one of the following forms:

(a) (cij , dij)k := {k ∈ k | cij ≺ k ≺ dij},
(b) [cij , dij)k := {k ∈ k | cij � k ≺ dij},
(c) (cij , dij ]k := {k ∈ k | cij ≺ k � dij},
(d) [cij , dij ]k := {k ∈ k | cij � k � dij},

where a � cij ≺ dij � b;
(3) 1Ii is the function Ii → {1} such that Ii ∩ Ij = ∅ holds for all 1 ⩽ i 6= j ⩽ t.

We denote by S(IΛ) the set of all elementary simple functions. Then S(IΛ) is a k-vector space, and S(IΛ)
induces the direct sum S(IΛ)⊕2n whose element can be seen as the sequence{

f(δ1,...,δn)

( n∑
i=1

kibi

)}
(δ1,...,δn)∈{a,b}×···×{a,b}

=: fff(k1, . . . , kn),

∑n
i=1 kibi is written as (k1, . . . , kn) since {b1 | 1 ⩽ i ⩽ n} = BΛ is the k-basis of Λ. Then we can

characterize S(IΛ) together with two further pieces of data: the function 1IΛ : IΛ → {1} and the map

γξ : S(IΛ)⊕2n → S(IΛ), (3.2)

called the juxtaposition map, sending fff to the function

γξ(fff)(k1, . . . , kn) =
∑

(δ1,...,δn)

1κδ1
(I)×···×κδn (I) · f(δ1,...,δn)(κ

−1
δ1

(k1), . . . , κ
−1
δn

(kn)) (k1 6= ξ, . . . , kn 6= ξ),

where ξ is an element with a ≺ ξ ≺ b such that the order-preserving bijections

κa : I→ [a, ξ]k and κb : I→ [ξ, b]k

exist.
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Example 3.5. (1) Take Λ be the k-algebra whose dimension is 2, and assume that {b1, b2} is a basis
of Λ. Then IΛ ∼=k [a, b]kb1 × [a, b]kb2. For any element

fff = (f(a,a), f(b,a), f(a,b), f(b,b)) ∈ S(IΛ)⊕4,

where f(δ1,δ2) : IΛ → k is a function in S(IΛ) sending each k1b1 + k2b2 to the element f(δ1,δ2)(k1, k2) in k,
and (δ1, δ2) ∈ {a, b} × {a, b} = {(a, a), (b, a), (a, b), (b, b)}, γξ juxtaposes f(a,a), f(b,a), f(a,b) and f(b,b) into
a new function

γξ(f(a,a), f(b,a), f(a,b), f(b,b))(k1, k2) = f̃(a,a)(k1, k2) + f̃(b,a)(k1, k2) + f̃(a,b)(k1, k2) + f̃(b,b)(k1, k2)

as shown in Figure 1, where

f̃(a,a)(k1, k2) = 1[a,ξ)×[a,ξ) · f(a,a)(κ−1
a (k1), κ

−1
a (k2)),

f̃(b,a)(k1, k2) = 1(ξ,b]×[a,ξ) · f(b,a)(κ−1
b (k1), κ

−1
a (k2)),

f̃(a,b)(k1, k2) = 1[a,ξ)×(ξ,b] · f(a,b)(κ−1
a (k1), κ

−1
b (k2)),

f̃(b,b)(k1, k2) = 1(ξ,b]×(ξ,b] · f(b,b)(κ−1
b (k1), κ

−1
b (k2)).

(2) This example is used to establish the relation between Banach spaces and Lebesgue intersections
in [29]. Take k = R, I = [0, 1], ξ = 1

2 , Λ = R and the order-preserving bijections κ0 : I = [0, 1] → k = R
and κ1 : I = [0, 1]→ k = R are given by x 7→ x

2 and 1+x
2 , respectively. Then S(IR) = S([0, 1]) is a normed

space together with two further pieces of data: the function 1[0,1] : [0, 1] → {1} and the juxtaposition
map

γ 1
2
: S([0, 1])⊕ S([0, 1])→ S([0, 1])

S(IΛ)⊕4S(IΛ)⊕4S(IΛ)⊕4S(IΛ)⊕4

S(IA)S(IA)S(IA)S(IA)
a
a b

b

a
a b

b

a
a b

b

a
a b

b

a
a b

b

⊕

⊕

⊕ ⊕

•
ξ

•ξ

κa

κa

f(a,a)

f̃(a,a)

κb

κa

f(b,a)

f̃(b,a)

κb

κb

f(b,b)

f̃(b,b)

κa

κb

f(a,b)

f̃(a,b)

Figure 1 (Color online) The juxtaposition map
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sending (f1, f2) to the following function:

γ 1
2
(f1, f2)(x) = 1κ0([0,1)) · f1(κ

−1
0 (x)) + 1κ1((0,1]) · f1(κ

−1
1 (x))

=


f1(2x), x ∈ κ0([0, 1)) =

[
0,

1

2

)
,

f2(2x− 1), x ∈ κ1((0, 1]) =
(
1

2
, 1

]
.

Lemma 3.6. The map γξ is a k-linear map.
Proof. Take a, b ∈ k, f, g ∈ S(IΛ) and let (ki)i, 1 and (δi)i be the element (k1, . . . , kn) in S(IΛ)⊕2n ,
the identity function 1κδ1

(I)×···×κδn (I) and the n-multiple (δ1 × · · · × δn), respectively. Then

γξ(af + bg)((ki)i) =
∑
(δi)i

1 · (af + bg)(δi)i((κ
−1
δi

(ki))i)

=
∑
(δi)i

(
1 · af(δi)i((κ

−1
δi

(ki))i) + 1 · bg(δi)i((κ
−1
δi

(ki))i)
)

= a
∑
(δi)i

1 · f(δi)i((κ
−1
δi

(ki))i) + b
∑
(δi)i

1 · g(δi)i((κ
−1
δi

(ki))i)

= aγξ(f)((ki)i) + bγξ(g)((ki)i).

Thus, γξ is a k-linear map.

4 Normed modules over k-algebras

Let I be a subset of the field k = (k,�) with totally ordered �. Then I is also a totally ordered set. For
simplicity, we denote by [x, y]k the set of all elements k ∈ k with x � k � y, i.e.,

[x, y]k := {k ∈ k | x � k � y}.

In particular, if x = y then [x, y]k = {x} = {y} is a set containing only one element.
In this section, we introduce the category Norp, which is used to explore the categorification of

integration.

4.1 Norms of Λ-modules

Recall that a left A-module (= A-module for short) over a k-algebra A is a k-vector space V with a k-linear
map h : A→ EndkV sending a to ha. Thus, h provides a right action A× V → V , (a, v) 7→ va := ha(v)

which satisfies the following properties:
(1) a(v + v′) = av + av′ for any v, v′ ∈ V and a ∈ A;
(2) (a+ a′)v = av + a′v for any v ∈ V and a, a′ ∈ A;
(3) a′(av) = (a′a)v for any v ∈ V and a, a′ ∈ A;
(4) 1v = v for any v ∈ V ;
(5) (ka)v = k(av) = a(kv) for any v ∈ V , a ∈ A and k ∈ k.

Take A = Λ to be the normed k-algebra whose norm ‖ · ‖p : Λ→ R+ given by (3.1), where the k-basis of
Λ is BΛ = {bi | 1 ⩽ i ⩽ n = dimk Λ}.
Definition 4.1. Let τ : Λ → k be a homomorphism between two normed k-algebras (Λ, ‖ · ‖p) and
(k, | · |). A τ -normed Λ-module is a Λ-module M with a norm ‖ · ‖ :M → R⩾0 such that

‖am‖ = |τ(a)| · ‖m‖ holds for all a ∈ k and m ∈M. (4.1)

Thus, each normed Λ-module can be seen as a triple (M,h, ‖ · ‖) of the k-vector space M , the k-linear
map h : M → EndkM and a norm ‖ · ‖ : M → R⩾0. For simplification, τ -normed modules are called
normed modules.
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The norms of Λ-modules yield the following fact.
Fact 4.2. (1) Note that ‖ · ‖p defined by (3.1) is the norm of Λ as a k-vector space. It is easy to see
that Λ is also a left Λ-module, called the regular module, where the scalar multiplication is given by the
multiplication Λ × Λ → Λ, (a, x) 7→ ax of Λ as a finite-dimensional k-algebra. Thus, it is natural to ask
whether ‖ · ‖p is a norm of Λ as a Λ-module. Indeed, the norm of Λ as a finite-dimensional k-algebra may
not be equal to the norm ‖ · ‖ of Λ as a regular module. However, if Λ as the left Λ-module defined by

Λ× Λ→ Λ, (a, x) 7→ a ? x := τ(a)x, (4.2)

where τ(a)x is defined by the scalar multiplication of Λ as the k-vector space kΛ, then for any x =∑n
i=1 kibi ∈ Λ, we obtain

‖a ? x‖p =
∥∥∥∥τ(a) n∑

i=1

kibi

∥∥∥∥
p

=

( n∑
i=1

|τ(a)ki|pn(bi)p
) 1

p

= |τ(a)|
( n∑
i=1

|ki|pn(bi)p
) 1

p

= |τ(a)|‖x‖p.

To be more precise, Λ is a (Λ,Λ)-bimodule with two norms, and Λ is a normed module satisfying
Definition 4.1 when it is considered as a module defined in (4.2).

(2) For any Λ-homomorphism f : M → N of two Λ-modules M and N , if M and N are normed
Λ-modules, i.e., M = (M,hM , ‖ · ‖M ) and N = (N,hN , ‖ · ‖N ), then we have

‖f(am)‖N = ‖af(m)‖N = |τ(a)| · ‖f(m)‖N .

Example 4.3. Let

Λ =

(
k 0

k k

)
.

Then a k-basis of Λ is BΛ = {EEE11,EEE21,EEE22}, where EEE11 = (10
0
0), EEE21 = (01

0
0) and EEE22 = (00

0
1). Take n to

be the map BΛ → R+ defined by n(EEE11) = n(EEE21) = n(EEE22) = 1, and then for any element x = (k11k21
0
k22

)

in Λ, we have ‖x‖p = (|k11|p + |k21|p + |k22|p)
1
p . There are three indecomposable Λ-modules up to

Λ-isomorphisms:

P (1) =

(
k 0

k 0

)
∼=

(
0 k
0 k

)
, P (2) =

(
0 0

0 k

)
,

and the cokernel coker (P (2)→ P (1) · ( 0 1
1 0 )). Then each Λ-module M is isomorphic to the direct sum

P (1)⊕t1 ⊕ P (2)⊕t2 ⊕ (P (1)/P (2))⊕t3 for some t1, t2, t3 ∈ N. Assume that M = (M,hM , ‖ · ‖M ) and
N = (N,hN , ‖ · ‖N ) are two normed Λ-modules. Then, naturally, M ⊕N is also a Λ-module, where the
left Λ-action is the map

hM ⊕ hN :=

(
hM 0

0 hN

)
: Λ×M ⊕N →M ⊕N

which sends (a, (mn )) to ( hM 0
0 hN

)(mn ) = (
(hM )a(m)
(hN )a(n)

) = (aman ). Furthermore, we can use the τ -norms of M
and N , i.e., ‖ · ‖M and ‖ · ‖N , to define a τ -norm ‖ · ‖M⊕N of M ⊕N by

‖(m,n)‖M⊕N := (|k|(‖m‖pM + ‖n‖pN ))
1
p for given k ∈ k\{0}.

Then we have

‖a(m,n)‖M⊕N = (|k|(‖am‖pM + ‖an‖pN ))
1
p = (|k|(|τ(a)|p‖m‖pM + |τ(a)|p‖n‖pN ))

1
p

= |τ(a)| (|k|(‖m‖pM + ‖n‖pN ))
1
p = |τ(a)|‖(m,n)‖M⊕N

for any a ∈ Λ.
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Example 4.4. The quiver of the k-algebra Λ given in Example 4.3 is

Q = 1
α

−−−−→ 2.

By representation theory, all Λ-modules M can be represented by

M1

φa

−−−−→M2,

where M1 and M2 are two k-vector spaces and ϕa is a k-linear map. Indeed, the identity element of Λ is
EEE = EEE11+EEE22, where {EEE11,EEE22} is the complete set of primitive orthogonal idempotents. Thus, M , as a
k-vector space, has a decomposition M = EEE11M⊕EEE22M (becauseEEE11EEE22 = 0 yieldsEEE11M∩EEE22M = 0).
For any a = k11EEE11 + k22EEE22 + k21EEE21 and m ∈M , we have

am = (k11EEE11 + k22EEE22 + k21EEE21)(EEE11m+EEE22m)

= k11EEE11(EEE11m) + k22EEE22(EEE22m) + k21EEE21(EEE11m)

= k11(hM )EEE11
(EEE11m) + k22(hM )EEE22

(EEE22m) + k21(hM )EEE21
(EEE11m)

= (hM )EEE11
(k11EEE11m) + (hM )k22EEE22

(EEE22m) + (hM )EEE21
(k21EEE11m), (4.3)

where
(a) hM : Λ → EndkM is a homomorphism of k-algebras sending a to (hM )a, which satisfies 1M =

(hM )EEE = (hM )EEE11
+ (hM )EEE22

;
(b) (hM )EEEii

= 1EEEiiM (i = 1, 2);
(c) (hM )EEE12

: EEE11M → EEE22M is a k-linear map (this is equivalent to (4.3)).
Therefore, we obtain that the representation corresponding to M = EEE11M ⊕EEE22M is

EEE11M
EEE21

−−−−→EEE22M.

Generally,

M1

φa

−−−−→M2

corresponds to the module M1 ⊕ M2, where the Λ-action Λ × M1 ⊕ M2 → M1 ⊕ M2 is defined by
EEE11(m1,m2) = (m1, 0), EEE22(m1,m2) = (0,m2) and EEE12(m1,m2) = (0, ϕα(m1)). Without loss of
generality, for any representation

M1

φa

−−−−→M2

of Q, we assume that M1 = k⊕t1 , M2 = k⊕t2 and ϕa ∈ Matt2×t1(k) (up to Λ-isomorphism), and
for any i = 1, 2, Mi is a normed space equipping with the norm ‖ · ‖Mi

: Mi = k⊕ti → R+ sending
mi = (mij)1⩽j⩽ti to (

∑ti
j=1 |mij |p)

1
p . Then we can define a norm ‖ · ‖M1⊕M2

by

‖(m1,m2)‖M1⊕M2 = (|k|(‖m1‖pM1
+ ‖m2‖pM2

))
1
p ,

where k is a given element in k\{0}. The direct sum ⊕ of k-vector spaces is the p powers of the norm
preserving in the case for k = 1, i.e., ‖(m1,m2)‖pM1⊕M2

= ‖m1‖pM1
+ ‖m2‖pM2

. Furthermore, if ‖ · ‖M1

and ‖ · ‖M2 are τ -norms of M1 and M2, respectively, then for any a ∈ Λ, we have

‖a(m1,m2)‖M1⊕M2
=
(
|k|(‖am1‖pM1

+ ‖am2‖pM2
)
) 1

p

=
(
|k|(|τ(a)|p‖m1‖pM1

+ |τ(a)|p‖m2‖pM2
)
) 1

p

= |τ(a)|
(
|k|(‖m1‖pM1

+ ‖m2‖pM2
)
) 1

p

= |τ(a)|‖a(m1,m2)‖M1⊕M2 .
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4.2 Completions of normed Λ-modules

Let N = (N,h, ‖ · ‖) be a normed Λ-module. In this subsection, we construct its completion. For us,
we only need the completion in the finite-dimensional k-algebra Λ case. Otherwise, there is at least one
Λ-module which is not complete, for example, Λ is a non-complete Λ-module. Therefore, we assume that
k is complete in this subsection by Propositions 2.16 and 3.3.

Similar to finite-dimensional k-algebras, we can define open neighborhoods B(0, r) of 0 for any normed
Λ-module N = (N,h, ‖ · ‖) by

B(0, r) := {x ∈ N | ‖x‖ < r}.

Let UBN (0) be the class of all subsets U of N satisfying the following conditions:
(1) U is the intersection of a finite number of B(0, r);
(2) U is the union of any number of B(0, r).

Then UBN (0) is a topology defined on N , and we can define the Cauchy sequence by the above topology.
Lemma 4.5. Let C∗(N) be the set of all Cauchy sequences in the normed Λ-module N = (N,h, ‖ · ‖).
Then C∗(N) is a Λ-module.
Proof. First of all, C∗(N) is a k-vector space whose addition and k-action are given by {xi}i∈N +

{yi}i∈N = {xi + yi}i∈N (∀ {xi}i∈N, {yi}i∈N ∈ C∗(N)) and k{xi}i∈N = {kxi}i∈N (∀ k ∈ k), respectively.
Furthermore, define

Λ× C∗(N)→ C∗(N), (a, {xi}i∈N) 7→ a · {xi}i∈N := {a · xi}i∈N,

where a · xi = ha(xi). Then C∗(N) is a Λ-module.

Two Cauchy sequences {xi}i∈N and {yi}i∈N in N are called equivalent, denoted by {xi}i∈N ∼ {yi}i∈N,
if for any U ∈ UBN (0), there is r ∈ N such that xs−xt ∈ U holds for all s, t ⩾ r. It is easy to see that “∼”
is an equivalence relation. Let [{xi}i∈N] be the equivalent class of Cauchy sequences containing {xi}i∈N
and let C(N) be the set of all equivalent classes. We naturally obtain a map

h : C∗(N)→ C(N), {xi}i∈N 7→ [{xi}i∈N].

We can show that C(N) is a Λ-module by using an argument similar to that in the proof of Lemma 4.5,
and further obtain Ker(h : C∗(N)→ C(N)) = [{0}i∈N]. Thus we have

C(N) ∼= C∗(N)/[{0}i∈N].

Then C(N) is complete, and we call it the completion of N . We use N̂ to denote the completion C(N)

of N . The Λ-module N̂ is a normed Λ-module, where the norm defined on N̂ is induced by the norm
‖ · ‖ : N → R⩾0 defined on N .
Definition 4.6. Assume that Λ is complete. A normed Λ-module N is called a Banach Λ-module if
N̂ = N (i.e., N is complete).

4.3 σ-algebras and the elementary simple function set Sτ (IΛ)

Lemma 4.7. Take τ to be a homomorphism of k-algebras τ : Λ → k. Then the elementary simple
function set S(IΛ) with the above homomorphism τ , denoted by Sτ (IΛ), is a Λ-module, where the Λ-action
Λ× S(IΛ)→ S(IΛ) is given by (

a, f =

t∑
i=1

ki1Ii

)
7→ af :=

t∑
i=1

τ(a)ki1Ii .

Proof. For all a ∈ Λ, a′ ∈ Λ, k ∈ k, f =
∑
i ki1Ii ∈ S(IΛ) and f ′ =

∑
j k

′
j1I′j ∈ S(IΛ), the following

conditions are satisfied:
(1) a(f + f ′) = af + af ′ (trivial).
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(2) (a+ a′)f = af + a′f (trivial).
(3) (aa′)f = a(a′f) because

(aa′)f = (aa′)
∑
i

ki1Ii =
∑
i

τ(aa′)ki1Ii =
∑
i

τ(a)τ(a′)ki1Ii

= a
∑
i

τ(a′)ki1Ii = a

(
a′
∑
i

ki1Ii

)
= a(a′f).

(4) 1f = f (trivial).
(5) We have
• (ka)f = (ka)

∑
i ki1Ii =

∑
i τ(ka)(ki1Ii);

• k(af) = k(a
∑
i ki1Ii) = k

∑
i τ(a)ki1Ii =

∑
i k(τ(a)(ki1Ii));

• a(kf) = a
∑
i k(ki1Ii) =

∑
i τ(a)(k(ki1Ii)).

Since τ is a homomorphism of k-algebras, we have

τ(ka)(ki1Ii) = k(τ(a)(ki1Ii)) =
∑
i

τ(a)(k(ki1Ii)) =
∑
i

kkiτ(a)1Ii

for all i. Then (ka)f = k(af) = a(kf).
Now, we introduce a norm for Sτ (IΛ) such that it is a normed Λ-module. To do this, we first recall the

definition of σ-algebras. The main use of σ-algebras is in the definition of measures. It is important in
mathematical analysis and probability theory. In mathematical analysis, it is the foundation for Lebesgue
integration, and in probability theory, it is interpreted as the collection of events that can be assigned
probabilities (see, for example, [15, p. 12], [25, p. 10] and [37, p. 8]).
Definition 4.8. Let S be a set and let P (S) be the set of all subsets of S, which is called the power
set of S. A σ-algebra is a subset A of P (S) satisfying the following conditions:

(1) ∅ and S lie in A;
(2) for any X ∈ A, the complement set Xc := S\X of X lies in A;
(3) for any X1, . . . , Xn, . . . ∈ A, the union

⋃∞
i=1Xi is an element in A.

For a class C of some sets lying in P (S), we call A a σ-algebra generated by C if A is the minimal σ-algebra
containing C.

Let Σk be the σ-algebra generated by {(a, b)k, [a, b)k, (a, b]k, [a, b]k | a � b}, and let µ : Σk → R⩾0 be a
measure such that µ({k}) = 0 holds for any k ∈ k, i.e., µ is a function satisfying the following conditions:

(1) µ(∅) = 0;
(2) µ(

⋃
i∈NXi) =

∑
i∈N µ(Xi) holds for all sets X1, X2, . . . satisfying Xi ∩Xj = ∅ (i 6= j).

Any two functions f and g in S(IΛ) are called equivalent if

µ({kkk = (k1, . . . , kn) ∈ k⊕n | f(kkk) 6= g(kkk)}) = 0.

The equivalent class containing f is written as [f ]. Then we obtain an epimorphism

S(IΛ)→ S(IΛ) := {[f ] | f ∈ S(IΛ)}

sending each function to its equivalent classes. It is easy to see that the kernel of the above epimorphism
is [0]. Then we have

S(IΛ) ∼= S(IΛ)/[0].

For simplification, we do not differentiate between two equivalent functions under the above isomorphism.
Therefore, we treat S(IΛ) and the quotient S(IΛ) equivalently.
Lemma 4.9. Let τ : Λ → k be a homomorphism between two k-algebras. Then the Λ-module Sτ (IΛ)
with the map

‖ · ‖p : Sτ (IΛ)→ R⩾0, f =

t∑
i=1

ki1Ii 7→
( t∑
i=1

(|ki|µ(Ii))p
) 1

p

is normed.
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Proof. Let f be an arbitrary function lying in S(IΛ). It is trivial that ‖f‖p is non-negative. Let a be
an arbitrary element in Λ and assume f =

∑t
i=1 ki1Ii . We have

‖af‖p =
∥∥∥ t∑
i=1

τ(a)ki1Ii

∥∥∥
p
=

( t∑
i=1

|τ(a)ki|pµ(1Ii)p
) 1

p

= |τ(a)| ·
( t∑
i=1

|ki|pµ(1Ii)p
) 1

p

= |τ(a)| · ‖f‖p,

which satisfies the formula (4.1). In particular, if ‖f‖p = 0, then so is (|ki|µ(Ii))p = 0 for all i, and we
have |ki| = 0 in the case for µ(Ii) 6= 0. If µ(Ij) = 0 holds for some j ∈ J (⊆ {1, 2, . . . , t}), then we have
f =

∑
j∈J kj1Ij . Clearly,

µ({x ∈ IΛ | f(x) 6= 0}) =
∑
j∈J

µ(Ij) = 0,

i.e., f = 0 in treating S(IΛ) and the quotient S(IΛ) equivalently. Thus, ‖f‖p = 0 if and only if f = 0.
Next, we prove the triangle inequality. For two arbitrary functions f =

∑
i ki1Ii and g =

∑
j lj1I′j , we

have

f + g =
∑
i

ki1Ii\
⋃

j I
′
j
+
∑
j

lj1I′j\
⋃

i Ii
+

∑
Ii∩I′j ̸=∅

(ki1Ii∩I′j + lj1Ii∩I′j ) (4.4)

by Ii ∩ Iı = ∅ (∀ i 6= ı) and I ′j ∩ I ′ȷ = ∅ (∀ j 6= ). Then we can compute the norm of f + g by (4.4) as the
following formula:

‖f + g‖p = (R+G+B)
1
p ,

where

R =
∑
i

|ki|pµ
(
Ii
∖⋃

j

I ′j

)p
,

G =
∑
j

|lj |pµ
(
I ′j
∖⋃

i

Ii

)p
,

B =
∑

Ii∩I′j ̸=∅

(|ki|p + |lj |p)µ(Ii ∩ I ′j)p.

On the other hand, we have the following inequality by the discrete Minkowski inequality:

‖f‖p + ‖g‖p =
(∑

i

|ki|pµ(Ii)p
) 1

p

+

(∑
j

|li|pµ(I ′i)p
) 1

p

⩾
(∑

i

|ki|pµ(Ii)p +
∑
j

|li|pµ(I ′i)p
) 1

p

=: S. (4.5)

Since by the definition of measure, µ(X ∪ Y ) = µ(X) + µ(Y ) holds for any X and Y with X ∩ Y = ∅, we
obtain

µ(X ∪ Y )p ⩾ µ(X)p + µ(Y )p, (4.6)

and then
µ(Ii)

p ⩾ µ

(
Ii\
⋃
j

I ′j

)p
+ µ

(
Ii ∩

⋃
j

I ′j

)p
.

Thus, ∑
i

|ki|pµ(Ii)p ⩾
∑
i

|ki|pµ
(
Ii\
⋃
j

I ′j

)p
+
∑
i

|ki|pµ
(
Ii ∩

⋃
j

I ′j

)p
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= R+
∑
i

|ki|p
( ∑

j

Ii∩I′j ̸=∅

µ(Ii ∩ I ′j)
)p

(4.6)

⩾ R+
∑

Ii∩I′j ̸=∅

|ki|pµ(Ii ∩ I ′j)p. (4.7)

Similarly, ∑
j

|lj |pµ(I ′j)p ⩾ G+
∑

I′j∩Ii ̸=∅

|lj |pµ(I ′j ∩ Ii)p. (4.8)

Notice that∑
Ii∩I′j ̸=∅

|ki|pµ(Ii ∩ I ′j)p +
∑

I′j∩Ii ̸=∅

|lj |pµ(I ′j ∩ Ii)p =
∑

Ii∩I′j ̸=∅

(|ki|p + |lj |p)µ(Ii ∩ I ′j)p = B,

and then (4.7)+(4.8) induces Sp ⩾ R+G+B. Thus, the triangle inequality ‖f‖p + ‖g‖p ⩾ ‖f + g‖p
holds.

5 The categories Norp and A p

Recall that a measure defined on Σk is a countable additive function µ : Σk → R⩾0 with µ(∅) = 0.
Naturally, it induces a measure, still written as µ, defined on some σ-algebra of Λ such that for any∑n
i=1 Iibi (Ii ∈ Σk is measurable), the equation µ(

∑n
i=1 Iibi) =

∏n
i=1 µ(Ii) holds.

Let dimk Λ = n, and let N be a normed Λ-module equipped with two additional pieces of data: an
element v ∈ N such that ‖v‖ ⩽ µ(IΛ), and a continuous Λ-homomorphism δ : N⊕p2

n → N . Here, ⊕p
denotes the direct sum of 2n normed Λ-modules X1, . . . , X2n with the norm defined as follows:

‖ · ‖p :
2n⊕
i=1

p Xi → R⩾0, (x1, x2, . . . , x2n) 7→
((

µ(I)
µ(IΛ)

)n 2n∑
i=1

‖xi‖p
) 1
p
.

5.1 The categories Norp and A p

Let Norp be a class of triples which are of the form (N, v, δ), where N is a normed Λ-module, v ∈ N
is an element with ‖v‖p ⩽ µ(IΛ) and δ : N⊕p2

n → N is a Λ-homomorphism satisfying δ(v, v, . . . , v) = v

such that for any Cauchy sequence {xi}i∈N ∈ N̂⊕p2n ∼= N̂⊕p2
n , the commutativity

lim←−δ(xi) = δ(lim←−xi) (5.1)

of the inverse limit and the Λ-homomorphism holds. For any two triples (N, v, δ) and (N ′, v′, δ′) in Norp,
we define the morphism (N, v, δ) → (N ′, v′, δ′) to be the Λ-homomorphism θ : N → N ′ with θ(v) = v′

such that the diagram

N⊕p2
n δ //

θ⊕2n=


θ

. . .

θ


2n×2n

��

N

θ

��
N ′⊕p2

n

δ′
// N ′

commutes, i.e., for any (v1, . . . , v2n) ∈ N⊕p2
n , θ(δ(v1, . . . , v2n)) = δ′(θ(v1), . . . , θ(v2n)). Then it is easy

to check that Norp is a category.
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Lemma 5.1. Let
(1) ξ be an element in I = [a, b]k with a ≺ ξ ≺ b such that the order-preserving bijections κa : I→ [a, ξ]k

and κb : I→ [ξ, b]k exist;
(2) 1 be the identity function 1IΛ : IΛ → {1};
(3) γξ be the map given in (3.2);

(4) τ : Λ→ k be the homomorphism of k-algebras given in Lemma 4.9.
Then the following statements hold:

(a) γξ(1,1, . . . ,1) = 1;

(b) γξ is a Λ-homomorphism.
First, we provide a remark for the above lemma.

Remark 5.2. Indeed, (Sτ (IΛ),1, γξ) is an object in the category Norp. However, Lemma 5.1 points
out that γξ(1,1, . . . ,1) = 1 and γξ is a Λ-homomorphism. Thus, we need to show that the commutativity
of the inverse limit and γξ holds. We prove this result in the following content, as shown in Lemma 5.5.

Next, we prove Lemma 5.1.
Proof of Lemma 5.1. (a) We have that Sτ (IΛ) is a normed Λ-module by Lemma 4.9, and γξ is a k-linear
map by Lemma 3.6. The formula γξ(1, . . . ,1) = 1 can be directly induced by the definition of γξ.

(b) Take λ ∈ Λ, f ∈ S(IΛ) and let (ki)i, 1 and (δi)i be an arbitrary element (k1, . . . , kn) in S(IΛ)⊕2n ,
the identity function 1κδ1

(I)×···×κδn (I) and the n-multiple (δ1 × · · · × δn), respectively. Then we have

γξ(λ · f)((ki)i) =
∑
(δi)i

1 · (τ(λ)f)(δi)i((κ
−1
δi

(ki))i)

= τ(λ)γξ(f)((ki)i) (similar to Lemma 3.6)
= λ · γξ(f)((ki)i).

Thus γξ is a Λ-homomorphism.

Let A p denote a class of triples which are of the form (N̂ , v, δ̂), where N̂ is a Banach Λ-module (see
Definition 4.6), v ∈ N̂ is an element with ‖v‖ ⩽ µ(IΛ) and δ̂ : N̂⊕p2

n → N̂ is a Λ-homomorphism
satisfying δ̂(v, v, . . . , v) = v. Obviously, A p is a full subcategory of Norp.

5.2 The triple (Sτ (IΛ),1, γξ)

Let (N, v, δ) be an object in Norp and N̂ be the completion of the Λ-module N . Then N̂ , as a k-
vector space, is a Banach space which is a Banach Λ-module. In addition, naturally, we obtain the
Λ-homomorphism

δ̂ : N̂⊕p2
n

→ N̂

induced by the Λ-homomorphism δ. Furthermore, we have that (N̂ , v, δ̂) is also an object in Norp, and
there is a naturally embedding morphism

emb : (N, v, δ) ↪→ (N̂ , v, δ̂)

which is induced by N ⊆ N̂ .
Notation 5.3. Keep the notations ξ =: ξ11, κa, κb, 1, γξ and τ as in Lemma 5.1. Then ξ11 divides
I =: I(01) into two subsets [a, ξ11]k =: I(11) and [ξ11, b]k =: I(12). Next, let ξ22 = ξ11 (= ξ), and denote by
ξ21 and ξ23 the two elements in IΛ such that
• a ≺ ξ21 = κaκa(b) = κaκb(a) = κbκa(a) = κa(ξ11) ≺ ξ22;
• ξ22 ≺ ξ23 = κbκb(a) = κbκa(b) = κbκa(b) = κb(ξ11) ≺ b.

Then I is divided into four subsets, which are of the form I(2 t+1) = [ξ2t, ξ2 t+1]k (0 ⩽ t ⩽ 3) by
a = ξ20 ≺ ξ21 ≺ ξ22 ≺ ξ23 ≺ ξ24 = b. Repeating the above step t times, we obtain a sequence of 2t − 1

elements lying in IΛ:
a = ξt0 ≺ ξt1 ≺ ξt2 ≺ · · · ≺ ξt2t = b,
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all 2t subsets which are of the form I(t s+1) = [ξts, ξt s+1]k, and 2t order-preserving bijections κξts :

I(t s+1) → I(01).
For any family of subsets (I(uivi))1⩽i⩽n (1 ⩽ vi ⩽ 2ui), we denote by 1(uivi)i the function

1(uivi)i := 1IΛ |∏n
i=1 I(uivi) : IΛ → {0, 1}, x 7→

1, x ∈
n∏
i=1

I(uivi),

0, otherwise,

where I(uivi) ∼= I(uivi) × {bi} ⊆ IΛ holds for all i and BΛ = {bi | 1 ⩽ i ⩽ n} is the k-basis of Λ.
Let Eu be the set of all step functions constant on each of

∏n
i=1 I(uivi) (1 ⩽ vi ⩽ 2ui for all i), i.e.,

every step function in Eu is of the form ∑
(uivi)i

k(uivi)i1(uivi)i ,

where each k(uivi)i lies in k, the number of summands is (2u)n = 2un, and each (uivi)i corresponds to the
Cartesian product

∏n
i=1 I(uivi). Then it is easy to check that each Eu is a normed submodule of S(IΛ),

and Eu ⊆ Eu+1 because each step function constant on each of I(uv) is equivalent to a step function
constant on each of I(u+1 v). Thus,

k ∼= E0 ⊆ E1 ⊆ · · · ⊆ Et ⊆ · · · ⊆ S(IΛ) ⊆ Ŝ(IΛ).

Moreover, for any I(uv) = [ξu v−1, ξuv]k, we have two cases (i) ξuv � ξ and (ii) ξ � ξu v−1 by the definition
of Eu. Therefore, we obtain a map

p : {I(uv) | u ∈ N} → {a, b}, I(uv) 7→

{
a, I(uv) lies in the case (i),
b, I(uv) lies in the case (ii).

Now we use the above map to prove the following lemma.
Lemma 5.4. The map γξ : S(IΛ)⊕p2

n → S(IΛ) induces the following k-linear map:

γξ : E
⊕p2

n

u

∼=−→Eu+1

which is an isomorphism of Λ-modules.
Proof. The k-vector space Eu is a Λ-module, where Λ× Eu → Eu is defined by(

a, f =
∑
i

1 · 1Ii
)
7→ a · f =

∑
i

τ(a) · 1Ii .

Then it is easy to see that γξ is a Λ-homomorphism. Since Ker(γξ) = 0, we have that γξ is injective.
Next, we prove that it is also surjective.

Any step function f : k⊕n → k lying in Eu+1 can be written as

f(k1, . . . , kn) =
∑

(uivi)i

fi =
∑

(ω1,...,ωn)∈{a,b}×···×{a,b}

f(ω1,...,ωn),

where
• fi = k(uivi)i1(uivi)i ;
•

f(ω1,...,ωn)(k1, . . . , kn) =
∑

Πn
i=1p(I(uivi))=(ω1,...,ωn)

fi,

and thus the number of all summands of it is (2u)n = 2un;
• the number of all summands of

∑
(ω1,...,ωn)∈{a,b}×···×{a,b} f(ω1,...,ωn) is 2n (thus the number of all

summands of
∑

(uivi)i
fi is 2un · 2n = 2(u+1)n).
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Then
f̃(ω1,...,ωn)(k1, . . . , kn) = f(ω1,...,ωn)(κ

−1
ω1

(k1), . . . , κ
−1
ωn

(kn)) ∈ Eu,

and γξ sends {f(ω1,...,ωn)}(ω1,...,ωn)∈{a,b}×···×{a,b} to f by the definition of γξ (see (3.2)). We obtain that
γξ is surjective. Therefore, γξ is a Λ-isomorphism.

By Lemma 5.4, the following result holds.
Lemma 5.5. The commutativity of the inverse limit and the map γ̂ξ : Ŝτ (IΛ)⊕p2

n → Ŝτ (IΛ) induced by
the completion of Sτ (IΛ) holds, i.e., for any sequence {fff i}i∈N+ in Ŝτ (IΛ)⊕p2

n , if its inverse limit exists,
then we have

γ̂ξ(lim←−fff i) = lim←−γ̂ξ(fff i).

Furthermore, (Sτ (IΛ),1, γξ) is an object in Norp.
Proof. Since γξ is a Λ-isomorphism, it is clear that γ̂ξ is also a Λ-isomorphism. Then, the commutativity
of the inverse limit and the map γ̂ξ holds. Thus, for any sequence {fff i}i∈N+ in Sτ (IΛ)⊕p2

n , if its inverse
limit exists, then this inverse limit is also an element in Ŝτ (IΛ)⊕p2

n , and so

γξ(lim←−fff i) = γ̂ξ(lim←−fff i)
♠
= lim←−γ̂ξ(fff i) = lim←−γξ(fff i),

where ♠ holds since γ̂ξ is a Λ-isomorphism (see Lemma 5.4). Therefore, by Lemma 5.1, (Sτ (IΛ),1, γξ) is
an object in Norp.

5.3 Ŝτ (IΛ) is a direct limit

Let norΛ be the category of normed Λ-modules and Λ-homomorphisms between them. Then it is easy
to check that all Eu are objects in norΛ. Furthermore, for any u ⩽ v, we have a Λ-homomorphism
ϕuv : Eu → Ev which is induced by Eu ⊆ Ev. Thus we obtain a direct system ((Ei)i∈N, (ϕuv)u⩽v)
in norΛ over N. Let Ban(Λ) be the category of Banach Λ-modules and continuous Λ-homomorphisms
between them. Then Ban(Λ) is a full subcategory of nor(Λ), and so, naturally, we obtain a direct system
((Ei)i∈N, (ϕuv)u⩽v) in Ban(Λ) if Λ is a complete k-algebra.

The following lemma establishes the relation between En and S(IΛ).
Lemma 5.6. Let Λ be a complete k-algebra. Consider the category Ban(Λ) and take (αi : Ei →
Ŝτ (IΛ))i∈N, where every αi is the embedding given by Ei ⊆ Ŝτ (IΛ). Then

lim−→Ei
∼= Ŝτ (IΛ).

Proof. Let X be an arbitrary object in norΛ such that there is (fi : Ei → X)i∈N satisfying fiϕij = fj

for all i ⩽ j. Then we can find the Λ-homomorphism θ : Ŝτ (IΛ)→ X in the following way.
For any x ∈ Ŝτ (IΛ), there exists a sequence {xt}t∈N in

⋃
iEi such that {‖xt−x‖p}t is a monotonically

decreasing sequence of positive real numbers. Then we have

lim←−{‖xt − x‖p}t = 0

by Example 2.4 which induces lim←−xt = x. Since αi, αj and ϕij (∀ i ⩽ j) are Λ-homomorphisms induced
by ⊆ (thus they are k-linear maps induced by ⊆) and every xt has a preimage in some Eu(t), Λ-
homomorphisms (fi)i∈N send {xt}t∈N to a sequence {fu(t)(xt)}t∈N in X. By the completeness of X,
lim←−fu(t)(xt) ∈ X holds. Define

θ(x) = lim←−fu(t)(xt) = lim←−f |Eu(t)
(xt) = lim←−f(xt),
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where f is the map lim←−Eu → X induced by the direct limit of ((Ei)i∈N, (ϕuv)u⩽v). Then one can check
that θ is well-defined and is a Λ-homomorphism making the following diagram commute:

Ŝτ (IΛ)
θ //_______ X.

Ei

αi

bbEEEEEEEEE fi

??���������

φij(i⪯j)

��
Ej

αj

RR

fj

NN

Next, we show that the existence of θ is unique. Assume that θ′ is also a Λ-homomorphism with
θ′αi = fi for all i. Note that all morphisms in Ban(Λ) are continuous, which ensure the commutativity
lim←−ϑ(xi) = ϑ(lim←−xi) between the inverse limit and any morphism ϑ starting from Ŝτ (IΛ). Then for any
x ∈ Ŝτ (IΛ), taking the sequence {xt}t∈N in

⋃
iEi satisfying lim←−xt = x, we have

θ′(x) = θ′
(
lim←−αi(xt)

)
= lim←−θ

′(αi(xt)) = lim←−fi(xt) = lim←−θ(αi(xt)) = θ
(
lim←−αi(xt)

)
= θ(x),

i.e., θ = θ′. Therefore, by the definition of direct limits, we have lim−→Ei
∼= Ŝτ (IΛ).

6 The A p-initial object in Norp

Let C be a category. Recall that an object O in C is an initial object if for any object Y , we have that
HomC(O, Y ) contains only one morphism, i.e., there is a unique morphism O → Y in C. Obviously, if C
has initial objects, then the initial object is unique up to isomorphism (see [35, Chapter 5, Lemma 5.3]).
Let D be a full subcategory of C. An object C ∈ C is called a D-initial object if for any D ∈ D, there is a
unique morphism h ∈ HomC(C,D) such that the diagram

C
h //

⊆
��

D

D′
h′

99sssssssssss

commutes, where D′ is an initial object in D and h′ is a morphism in D (see [35, p. 216]). It is trivial
that an initial object in C is a C-initial object.

Let Λ be a complete k-algebra. In this section, we show that (Ŝτ (IΛ),1, γ̂ξ) is an A p-initial object in
Norp. The proof is divided into two parts: (1) there is at least one morphism from (Ŝτ (IΛ),1, γ̂ξ) to any
object in A p; (2) the above morphism is unique.

6.1 The existence of morphism from (Ŝτ (IΛ),1, γ̂ξ)

In this subsection, we show that HomA p((Ŝτ (IΛ),1, γ̂ξ), (V, v, δ)) is not empty for every object (V, v, δ)

in A p.
Lemma 6.1. For any object (V, v, δ) ∈ A p, we have

HomA p((Ŝτ (IΛ),1, γ̂ξ), (V, v, δ)) 6= ∅.

Proof. For each u ∈ N, consider the map θu : Eu → V as follows:
(i) θ0 : E0 → V is a map induced by the k-linear map k→ V sending 1 to v (note that E0

∼= k). Then
one can check that θ is a Λ-homomorphism.
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(ii) θu+1 is induced by θu through the composition

θu+1 := (Eu+1

γ−1
ξ

−−−−→E⊕p2
n

u

θ⊕2n

u

−−−−→V ⊕p2
n δ
−−−−→V ),

where the inverse γ−1
ξ of the map γξ is given in Lemma 5.4.

Notice that γ−1
ξ (f) ∈ Eu−1 for any f ∈ Eu ⊆ Eu+1, and then for the case u = 0, we have that f = k1E0

is a constant defined on E0, and

θ1(f) = δ(θ⊕2n

0 (γ−1
ξ (f))) = δ(θ0(k1E0), θ0(k1E0), . . . , θ0(k1E0)) = kv,

i.e., θ1 is an extension of θ0. It yields θ1(1E1) = v by θ0(1E0) = v (see (i)). Furthermore, we can check
that θu+1 is an extension of θu and

θu(1Eu
) = v (∀u ∈ N) (6.1)

by induction, i.e., the diagram
lim−→Ei V

Eu
Q1

αu

ccGGGGGGGG θu

=={{{{{{{{{
� _

αu u+1

��
Eu+1
R2

αu+1

SS

θu+1

NN

commutes, where αi : Ei → lim−→Ei and αij : Ei → Ej (i ⩽ j) are the embeddings induced by Ei ⊆ lim−→Ei
and Ei ⊆ Ej , respectively. Then, for any i ⩽ j, there is a unique Λ-homomorphism θ such that the
diagram

lim−→Ei
θ //_______ V

Ei
P0

αi

bbDDDDDDDD θi

??��������
� _

αij

��
Ej
Q1

αj

RR

θj

OO

commutes. By Lemma 5.6, we have that θ : lim−→Ei
∼= Ŝτ (IΛ) → V is a Λ-homomorphism in

HomΛ(Ŝτ (IΛ), V ).
Next, we prove that θ is a morphism in Norp. First of all, we have

θ(1) = lim←−θ|Ei
(1Ei

) = lim←−θ(αi(1Ei
)) = lim←−θi(1Ei

)
(6.1)
=== lim←−v = v.

In the following, we show that the diagram

Ŝτ (IΛ)⊕p2
n γξ //

θ⊕2n

��

Ŝτ (IΛ)

θ

��
V ⊕p2

n

δ
// V

(6.2)

commutes. Notice that each fff = (f1, . . . , f2n) ∈ Ŝτ (IΛ)⊕p2
n can be seen as the inverse limit lim←−fff i of

some sequence {fff i = (f1i, . . . , f2ni)}i∈N in
⋃
u∈NE

⊕p2
n

u , where fji ∈ Eui (1 ⩽ j ⩽ 2n), ui ∈ N such that
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for any i ⩽ j, we have ui ⩽ uj . Thus, naturally, we need to consider the diagram

E
⊕p2

n

ui

γξ|
E

⊕p2n

ui

∼=
//

� _

e⊕2n

ui ��
θ⊕2n

ui

&&

Eui+1� _

eui+1

��
θui

ww

Ŝτ (IΛ)⊕p2
n γξ //

θ⊕2n

��

Ŝτ (IΛ)

θ

��
V ⊕p2

n

δ
// V,

where (eui
: Eui

→ Ŝτ (IΛ)) is the embedding induced by Eui
⊆ Ŝτ (IΛ). Since

θ(γξ(fff)) = lim←− θ(γξ(e
⊕2n

ui
(fff i)))

= lim←− θ(eui+1(γξ|E⊕p2n (fff i))) (γξe
⊕2n

ui
= eui+1γξ|E⊕p2n )

= lim←− θui
(γξ|E⊕p2n (fff i)) (θe = θui

)

= lim←− δ(θ⊕2n

ui
(fff i)) (θui

γξ
∣∣
E⊕p2n = δθ⊕2n

ui
)

= lim←− δ(θ⊕2n(e⊕2n

ui
(fff i))) (θ⊕2n

u = θ⊕2ne⊕2n

ui
)

= δ(θ⊕2n(lim←− e⊕2n

ui+1(fff i))) = δ(θ⊕2n(fff)) (by (5.1)),

the assertion follows.

6.2 The uniqueness of morphism from (Ŝτ (IΛ),1, γ̂ξ)

Now, we show that for any object (V, v, δ) in A p, if the morphism in the category A p from (Ŝτ (IΛ),1, γ̂ξ)
exists, then it is unique.
Lemma 6.2. Let (V, v, δ) ∈ A p be an object in A p. If

HomA p((Ŝτ (IΛ),1, γ̂ξ), (V, v, δ)) 6= ∅,

then HomA p((Ŝτ (IΛ),1, γ̂ξ), (V, v, δ)) contains a unique morphism.
Proof. Let θ and θ′ be two Λ-homomorphisms from (Sτ (IΛ),1, γξ) to (V, v, δ) in A p. Then θ(1) = v =

θ′(1). Since θ and θ′ are maps in A p, the square

E
⊕p2

n

u

γξ|
E

⊕2n
u

∼=
//

(θ|Eu−θ′|Eu )⊕2n

��

Eu+1

θ|Eu+1
−θ′|Eu+1

��
V ⊕p2

n

δ
// V

commutes. Then for any f ∈ Eu+1, we have

(θ|Eu+1 − θ′|Eu+1)(f) = (δ ◦ (θ|Eu − θ′|Eu)
⊕2n ◦ (γξ|E⊕2n

u
)−1)(f),

i.e., θ|Eu+1
− θ′|Eu+1

is determined by θ|Eu
− θ′|Eu

. Considering the case for u = 0, since θ|E0
and

θ′|E0
: E0 → V are defined by θ0(1E0

) = v, we have

(θ|E0
− θ′|E0

)(k1E0
) = k(θ|E0

(1E0
)− θ′|E0

(1E0
)) = k(v − v) = 0.

Therefore, θ|Eu
− θ′|Eu

= 0 for all u ∈ N by induction.
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On the other hand, considering the embeddings eu : Eu → Ŝτ (IΛ) and euv : Eu → Ev (u ⩽ v) induced
by ⊆ and the direct system

((E⊕p2
n

u )u∈N, (e
⊕2n

u : E⊕p2
n

u → Ŝτ (IΛ)⊕p2
n

)u∈N),

we have the following commutative diagram:

Ŝτ (IΛ)⊕p2
n

V.

E
⊕p2

n

i

S3

e⊕2n

i

eeKKKKKKKKKK

==|||||||||θ|E
i
−
θ
′ |E i

(=
0)

� _

e⊕2n

ij

� �

E
⊕p2

n

ij

R2

e⊕2n

j

TT

θ|Ej
−θ′|Ej

=0

MM

Since
lim−→E

⊕p2
n

i
∼= (lim−→Ei)

⊕p2
n ∼= Ŝτ (IΛ)⊕p2

n

,

there is a unique Λ-homomorphism φ : Ŝτ (IΛ)⊕p2
n → V such that the diagram

Ŝτ (IΛ)⊕p2
n ϕ //_________ V

E
⊕p2

n

i

S3

e⊕2n

i

eeKKKKKKKKKK

>>|||||||||θ|E
i
−
θ
′ |E i

(=
0)

� _

e⊕2n

ij

��

E
⊕p2

n

ij

R2

e⊕2n

j

TT

θ|Ej
−θ′|Ej

=0

MM

commutes. Since (θ − θ′)e⊕2n

u = θ|Ei
− θ′|Ej

, we know that the case for φ = θ − θ′ makes the above
diagram commute. On the other hand, the case for φ = 0 makes the above diagram commute. Thus
θ − θ′ = 0 and θ = θ′.

6.3 The A p-initial object in Norp

Lemma 6.3. Let C be a category and D be a subcategory of C, and let D′ be an initial object in D. If
an object C is a subobject of D′ in C, then C is a D-initial object.
Proof. For any object D in D, there is a unique morphism h′ ∈ HomD(D

′, D) since D′ is an initial
object in D. Let e be the embedding C → D′ obtained by C being a subobject of D′. Then we obtain a
morphism h′e ∈ HomC(C,D). Next, we assume that h0 is any morphism in HomC(C,D) such that the
diagram

C
h0 //

e

��

D

D′
h′
0

99sssssssssss

commutes, where h′0 is a morphism in D. Since D′ is an initial object in D, we have h′0 = h′, and thus
h0 = h′0e = h′e.

Now, we can prove the following main result of this paper.
Theorem 6.4. The triple (Sτ (IΛ),1, γξ) is an A p-initial object in Norp.
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Proof. For any object (V, v, δ) in A p, the existence of morphisms in HomA p((Ŝτ (IΛ),1, γ̂ξ), (V, v, δ))
is proved in Lemma 6.1, and its uniqueness is proved in Lemma 6.2. Thus, the triple (Ŝτ (IΛ),1, γ̂ξ), as
an object in A p, is an initial object in A p. It follows that (Sτ (IΛ),1, γ̂ξ) is an A p-initial object in Norp

by Lemma 6.3.
We give a remark for Theorem 6.4.

Remark 6.5. For any object (V, v, δ) in A p, there is a unique morphism

h : (Sτ (IΛ),1, γξ)→ (V, v, δ)

in Norp, which can be extended to ĥ : (Ŝτ (IΛ),1, γ̂ξ) → (V, v, δ). In other words, if there exists a
morphism h making the diagram

(Sτ (IΛ),1, γξ)
h //

⊆
��

(V, v, δ)

(Ŝτ (IΛ),1, γ̂ξ)
ĥ

55kkkkkkkkkkkkk

commute, then the existence of h is guaranteed to be unique.

7 The categorification of integration

Take k = (k, | · |,�) to be an extension of R and p = 1. Recall the symbols given in Notation 5.3, any
step function f in Eu can be written as

f =
∑

(uivi)i

k(uivi)i1(uivi)i .

We define the map Tu : Eu → k by

Tu(f) =
∑

(uivi)i

k(uivi)µ

(∏
i

I(uivi)

)
(7.1)

(note that if all coefficients k(uivi) are equal to 1, then Tu(f) = µ(Eu)).
Then the Λ-isomorphism γξ shown in Lemma 5.4 points out the following fact: there is a map mu :

k⊕p2
n → k such that the diagram

E
⊕p2

n

u
γξ //

T⊕2n

u

��

Eu+1

Tu+1

��
k⊕p2

n

mu

// k

(7.2)

commutes. Indeed, for the function fk = k
µ(IΛ)1IΛ with k ∈ k, we have

Tu(fk) = Tu

(
k

µ(IΛ)
1IΛ

)
=

k

µ(IΛ)
Tu(1IΛ) = k

by (7.1). Then for any kkk = (k1, . . . , k2n) ∈ k⊕p2
n , fffkkk = (fk1 , . . . , fk2n ) ∈ E

⊕p2
n

u is a preimage of kkk under
the k-linear map T⊕2n

u . We define µu as follows:

mu(kkk) = Tu+1(γξ(fffkkk)).

It is easy to see that mu is a k-linear map. In particular, for the constant function 1IΛ given by the
measure µ(IΛ) of IΛ, we obtain that fµ(Eu) is a preimage of µ(IΛ) ∈ k, and then

mu(µ(IΛ), . . . , µ(IΛ)) = Tu+1γξ(1IΛ , . . . ,1IΛ) =
∑

(uivi)i

1 · µ
(∏

i

I(uivi)

)
= µ(IΛ).
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Lemma 7.1. Let k = (k, | · |,�) be an extension of R. Then Tu : Eu → k is a Λ-homomorphism.
Proof. Note that k is a Λ-module given by

Λ× k→ k, (λ, k) 7→ λ · k := τ(λ)k.

For arbitrary two elements λ1, λ2 ∈ Λ and arbitrary two functions f =
∑
i ki1Ii and g =

∑
j k

′
j1I′j ∈ Eu,

we have

Tu(λ1 · f + λ2 · g) = Tu

(∑
i

τ(λ1)ki1Ii +
∑
j

τ(λ2)k
′
j1I′j

)

= τ(λ1)Tu

(∑
i

ki1Ii

)
+ τ(λ2)Tu

(∑
j

k′j1I′j

)
= τ(λ1)Tu(f) + τ(λ2)Tu(g)

= λ1 · Tu(f) + λ2 · Tu(g).

This completes the proof.

Lemma 7.2. Let k = (k, | · |,�) be an extension of R and let mu be the k-linear map given in the
diagram (7.2). Then mu is a Λ-homomorphism.
Proof. We can prove that mu is a Λ-homomorphism by using an argument similar to proving that Tu
is a k-linear mapping as in Lemma 7.1.

Remark 7.3. Since E0 ⊆ E1 ⊆ · · · ⊆ Eu ⊆ · · · ⊆ Sτ (IΛ) ⊆ Ŝτ (IΛ) = lim−→Ei, we have that µ is
independent of u. Thus, we can use m to present all maps mu (u ∈ N) because m0 = m1 = m2 = · · · .
Proposition 7.4. Let k = (k, | · |,�) be an extension of R. Then the triple (k, µ(IΛ),m) is an object in
Norp. Furthermore, since Λ is complete, so is k. Then k⊕p2n is a Banach Λ-module, and so (k, µ(IΛ),m)

is an object in A p.
Proof. It follows from Lemmas 7.1 and 7.2 and Remark 7.3.

The following proposition shows that Tu satisfies the triangle inequality.
Proposition 7.5. If k = (k, | · |,�) is an extension of R, then for any f ∈ Eu, the following inequality
holds for all u ∈ N :

|Tu(f)| ⩽ Tu(|f |). (7.3)

Proof. Assume that f =
∑
i ki1Ii ∈ Eu, where Ii ∩ Ij = ∅ for all i 6= j. Then |f | = |

∑
i ki1Ii | is also a

step function in Eu, and we have

Tu(|f |) = Tu

(∣∣∣∣∑
i

ki1Ii

∣∣∣∣) (⋆)
== Tu

(∑
i

|ki|1Ii
)

=
∑
i

|ki|µ
(∏

i

I(uivi)i

)
⩾
∣∣∣∣∑

i

kiµ

(∏
i

I(uivi)i

)∣∣∣∣ = |Tu(f)|,
where (?) is given by Ii ∩ Ij = ∅.

Theorem 7.6. If k = (k, | · |,�) is an extension of R, then there exists a unique morphism

T : (Sτ (IΛ),1, γξ)→ (k, µ(IΛ),m)
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in HomNorp((Sτ (IΛ),1, γξ), (k, µ(IΛ),m)) such that the diagram

(Sτ (IΛ),1, γξ)
T //

⊆
��

(k, µ(IΛ),m)

(Ŝτ (IΛ),1, γ̂ξ)
T̂

55jjjjjjjjjjjjjj

commutes, where T̂ is the is the unique extension of T lying in HomA p((Ŝτ (IΛ),1, γ̂ξ), (k, µ(IΛ),m)).
Furthermore, T̂ is given by the direct limit lim−→Ti : lim−→Ei → k.
Proof. Denote by αij : Ei → Ej (i ⩽ j) and αi : Ei → lim−→Ei the monomorphism induced by
Ei ⊆ Ej ⊆ lim−→Ei. Then there is a unique morphism lim−→Ti : lim−→Ei → k such that the diagram

lim−→Ei
lim−→Ti

//_______ k

Ei
P0

αi

bbDDDDDDDD Ti

@@��������
� _

αij

��
Ej
Q1

αj

RR

Tj

OO

commutes. By Lemma 5.6, we have lim−→Ei
∼= Ŝτ (IΛ), and then lim−→Ti induces a morphism in A p from

(Sτ (IΛ),1, γξ) to (k, µ(IΛ),m). Theorem 6.4 and Remark 6.5 show that lim−→Ti = T̂ and T = T̂ |Sτ (IΛ).

Definition 7.7. Let k be a field with the norm | · | : k → R⩾0 and the total ordered �, and let
f : IΛ → k be a function in Ŝτ (IΛ). We call that f is an integrable function on IΛ, and its integral,
denoted by (A 1)

∫
IΛ fdµ, is defined as follows:

(A 1)

∫
IΛ
fdµ := T̂ (f).

By using the limit lim−→Ti : lim−→Ei → k given in Theorem 7.6, we see that the formula (7.1),
Lemma 7.1 and Proposition 7.5 show that

(A 1)

∫
IΛ
1dµ = µ(IΛ),

(A 1)

∫
IΛ
(λ1 · f1 + λ2 · f2)µ = λ1 · (A 1)

∫
IΛ
f1µ+ λ2 · (A 1)

∫
IΛ
f2µ (λ1, λ2 ∈ Λ)

and ∣∣∣∣(A 1)

∫
IΛ
fdµ

∣∣∣∣ ⩽ (A 1)

∫
IΛ
|f |dµ,

respectively.
In Subsection 10.1, we point out that Theorem 7.6 and Definition 7.7 provide a categorification of

Lebesgue integration.

8 Series expansions of functions

Set n := dimk Λ and define the n variables polynomial ring k[X1, . . . , XN ] (= k[XXX] for short) over k to
be the set of all N variables polynomial rings (N ⩾ n). Then k[XXX] is a left Λ-module whose left Λ-action
is defined as

Λ× k[XXX]→ k[XXX], (a, P (x)) 7→ τ(a)P (x).
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8.1 Realizing power series expansions of functions as morphisms in A p

Take N = n. In this subsection, we define the map

‖ · ‖ : k[XXX]→ R⩾0, P 7→
(
(A p)

∫
IΛ
|P |pdµ

) 1
p

, (8.1)

where |P | is defined by the norm | · | : k→ R⩾0 defined on k and |P (XXX)| for any XXX ∈ IΛ ⊆ Λ.
Lemma 8.1. The polynomial ring k[XXX] with the map (8.1) is a normed left Λ-module.
Proof. Each polynomial can be seen as a function lying in Ŝτ (IΛ). Then, by using the norm | · | : k→
R⩾0, the map (8.1) induces a norm as required since ‖a · P‖ = ‖τ(a)P‖ = |τ(a)| · ‖P‖.

By using Lemma 8.1, we see that the Banach left Λ-module k̂[XXX], as the completion of k[XXX], provides
a triple (k̂[XXX],1, γ̂ξ|k̂[XXX]

), which is an object of A 1. Thus, by Theorem 7.6, the following result holds.
Corollary 8.2 (Weierstrass approximation theorem). There exists a unique morphism

Epow : (Sτ (IΛ),1, γξ)→ (k̂[XXX],1, γ̂ξ|k̂[XXX]
)

in HomNor1((Sτ (IΛ),1, γ̂ξ), (k̂[XXX],1, γ̂ξ|k̂[XXX]
)) such that the diagram

(Sτ (IΛ),1, γξ)
Epow //

⊆
��

(k̂[XXX],1, γ̂ξ|k̂[XXX]
)

(Ŝτ (IΛ),1, γ̂ξ)
Êpow

55jjjjjjjjjjjjjj

commutes, where Êpow is the unique extension of Epow lying in

HomA 1((Ŝτ (IΛ),1, γ̂ξ), (k̂[XXX],1, γ̂ξ|k̂[XXX]
)).

The above corollary shows that for any function f ∈ Ŝτ (IΛ), there exists a sequence {Pi}i∈N of
polynomials such that

Êpow(f) = lim←−Pi ∈ k̂[XXX] ⊆ k[[XXX]].

This formula is called a power series expansion of f .
Remark 8.3. In the case for N = 2n, if k[XXX] = k[Yj , Y −1

j | 1 ⩽ j ⩽ n], where Xu = Yu holds for any
1 ⩽ u ⩽ n, and Xn+v = Y −1

v holds for any 1 ⩽ v ⩽ n, then we can obtain the Laurent series of analytic
functions.

8.2 Realizing Fourier series expansions of functions as morphisms in A p

Consider the case for N = 2n and k = C in this subsection. Let 4 be the C-linear map

4 : C[XXX]→ C[e±2πiXXX ] := C[e±2πiXj | 1 ⩽ j ⩽ n]

induced by

Xj 7→

{
e2πiXj , if 1 ⩽ j ⩽ n,

e−2πiXj , if n+ 1 ⩽ j ⩽ 2n,
(8.2)

and define the map

‖ · ‖ : C[XXX]→ R⩾0, P 7→
(
(A p)

∫
IΛ
| 4 (P )|pdµL

) 1
p

. (8.3)
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Lemma 8.4. The C-linear map 4 is a Λ-isomorphism, and C[XXX] ∼= C[e±2πiXXX ] with the map (8.3) is
a normed left Λ-module.
Proof. It is trivial that 4 is a C-linear isomorphism by (8.2). Thus, the assertion that 4 is a Λ-
isomorphism follows from the fact that the formula

4(a · P ) = 4(τ(a)P ) = τ(a)4 (P ) = a · 4(P )

holds for any a ∈ Λ. Furthermore, we can prove that the polynomial ring k[XXX] with the map (8.3) is a
normed left Λ-module by the way similar to that in Lemma 8.1.

Next, by Lemma 8.4, we obtain that

(Ĉ[XXX],1, γ̂ξ| ̂C[e±2πiXXX ]
) ∼= ( ̂C[e±2πiXXX ],1, γ̂ξ| ̂C[e±2πiXXX ]

)

is an object in A p. Then the following corollary follows from Theorem 7.6.
Corollary 8.5. There exists a unique morphism

EFou : (Sτ (IΛ),1, γξ)→ ( ̂C[e±2πiXXX ],1, γ̂ξ| ̂C[e±2πiXXX ]
)

in HomNor1((Sτ (IΛ),1, γ̂ξ), ( ̂C[e±2πiXXX ],1, γ̂ξ| ̂C[e±2πiXXX ]
)) such that the diagram

(Sτ (IΛ),1, γξ)
EFou //

⊆
��

( ̂C[e±2πiXXX ],1, γ̂ξ| ̂C[e±2πiXXX ]
)

(Ŝτ (IΛ),1, γ̂ξ)
ÊFou

44iiiiiiiiiiiiiiiii

commutes, where ÊFou is the unique extension of EFou lying in

HomA 1((Ŝτ (IΛ),1, γ̂ξ), ( ̂C[e±2πiXXX ],1, γ̂ξ| ̂C[e±2πiXXX ]
)).

The above corollary shows that for any function f ∈ Ŝτ (IΛ), there exists a sequence {Pi}i∈N of
triangulated polynomials such that

ÊFou(f) = lim←−Pi ∈
̂C[e±2πiXXX ].

This formula is called a Fourier series expansion of f .

8.3 Stone-Weierstrass theorem in A p

Let W0 be a normed left Λ-module generated by some functions lying in Ŝτ (IΛ) such that Ŵ0 and
Ŝτ (IΛ), as left Λ-modules, are isomorphic preserving 1. For any u ∈ N, define

Wu = {γ̂ξ|Wu−1
(fff) | fff = (f1, . . . , f2n) ∈W

⊕p2
n

u−1 }.

Then we obtain a family of canonical embeddings

W0

⊆
−−−−→W1

⊆
−−−−→· · ·

⊆
−−−−→Wu

⊆
−−−−→· · · (⊆ Ŝτ (IΛ)),

which induced a direct limit
lim−→Wu =: W.

Lemma 8.6. For any complete extension W† of W, i.e., the Banach Λ-module satisfying W ⊆W†,
there exists a Λ-monomorphism

ÊS−W : Ŝτ (IΛ)→W†

between two left Λ-modules Ŝτ (IΛ) and W such that ES−W(1) = 1 holds in the case for 1 ∈W.
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Proof. Since Wi ⊆Wj ⊆W for any i, j ∈ N with i ⩽ j, we have Ŵi ⊆ Ŵj ⊆ Ŵ. On the other hand,
W ⊆ Ŝτ (IΛ) yields Ŵ ⊆ Ŝτ (IΛ). It follows that

Ŝτ (IΛ) ∼= Ŵ0 ⊆ Ŵu ⊆ Ŵ ⊆ Ŝτ (IΛ).

Therefore, we get a Λ-isomorphism Ŝτ (IΛ) ∼= W (= Ŵ) since the isomorphism Ŝτ (IΛ) ∼= Ŵ0 preserves 1.
The composition

Ŝτ (IΛ)
∼=

−−−−→W
⊆

−−−−→W†

is the desired Λ-monomorphism.

Lemma 8.7. There exists a Λ-homomorphism γ̂ξ† : W
⊕p2

n

† →W† such that the diagram

Ŝτ (IΛ)
⊕p2

n
γ̂ξ //

E⊕2n

S−W

��

Ŝτ (IΛ)

ES−W

��
W

⊕p2
n

† γ̂ξ†

// W†

commutes and γ̂ξ†(1, . . . ,1) = 1 holds.
Proof. The composition γ̂ξ† := ES−W γ̂ξ (E⊕2n

S−W)−1 is the desired Λ-homomorphism.

Corollary 8.8 (Stone-Weierstrass approximation theorem). There exists a unique morphism

ES−W : (Sτ (IΛ),1, γξ)→ (W,1, γ̂ξ†)

in HomNor1((Sτ (IΛ),1, γ̂ξ), (W,1, γ̂ξ†)) such that the diagram

(Sτ (IΛ),1, γξ)
ES−W //

⊆
��

(W,1, γ̂ξ†)

(Ŝτ (IΛ),1, γ̂ξ)
ÊS−W

55kkkkkkkkkkkkkk

commutes, where ÊS−W is the unique extension of ES−W lying in HomA 1((Ŝτ (IΛ),1, γ̂ξ), (W,1, γ̂ξ†)).

9 Differentiations

In this section, let A p satisfy Λ = k which is an extension of R, and take τ = id, ξ = 1
2 , µ = µL,

IΛ = [0, 1], and ξ = 1
2 . In this case, the initial object of A p is (Ŝ,1, γ 1

2
), where Ŝ = ̂Sid([0, 1]).

9.1 Realizing variable upper limit integration as a morphism in A 1

We recall some works of Leinster [29, Section 2]. Let C∗([0, 1]) be the set of all continuous functions
F : [0, 1]→ k such that F (0) = 0, with the sup norm

‖ · ‖ : C∗([0, 1])→ R⩾0, f 7→ sup
x∈[0,1]

|f(x)|.

Then the triple (C∗([0, 1]), id, κ) of the k-module C∗([0, 1]), the identity function id(x) = x, and the
k-homomorphism κ : C∗([0, 1])

⊕2 → C∗([0, 1]) defined by

κ(F1, F2) =


1

2
F1(2x), 0 ⩽ x ⩽ 1

2
,

1

2
(F1(1) + F2(2x− 1)),

1

2
⩽ x ⩽ 1,

is an object in A 1. Then the following proposition, first proved by Meckes (see [29]), holds.
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Proposition 9.1 (See [29, Proposition 2.4]). There exists a unique morphism

T̂[0,x] : (Ŝ,1, γ 1
2
)→ ( ̂C∗([0, 1]), id, κ̂)

in HomA 1((Ŝ,1, γ 1
2
), ( ̂C∗([0, 1]), id, κ̂)) sending each function f ∈ Ŝ to the variable upper limit integration

F (x) = (L)
∫ x
0
fdµL.

9.2 Realizing differentiation as a preimage of a morphism in A 1

It follows from Proposition 9.1 that for any function F ∈ Im(T̂[0,x]), there exists an element f ∈ Ŝ such
that

(1) if F is a differentiable function (in the classical sense), then

dF

dx
= f holds for all x ∈ [0, 1];

here, f is seen as a function in some equivalence class lying in Ŝ, and, strictly speaking, dFdx is an element
lying in the equivalence class containing f ;

(2) otherwise, there exists a function f such that∫ 1

0

F (x)φ(x)dµL = −
∫ 1

0

f(x)Φ(x)dµL

holds for any differentiable function Φ : [0, 1]→ k (in the classical sense) satisfying Φ(0) = Φ(1) = 0.
Thus, we can define the weak derivatives for functions lying in Im(T̂[0,x]) by using the preimage of the
k-homomorphism T̂[0,x] as follows.

Definition 9.2. All functions lying in the preimage T̂−1
[0,x](F ) of F ∈ Im(T̂[0,x]) are called weak

derivatives of F , and written T̂−1
[0,x](F (x)) as dF

dx .
The following theorem shows that we cannot define the weak derivatives of a function by using the

morphism in A 1 starting with (Ŝ,1, γ̂ 1
2
).

Theorem 9.3. (1) A morphism in HomA 1((Ŝ,1, γ̂ 1
2
), (N, v, δ)) is zero if and only if v = 0.

(2) Furthermore, there is no morphism D in A 1 starting with (Ŝ,1, γ̂ 1
2
) such that D sends any almost

everywhere differentiable function f(x) to its weak derivative df
dx .

Proof. (1) For any h ∈ HomA 1((Ŝ,1, γ̂ 1
2
), (N, v, δ)), the diagram

Ŝ⊕2 γ̂ //

h⊕2

��

Ŝ

h

��
N⊕2

δ
// N

commutes.
If v = 0, then h(1) = v = 0, and the map 0 : Ŝ→ N, f 7→ 0 is a k-homomorphism such that the above

diagram commutes. By using HomA 1((Ŝ,1, γ̂ 1
2
), (N, v, δ)) to be a set containing only one morphism (see

Theorem 6.4), we obtain h = 0.
Conversely, if h = 0, then by the definition of morphism in A 1, we have v = h(1) = 0.
(2) If there is an object (N, v, δ) such that D : (Ŝ,1, γ̂ 1

2
) → (N, v, δ) is a morphism in A 1 sending

each almost everywhere differentiable function f(x) to its weak derivative df
dx , then by the definition

of morphism in A 1, we have v = D(1) = d1
dx = 0. It follows from (1) that D = 0, which is a

contradiction.
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9.3 Realizing differentiation as a morphism in A 1

In this subsection, we provide a description of differentiation by another morphism in A 1.
Consider the triple (Ŝ, id, κ̂), where id : [0, 1] → k, x 7→ x is the function given in Subsection 9.1, and

κ̂ : Ŝ⊕2 → Ŝ is a k-homomorphism defined as

κ̂(F1, F2) =


1

2
F1(2x), 0 ⩽ x ⩽ 1

2
,

1

2
(F1(1) + F2(2x− 1)),

1

2
⩽ x ⩽ 1,

which is a natural extension of the k-homomorphism κ (the definition of κ is given in Subsection 9.1).
Lemma 9.4. The triple (Ŝ, id, κ̂) is an object in A 1.
Proof. It is clear that κ̂ sends (id, id) to id by using the definition of κ̂. Now, let {(F1,n, F2,n)}n∈N be
any Cauchy sequence in Ŝ⊕2 whose limits is (F1, F2). We need to prove

lim←−κ(F1,n, F2,n) = κ(lim←−(F1,n, F2,n)).

Indeed, we have

lim←−κ(F1,n, F2,n) =


1

2
lim←−F1,n(2x), 0 ⩽ x ⩽ 1

2
,

1

2
(F2,n(1) + lim←−F2,n(2x− 1)),

1

2
⩽ x ⩽ 1

=


1

2
F1(2x), 0 ⩽ x ⩽ 1

2
,

1

2
(F2(1) + F2(2x− 1)),

1

2
⩽ x ⩽ 1

= κ(F1, F2)

= κ(lim←−(F1,n, F2,n)),

as required.

Theorem 9.5. There exists a morphism

D ∈ HomA 1((Ŝ, id, κ̂), (Ŝ,1, γ̂ 1
2
))

in A 1 sending each element f ∈ Ŝ to its weak derivative.
Proof. First of all, the diagram

Ŝ⊕2 κ̂ //

D⊕2

��

Ŝ

D
��

Ŝ⊕2

γ̂
// Ŝ

commutes since for any F1(x), F2(x) ∈ Ŝ, we have

D κ̂(F1, F2) =


1

2

d

dx
F1(2x), 0 ⩽ x ⩽ 1

2
,

1

2

d

dx
(F1(1) + F2(2x− 1)),

1

2
⩽ x ⩽ 1

=


f1(2x), 0 ⩽ x ⩽ 1

2
,

f2(2x− 1),
1

2
⩽ x ⩽ 1
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= γ̂(f1, f2) = γ̂ D⊕2(F1, F2),

where d
dxFi(x) = fi(x) and i ∈ {1, 2}. Moreover, it is obvious that D(id) = d

dx id = 1, and thus D is a
morphism in A 1.

10 Applications and examples
10.1 Lebesgue integration

We assume the following assumption holds in this subsection.
Assumption 10.1. Take k = R, (Λ,≺, ‖ · ‖Λ) = (R,⩽, ‖ · ‖R), BR = {1} and n : BR → {1} ⊆ R⩾0.
Then dimR = 1, R is a normed R-algebra with the norm ‖ ·‖R = | · | : R→ R⩾0 sending each real number
r to its absolute value |r|, and any normed R-module is a normed k-vector space. Take IR = [0, 1], ξ = 1

2 ,
κ0(x) =

x
2 , κ1(x) = x+1

2 and τ = idR : R→ R. Then any object (N, v, δ) in Norp is a triple of a normed
k-module N = (N,hN , ‖ · ‖), an element v ∈ N with ‖v‖1 and the k-linear map δ : N ⊕1 N → N , where
the norm ‖ · ‖ satisfies ‖rx‖ = |τ(r)| · ‖x‖ = |r| · ‖x‖ for any r ∈ Λ = R and x ∈ N .

Under the above assumption, we have the following properties for Norp.
(L1) The normed k-module Sτ (IΛ) = S1R([0, 1]) (= S for short) is a k-vector space of all elementary

simple functions which are of the form

f =

t∑
x=i

ki1[xi,yi],

where [xi, yi] ∩ [xj , yj ] = ∅ for any i 6= j, and for any f(r), g(r) ∈ S, it holds that

γ 1
2
(f, g) =


f(2r), 1 ⩽ r <

1

2
,

g(2r − 1),
1

2
< r ⩽ 1,

by the definition of γξ (see (3.2)).
(L2) A p is a full subcategory, (S,1[0,1], γ 1

2
) is an object in Norp, but is not an object in A p because

S is not complete.
(L3) Let Ŝ be the completion of S, and let γ̂ 1

2
be the map Ŝ⊕1 Ŝ→ Ŝ induced by γ 1

2
. Then (Ŝ,1[0,1], γ̂ 1

2
)

is an object in A p.
By Theorem 6.4, we obtain the following result directly.

Corollary 10.2. The triple (Ŝ,1[0,1], γ̂ 1
2
) is an A p-initial object in Norp.

Remark 10.3. It follows from Theorem 6.4 that (Ŝ,1[0, 1], γ̂ 1
2
) is an initial object in A p, and then

Corollary 10.2 holds. In [29], Leinster showed that the initial object in A p is (Lp([0, 1]),1[0,1], γ 1
2
). Then

we obtain Lp([0, 1]) ∼= Ŝ by the uniqueness (up to isomorphism) of initial objects in arbitrary categories.
Consider the triple (R, 1,m) of the normed R-module R, the constant function and the map

m : R⊕p R→ R

sending (x, y) to 1
2 (x + y). Then (R, 1,m) is an object in A p, and there is a family of R-linear maps

(Li : Ei → k)i∈N such that the diagram

Ei ⊕p Ei
γ 1

2 //

(
Li 0
0 Li

)
��

Ei+1

Li+1

��
k⊕p k mi

// k

commutes, where Ei is the set of all step function constants on each ( t−1
2i ,

t
2i ), Li sends f =

∑
i ki1[ai,bi]

to
∑
i ki|bi − ai|, and m = lim−→mi. Furthermore, we have the following result.
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Corollary 10.4. There exists a unique morphism

L : (S,1[0,1], γ 1
2
)→ (R, 1,m)

in HomNor1((S,1[0,1], γ 1
2
), (R, 1,m)) such that the diagram

(S,1[0,1], γ 1
2
)

L //

⊆
��

(R, 1,m)

(Ŝ,1[0,1], γ̂ 1
2
)

L̂

55llllllllllllll

commutes, where L̂ is the unique extension of L lying in HomA p((Ŝ,1[0,1], γ̂ 1
2
), (R, 1,m)). Furthermore,

L̂ is given by the direct limit lim−→Li : lim−→Ei → k.
Proof. It is an immediate consequence of Theorem 7.6.

The morphism L̂ induces a k-linear map sending f to L̂(f). Furthermore, if µ = µL is a Lebesgue
measure, then L̂(f) is Lebesgue integration (L)

∫
of f , i.e.,

L̂(f) = (L)

∫ 1

0

fdµL,

where µL is the Lebesgue measure in this case (see [29, Proposition 2.2]).
Next, as an application, we establish the Cauchy-Schwarz inequality for the morphism T̂ in Nor1. We

need the following lemma for arbitrary complete finite-dimensional R-algebras.
Lemma 10.5. If f ∈ Ŝτ (IΛ) is non-negative, then so is T̂ (f), i.e., f ⩾ 0 yields

(A 1)

∫
IΛ
fdµ ⩾ 0.

Proof. By Ŝτ (IΛ) = lim−→Eu, there is a monotonically increasing sequence {ft}t∈N+ of non-negative
functions with ft =

∑2ut

i=1 kti1Iti ∈ Eut , such that Iti ∩ Itj = ∅ for any i 6= j, t1 < t2 yields ut1 < ut2 and
ft1 ⩽ ft2 , and f = lim−→ft. Thus, for any 1 ⩽ i ⩽ 2ut and t ∈ N+, we have kti⩾0, and then the inequality

T̂ (ft) = Tut(ft) =

2ut∑
i=1

ktiµ(Iti) ⩾ 0

holds. Furthermore, we obtain

T̂ (f) = lim−→Tut
(ft) = lim−→T |Eut

(ft) = lim−→T (ft) ⩾ 0

as required, where
lim−→T (ft) = lim

t→+∞
T (ft)

is the usual limit in R in analysis.

Proposition 10.6 (Cauchy-Schwarz inequality). Let f and g be two functions lying in Ŝτ (IΛ). Then(
(A 1)

∫
IΛ
fgdµ

)2

⩽
(
(A 1)

∫
IΛ
f2dµ

)(
(A 1)

∫
IΛ
g2dµ

)
. (10.1)

Proof. Indeed, consider the quadratic function

ϕ(t) = T̂ (f2) · t2 + 2T̂ (fg) · t+ T̂ (g2) (t ∈ R).
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Notice that T̂ is a Λ-homomorphism, and thus it is also an R-linear map. Then

ϕ(t) = T̂ (f2 · (t1R)
2 + 2fg · (t1R) + g2) = T̂ ((f · (t1R) + g)2).

Notice that (f · (t1R) + g)2, written as h, is also a function defined on IΛ lying in Sτ (IΛ), and thus for
any x ∈ IΛ, we have h(x) = (tf(x) + g(x))2 ⩾ 0. Then ϕ(t) ⩾ 0 by Lemma 10.5. It follows that the
discriminant (2T̂ (fg))2 − 4T̂ (f2)T̂ (g2) of ϕ(x) is at most zero, i.e., (10.1) holds.

The above inequality yields that if Norp satisfies the conditions (L1)–(L3) given in the subsection,
then the Cauchy-Schwarz inequality(

(L)

∫ 1

0

fgdµL

)2

⩽
(
(L)

∫ 1

0

f2dµL

)(
(L)

∫ 1

0

g2dµL

)
holds.

10.2 Series expansions of functions

We provide two examples for Corollaries 8.2 and 8.5 in this subsection.
Example 10.7 (Taylor series). Assume that A 1 satisfies Assumption 10.1. Then the Λ-homomorphism
Êpow in Corollary 8.2 is

Êpow : (Ŝ,1, γ̂ 1
2
)→ (k̂[x],1, γ̂ 1

2
|k̂[x]).

Now we show that for any analytic function f(x) ∈ Ŝ, we have

Êpow : f(x) 7→
+∞∑
k=0

1

k!

dkf

dxk

∣∣∣∣
x=0

xk.

To do this, let A0 be the set of all analytic functions defined on [0, 1], and define

Au = {γ̂ 1
2
(f, g) | (f, g) ∈ A⊕2

u−1}

for any u ∈ N. Then we have

k[x] ⊆ A0 ⊆ A1 ⊆ · · · ⊆ Ŝ ∼= L1([0, 1]).

Let E0 : A0 → Ŝ be the map sending each analytic function f(x) to its Taylor series

+∞∑
k=0

1

k!

dkf

dxk

∣∣∣∣
x=0

xk ∈ k̂[x].

Then E0 is a k-linear map since for any a, b ∈ Λ = R and f, g ∈ Ŝ, the R-linear formula E0(a · f + b · g) =
aE0(f) + bE0(g) holds. Furthermore, one can check that E0 is a Λ-homomorphism. For any u ∈ N, any
function f in Au can be seen as two functions f1 and f2 lying in Au−1 such that

f = γ̂ 1
2
(f1, f2) =


f1(2x), 0 ⩽ x <

1

2
,

f2(2x− 1),
1

2
< x ⩽ 1.

Thus, we can inductively define

Eu : Au → k̂[x], f 7→ γ̂ 1
2
(Eu−1(f1),Eu−1(f2)).

Let A be the direct limit lim−→Au given by A0 ⊆ A1 ⊆ · · · . The following statements (a) and (b) show
that E := lim−→Eu : A→ k̂[x], induced by lim−→Au = A, is a homomorphism in Nor1.

(a) First of all, it is obvious that E(1) = lim−→Eu(1) = lim−→1 = 1.
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(b) Next, for any two functions f1(x) and f2(x) in A, the diagram

A⊕2
γ̂ 1

2
|A

//

(
E 0
0 E

)
��

A

E

��

k̂[x]
⊕2

γ̂ 1
2

// k̂[x]

commutes since

E(γ̂ 1
2
|A(f(x), g(x))) =


E(f(2x)), 0 ⩽ x <

1

2
,

E(g(2x− 1)),
1

2
< x ⩽ 1

= γ̂ 1
2
(E(f(x)),E(g(x))).

Thus, the completion Â of A induces a Λ-homomorphism Ê : Â→ k̂[x] which provides a morphism

Ê ∈ HomA 1((Â,1, γ̂ 1
2
|A), (k̂[x],1, γ̂ 1

2
|k[x]))

in the category A 1.
On the other hand, for any polynomial P (x) ∈ k[x], there exists a monotonically increasing sequence

{si(x)}+∞
i=0 of elementary simple functions such that lim←−si(x) = P (x). Then we obtain that k[x] is dense

in Ŝ. It follows that Â is dense in Ŝ by k[x] ⊆ Â. Thus, we have an isomorphism

η : (Â,1, γ̂ 1
2
|A)

∼=−→(Ŝ,1, γ̂ 1
2
)

and an isomorphism
Êη−1 : (Â,1, γ̂ 1

2
|A)

∼=−→(k̂[x],1, γ̂ 1
2
|k[x])

in the category A 1 such that

Êpow(f) = (Êη−1)|A0
(f) = E0(f) =

+∞∑
k=0

1

k!

dkf

dxk

∣∣∣∣
x=0

xk

holds for any analytic function f by using (Ŝ,1, γ̂ 1
2
) to be an initial object of A 1 (see Theorem 6.4).

Example 10.8 (Fourier series). Assume that A 1 satisfies Assumption 10.1. Then the Λ-homomorphism
ÊFou in Corollary 8.5 is

ÊFou : (Ŝ,1, γ̂ 1
2
)→ ( ̂C[e±2πix],1, γ̂ 1

2
| ̂C[e±2πix]

),

which sends each function f satisfying the Dirichlet condition to its Fourier series. The proof of the
above statement is similar to that of Example 10.7 by using C[e±2πix] to be a dense subspace of Ŝ. In
particular, ÊFou induces an isomorphism in A 1.

11 Conclusions

In this paper, we have significantly expanded the theoretical landscape of mathematical analysis by
extending the domain of classical Lebesgue integration beyond the real numbers and establishing a
robust framework for the major branches of analysis—differentiation, integration, and series—over finite-
dimensional k-algebras. By developing the categories Norp and A p, we have introduced a structured
methodology for examining norms and integration within an algebraic context. This approach not only
enhances our understanding of these processes but also provides a unified perspective across various
analytical branches.
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Our study has not only reinforced existing mathematical theories within a generalized algebraic setting,
but has also paved the way for exploring how these concepts interact within the realms of category
theory. The categorification of key analytical operations such as differentiation and integration through
normed modules and their morphisms in A p illustrates a significant theoretical advance, bridging various
analytical disciplines through a common categorical framework.

The implications of this work extend beyond the theoretical, suggesting applications in fields that
benefit from a deep understanding of the algebraic underpinnings of analysis, such as computational
mathematics and theoretical physics. Looking forward, the exploration of higher-dimensional normed
modules within this categorical framework promises to open new research avenues in areas such as
quantum field theory and numerical methods for differential equations.

In summary, our research not only deepens the mathematical understanding of the interplay between
algebra and analysis, but also lays a solid foundation for further explorations. Future work can extend
these methods to more complex algebraic structures and explore their practical applications in science
and engineering, thereby continuing to bridge the gap between abstract theory and real-world problem-
solving.
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