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Abstract The notion of to-k-torsionfree modules with respect to a bimodule co is introduced, which 
is characterized in terms of left addRto-approximations. The notion of a~-Ieft approximation dimension 
is introduced, and the forms of k-syzygy modules being k-torsionfree modules are described. 
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Assume that R is a ring. We use modR (resp. modR ~ to denote the category of modules 
consisting of finitely generated left (resp. right) R-modules. 

It is well known that, for any positive integer k, k-syzygy modules and k-torsionfree mod- 

ules ~11 are two natural and interesting classes of modules in homological algebra, which played 

very important roles in the classification of modules and rings. Auslander and Bridger ~l] showed 
that a k-torsionfree module is a k-syzygy module, but the converse is not true. Then it is natural 
to ask the question: when is the converse true? That is, what forms of k-syzygy modules a r ek -  
torsionfree modules? In ref. [ 1 ] a necessary and sufficient condition of k-syzygy modules being 
k-torsionfree modules was given in terms of the properties of dual modules. It was showed in 
refs. [2 ,3 ]  that /-syzygy modules are i-torsionfree modules for any 1 ~< i ~< k if R is a quasi k- 
Gorenstein algebra. The notion of appoximations (see Definition 1 ) is an important research ob- 

ject in representation theory of algebras I4's~ . In this paper we introduce the notion of k-torsionfree 
modules with respect to a bimodule (see Definition 2 ) ,  which is characterized in terms of the 
properties of approximations (Theorem 1 ) .  We also introduce the notion of left approximation di- 
mension with respect to a bimodule (see Definition 3 ) ,  and then give an answer to the above 
question by using obtained results and the left approximation dimension of modules (Theorem 3) .  

The following definition is cited from ref. [ 4 ] .  However, R here is not necessarily an artin 
algebra. 

Definition 1 ~4] . Let R be a ring. Assume that ~ is a full subcategory of modR and 
D E - ~ ,  C E modR. The morphism C--* D is said to be a left ~approximation of C if HOmR 
(D ,X)--~HomR( C, X) is epic for any X E ~ .  The subcategory ~ i s  said to be covariantly fi- 
nite in modR if every module in modR has a left ~-approximation. In this case, ~ i s  called a 
covariantly finite subcategory of modR. 

In the following, R is a left noether ring, S is a right noether ring, R cos is a given ( R ,  

S)-bimodule and the natural map S~ co) is an isomorphism. We use ( - ),o to denote 

H o m ( -  , H cos), and ~ ( R ) (resp. ~ ( S ~ ) to denote the subcategory of modR (resp. 

* Dedicated to Professor Liu Shaoxue on his 70th birthday. 
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modS ~ consisting of projective left R-modules (resp.  right S-modules) .  For any A E modR 

(resp. modSOp), let aa :  A---~A ~ via a A ( x ) ( f )  = f ( x )  for any x E  A and f E  A ~ be the 
canonical evaluation map. If aA is a monomorphism, then A is called an w-torsionless module. If 

aA is an isomorphism, then A is called an ~o-reflexive module. It is seen easily that P and P ~ 

are w-reflexive modules for any P E P ( S ~  Moreover, we use addgA (resp.  addAs) to de- 

note the subcategory of modR (resp. modS ~ consisting of all modules isomorphic to the direct 

summands of finite direct sums of copies of RA (resp. As ) .  

1 Left  addR t o - a p p r o x i m a t i o n s  and o~-k-tors ionfree  m o d u l e s  

We first give the following fundamental lemma. 
L e m m a  1. Every module in modR has a left addR co-approximation. 

Proof .  Suppose M E  modR.  By Lemma 2 of ref. [6] , M ~ E modS ~ Then there is a 
f 

module P E ~ ( S  ~ ) such that P - * M "  is epic. Let h be the composition homomorphism: 
a~ f| 

M - - - ~ M  ~ ~'--*P ~ ; that is ,  h = f ~  �9 aM. 

Assume that g : M "--~ Q is any homomorphism of R- modules with Q E addR co. Since Q ~ E 

~ ( S ~  there is a homomorphism of S~ s :  Q ~--~P such that g ~  = f ' s  and so 

g ~ = s  ~ ' f ~ .  On the other hand, a Q ' g  = g ~ ~ ' a M  and aQ is an isomorphism, so g = 

a ~ l " g ~ ' a M  = a ~ l ' s ~ ' f ~ ' a M  -=- ( a ~ l ' s ~ ) ' h  and hence h :  M---~P ~ is a left addR ~ - a p -  

proximation of M. This finishes the proof. 
Corol lary 1. addR co is covariantly finite in modR.  
Propos i t ion  1. Let M E modR.  The following statements are equivalent. 
( i )  M is an co- torsionless module. 

f 
( i i)  There is an exact sequence 0 --~M---~X such that f :  M--~'X is a left adda co-approxima- 

tion of M. 
f 

(iii) There is an exact sequence 0 --~ M --~ ~ such that f :  M---~'o~ n is a left addR co-approxi- 

mation of M,  where n is a positive integer. 
P r o o f .  Note that M is a co- torsionless module if and only if aM is monic. Then the equiv- 

alence between ( i )  and (ii) follows from the proof of Lemma 1 and the equivalence between (ii) 

and (iii) is trivial. This finishes the proof. 
Propos i t ion  2. Let M E modR.  The following statements are equivalent. 
( i )  M is an co-reflexive module. 

Y, f~ 

(ii)  There is an exact sequence O--~M---~X1---~X2 such that f l  : M--'~X1 and Imf2--~X2 are 

left addR co-approximations of M and Imf2 respectively. 

(ii i)  There is an exact sequence 0--~M---~oJ~--~ r~ such that f l  : M--~o ~ and Imf2--~co m are 

left addR co-approximations of M and Imf2 respectively, where n and m are positive integers. 

Proof.  ( i )  ~ ( i i )  Assume that M is an co-reflexive module; that is, aM is an isomor- 
f 

phism, and assume that P--~M ~ is an epimorphism with P E ~ ( S ~  From the proof of Lemma 
h 

1, we have an exact sequence 0 --~ M--~P ~--~ N--~O, where h = f ~  �9 aM : M --~ P ~ is a left 

addR co- approximation of M,  N = Cokerh. 
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Consider the following commutative diagram with exact rows: 

h ~ 
O..~N ~~ ,, p ~  ,,M (o 

po,o, f~,o J ,  M ~176176 

f 
p , M(~ 

Since aM is an isomorphism, a~t and aM" are also isomorphisms. Moreover, ap is an isomorphism 

and f is epic,  so h ~ is also epic and hence we have the following exact commutative diagram: 

0 ---~M h po) * - N  , , 0  

0 - - ~ M  ~176 h~176 pa,,vo) .. NO~ 

Since aM and ae ~ are isomorphisms, aN is monic by Snake lemma; that is, N is an co-torsionless 

module. By Proposition 1 there is a left addnoJ-approximation g :  N - " ~ X 2  of N with g being 
h 

monic. Thus we obtain an exact sequence O---~M--~P ~ which is the one we desire. 

( i )  ~ ( i i i)  It is trivial. 

( i i i)  ~ ( i )  Assume that there is an exact sequence 

0 --~ M ---~co n --~w m 

such that f l :  M"~con and Imf2--~w m are left addR oJ- approximations of M and Imf2 respectively. 

Then we have an induced exact sequence 

( ~ : ) ~  ~ ( ~ o " )  ~ - - -M ~ 4 0 .  

This implies that we have the following exact commutative diagram: 

fl :2 
0 '-~M * co" ~ 6o m 

0-'M ( : V  

Since a,," and a , :  are isomorphisms, by diagram chasing we know that a~ is also an isomorphism 

and M is an co-reflexive module. This finishes the proof. 
f g h 

L e m m a  2 .  Let 0 - - ~ B - ~ Q I - - ~ Q o - " A  - ~  0 be an exact sequence in roodS ~ with Qo, 

Q] E addws. 
h ~ i :" 

( i )  If Ext~(oo ,oJ) = 0 ,  then 0 - ' ~ A ' - - ~ Q ~ - - ' ~ Q ' ~ ~ B  ~' is exact if and only if Ext~(a ,oJ) =0 .  
h" : :" 

( ii ) If Ext~ ( ~o, oJ ) = 0 = Ext: ( o.,, co ), then 0 ~ A'--~ Q ~ ~ Q 'i' ~ B'-'-~O is exact if and 

only if Ext~ ( A,  ~o ) = 0 = Ext~ ( A,  co ) .  

P roo f .  Put K = I m g .  Then there is a decomposition g = i" zr with zr : Q V - ' K  epic and 

i : K ---~ Q0 monic. It is easy to check the sufficiency of ( i )  and ( i i ) .  In the following we only 
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need to check the necessity. 

( i )  Assume that there is an exact sequence 

hO~ gOJ to 
0-~A~ . Q~ f-2B~ 

,~ 
K~O 

f f  i ~ ~r | f ~ 

Then we have exact sequences 0 ---"A ~-~ Q ~--~K ~ and 0 --~ K '~--* Q ]'--~B ~ So K ~ ~ Imlr~' ~ 

Ker f  ~ ~_ Img o~ ~_ Im( 7r ~" i ~ ) = Imi~~ (note:  7r ~ is monic) and i ~~ is epic. Thus we obtain a long 

exact sequence 

0 --~ A ~ --~Q ~ --~K ~ --~ 0 ~ Ext~ ( A ,  w ) --~ Ext~ ( Q0, co ) = 0 

which implies Ext~ ( A ,  co ) = 0. 

( i i )  By ( i ) ,  it suffices to show that Ext z ( A,  co ) = 0.  By the exactness of the sequence 0 
~r ~ f | 

--~K~--~ Q T - - ~ B  ~--~ 0 we have E x t ~ ( K ,  co) = 0.  But E x t ~ ( A , c o )  ~ E x t ~ ( K ,  co) ,  so 

Ext 2 ( A ,  co ) = 0.  This finishes the proof. 
f 

Let A E modR and PI--*Po'--~A--~O be a projective resolution of A in modR.  Then we have 
f~ 

an exact sequence 0 --*A~ ~-~ P~I --~ Cokerf  ~---~ 0.  Put X = Cokerf  ~ , then X E  modS ~ . 

From Lemma 2 .1  and its proof in Huang and Tang' s paper l) we have the following result. 

L e m m a  3 .  Let the natural map R---~End(cos) be an isomorphism, A E modR and X E 

modS~ as above. If E x t ' ( c o ,  co) = 0 ,  then there is an exact sequence 0 - -~Ex t~ (X ,  co) --~ 
a M 

A--"'A ~~ If Ext~ ( c o ,  w )  = 0 = Ext 2 ( c o ,  co , then there is an exact sequence 
a a 

0 --~Ext~ ( X ,  co )--~A--*A ~ ~--~ Ext~ ( X ,  co )--~ 0. 

Proposi t ion 3 .  Let k be a positive integer, Ext~ ( co, co ) = 0 for any 1 ~ i ~< k and the 
f s 

natural map R---"End(cos) an isomorphism. If P I-~ Po---"A -~  0 and Q1 --~ Qo--~A --~ 0 are two 

projective resolutions of A in modR,  then Ext~ ( X ,  co ) ~ Ext~ ( Y, co ) for any 1 ~< i ~ k ,  where 

X = Cokerf  ~' and Y = Cokerg" .  

P roof .  I f k = l ,  t h e n E x t ~ ( X , c o ) ~ K e r a a ~ E x t ~ ( Y ,  co) by L e m m a 3 .  If k = 2 ,  we 

further have Ext 2 ( X ,  co ) --= Cokeraa ~ Ext~ ( Y, co ) by Lemma 3.  So the conclusion holds when 

k = 1 ,2 .  Now suppose k i> 3.  Since Ext~ ( co, co ) = 0 for any 1 ~ i ~< k and there are exact se- 

quences 0 --~A'~ ~ 7--*X--* 0 and 0 --~A~ --~ Q T ~  Y--~ 0 with each P ~', Q ~' E 

addcos, E x t ~ ( X , w ) - - E x t ~ - 2 ( A  ~ , c o ) ~ E x t ~ ( Y , c o )  for any 3 ~ < i ~ k .  So E x t ~ ( X , c o ) ~ _  

Ext~ ( Y, co ) for any 1 ~ i ~< k.  This finishes the proof. 

Definition 2 .  Let k be a positive integer, Ext~ ( co, co) = 0 for any 1 <~ i ~< k and the nat- 

ural map R--~End(oJs) an isomorphism and A and X as above. If Ext ' (  X ,  co) = 0 for any 1 

i ~ k ,  then A is called an co-k-torsionfree module. 

1 ) Huang Zhaoyong, Tang Gaohua, Selforthogonal modules over coherent rings, Journal of Pure and Applied Algebra, to ap- 

pear. 
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R e m a r k .  We know from Proposition 3 that the above definition is well-defined; that is, it 

does not depend on the choice of a projective resolution of the given module. 

For the sake of relating convenience, we denote X above by Tr~A. 

L e m m a  4 .  Let M E modR and the natural map R--~End( co s) be an isomorphism. 

( i )  If Ext~ ( co, co ) = 0 ,  then M is an co- torsionless module if and only if M is an co- 1 - tor- 

sionfree module. 

( i i )  If Ext~ ( co, co ) = 0 = Ext~ ( co, co ) ,  then M is an co- reflexive module if and only if M 

is an co-2-torsionfree module. 
Y s 

Proof .  Assume that P1---~Po ---~ M ---~ 0 is an exact sequence in modR with P1 ,  P0 E 
s" f 

~ ( R ) .  Then we have an exact sequence 0 -- '~M o,__.,.p ~___~p~l___~Tro~M__~ 0 and the following 

commutative diagram : 

f g 
P, "Po , M - - O  

0 --~ (TroM)O, .__~p~o, J .... " P0 ~o, g =  M~O, 

Since ae0 and ap, are isomorphisms, by diagram chasing it is easy to see that aM is monic if and 

only if the lower row of the above diagram is exact, and aM is isomorphic if and only if the lower 

row of the above diagram is exact and g ~ is epic. Then our conclusions follow from Lemma 2. 

This finishes the proof. 
The following is the main result of this section. 
T h e o r e m  1.  Let M E modR and k be a positive integer. If the natural map R "-~ 

End( cos ) is an isomorphism and Ext~ (co, co ) = 0 for any 1 ~< i ~< k ,  then the following statements 

are equivalent. 

( i )  M is an co-k-torsionfree module. 
A 4 

(i i)  There is an exact sequence 0 ---~M---~XI --* . . . .  X k such that each lmf i - - -~Xi  is a left 

addR co- approximation of ImJ~, 1 ~< i ~< k .  
f, f~ L 

( i i i)  There is an exact sequence 0 ---~M--~conL---~"'--~co n, such that each Imf/---~co n, is a left 

addR co- approximation of Imf/ ,  1 ~< i ~< k .  

P roo f .  We proceed by induction on k.  When k = 1 , 2 ,  the conclusions follow from 

Proposition 1, Proposition 2 and Lemma 4.  Now suppose k >I 3.  
f, 

( i )  ~ ( i i )  By Proposition 2 and Lemma 4 ,  there is an exact sequence 0 ~ M---* X l ~  N ---~ 0 

such that f l  : M---~ X1 is a left addR co-approximation of M.  Then we have an exact sequence 0 
I7 

N ~ X~ ~ M ~ 0 and so Ext~ (/V ~ , co ) ~ Ext~ + ~ ( M ~ , co ) for any i i> 1. Note that M is an w- 

k- torsiorffree module ; that is, Extk (Tr~M,  co ) = 0 for any 1 ~ i ~< k ,  so Ext~ ( M ~ , co ) = 0 for 

------- Ex t s (N  co) = 0 for any 1 ....< i ...< k - 3. - Exts (Tro, N ,  co) , any l~< i~<k  2 a n d h e n c e  i+2 i ,o 

On the other hand, M is clearly an co-reflexive module and we have the following exact 

commutative diagram : 
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0---~M , X l , N ---~ 0 

0 ---~M c~176 X~ c~ " N ~176 ~ 0 

where aM and a x  are i somorphisms,  so aN is also an isomorphism and N is an co-reflexive mod- 

ule .  By Lemma 4 ( i t )  , Ext~ (Tro, N ,  co ) = 0 = Ext 2 (Tr~oN, co ) and thus ExtOl (Try, N ,  co ) = 0 for 

any 1 ~< i ~< k - 1 and N is an co- ( k - 1 ) - torsionfree module .  Now our conclusion follows easily 

from induction hypothesis .  

( i t )  ~ ( i i i )  It is tr ivial .  

( i i i )  ~ ( i )  Assume that there is an exact sequence  
f. 4 f, 

0 --~ M ___~con __~... __~ con, 

such that each Imf/--~co n, is a left addR co-approximation of I m f / .  Put N = Imf2 .  By induction 

hypothesis ,  N is an co-( k - 1 ) - to r s ionf ree  module .  So N is an co-reflexive module and Ext~ 

( N ' ~  co) = 0  for any 1~< i < ~ k - 3 .  

Consider the following exact commutat ive d iagram:  

Jl g, 
O---~ M ,. co" ,. N --~ O 

fT" g~" 
0 ---~M ~ ,. (con~)o,~ ,, N~OO, 

Note that aN and a,o ~ are i somorphisms,  so aM is an isomorphism and g~,O is ep ic ,  which yield 

that M is an co- reflexive module and Ext~ ( M ,o, co ) = 0 .  On the other hand ,  it follows from the 

exact sequence  0 ~ N ~~ ( con ) ,o__~ M,O_, 0 that Ext~ ( M '~ , co ) ~ E x t ' -  1 ( N ~ ' co ) = 0 for any 

2 ~ < i ~ < k - 2 .  S o E x t ~ ( M  ' ~  = 0  for any 1~< i~< k - 2 and Ext~(Tr ,oM,  co) = 0  for any 

3 ~< i ~< k ,  but M is an co- reflexive module .  Thus M is an co-k- torsionfree module .  This finishes 

the proof.  

In case R cos = RRR, an co-k-torsionfree module defined above is just  a k-torsionfree module 

defined in ref .  [ 1 ] .  A module M E  m o d R  is cal led a k-syzygy module if there is an exact se-  

quence 0 --'~ M---~ P1 . . . . .  Pk  with each P i E R ( R ) ,  1 <~ i <~ k .  

C o r o l l a r y  2 .  Let M E m o d R  and k be a positive integer .  The following statements are 

equivalent .  

( i )  M is a (u sua l )  k- torsionfree module .  
s, s~ s. 

( i t )  There is an exact sequence  0 ---~M--~P1 . . . . .  Pk such that each Imfi---~Pi  is a left 

( R ) -approximat ion of I m f / ,  1 ~< i ~< k .  
f, f~ 

( i i i )  There is an exact sequence  0 - - ~ M - - ~ F v  -~ . . . .  Fk such that each F i is a finitely gen- 

erated free left R- module and each Imf / - - "  Fi is a left ~ (  R ) - approximation of Imf~,  1 ~< i ~< k .  

The following l emma is completely  similar  to Lemma  1 of ref .  [ 3 ] ,  we omit the proof.  

L e m m a  5 .  Let A E modS ~ . The following s tatements  are equivalent .  

( i )  E x t ~ ( A , t o )  = 0  for any 1~< i < ~ k .  
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( ii ) If Pk + 2--" Pk + 1--~ . . . .  P 1--~ A-~ 0 is exact with Pi E . ~  ( S op ) ( 1 ~ i ~ k ) ,  then the 

induced sequence O--~ A'~ P ' [ - - ~ ' " - ~  P ~ + I-"~ P ~ + 2 is exact. 

Of the condition of "the natural map R--~End( COs ) is an isomorphism and Ext~ (CO, CO ) = 0 
for any 1 ~< i ~< k"  in Definition 2 or Theorem 1, we give a characterization as follows. 

Theorem 2. Let k be a positive integer. The following statements are equivalent. 
:. I,+2 

( i )  There is an exact sequence 0 --~ R--~ X I"-~'"--~ Xk + 1--" Xk + 2 with each Im~--~ Xi a left 

addR CO- approximation of Imj],  1 <~ i ~< k + 2. 

(it) The natural map R --~ End ( COs ) is an isomorphism and Ext~ ( CO, CO ) = 0 for any 

l < ~ i < ~ k .  

Proof .  By Lemma 1 we have the following complex 
St f,.i ft+l 

0 - - "  R --~Xl . . . . .  Xk+l --'-~Xk+2, 

with each Imf i - -~Xi  being a left addR CO-approximation of Im3~, 1 ~< i ~< k + 2, Then there is an 
induced exact sequence 

s:., s:+, s; 
X~+ 2 ---~X ~+1 . . . .  ~ X7 --*'R ~~ --~ 0. 

Since the natural map S~ R CO ) is an isomorphism, each ~ E ~ ( S ~ and each Xi ( E 

addR CO ) is an CO- reflexive module, 1 ~< i ~< k + 2. 

Consider the following commutative diagram: 

0 -'~R " X l �9 "'" --+ Xk+ 1 ~ Xk+ 2 

0 - - R  - . . . . .  - - -  

It is clear that aR is an isomorphism if and only if the natural map R--~End(COs) is an isomor- 

phism. By Lemma 5,  the lower row of the above diagram is exact if and only if Ext~ ( CO, CO ) = 0 
for any 1 ~ i <~ k .  On the other hand, each ax, is an isomorphism, then it follows easily from 

Proposition 2 that the upper row of the above diagram is exact if and only if the natural map R ---~ 

End(COs) is an isomorphism and Ext,(CO, CO) = 0 for any 1 ~< i ~< k.  This finishes the proof. 

A module T s E modS ~ is called a Wakamatsu tilting module Iv] if the natural map S ~ 

End(E.d(rs ) T) is an isomorphism and Ext,( T, T) = 0 for any i~> 1. 

Corol lary  3.  The following statements are equivalent. 

( i )  There is an exact sequence 0 - " R - - " X t  . . . .  --~Xi . . . .  with each Imf i - '~X i  being a left 

adds CO- approximation of Imf/ ,  i I> 1. 

(i t)  COs is a Wakamatsu tilting module. 
Proof .  It is trivial by Theorem 2. 

2 to-left approximation dimension 

In this section we introduce a new kind of dimension: co-left approximation dimension. We 
give an answer to the question mentioned at the beginning of this paper by using the results ob- 
tained in the last section and the CO-left approximation dimension of modules. 

We first give two lemmas. 
L e m m a  6.  Let ~ b e  a full subcategory of modR and M E modR.  If there are exact se- 
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quences 
f, f', 

O---~ M - - ~ X I - - ~  K 1 - - ~ O ,  O--~ M - - ~ X ' I - - ~  K ' I - - ~ O ,  

where both f l  and f ' l  are left .~-approximations of M,  then K I ~  X'I  ~ K ' t ~ X I .  

Proof.  Consider the following push-out diagram: 

0 0 

f, 
,, M ,. X1-')- K1--~ O 

4 11 
g l  

) X~ ,, X ,,K1.--~O 

r r 

0 0 

Since f l  is a left ~-approximation of M ,  there is a homomorphism a : X v - ~ X ' I  such that a "fl = 
f ' l  = Ix, " f ' l .  Note that the above diagram is a push-out diagram, so by the universal property 

(cf. ref. [ 8 ] ,  p . 4 2 ) ,  there is a homomorphism /3: X - - ~ X ]  such that /3" gl = Ix '  1 , which im- 

plies that the middle row of the above diagram splits and X ~ K1 ~ X].  Similarly we show that 

the middle column of the above diagram splits and X ~_ K] ~ X1. Consequently K1 ~ X'I ~ K'l 
XI. This finishes the proof. 

Remark .  Let . ~ b e  a full subcategory of modR and D E .~, C E modR. The morphism 
D - - ~ C  is said to be a right .~-approximation of C if HomR(X,  D)---~HomR(X, C) is epic for 

any X E .~[43. We have a dual result of Lemma 6 as follows : Let M E modR. If there are exact 
sequences 

h t h '  1 

O--~ N 1 - - ~  yI  ---~ M ---~ O, O-.-~ N' l  --~ y'~ - . )  M --~ O, 

where both hi and h'l are right _~-approximations of M,  then Nl ~ Y'l ~- N'l @ Y1 (note: the 
proof of this result is dual to that of Lemma 6, in which we use the pull-back diagram instead of 
the push-out diagram and then use the universal property of a pull-back diagram). This dual re- 
sult is a generalization of Schanuel' s Lemma ( cf. Theorem 3.62 of ref. [ 8 ] ) ,  and Theorem 2 of 
ref. [ 3 ] is a special case of it. 

Lemma 7. Let ~ b e  a full subcategory of modR and M E mod R.  If the left ~-approxi- 
mations of M exist and one of them is monie, then all of the left _~-approximations of M are 
monic. 

Proof .  It is trivial by Definition 1. 
Let M E  modR. By Lemma 1, there is a complex 

/, /, 
rl : O --~ M --,. X 1 - - ~  . . . --~ X i --~ . . . 

such that each I m f i - - ~ X i  is a left addn o,,- approximation of ImJ~, i I> 11 For any positive integer 
k,  we use r/k to denote the k th trancated complex of 7? ; that is, r/k is the complex 

f, f, 

r/k : 0 --~ M -"X1 ~ "'" --~Xk. 
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Assume that there is another complex 
f', f', 

r/' : 0 --~ M --~X'I ~ "'" --"X' --~ "'" 

such that each I m f  '/--"X' is a left addn co-approximation of Imf~ , i~> 1. We use r/'k to denote 
the kth trancated complex of r/' . It follows easily from Lemmas 6 and 7 that r/k is exact if and on- 

ly if rl'k is exact. 
Definition 3.  Let r 1 and r/k be as above. We define 1. apdo, ( M )  = k if k is the largest 

positive integer such that r/k is exact. Set 1. apd~ ( M )  = w if r/ is exact. 1. apd~, ( M )  is called 

the co-left approximation dimension of M. 
Remark .  By the above argument, the definition of co-left approximation dimension is 

well-defined; that is, it does not depend on the choice of r/. 
By Theorem 1 of last section, we have the following result. 
Theorem 1 ' .  Under the assumptions of Theorem 1, the following statements are 

equivalent. 
( i )  M is an co-k-torsionfree module. 
(ii) 1.apdo~(M) = k.  
So, in case n cos = nRn, we know that the (usual) k-torsionfree modules are just those k- 

syzygy modules with R-left approximation dimension k .  This gives an answer to the question in 

Introduction. That is, we have 
Theorem 3.  Let M E  modR and k be a positive integer. The following statements are e- 

quivalent. 
( i )  M is a (usual) k-torsionfree module. 

(i i)  1 . a p d n ( M )  = k.  
By Corollary 3,  we further give a characterization of Wakamatsu tilting modules as follows. 

Corol lary 4.  The following statements are equivalent. 
( i )  1 . a p d ~ ( R ) =  oo 

(ii)  cos is a Wakamatsu tilting module. 
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