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Abstract The category consisting of finitely generated modules which are left orthogonal with a 
cotilting bimodule is shown to be functorially finite. The notion of left orthogonal dimension is intro- 
duced, and then a necessary and sufficient condition of selforthogonal modules having finite injective 
dimension and a characterization of cotilting modules are given. 
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Assume that A is a ring. We use mod A (resp. modA ~ to denote the category of finitely 
generated left (resp. right) A-modules. 

Cotihing (bi) modules and homologically finite subcategories are very important research ob- 
jects in representation theory of algebras, which played very important roles in studying the dual 
properties of modules and in determining the existence of almost split sequences in subcategories 

of modA, respectively Ej-5] . Let A be an artin algebra. It was shown in ref. [ 1 ] that the sub- 
category of modA consisting of the modules left orthogonal with a cotihing module is contravari- 
antly finite. In this paper we introduce the notion of cotihing (bi)modules over noether rings and 
obtain two exact sequences which are similar to that in Proposition 1.4 of ref. [2] (also cf. The- 
orem A of" ref. [ 6 ] ) .  From this fact we know that the subcategory of modA consisting of the 
modules left orthogonal with a cotilting bimodule is contravariantly finite. We further show that 
this subcategory is functorially finite (Theorem 1 ) .  We also classify the modules in modA 
(Propositkm 4 ) ,  Auslander and Reiten characterized cotilting modules by using the properties of 

generalized Gorenstein dimension I23 . In this paper we introduce the notion of left orthogonal di- 
mension which is "simpler" than that of generalized Gorenstein dimension. By using the proper- 
ties of left orthogonal dimension, we give a necessary and sufficient condition of selforthogonal 
modules having finite injective dimension (Theorem 2 ) ,  we then characterize cotihing modules 
(Theorem 3 ) .  

1 Definitions and notations 

In the following, we assume that A is a left noether ring and/~  is a right noether ring. 

Definition 1 I73 . Assume that ~ D  ~ a r e  subcategories of modA and C E ~ D E add.~, 
where addr162 is the subcategory of modA consisting of all A-modules isomorphic to summands of 
finite sums of modules in r~. The morphism D --~ C is said to be a right ~approximation of C if 
HomA ( X, D ) ~ HomA ( X, C )--~0 is exact for all X E add.~. The subcategory 2 is said to be 

contravariantly finite in ~'if every C in ~' has a right ~approximation. Dually, the morphism C 
--~ D is said to be a left ~approximation of C if HOmA ( D,  X)---~HomA ( C, X)--~0 is exact for 
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all X E a d d S .  The subcategory ~ is said to be covariantly finite in ~ i f  every C in ~ h a s  a left 
~approximat ion.  The subcategory ~ is said to be functorially finite in ~ i f  it is both contravari- 
antly finite and covariantly finite in ~ The notions of contravariantly finite subcategories, covari- 
antly finite subcategories and functorially finite subcategories are referred to as homologically finite 
subcategories. 

For any left A-module A,  we use 1. idA ( A ) to denote left injective dimension of A.  

Definition 2.  Let co E modA . We call co a selforthogonal module if Ext~ ( co, co ) = 0 for 

any i I> 1. A selforthogonal module co is called a eotilting module if 1. ida (co) < ~ and the nat- 
ural map A-~End(coE ,d (~ )  ) is an isomorphism. Similarly, we define the notion of cotilting 

module in mod_P ~ . A ( A ,  /-')-bimodule acor is called a eotihing bimodule if aco and COr are 

eotilting modules and the natural maps /" ~ ) and A - ~ E n d ( c o r )  are isomorphisms. 

R e m a r k .  In case A is an artin algebra, the definition of eotilting (bi)modules coincides 
with that given in refs. [ 1, 2 ] .  This can be easily seen by using the dual result of ref. [ 4 ] 
( Proposition 1 . 6 ) .  

Let co E modA be a selforthogonal module and X E modA.  X is said to be left orthogonal 

with co if E x t ' ( X ,  co) = 0 for any i>~ I. We use Lco to denote the subcategory of modA con- 

sisting of the modules which are left orthogonal with co. An exact sequence "" -~Xn - -~ ' ' ' -~  X0 --~ 

X-~0 is called a left orthogonal resolution of X if all Xi E _1. co. 

Definition 3 .  Let M E modA and let n be a nonnegative integer. If M has a left orthogo- 
nal resolution (of finite length) : 

0 - ~  X,, ---  . . . .  Xo --~ M - - ' , - O ,  ( 1 . 1 )  

then set _L co-dimA ( M )  = inft n [ 0  --~ X, ---~ . . . .  X0--" M--~0 is a left orthogonal resolution of 

M } . If no such a resolution exists set • w- dimA ( M )  = oo. We call • co- dima ( M )  left orthogo- 

nal dimension of M. 

It is clear that • co- dim A ( M )  = 0 if' and only if M E • co. 

For any A E modA (resp. modP ''t') , we use addAA (resp. addAv) to denote the full sub- 

categot~y of modA (resp. mod/'~ consisting of all modules isomorphic to summands of finite 

sums of copies of AA (resp.  Av) .  Set addAA (resp. a d d A r ) =  { X E m o d  A (resp. mod/-'~ I 
there is an exact sequence O--~At . . . . .  A I - - -~Ao-~X- -~O with all Ai in addaA (resp. addAr)  

and t a non-negative integer} . Suppose Aco/" is a ( A ,  /- ' )-bimodule,  we put ( - )'~ = H o m (  - , 

co ) .  Let aA : A ~  A ~ via aA ( x ) ( f )  = f (  x ) for any x E A and f E  A '~ be the canonical evalua- 
tion homomorphism. If 0.A is a monomorphism, then A is called an co- torsionless module. If 0",4 is 

an isomorphism, then A is called a co-reflexive module. 

2 Homologically finite subcategories 

In this section, Acor is a cotihing bimodule. The following is the main result of this section. 

Theorem 1. 2co is functorially finite in modA.  

In the following we prove that some lemmas in modA,  symmetric statements in mod/'~ hold 
clearly. 

Lenuna  1.  Ext,~(• addAco) = 0  for any i ~ l .  That is, Ext,(X, Y) =0 for any m E  



1176 SCIENCE IN CHINA (Series A) Vol. 43 

�9 to and Y E addato and i >~ 1. 
dt d~_ 1 dl 

Proof .  Let Y E addato. Then there is an exact sequence 0--* Xt - - ~ X t  _ l . . . . . .  Xo 

--" Y-~O with all Xi E addato and t ~> O. The conclusion is trivial for the case t = O. Suppose t 
dt 

~> 1. From the exactness of the sequence O - + X t - - ~ X t -  l-*Cokerd~-+O we know that Ext~ ( X ,  

Cokerdt ) = 0 for any X E  • and i ~> 1. By using induction on t ,  it is easy to see that Ext,~ ( X,  
Y) = 0 for any i I> 1. This finishes the proof. 

Lennna  2.  • co = { C E mod A I there is an exact sequence 0 --~ C --~ Uo -'~ UI . . . . .  Ut 

. . . .  with all Ui E addato }. 

Proof .  Suppose 1. ida ( to)  = n ( < oo ) and C E modA.  If there is an exact sequence 0 

C f0 U0 fl ft 
r, • U 1 . . . .  l t ' U t ' ' ~ " "  with all Us E addaco, it is easy to see that Ext~ ( C ,  co ) 

---Ext~ + ~ ( Imf . ,  c o ) = 0 f o r a n y  i ~ l .  So C ~  • 

Conversely, suppose C E • to and "'" ~ Pt . . . .  ~ P l ---~ Po ---~ C '~ is a projective resolu- 

tion of C ~ in mod/'~ By Theorem 6.1  of ref. [ 4 ] ,  Extb(C '~ to) = 0  (for any i>_,1) and C 

~ C  ~ . So we have an exact sequence 0 ---~ C - ~ P  o~__.~p ~_._~ . . . .  p o/__~.., with all P~/E 

addato. This finishes the proof. 

L e m m a 3 .  Let C E m o d A .  
(1) There is an exact sequence 

0---~ Yc - - "  Xc f~'c~O, ( 2 . 1 )  

where f :  X c - "  C is a right • to- approximation of C and Yc E addato. 

(2) There is an exact sequence 

O - *  C g ,  Yc- -*  x C - - * O ,  ( 2 . 2 )  

where g :  C---" yC is a left addAo~-approximation of C and x c E  •  

Proof .  Let t ( C )  = sup t i I Ext~ ( C,  co ) # 0 }. Clearly t ( C ) ~< 1. ida ( co ) ( < o~ ) .  We 

proceed by induction on t ( C ) .  

It t ( C )  = O, then C E _1_ co. So Xc = C and Yc = 0 give the first desired exact sequence 

( 2 . 1 ) .  Since C E •  by Lemma 2 there is an exact sequence 0 --~ C g ,-V --~ C1--~0 with VE 

addAoJ and C1E • to. So by Lemma 1 it is easy to see that g : C --~ V is a left addAw-approxima- 

tion C.  

Now suppose t ( C )  ~> 1 and suppose 0 --~ Co--~P --" C--~O is an exact sequence in modA 

with P projective. Clearly t (Co)  = t ( C )  - 1. By induction assumption, there are X E 3_ co and 

YE addato such that 0 --~ Co g o  y__~X__, 0 is exact with go:  Co ---~ Y a left adTaw-approximation 

Co. Consider the following pushout diagram: 
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, 

0 0 

Co " P 

r J, 

Y " X'  

X - - X  

0 0 

" C  " 0  

II 

" C  ~0 

From the middle column of the above diagram we know that X' E • co. By Lemma 1, the middle 
row of the above diagram 0--* Y--~X '---~ C---~O is our desired ( 2 . 1 ) .  

Because X' E-l-co, by Lemma 2 there is an exact sequence O--~X '--~ U--~X'v--"O with U E  

addAco and X ' l E  •  Consider the following pushout diagram: 

0 " Y  

II 
0 " Y  

0 0 

X '  ~ C 

" U " Y' 

"0  

"0 

Xtl Xtl  

0 0 

From the middle row of the above diagram we know that Y' E addA~. By Lemma 1, the third 
eolomn of the above diagram 0--~C ---~ Y"-~'X'I-~O is our desired ( 2 . 2 ) .  The proof is finished. 

Proposition 1. • is eontravariantly finite in modA and addAo~ is eovariantly finite in 
modA. 

P r o o f .  It is trivial from Lemma 3. 

Proposition 2. A-co is covariantly finite in modA. 

Proof .  Suppose C E m o d A  . Then C ~ E m o d ]  -' op. By symmetric result of Lemma 3 ( 1 ) ,  

there is an exact sequence 0 ---~ Y--~ X f ~C ~o__~0, where Ext/, ( X,  co ) = 0 (for any i I> 1 ) and 

YEaddco r .  Let h be the composition homomorphism: C ~c,. C o~ f~, ,X ~,  that is, h = f ~ "  

ac. It follows from Theorem 6.1 of ref. [4] that X~E•  

Suppose g : C --~ Q is any homomorphism of ,4-modules with Q ~ • co. By Theorem 6.1 of 

ref. [ 4 ] ,  aq is an isomorphism and Ext,(  Q ~, co) = 0 for any i I> 1. By symmetric result of 

Lemma 1, Ext',( Q~, Y) = 0. So there is a homomorphism of P~ s : Q ~ such that 
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g = f ' s  and hence g = s . On the other hand, aq g =  g acand  aQis an isomor- 

phism, so g = a ~ l ' g ~  = f f ~ l . q  o, . f ,O.ac = ( a ~ l . s  ~ ' ) ' h .  Consequently, h :  C--~X ~ is 

a left • w-approximation of C and •  is covariantly finite in modA. 
Now Theorem 1 follows from Propositions 1 and 2. 

Corollary | .  Let A be an artin algebra. Then • has almost split sequences. 
Proof.  It is an immediate consequence of Theorem 1 and Theorem 2.4  of ref. [8 ] .  

We give in the following some useful properties of •  and addaw. 
Proposition 3. Let O--~A-"B--~C--~O be an exact sequence in modA. 

(1) If two of A, B and C are in •  then the rest is also in •  

(2) If A, BEadda to ,  then CEaddAto; if A, CEadda to ,  then BEaddato .  
Proof.  By Lemma 2 and Theorem 6.1 ref. [ 4 ] ,  Aw is a (relative) injective cogenerator 

in &to. Then our conclusion follows from Propositions 3.5 and 3.8 of ref. [6 ] .  
Suppose that . ~  is a subcategory of modA. It is straightforward from Definition 1 to verify 

that if one of the right .~approximations of a module in modA is epimorphic, then all of the right 
.~approximations of this module are epimorphic. Dually, if one of a left .~:approximations of the 
module in modA is monomorphic then all of the left .~approximations of this module are 

monomorphic. Now suppose C E modA. C has an epimorphic right • to-approximation by Lem- 

ma 3. By Proposition 2, C has a left �9 to-approximation. However, a left &o J-approximation of 
C is in general not monomorphic. In fact, we may classify the modules in modA by using the 

properties of monomorphic left -l-to-approximations as follows. 
Proposition 4. Let C E modA. 

(1) C is to-torsionless if and only if C has a monomorphie left • to-approximation. 

(2) C is to-[reflexive if and only if there is an exact sequence 0 ---~ C - - ~ X 1  f-~2 Xz such 

that f l :  C-~X1 and Imf2---~X2 are left • of C and Imf2, respectively. 

Proof.  (1) By Theorem6.1 ofref.  [ 4 ] ,  any module in J-to is to-reflexive. So the suffi- 
ciency is trivial and the necessity follows from the proof of Proposition 2. 

(2) The sufficiency. Suppose there is an exact sequence 

0---~ C f ' '  X1 A X2 (2 .3)  

sueh that f l: C--~X1 and Imf2-"~X2 are left &to-approximations of C and Imf2, respectively. 

Because co E •  from (2 .3 )  we get an induced exact sequence 

S �9 s7 , 

So we obtain the following exact commutative diagram: 

/1 /2 
0 , 'C  �9 XI 

( 0 ( 0  

0 �9 C c~ �9 X'l ..... 

--~ 0. 

, X~ ~ 

Since X1, X2 E _1_ co, ax L and ax2 are isomorphisms. By diagram chasing we know that ac is 

also an isomorphism and C is an to-reflexive module. 
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Necessity. Suppose C is an co-reflexive module. By (1) there is an exact sequence 

0--~ C ~ X 1 - - " K - - ~ O  

such that f l :  C---~X1 is a left �9 co-approximation of C.  Since co E � 9  we get an exact sequence 
f 7  

0 ~ / c ~  x7 c ~ 0 .  
So we obtain the following exact commutative diagram: 

f, 
0 , C  , X1 , K ~0 

(or 
0 " C("~ } i X ;  ~176 }* KCOCO 

Since ac and ax are isomorphisms, it follows from the snake lemma that aK is a monomor- 

phism and K is an co-torsionless module. Hence our conclusion follows from ( 1 ) .  This finishes 

the proof. 

3 Left orthogonal dimension 

In this section, A is an artin algebra, co ~ modA is a selforthogonal module and n is a 
non-negative integer. 

The following is the main result of this section. 
Theorem 2.  The following statements are equivalent. 
(1) 1 . idA(co)<  oo. 

(2) Every module in modA has finite left orthogonal dimension. 
In order to prove the above result, we first prove some lemmas. 

Lemma 4.  ( 1 ) Suppose A,  B E modA.  Then �9 co- dimA ( A ) = 0 = �9 60- dimA ( B ) if and 

only if �9 co- dim A ( A Q B ) = 0. 

(2) If P is a finitely generated projective left A-module,  then � 9  = 0.  
Proof .  It is trivial from the definition of left orthogonal dimension. 

Lemma 5. Let O-~A--"B -~ C-~O be an exact sequence in modA.  If �9 co-dim A ( C )  = 

0,  then �9 co- dimA ( A ) = 0,  if and only if �9 co- dim A ( B )  = 0. 
Proof .  From the exact sequence 0--~A -~ B --~ C--~0 we get a long exact sequence 

. . . .  E x t ~ ( C , c o ) - - ~ E x t ~ ( B , c o ) - - ~ E x t ~  A , c o ) - - ~ E x t ~ + ' ( C , c o )  . . . .  

Then our conclusion follows easily. 
The following lemma gives a criterion for computing left orthogonal dimension. 

L e m m a 6 .  Let M ~ m o d A .  Then• i f a n d o n l y i f � 9  

= 0, where ~ ' * (M)  denotes the nth syzygy module of M (note ~ ~  = M ) .  
Proof .  The sufficiency is trivial. We next prove the necessity. Suppose that there is an 

exact sequence 

0--~ ~ " ( M )  --" Pn-~ . . . . .  PO --~ M--~O 

with all Pi finitely generated projective left A-modules.  By Lemmas 4 and 5, �9  satisfies the 

assumptions (3 .11 )  of ref. [ 9 ] .  Since all P~ ~ � 9  it follows from Lemma 3 .12  of ref. [6] 

and the definition of left orthogonal dimension that /2 n ( M ) E �9 co and �9 co- dimA ( ~n ( M )  ) = 0. 
This finishes the proof. 
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The following corollary is a generalization of Lemma 5. 

Corol lary  2 .  Let 0---"A -~  B --~ C--~0 be an exact sequence in modA.  If • w-dima ( C )  = 

n < oo, then for any integer t i> n ,  • w- dima ( A ) ~< t if and only if • o~- dima ( B ) ~< t .  

P roof .  Suppose P , _  l - -~ ' " - -~Po- -~A- -~O and Qt- t . . . .  ~ Q0 --~ c---~0 are minimal pro- 
jective resolutions of A and C respectively. We have the following exact commutative diagram: 

0 0 0 

0 ).Q'(A) ) K ).(2 '(C) �9 0 

0 �9 P,-i " P, ,  OQ,-~ ~ Q,~, " 0 

o )Po )PoGQo )Qo , o  

0 ) A  ) B  � 9  ) 0  

0 0 0 

It is clear that K_~ I 2 ~ ( B ) @ P ,  where P is some projective module. So •  ( K )  = • 

dima ( (2 t ( B ) ) .  Since • co- dimA ( C )  = n <~ t ,  our conclusion follows easily from Lemma 6.  

The following lemma gives another criterion for computing left orthogonal dimension. 

L e n u n a T .  L e t M ~ m o d A  a n d •  no. T h e n •  

( M , o ~ )  # 0 t .  

Proof .  Suppose • oJ-dimA ( m )  = n < ~ By Lemma 6,  Ext] ( M ,  w )  --~ 

Extak-, ( g i n ( M ) ,  w)  = 0  for any k >  n.  So s u p { t l E x t ~ ( M , c o ) # 0 } ~ < n .  

Suppose . . . .  Pn--*" P n  - 1 . . . . .  P o  ---~ M--"O is a minimal projective resolution of M.  From 

the exact sequence 0 --~ (2" ( M ) --~ P,, _ 1--~ ~ n - 1 ( M ) --~0 we get a long exact sequence 

�9 "" --~ Ext~(g '2" (M) ,  w)  --~ E x t ~ + ' ( g ~ " - l ( M ) ,  co) --~ E x t ~ + ' ( P , _ , ,  co) . . . .  

So Ext.~ ( ~ "  -I ( M ) ,  co ) = 0 for any i I> 2.  We claim Ext~ ( J2" - '  ( M ) ,  ~o ) # 0.  Otherwise, if 

E x t ~ ( ~ ' ~ - l ( M ) ,  w)  = 0 ,  then E x t ~ ( ~ n - ' ( M ) ,  o~) = 0  for any i~>l and ~ " - t ( M ) E •  

It follows from Lemma 6 that • ~o- dima ( M )  ~ n - 1, which is a contradiction. In addition Ext3 

( M,  oJ ) -- Ext~ ( ~ "  - '  ( M ) ,  w ) ,  so Ext~ ( M ,  ~o ) r 0 which implies sup { t ] Ext~ ( M,  co ) # 0 } 

I> n.  This finishes the proof. 

P roof  of  Theorem 2 .  ( 1 ) ~ (2)  Suppose 1. ida ( ~ ) = n < w .  Then Ext,~ ( M ,  w ) = 0 

for any M E  modA and i>~ n + 1. It follows from [,emma 7 that •  ~< n. 
(2)  ~ ( 1 )  Suppose {S~, " " ,  S, I is the set of all non-isomorphic simple modules in 

modA.  By ( 2 ) ,  each of Sl , ' " ,  St has a finite left orthogonal dimension. Put n = m a x { •  - 

d i m A ( S j ) ] l ~ < j ~ < t } .  T h e n E x t ~ ( S j ,  ~o) = 0  for any i 1 > n + l  and l~< j~< t .  
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f 
Suppose 0---~o~--~E0 . . . . .  E ,_  t --~ "'" is a minimal injective resolution of M.  Put K = 

Cokerf.  Then Ext~(Sj ,  K)  = 0 for any i I> 1 and 1 <~j<~ t ,  which implies that K is injective 
and 1. ida ( co ) ~< n .  This finishes the proof. 

Assume that the natural map A---~End(coEnd(,o~) is an isomorphism. A module M in modA 

is said to have generalized Gorenstein dimension zero if it satisfies the conditions: ( i )  M is co-re- 

flexive ; ( i i )  Ext~ ( M ,  ~o ) 0 i = = EXtEnd(A~,) ( M , co ) for any i I> 1. M is said to have finite gen- 

eralized Gorenstein dimension if there is an exact sequence 0 ---~ Xn--~"'--~Xo--~M--~O, where 

each Xi has generalized Gorenstein dimension zero I21 . 
Putting Theorem 2 together with Theorem 4 . 4  in ref. [ 2 ] ,  we give the following characteri- 

zations of cotilting modules. 
Theorem 3.  If the natural map A--~End(C.OEnd(Aco) ) iS an isomorphism, then the following 

statements are equivalent. 
( l )  co is a cotihing module. 
(2 )  Every module in modA has finite left orthogonal dimension. 
(3)  Every module in modA has finite generalized Gorenstein dimension. 
Let aco -- AA. The following corollary is an immediate result of Theorem 3 which generalizes 

Theorem in ref. [ 1 0 ] .  
Corol lary  3 .  The following statements are equivalent. 

(1)  1 . i d A ( A ) <  ~ .  
(2)  Every module in modA has finite left orthogonal dimension. 
(3)  Every module in modA has finite Gorenstein dimension. 
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