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Phantom Ideals and Cotorsion Pairs in Extriangulated Categories

Tiwei Zhao and Zhaoyong Huang*

Abstract. In this paper, we introduce and study relative phantom morphisms in ex-

triangulated categories defined by Nakaoka and Palu. Then using their properties, we

show that if (C ,E, s) is an extriangulated category with enough injective objects and

projective objects, then there exists a bijective correspondence between any two of the

following classes: (1) special precovering ideals of C ; (2) special preenveloping ideals

of C ; (3) additive subfunctors of E having enough special injective morphisms; and

(4) additive subfunctors of E having enough special projective morphisms. Moreover,

we show that if (C ,E, s) is an extriangulated category with enough injective objects

and projective morphisms, then there exists a bijective correspondence between the

following two classes: (1) all object-special precovering ideals of C ; (2) all additive

subfunctors of E having enough special injective objects.

1. Introduction

In algebra, geometry and topology, exact categories and triangulated categories are two

fundamental structures. The interest of exact categories is manifold in many branches of

mathematics, for example, in the categories of locally convex modules over a topological

group [7], locally compact abelian groups [16], Banach modules over Banach algebras [17]

and algebraic K-theory [26,28], and so on. Triangulated categories were introduced in the

mid 1960’s by Verdier [30] in his thesis. Having their origins in algebraic geometry and

algebraic topology [3, 11, 13], triangulated categories have also become indispensable in

many different areas of mathematics by now. As expected, exact categories and triangu-

lated categories are not independent of each other. A well-known fact is that triangulated

categories which at the same time are abelian must be semisimple [22]. Also, there are a

series of ways to produce triangulated categories from abelian ones, such as, taking the

stable categories of Frobenius exact categories [12], or taking the homotopy categories or

derived categories of complexes over abelian categories [22]. On the other hand, because

of the recent development of the cluster theory, it becomes possible to produce abelian
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categories from triangulated ones, that is, starting from a cluster category and taking

a cluster tilting subcategory, one can get a suitable quotient category, which turns out

to be abelian [19, 23]. In addition, exact categories and triangulated categories possess

same properties in many homological invariants, for example in the aspect of approxi-

mation theory [1, 20, 23]. Approximation theory is the main part of relative homological

algebra and representation theory of algebras, and its starting point is to approximate

arbitrary objects by a class of suitable subcategories. In this process, the notion of co-

torsion pairs [27] provides a fruitful context, in particular, it is closely related to many

important homological structures, for example, t-structure, co-t-structure, cluster tilting

subcategories, and so on. In general, to transfer the homological properties between exact

categories and triangulated categories, one needs to specify to the case of stable categories

of Frobenius exact categories, and then lift (or descend) the associated definitions and

statements, and finally adapt the proof so that it can apply to any exact (or triangulated)

categories. However, it is not easy to do it in general case, especially in the third step.

To overcome the difficulty, Nakaoka and Palu [24] introduced the notion of externally

triangulated categories (extriangulated categories for short) by a careful looking what is

necessary in the definition of cotorsion pairs in exact and triangulated cases. Under this

notion, exact categories with a suitable assumption and extension-closed subcategories

of triangulated categories both are externally triangulated (see Example 2.8), and hence,

in some levels, it becomes easy to give uniform statements and proofs for the exact and

triangulated settings [24,31].

In an abstract category, objects and morphisms are two essential components; and by a

well-known embedding from a category to its morphism category, objects can be viewed as

special morphisms. In the classical approximation theory, we mainly concern the objects

and the associated subcategories. However, in general case, it seems that the morphisms

and the associated ideals also should be concerned in the approximation theory. From this

point of view, Fu, Guil Asensio, Herzog and Torrecillas in [10] introduced the notion of ideal

cotorsion pairs and developed the ideal approximation theory of exact categories. Inside

it, the phantom ideal plays an important role in the aspect of providing a certain ideal

cotorsion pair; and it has been investigated in algebraic topology [21], stable homotopy

categories of spectra [2], triangulated categories [8, 25], and stable categories of finite

group rings [4–6]. In particular, Herzog generalized in [15] the phantom morphism to the

category of left R-modules of arbitrary associative ring R in the following way: a morphism

f : M → N of left R-modules is called a phantom morphism if the natural transformation

TorR1 (−, f) : TorR1 (−,M)→ TorR1 (−, N) is zero, or equivalently, the pullback of any short

exact sequence along f is pure exact. Then he showed that every module admits a phantom

cover. As a generalization of the (classical) approximation theory for subcategories, Fu et
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al. developed in [10] the approximation theory of an exact category A for ideal cotorsion

pairs. A careful look reveals that the essentially necessary matters in [10] are pullbacks

and pushouts, that is, some special operations of functors. So this inspires us to establish

the approximation theory in an additive category equipped with an additive bifunctor;

in particular, we consider it in extriangulated categories, which not only unifies the ideal

approximation theory in exact categories and triangulated categories, but also extends this

theory to those categories which are neither exact nor triangulated as much as possible.

This paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.

In Section 3, we first introduce the notion of relative phantom morphisms in an additive

category, and then extend it to an extriangulated category. We study the relationship be-

tween relative phantom morphisms and relative injective morphisms, and give a sufficient

condition such that they form a relative cotorsion pair.

In Section 4, we mainly discuss the role of phantom operations, and use it to investi-

gate the interplay among special precovering ideals, special preenveloping ideals, additive

subfunctors having enough special injective morphisms, and additive subfunctors having

enough special projective morphisms. We show that if (C ,E, s) is an extriangulated cat-

egory with enough injective objects and projective objects, then we have the following

bijective correspondences.

all special precovering ideals

of C

(−)? //

(−)⊥E

��

all additive subfunctors of E having

enough special injective morphisms

G

��

Ph(−)
oo

(−)-inj

uu

all special preenveloping ideals

of C

(−)? //

⊥E (−)

OO

all additive subfunctors of E having

enough special projective morphisms

F

OO

Coph(−)
oo

(−)-proj

ii

Here F = (−)? ◦ ⊥E(−) ◦Coph(−) and G = (−)? ◦ (−)⊥E ◦Ph(−), see Section 3 for the

definitions of these functors.

In Section 5, we consider object-special precovering ideals, and show that if (C ,E, s) is

an extriangulated category with enough injective objects and projective morphisms, then

we have the following bijective correspondence.

all object-special precovering ideals

of C

(−)? // all additive subfunctors of E having

enough special injective objectsPh(−)
oo
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2. Preliminaries

Throughout this paper, C is an additive category and E : C op × C → Ab is a biadditive

functor, where Ab is the category of abelian groups.

2.1. E-extensions

Definition 2.1. [24, Definitions 2.1 and 2.5] For any A,C ∈ C , there is a corresponding

abelian group E(C,A).

(1) An element δ ∈ E(C,A) is called an E-extension. More formally, an E-extension is

a triple (A, δ, C).

(2) The zero element 0 in E(C,A) is called the split E-extension.

Let a ∈ C (A,A′) and c ∈ C (C ′, C). Then we have the following commutative diagram

E(C,A)
E(C,a) //

E(c,A)
��

E(c,a)
''

E(C,A′)

E(c,A′)
��

E(C ′, A)
E(C′,a) // E(C ′, A′)

in Ab. For an E-extension (A, δ, C), we briefly write a?δ := E(C, a)(δ) and c?δ :=

E(c, A)(δ). Then

E(c, a)(δ) = c?a?δ = a?c
?δ.

Definition 2.2. [24, Definition 2.3] Given two E-extensions (A, δ, C) and (A′, δ′, C ′). A

morphism from δ to δ′ is a pair (a, c) of morphisms, where a ∈ C (A,A′) and c ∈ C (C,C ′),

such that a?δ = c?δ. In this case, we denote it by (a, c) : δ → δ′.

Now let A,C ∈ C . Two sequences of morphisms

A
x // B

y // C and A
x′ // B′

y′ // C

are said to be equivalent if there exists an isomorphism b ∈ C (B,B′) such that the following

diagram

A
x // B

y //

b∼=
��

C

A
x′ // B′

y′ // C

commutes. We denote by [ A
x // B

y // C ] the equivalence class of A
x // B

y // C . In

particular, we write 0 := [ A
(10) // A⊕ C

(0 1)// C ].
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Note that, for any pair δ ∈ E(C,A) and δ′ ∈ E(C ′, A′), since E is biadditive, there

exists a natural isomorphism

E(C ⊕ C ′, A⊕A′) ∼= E(C,A)⊕ E(C,A′)⊕ E(C ′, A)⊕ E(C ′, A′).

We define the symbol δ ⊕ δ′ to be the element in E(C ⊕ C ′, A ⊕ A′) corresponding to

the element (δ, 0, 0, δ′) in E(C,A) ⊕ E(C,A′) ⊕ E(C ′, A) ⊕ E(C ′, A′) through the above

isomorphism.

Definition 2.3. [24, Definition 2.9] Let s be a correspondence which associates an equiv-

alence class s(δ) = [ A
x // B

y // C ] to each E-extension δ ∈ E(C,A). The s is called a

realization of E provided that it satisfies the following condition.

(R) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions with

s(δ) = [ A
x // B

y // C ] and s(δ′) = [ A′
x′ // B′

y′ // C ′ ].

Then for any morphism (a, c) : δ → δ′, there exists b ∈ C (B,B′) such that the

following diagram

A
x //

a
��

B
y //

b
��

C

c
��

A′
x′ // B′

y′ // C ′

commutes.

Let s be a realization of E. If s(δ) = [ A
x // B

y // C ] for some E-extension δ ∈ E(C,A),

then we say that the sequence A
x // B

y // C realizes δ; and in the condition (R), we say

that the triple (a, b, c) realizes the morphism (a, c).

Remark 2.4. Let s be a realization of E, and let δ ∈ E(C,A) be an E-extension with

s(δ) = [ A
x // B

y // C ].

(1) For any a ∈ C (A,A′), since a?δ = idC
?a?δ, there exists a morphism (a, idC) : δ →

a?δ. Assume that

s(a?δ) = [ A′
x′ // B′

y′ // C ].

Then by the condition (R), there exists a commutative diagram

A
x //

a
��

B
y //

��

C

A′
x′ // B′

y′ // C.
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(2) For each c ∈ C (C ′, C), since idA?c
?δ = c?δ, there exists a morphism (idA, c) : c?δ →

δ. Assume that

s(c?δ) = [ A
x′′ // B′′

y′′ // C ′ ].

Then by the condition (R), there exists a commutative diagram

A
x′′ // B′′

y′′ //

��

C ′

c
��

A
x // B

y // C.

For any two equivalence classes [ A
x // B

y // C ] and [ A′
x′ // B′

y′ // C ′ ], we define

[ A
x // B

y // C ]⊕ [ A′
x′ // B′

y′ // C ′ ] := [ A⊕A′ x⊕x
′
// B ⊕B′ y⊕y

′
// C ⊕ C ′ ].

Definition 2.5. [24, Definition 2.10] A realization s of E is called additive if it satisfies

the following conditions.

(1) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies s(0) = 0.

(2) For any pair of E-extensions δ ∈ E(C,A) and δ′ ∈ E(C ′, A′), we have s(δ ⊕ δ′) =

s(δ)⊕ s(δ′).

Let s be an additive realization of E. By [24, Remark 2.11], we have that if the sequence

A
x // B

y // C realizes 0 in E(C,A), then x is a section and y is a retraction.

2.2. Externally triangulated categories

Definition 2.6. [24, Definition 2.12] Let C be an additive category. We call the triple

(C ,E, s) an externally triangulated category (or extriangulated category for short) if it

satisfies the following conditions.

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions with

s(δ) = [ A
x // B

y // C ] and s(δ′) = [ A′
x′ // B′

y′ // C ′ ].

For any commutative diagram

A
x //

a
��

B
y //

b
��

C

A′
x′ // B′

y′ // C ′

in C , there exists a morphism (a, c) : δ → δ′ which is realized by the triple (a, b, c).
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(ET3)op Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions with

s(δ) = [ A
x // B

y // C ] and s(δ′) = [ A′
x′ // B′

y′ // C ′ ].

For any commutative diagram

A
x // B

y //

b
��

C

c
��

A′
x′ // B′

y′ // C ′

in C , there exists a morphism (a, c) : δ → δ′ which is realized by the triple (a, b, c).

(ET4) Let δ ∈ E(C,A) and ρ ∈ E(F,B) be any pair of E-extensions with

s(δ) = [ A
x // B

y // C ] and s(ρ) = [ B
u // D

v // F ].

Then there exist an object E ∈ C , an E-extension ξ with s(ξ) = [ A
z // D

w // E ],

and a commutative diagram

A
x // B

y //

u
��

C

s
��

A
z // D

w //

v
��

E

t
��

F F

in C , which satisfy the following compatibilities.

(i) s(y?ρ) = [ C
s // E

t // F ].

(ii) s?ξ = δ.

(iii) x?ξ = t?ρ.

(ET4)op Let η ∈ E(E,A) and ξ ∈ E(F,C) be any pair of E-extensions with

s(η) = [ A
z // D

w // E ] and s(ξ) = [ C
s // E

t // F ].

Then there exist an object B ∈ C , an E-extension θ with s(θ) = [ B
u // D

v // F ],

and a commutative diagram

A
x // B

y //

u
��

C

s
��

A
z // D

w //

v
��

E

t
��

F F

in C satisfying the following compatibilities.
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(i) s(s?η) = [ A
x // B

y // C ].

(ii) y?θ = ξ.

(iii) x?η = t?θ.

Definition 2.7. [24, Definition 2.19] Let (C ,E, s) be a triple satisfying (ET1) and (ET2).

(1) If a sequence A
x // B

y // C realizes an E-extension δ ∈ E(C,A), then we call the

pair ( A
x // B

y // C , δ) an E-triangle, and write it in the following way

A
x // B

y // C
δ // .

In this case, x is called an E-inflation, and y is called an E-deflation.

(2) Let A
x // B

y // C
δ // and A′

x′ // B′
y′ // C ′

δ′ // be any pair of E-triangles. If a

triple (a, b, c) realizes (a, c) : δ → δ′ as in the condition (R), then we write it as

A
x //

a
��

B
y //

b
��

C

c
��

δ //

A′
x′ // B′

y′ // C ′
δ′ // ,

and call the triple (a, b, c) a morphism of E-triangles.

We collect some examples of extriangulated categories as follows.

Example 2.8. (1) All abelian categories, which are skeletally small or have enough pro-

jectives or injectives, are extriangulated categories. In fact, let A be such an abelian

category. Then E := Ext1A(−,−) : Aop × A → Ab and the realization s is defined by

associating equivalence classes of short exact sequences to itself.

(2) Every closed additive subbifunctor F(−,−) ⊆ Ext1A(−,−) over an abelian category

A such as in (1) induces an extriangulated category, where E := F(−,−) and its corre-

sponding realization s := s|F , see [14, Definition 3.9, Lemma 3.13 and Proposition 3.14]

for details. A trivial example is F = 0, that is, consider all split short exact sequences

in A. Moreover, for example, let R be a ring, recall that a left R-module M is called

Gorenstein projective (see [9]) if there exists an exact sequence

· · · // P1
// P0

// P 0 // P 1 // · · ·

in R-Mod (the category of left R-modules) with all Pi, P
i projective, such that it stays

exact after applying the functor HomR(−, P ) for any projective left R-module P , and

M = Im(P0 → P 0). Dually, the notion of Gorenstein injective left R-modules is defined.

If moreover R is a Gorenstein ring, that is, R is a left and right Noetherian ring with finite
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left and right self-injective dimensions, then we may get the corresponding Gorenstein

derived functor GExt1R(−,−) (see [9]). In this case, we have an extriangulated category

(R- Mod,GExt, s), where the GExt-triangles are those short exact sequences in R- Mod

which stay exact after applying the functor HomR(−, G) for any G ∈ GP (or equivalently,

after applying the functor HomR(H,−) for any H ∈ GI). Here GP and GI stand for

the full subcategories of R-Mod consisting of all Gorenstein projective and injective left

R-modules respectively.

Recall that a short exact sequence 0 → A → B → C → 0 in R-Mod is called pure

exact if for any finitely presented left R-modules F , the induced sequence HomR(F,B)→
HomR(F,C) → 0 is exact. The pure injective (resp. pure projective) left R-modules

are those modules which are injective (resp. projective) with respect to all short pure

exact sequences in R- Mod. It is well known that there exist enough pure injective and

pure projective objects in R- Mod. Following the corresponding pure projective and pure

injective resolutions, we have the cohomological functor PExt1R(−,−) (see [18,29]). Then

(R- Mod,PExt, s) is an extriangulated category, where the PExt-triangles are those short

exact sequences in R- Mod which are pure exact.

(3) Exact categories C, which are skeletally small or have enough projectives or injec-

tives, are extriangulated categories, see [24, Example 2.13]. Note that for a ring R, the

subcategory GP of R- Mod is closed under extensions and hence it is in fact an exact cat-

egory. Thus we also have an extriangulated category (GP, E , s), where E is the collection

of all short exact sequences in R- Mod whose terms are in GP.

(4) Triangulated categories are extriangulated categories. In details, let T be a trian-

gulated category and [1] the shift functor. Set E := T (−,−[1]), and for any δ ∈ E(Z,X) =

T (Z,X[1]), choose a triangle X // Y // Z
δ // X[1] and define s(δ) := [ X // Y // Z ],

see [24, Section 3.3].

(5) All extension-closed subcategories of extriangulated categories are again extrian-

gulated, see [24, Remark 2.18].

(6) Nakaoka and Palu in [24] provided a construction for which extriangulated cate-

gories are neither exact nor triangulated. That is, let T be an extriangulated category

and X a full subcategory of T . Denote by P (resp. I) the full subcategory consisting of

projective (resp. injective) objects in T . If X ⊆ P ∪I, then the quotient category T /X is

an extriangulated category, see [24, Proposition 3.30] for more details.

(7) Zhou and Zhu in [31, Corollary 4.12 and Remark 4.13] also provided a construction

for which extriangulated categories are neither exact nor triangulated. That is, let T be a

Krull-Schmidt triangulated category with Auslander-Reiten translation τ and X a functo-

rially finite subcategory of T which satisfies τX = X . For any X,Z ∈ T , define E(Z,X) ⊆

T (Z,X[1]) to be the collection of equivalence classes of triangles X
f // Y // Z

δ // X[1]
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such that T (f,X ′) is epic for any X ′ ∈ X , and define s(δ) := [ X // Y // Z ]. Then

(T ,E, s) is a Frobenius extriangulated category. If X 6= {0}, then (T ,E, s) is not triangu-

lated; and if X 6= T , then it is not exact.

Remark 2.9. Let (C ,E, s) be a triple satisfying (ET1) and (ET2), and let A
x // B

y // C
δ //

be an E-triangle.

(1) For any a ∈ C (A,A′), there exists a morphism of E-triangles

A
x //

a
��

B
y //

��

C
δ //

A′
x′ // B′

y′ // C
a?δ // .

(2) For any c ∈ C (C ′, C), there exists a morphism of E-triangles

A
x′ // B′

y′ //

��

C ′

c
��

c?δ //

A
x // B

y // C
δ // .

We introduce the following

Definition 2.10. Let (C ,E, s) be a triple satisfying (ET1) and (ET2). An object E ∈ C

is said to be injective if for any E-triangle A
x // B

y // C
δ // and each morphism e ∈

C (A,E), there exists b ∈ C (B,E) such that e = bx.

We call an E-triangle A
x // B

y // C
δ // split if the morphism x is a section.

Lemma 2.11. Let (C ,E, s) be a triple satisfying (ET1), (ET2) and (ET3). Then the

following statements are equivalent for an object E ∈ C .

(1) E is injective.

(2) E(C,E) = 0 for any C ∈ C .

(3) Any E-triangle E // B // C
δ // splits.

Proof. (1)⇒ (2). Let δ ∈ E(C,E) and s(δ) = [ E
e // B

y // C ]. Since E is injective by (1),

there exists b ∈ C (B,E) such that be = idE ; that is, we have the following commutative

diagram

E
e //

idE
��

B
y //

b
��

C
δ //

E
idE // E // 0

0 // .
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By (ET3), we get a morphism of E-triangles

E
e //

idE
��

B
y //

b
��

C

0
��

δ //

E
idE // E // 0

0 // .

Thus we have δ = 0?0 = 0.

(2) ⇒ (3). It is trivial by [24, Remark 2.11].

(3)⇒ (1). Let A
x // B

y // C
δ // be any E-triangle. Then for any a ∈ C (A,E), there

exists a morphism of E-triangles

A
x //

a
��

B
y //

b
��

C
δ //

E
x′ // B′

y′ // C
a?δ // .

By assumption, the bottom E-triangle splits, and hence there exists b′ ∈ C (B′, E) such

that b′x′ = idE . Thus we have that (b′b)x = b′x′a = a and E is injective.

Let (C ,E, s) be a triple satisfying (ET1) and (ET2). We say that it has enough injective

objects if for any A ∈ C , there exists an E-triangle A
x // E

y // C
δ // with E an injective

object.

3. Phantom morphisms

3.1. Phantom morphisms in additive categories

Definition 3.1. Let F be an additive subfunctor of E and ϕ ∈ C (X,C). We call ϕ an

F-phantom morphism if ϕ?δ ∈ F(X,A) for any δ ∈ E(C,A). Dually, let ψ ∈ C (A, Y ). We

call ψ an F-cophantom morphism if ψ?δ ∈ F(C, Y ) for any δ ∈ E(C,A).

We denote by Ph(F) and Coph(F) the classes of F-phantom and F-cophantom mor-

phisms respectively. In this paper, we only discuss the properties of F-phantom morphisms

in most cases, but we need to keep in mind that the dual results hold true for F-cophantom

morphisms, and we will directly use it if necessary.

We first note that Ph(F) is an ideal. Indeed, let ϕ ∈ C (X,C) be an F-phantom

morphism. If f ∈ C (X ′, X), then for any δ ∈ E(C,A), we have (ϕf)?δ = f?(ϕ?δ). Since

ϕ?δ ∈ F(X,A), we have (ϕf)?δ ∈ F(X ′, A), and hence ϕf is an F-phantom morphism.

Similarly, let g ∈ C (A,A′), by the equality (gϕ)?δ = ϕ?(g?δ), we have gϕ is an F-phantom

morphism. Moreover, if ϕ1, ϕ2 ∈ C (X,C) are F-phantom morphisms, then by the equality

(ϕ1+ϕ2)
?δ = ϕ1

?δ+ϕ2
?δ, we have that ϕ1+ϕ2 is also an F-phantom morphism. Therefore

Ph(F) is an ideal.
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Example 3.2. Let R be a ring and E = Ext1R(−,−).

(1) If F = PExt1R(−,−) is as in Example 2.8(2), then the F-phantom morphism is the

phantom morphism in [15] and the pure phantom morphism in [10].

(2) If F = GExt1R(−,−) is as in Example 2.8(2), then the F-(co)phantom morphism is

called the Gorenstein (co)phantom morphism. The following is a concrete example.

Let R = kQ/I with k a field, where Q is the quiver

1
a1

��
2

a2 // 3

a3
^^

and I = 〈a1a3a2, a2a1a3〉. We can identify the irreducible Gorenstein cophantom

morphisms in the category of finite generated left R-modules as follows:

1

2

3

1

��
3

1

2

��

2

3

1

��

EE

1

2

3

��

3

1

2

3

1

BB

!!

2

3

BB

!!

1

2

AA

""
1

==

3

==

2

==

1 ,

where the morphisms marked by the dashed arrows are all irreducible Gorenstein

cophantom morphisms.

Let I be an ideal of C . We write

I? := {i?δ | i ∈ I and δ is any E-extension},

I? := {i?δ | i ∈ I and δ is any E-extension}.

Proposition 3.3. I? is the minimum additive subfunctor of E for which I ⊆ Ph(I?).

Proof. We first prove that I? is an additive subfunctor of E. Let ϕ ∈ C (X,C) and

δ ∈ I?(C,A), that is, there exist i ∈ I(C,C ′) and δ′ ∈ E(C ′, A) such that δ = i?δ′. Then

ϕ?δ = ϕ?i?δ′ = (iϕ)?δ′. Since I is an ideal of C , we have iϕ ∈ I(X,C ′), and hence

ϕ?δ ∈ I?(X,A). Similarly, for ψ ∈ C (A, Y ), by the equalities ψ?δ = ψ?i
?δ′ = i?ψ?δ

′, we

have ψ?δ ∈ I?(C, Y ). The additivity of I? is induced by that of E.

Next we prove the minimality about the property I ⊆ Ph(I?). Let F be any additive

subfunctor of E satisfying I ⊆ Ph(F). Let δ ∈ I?(X,A), that is, there exist i ∈ I(X,C)

and δ′ ∈ E(C,A) such that δ = i?δ′. Since I ⊆ Ph(F), we have i ∈ Ph(F), and hence

δ = i?δ′ ∈ F(X,A). This means that I? ⊆ F.
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Let M be a class of morphisms in C . We denote by Mor C the collection of all

morphisms in C , and write

M⊥E := {g ∈ Mor C | m?g?δ = 0 for any m ∈M and any E-extension δ}.

Then M⊥E is an ideal of C . Indeed, if g1, g2 ∈ M⊥E , then for any m ∈ M and any

E-extension δ, we have m?(g1 + g2)?δ = m?g1?δ+m?g2?δ = 0, which means that g1 + g2 ∈
M⊥E . Let g ∈M⊥E and h ∈ Mor C such that hg is defined. Then m?(hg)?δ = m?h?g?δ =

h?m
?g?δ = 0 implies that hg ∈ M⊥E . Similarly, if gk is defined for k ∈ Mor C , then

gk ∈M⊥E . Therefore M⊥E is an ideal of C .

Dually, we write

⊥EM := {g ∈ Mor C | g?m?δ = 0 for any m ∈M and any E-extension δ}.

Definition 3.4. (1) Let f ∈ C (X,C) and g ∈ C (A, Y ). The pair (f, g) is said to be

E-orthogonal if f?g?δ = 0 (or equivalently, g?f
?δ = 0) for any δ ∈ E(C,A).

(2) Let I and J be ideals of C . The pair (I,J ) is said to be E-orthogonal if the pair

(i, j) is E-orthogonal for any i ∈ I and j ∈ J .

We write

F-inj := {i ∈ Mor C | i?δ = 0 for each F-extension δ},

and call the elements in F-inj F-injective morphisms. Dually, we write

F-proj := {i ∈ Mor C | i?δ = 0 for each F-extension δ},

and call the elements in F-proj F-projective morphisms.

Proposition 3.5. (1) The pair (Ph(F),F-inj) is E-orthogonal.

(2) Let I be an ideal of C . Then I?-inj = I⊥E.

Proof. (1) It is clear.

(2) Let j ∈ I?-inj. For any i ∈ I and any E-extension δ, we have that i?δ is an

I?-extension. So i?j?δ = j?i
?δ = 0 and j ∈ I⊥E . Conversely, let j ∈ I⊥E . For any I?-

extension δ, there exist i ∈ I and an E-extension δ′ such that δ = i?δ′. So j?δ = j?i
?δ′ =

i?j?δ
′ = 0 and j ∈ I?-inj.

3.2. Phantom morphisms in extriangulated categories

Let (C ,E, s) be a triple satisfying (ET1) and (ET2), and let A
x // B

y // C
δ // be any

E-triangle. Then for a morphism ϕ ∈ C (X,C), there exists a morphism of E-triangles

A
x′ // B′

y′ //

g

��

X

ϕ

��

ϕ?δ //

A
x // B

y // C
δ // .
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We easily see that ϕ ∈ C (X,C) is an F-phantom morphism if and only if every E-triangle

A
x′ // B′

y′ // X
ϕ?δ // induced by the above is an F-triangle.

Now let (C ,E, s) be a triple satisfying (ET1) and (ET2), and let A
x // B

y // C
δ // be

any E-triangle and ϕ ∈ C (X,C) an F-phantom morphism. For any F-projective morphism

p ∈ C (P,X), we have a morphism of E-triangles

A // Q //

��

P

p

��

p?ϕ?δ //

A
x′ // B′

y′ // X
ϕ?δ // .

Since ϕ?δ is an F-extension and p is an F-projective morphism, we have p?ϕ?δ = 0, and

hence (ϕp)?δ = 0, that is, the composition P
p // X

ϕ // C is an E-projective morphism.

Therefore, if we consider the stable category (C ,E, s) := (C ,E, s)�E-proj, where

the objects in (C ,E, s) are the objects in C , and for any X,Y ∈ C , the morphism set

Hom(X,Y ) in (C ,E, s) are the morphism set C (X,Y )�E-proj, then F-phantom mor-

phisms make F-projective morphisms vanish in (C ,E, s). This is also why we call these

morphisms “F-phantom” on some level.

Definition 3.6. Let I be an ideal of C and C ∈ C .

(1) An I-precover of C is a morphism i : X → C in I such that any morphism i′ : X ′ → C

in I factors through i, that is, there exists a morphism g : X ′ → X such that i′ = ig.

X ′

i′

��

g

~~
X

i // C.

(2) Let (C ,E, s) be a triple satisfying (ET1) and (ET2). A morphism i : X → C in I is

called a special I-precover of C if there exists a morphism of E-triangles

A //

j
��

B //

��

C
δ //

A′ // X
i // C

δ′ //

with j ∈ I⊥E .

An ideal I of C is called a (special) precovering ideal of C if any object in C admits

an (a special) I-precover. Dually, the notions of a (special) I-preenvelope of an object

and a (special) preenveloping ideal are defined.

In what follows, we always assume that the triple (C ,E, s) satisfies (ET1) and (ET2).



Phantom Ideals and Cotorsion Pairs in Extriangulated Categories 43

Proposition 3.7. Every special I-precover is an I-precover.

Proof. Let C ∈ C , and i : X → C is a special I-precover of C. Then there exists a

morphism of E-triangles

A //

j
��

B //

��

C
δ //

A′ // X
i // C

j?δ //

with j ∈ I⊥E . Now for any i′ : X ′ → C in I, there exists a morphism of E-triangles

A′ // Y //

k
��

X ′

i′

��

i′?j?δ //

A′ // X
i // C

j?δ // .

Since i′ ∈ I and j ∈ I⊥E , we have i′?j?δ = 0. So the morphism Y → X ′ is a retraction

and there exists g : X ′ → Y such that i′ = ikg. It follows that i : X → C is an I-precover

of C.

Definition 3.8. An E-orthogonal pair (I,J ) of ideals of C is called an E-cotorsion pair

if I = ⊥EJ and J = I⊥E .

The following result gives a sufficient condition such that an E-orthogonal pair of ideals

is an E-cotorsion pair.

Theorem 3.9. If I is a special precovering ideal, then the pair (I, I⊥E) of ideals is an

E-cotorsion pair.

Proof. Clearly, I ⊆ ⊥E(I⊥E). Now let i′ ∈ ⊥E(I⊥E) with i′ : X ′ → C. For the object C,

take a special I-precover i : X → C. Then there exists a morphism of E-triangles

A //

j
��

B //

��

C
δ //

A′ // X
i // C

j?δ //

with j ∈ I⊥E . Furthermore, assume that s(i′?j?δ) = [ A′
x // Y

y // X ′ ]. Then we also

have a morphism of E-triangles

A′
x // Y

y //

k
��

X ′

i′

��

i′?j?δ //

A′ // X
i // C

j?δ // .

Since i′ ∈ ⊥E(I⊥E) and j ∈ I⊥E , we have i′?j?δ = 0, and hence there exists y′ : X ′ → Y

such that i′ = i(ky′). Thus we have that i′ ∈ I and ⊥E(I⊥E) ⊆ I. Therefore I = ⊥E(I⊥E)

and (I, I⊥E) is an E-cotorsion pair.
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Corollary 3.10. If I is a special precovering ideal, then I = Ph(I?).

Proof. By definition, we have I ⊆ Ph(I?). Now let ϕ ∈ Ph(I?), that is, ϕ is an I?-
phantom morphism. Then for any E-extension δ, we have that ϕ?δ is an I?-extension.

Let j ∈ I⊥E . Since I⊥E = I?-inj by Proposition 3.5(2), we have j ∈ I?-inj. So ϕ?j?δ =

j?ϕ
?δ = 0 and ϕ ∈ ⊥E(I⊥E). Furthermore, I = ⊥E(I⊥E) by Theorem 3.9. So ϕ ∈ I and

Ph(I?) ⊆ I.

From Proposition 3.5(1), we have known that (Ph(F),F-inj) is an E-orthogonal pair.

In the rest of this section, we mainly study when it is an E-cotorsion pair. To do it, we

first introduce the following

Definition 3.11. (1) An additive subfunctor F of E is said to have enough injective

morphisms if for any A ∈ C , there exists an F-triangle A
e // B // C

δ // , where e

is an F-injective morphism.

(2) The additive subfunctor F of E is said to have enough special injective morphisms

if for any A ∈ C , there exists an F-triangle as above together with a morphism of

E-triangles

A
e // B //

��

C

ϕ
��

δ //

A // B′
i // C ′

δ′ //

with ϕ an F-phantom morphism.

Lemma 3.12. Let (C ,E, s) be a triple satisfying (ET1), (ET2) and (ET3). If an F-

inflation x : A→ B factors through an E-inflation g : A→ Y , then g is an F-inflation.

Proof. Since x : A → B is an F-inflation, there exists an F-triangle A
x // B // C

δ // ;

since g : A → Y is an E-inflation, there exists an E-triangle A
g // Y // Z

δ′ // together

with the following commutative diagram

A
g // Y //

��

Z
δ′ //

A
x // B // C

δ // .

By (ET3), we get a morphism of E-triangles

A
g // Y //

��

Z

h
��

δ′ //

A
x // B // C

δ // .

In particular, we have δ′ = h?δ. So δ′ is an F-extension and g is an F-inflation.
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Proposition 3.13. Let (C ,E, s) be a triple satisfying (ET1), (ET2) and (ET3). If F ⊆ E
is an additive subfunctor having enough injective morphisms, then Ph(F) = ⊥E(F-inj).

Proof. By Proposition 3.5(1), we have Ph(F) ⊆ ⊥E(F-inj).

Now let f : X → C ∈ ⊥E(F-inj), and let A // B // C
δ // be any E-triangle. Then

we have a morphism of E-triangles

A
i // B′ //

��

X

f
��

f?δ //

A // B // C
δ // .

For the object A, by assumption there exists an F-injective F-inflation e : A→ Y . Consider

the following morphism of E-triangles

A
i //

e
��

B′ //

g

��

X
f?δ //

Y // Z // X
e?f?δ // .

Since e?f
?δ = f?e?δ = 0, that is, the E-triangle Y // Z // X

e?f?δ// splits, there exists

h : Z → Y such that e = (hg)i. By Lemma 3.12, i is also an F-inflation. So each

A
i // B′ // X

f?δ // induced by any E-triangle along f is an F-triangle, which implies

that f is an F-phantom morphism. Thus ⊥E(F-inj) ⊆ Ph(F), and therefore Ph(F) =
⊥E(F-inj).

Note that a morphism e : A → X in I is called a special I-preenvelope of A if there

exists a morphism of E-triangles

A
e // X //

��

Y

j
��

δ //

A // B // C
δ′ //

with j ∈ ⊥EI.

Now if F has enough special injective morphisms, then for any A ∈ C , there exists an

F-triangle A
e // X // Y

δ // together with a morphism of E-triangles

A
e // X //

��

Y

j
��

δ //

A // B
i // C ′

δ′ //
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with e ∈ F-inj and j ∈ Ph(F). By Proposition 3.13, we have Ph(F) = ⊥E(F-inj). So

j ∈ ⊥E(F-inj) and e is a special F-injective preenvelope of A. This shows that F-inj is a

special preenveloping ideal.

As a dual of Theorem 3.9, we have the following

Theorem 3.14. If J is a special preenveloping ideal of C , then the orthogonal pair

(⊥EJ ,J ) of ideals is an E-cotorsion pair.

Note that if F has enough special injective morphisms, then (⊥E(F-inj),F-inj) is an E-

cotorsion pair of ideals by Theorem 3.14. Because Ph(F) = ⊥E(F-inj) by Proposition 3.13,

we get the following

Corollary 3.15. Let (C ,E, s) be a triple satisfying (ET1), (ET2) and (ET3). If F has

enough special injective morphisms, then (Ph(F),F-inj) is an E-cotorsion pair of ideals;

in particular, Ph(F)⊥E = F-inj.

4. The interplay between phantom ideals and cotorsion pairs

From the previous section, we know that a special precovering ideal corresponds an E-

cotorsion pair, and that a phantom ideal induced by a subfunctor also corresponds ones

under a suitable assumption. In this section, we will investigate their interplay by showing

that a phantom ideal induced by a subfunctor is a special precovering ideal under some

suitable assumption, and vice versa. Before doing it, we first give the following lemma,

which simplifies the calculation process for checking a morphism to be phantom.

Lemma 4.1. Let (C ,E, s) be an extriangulated category. Consider an E-triangle

K // P
p // C

γ // with p an E-projective morphism and a morphism ϕ : X → C. Then

the following statements are equivalent.

(1) ϕ is an F-phantom morphism.

(2) The induced E-triangle K // Y // X
ϕ?γ // is an F-triangle.

Proof. (1) ⇒ (2). It is trivial.

(2) ⇒ (1). Let A // B
y // C

δ // be any E-triangle. By [24, Proposition 3.15], we

have the following commutative diagram
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K

��

K

��
A // Q //

��

P

p

��

δ′ //

A // B
y //

γ′

��

C
δ //

γ

��

in C with δ′ = p?δ and γ′ = y?γ. Since p is an E-projective morphism, we have δ′ = p?δ =

0, and hence the middle row splits. Then there exists g : P → B such that p = yg, that

is, the following diagram

K // P
p //

g

��

C
γ //

A // B
y // C

δ //

is commutative. By (ET3)op, there exists a morphism of E-triangles

K //

f
��

P
p //

g

��

C
γ //

A // B
y // C

δ // .

In particular, we have δ = f?γ. Thus ϕ?δ = ϕ?f?γ = f?ϕ
?γ. By assumption, ϕ?γ is an

F-extension, and hence ϕ?δ is also an F-extension, which shows that ϕ : X → C is an

F-phantom morphism.

Now we show that, under a suitable assumption, phantom ideals induced by additive

subfunctors having enough injective morphisms are special precovering ideals.

Theorem 4.2. Let (C ,E, s) be an extriangulated category with enough projective mor-

phisms, and assume that F ⊆ E is an additive subfunctor having enough injective mor-

phisms. Then Ph(F) is a special precovering ideal.

Proof. Let C ∈ C . Then by assumption, there exists an E-triangle K // P
p // C

γ //

with p an E-projective morphism. For the object K, there exists an F-injective F-inflation

e : K → X. Then we get a morphism of E-triangles

K //

e
��

P
p //

��

C
γ //

X // Y
ϕ // C

e?γ // .
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In the following, we argue that ϕ is a special Ph(F)-precover of C.

First of all, by Proposition 3.5(1), we have that F-inj ⊆ Ph(F)⊥E and e ∈ Ph(F)⊥E .

Moreover, consider the following diagram of morphisms of E-triangles

K
i // Z

��

//

��

Y

��

ϕ

��

ϕ?γ //

K //

e
��

P //

��

C
γ //

X // Y
ϕ // C

e?γ // .

Since idC ϕ = ϕ = ϕ idY , there exists z : Z → X such that e = e idK = zi by [24,

Corollary 3.5]. Since e is an F-inflation, i is also an F-inflation by Lemma 3.12, and hence

ϕ?γ is an F-extension. By Lemma 4.1, ϕ is an F-phantom morphism and it is a special

Ph(F)-precover of C.

Therefore we conclude that Ph(F) is a special precovering ideal.

Lemma 4.3. Let M be a class of morphisms in C . Consider a morphism of E-triangles

A
a //

f
��

B
b //

g

��

E

h
��

γ //

X
x // Y

y // Z
δ // .

If f ∈M⊥E and E is an injective object, then g ∈M⊥E.

Proof. Since M⊥E is an ideal and f ∈ M⊥E , we have ga = xf ∈ M⊥E . Thus for any

m ∈ M, we have m?g?a? = m?(ga)? = 0. On one hand, by Lemma 2.11 we have that an

object E ∈ C is injective if and only if E(C,E) = 0 for any C ∈ C . On the other hand,

by [24, Corollary 3.12], there exists an exact sequence

E(C,A)
a? // E(C,B) // E(C,E) .

Thus a? is epic and m?g? = 0, which shows that g ∈M⊥E .

Theorem 4.4. Let (C ,E, s) be an extriangulated category with enough injective objects.

If I is a special precovering ideal, then I⊥E is a special preenveloping ideal.

Proof. Let A ∈ C and A // E
c // C

δ // be an E-triangle with E an injective object.

For the object C, there exists a special I-precover x : X → C. Then we have a morphism

of E-triangles

A
a // B //

��

X

x
��

x?δ //

A // E
c // C

δ // .
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In the following, we argue that a is a special I⊥E-preenvelope of A.

Since x ∈ I ⊆ ⊥E(I⊥E), it suffices to show that a ∈ I⊥E . Assume that the special

I-precover x : X → C comes from the following morphism of E-triangles

Y
y //

g

��

Z
z //

h
��

C
γ //

W
w // X

x // C
g?γ //

with g ∈ I⊥E . Consider the following commutative diagram

Y
g

~~

��

Y
g

~~

��

W

��

W

��

A
e′ // F
k

~~

��

// Z
h

~~

z?δ=h?x?δ //

z
��

A
a // B //

��

X
x?δ //

x

��

A // E

c?γ

��

// C

γ

��

δ //

A // E

c?g?γ=g?c?γ

��

c // C

g?γ

��

δ //

.

By Lemma 4.3 and the vertical plane in the middle of the above diagram, we have k ∈ I⊥E ,

and hence a = ke′ ∈ I⊥E , as desired.

Following the above theorem and its dual, we get a morphism version of the Salce’s

lemma as follows.

Lemma 4.5 (Salce’s Lemma). Let (C ,E, s) be an extriangulated category with enough

projective and injective objects. If (I,J ) is an E-cotorsion pair of ideals, then I is a

special precovering ideal if and only if J is a special preenveloping ideal.

Now we give our main result as follows, which extends [10, Theorem 1] from exact

categories to extriangulated categories. Here, an E-cotorsion pair (I,J ) of ideals is called

complete if I is a special precovering ideal and J is a special preenveloping ideal.
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Theorem 4.6. Let (C ,E, s) be an extriangulated category. Then we have the following

implications.

There exists an additive

subfunctor F ⊆ E having enough

(special) injective morphisms

and I = Ph(F)

(I)

C has enough
projective morphisms

+3
I is a special

precovering ideal

(II)
C has enough

injective objects

��
The additive subfunctor I? ⊆ E

having enough special injective

morphisms and I = Ph(I?)

(IV)

KS

(I, I⊥E) is a complete

E-cotorsion pair

(III)ks

Proof. (I) It follows directly from Theorem 4.2.

(II) Since I is a special precovering ideal, (I, I⊥E) is an E-cotorsion pair by Theo-

rem 3.9. Moreover, since C has enough injective objects, I⊥E is a special preenveloping

ideal by Theorem 4.4. Thus (I, I⊥E) is a complete E-cotorsion pair.

(III) First, since I is a special precovering ideal, we have I = Ph(I?) by Corollary 3.10.

Moreover, we have I⊥E = I?-inj by Proposition 3.5(2). So by assumption, any object in

C admits a special I?-injective preenvelope, that is, for any A ∈ C , there exists an I?-
injective morphism e : A→ X that comes from a morphism of E-triangles

A
e // X //

��

Y

j
��

j?δ //

A // B // C
δ //

with j ∈ ⊥E(I?-inj). This, on the other hand, shows that I? has enough injective mor-

phisms. So by Proposition 3.13, we have that ⊥E(I?-inj) = Ph(I?) and j ∈ Ph(I?). It

follows that I? has enough special injective morphisms.

(IV) It is trivial.

By Theorem 4.6, we have that if (C ,E, s) is an extriangulated category with enough

injective objects and projective morphisms, then we get the following bijective correspon-

dence.

(4.1)
all special precovering ideals

of C

(−)? // all additive subfunctors of E having

enough special injective morphismsPh(−)
oo

Combining it with the Salce’s lemma, we further get the following
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Theorem 4.7. Let (C ,E, s) be an extriangulated category with enough injective objects

and projective objects. Then we have the following implications for an E-cotorsion pair

(I,J ) of ideals.

There exists an additive

subfunctor F ⊆ E having

enough special injective

morphisms and I = Ph(F) dl
$,

There exists an additive

subfunctor F ⊆ E having

enough special projective

morphisms and I = F-proj2:
rz

The ideal I is a special

precovering ideal
dl
$,

2:
rz

The additive subfunctor

I? ⊆ E having enough

special injective morphisms

and I = Ph(I?)

The additive subfunctor

J? ⊆ E having enough

special projective morphisms

and I = J?-proj

(I,J ) is a complete

E-cotorsion pair

��

KS

KS

��

There exists an additive

subfunctor F ⊆ E having

enough special projective

morphisms and J = Coph(F) dl
$,

There exists an additive

subfunctor F ⊆ E having

enough special injective

morphisms and J = F-inj2:
rz

The ideal J is a special

preenveloping ideal
dl

$,
2:

rz
The additive subfunctor

J? ⊆ E having enough

special projective morphisms

and J = Coph(J?)

The additive subfunctor

I? ⊆ E having enough

special injective morphisms

and J = I?-inj

The above theorem shows that if (C ,E, s) is an extriangulated category with enough

injective objects and projective objects, then we have the following bijective correspon-

dences.
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(4.2)

all special precovering ideals

of C

(−)? //

(−)⊥E

��

all additive subfunctors of E having

enough special injective morphisms

G

��

Ph(−)
oo

(−)-inj

uu

all special preenveloping ideals

of C

(−)? //

⊥E (−)

OO

all additive subfunctors of E having

enough special projective morphisms

F

OO

Coph(−)
oo

(−)-proj

ii

Here F = (−)? ◦ ⊥E(−) ◦Coph(−) and G = (−)? ◦ (−)⊥E ◦Ph(−).

We end this section with some applications of the obtained results above.

Theorem 4.8. Let (C ,E, s) be an extriangulated category with enough injective objects and

projective morphisms. If an additive subfunctor F ⊆ E has enough injective morphisms,

then we have

(1) The pair (⊥E(F-inj), (⊥E(F-inj))⊥E) of ideals generated by F-inj is a complete E-

cotorsion pair of ideals.

(2) Ph(F)⊥E = Ph(F)?-inj, and Ph(F)⊥E is the minimum ideal containing F-inj and

satisfying the following property (C): Let I be an ideal and consider a morphism of

E-triangles

A
a //

f
��

B
b //

g

��

E

h
��

γ //

X
x // Y

y // Z
δ // .

If f ∈ I and E is an injective object, then g ∈ I.

(3) The additive subfunctor Ph(F)? ⊆ E is the maximum additive subfunctor of F having

enough special injective morphisms.

Proof. (1) By Proposition 3.13, we have ⊥E(F-inj) = Ph(F). By Theorem 4.2, Ph(F)

is a special precovering ideal. Moreover, by Theorem 4.4, Ph(F)⊥E = (⊥E(F-inj))⊥E is

a special preenveloping ideal. Thus (⊥E(F-inj), (⊥E(F-inj))⊥E) is a complete E-cotorsion

pair of ideals.

(2) By Proposition 3.5, F-inj ⊆ Ph(F)⊥E = Ph(F)?-inj. By Lemma 4.3, Ph(F)⊥E

satisfies the property (C). Now let J be an ideal of C containing F-inj and satisfying the

property (C). We will show that Ph(F)⊥E ⊆ J . To do it, let j ∈ Ph(F)⊥E with j : A→ J .

Consider the same commutative diagram as in the proof of Theorem 4.4. Since F ⊆ E has
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enough injective morphisms, we can adjust the morphism g : Y → W to be in F-inj. By

the property (C), we have that k ∈ J and a = ke′ ∈ J . Moreover, by Theorem 4.4, the

morphism a : A → B is a Ph(F)⊥E-preenvelope of A, it factors through j, that is, there

exists b : B → J such that j = ba, and thus j ∈ J , as desired.

(3) Clearly, Ph(F)? ⊆ F. Now since Ph(F) is a special precovering ideal by Theo-

rem 4.2, Ph(F)? is an additive subfunctor having enough special injective morphisms by

the correspondence (4.1). Suppose that F′ ⊆ F is an additive subfunctor having enough

special injective morphisms. To show F′ ⊆ Ph(F)?, it suffices to show that every F′-
triangle A // B // C

δ // is a Ph(F)?-triangle.

Let e : A → X be a special F′-injective F′-inflation. Then we have a morphism of

F′-triangles

A
a //

e
��

B //

��

C
δ //

X // Y // C
e?δ // .

Since e is F′-injective, we have that e?δ = 0 and there exists b : B → X such that e = ba.

This also induces the following commutative diagram

A
a // B //

b
��

C
δ //

A
e // X // Z

γ // .

By (ET3), we get a morphism of F′-triangles

A
a // B //

b
��

C

c
��

δ //

A
e // X // Z

γ // .

On the other hand, since e : A→ X is a special F′-injective F′-inflation, by definition there

exists a morphism of E-triangles

A
e // X //

��

Z

j
��

γ //

A // X ′ // Z ′
γ′ //

with j ∈ Ph(F′) ⊆ Ph(F). Thus we get a morphism of E-triangles

A
a // B //

��

C

jc
��

δ //

A // X ′ // Z ′
γ′ //

with jc ∈ Ph(F). This shows that δ = (jc)?γ′ ∈ Ph(F)?, as desired.
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Corollary 4.9. Let (C ,E, s) be an extriangulated category with enough injective objects

and projective morphisms. If F ⊆ E is an additive subfunctor having enough injective

morphisms, then the following statement are equivalent.

(1) The subfunctor F has enough special injective morphisms.

(2) F = Ph(F)?.

(3) Ph(F)⊥E = F-inj.

Proof. (1) ⇒ (2). It follows from Theorem 4.8(3).

(2) ⇒ (3). By Proposition 3.5(2).

(3)⇒ (1). By Theorem 4.2, Ph(F) is a special precovering ideal. By Theorem 4.6(II),

(Ph(F),Ph(F)⊥E) = (Ph(F),F-inj) is a complete E-cotorsion pair, and hence F-inj is a

special preenveloping ideal, that is, for any A ∈ C , there exists a morphism of E-triangles

A
e // B //

��

C

j
��

δ //

A // Y // Z
γ //

with e ∈ F-inj and j ∈ ⊥E(F-inj). Moreover, since (Ph(F),F-inj) is an E-cotorsion pair,

we have that ⊥E(F-inj) = Ph(F) and j ∈ Ph(F). Thus F has enough special injective

morphisms, as desired.

5. The correspondences for object ideals

From now on, objects are sometimes identified with the identity morphisms. Let I be a

class of morphisms in C . We write Ob(I) := {A ∈ C | idA ∈ I}, and denote by 〈I〉 the

smallest ideal of C containing I. If I = 〈Ob(I)〉, then we call I an object ideal, that is,

it is generated by itself objects. An object A ∈ C is called F-injective if idA ∈ F-inj. It is

easy to check that an object A ∈ C is F-injective if and only if it is injective with respect

to all F-triangles.

Let (C ,E, s) be an extriangulated category with enough projective morphisms and

F ⊆ E an additive subfunctor having enough injective objects. Then for any C ∈ C , there

is an E-triangle K // P
p // C

γ // with p an E-projective morphism. For the object K,

by assumption there exists an F-inflation e : K → E with E an F-injective object. Then

we get a morphism of E-triangles

K //

e
��

P
p //

��

C
γ //

E // Y
ϕ // C

e?γ // .
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Since E is an F-injective object, that is, idE ∈ F-inj, we have e = idE e ∈ F-inj. Thus as

in the proof of Theorem 4.2, the morphism ϕ is an F-phantom morphism. Therefore, for

any C ∈ C , there always exists an E-triangle E // Y
ϕ // C

δ // with ϕ an F-phantom

morphism and E an F-injective object. Moreover, since F-inj ⊆ Ph(F)⊥E , the object E is

also in Ph(F)⊥E . This allows us to give the following definition.

Definition 5.1. Let I be an ideal of C . We call a morphism i : X → C in I an object-

special I-precover of C if there exists an E-triangle A // X
i // C

δ // with A ∈ I⊥E .

By a trivial morphism of E-triangle

A // X // C
δ //

A // X
i // C

δ // ,

we have that any object-special I-precover is a special I-precover. In the following, we

give a sufficient condition such that a special precovering ideal I is an object-special

precovering ideal, that is, any object in C admits an object-special I-precover.

Proposition 5.2. Let I be a special precovering ideal. If I⊥E is an object ideal, then I
is an object-special precovering ideal.

Proof. Let C ∈ C , and take a special I-precover i′ : X ′ → C which comes from a morphism

of E-triangles

A //

j
��

B //

��

C
δ //

A′ // X ′
i′ // C

j?δ //

with j ∈ I⊥E . Since I⊥E is an object ideal by assumption, there exist Y ∈ I⊥E and

morphisms j1 : A→ Y , j2 : Y → A′ such that j = j2j1. Then by the equality j?δ = j2?j1?δ,

we can decompose the above morphism of E-triangles to the following morphisms of E-

triangles

A //

j1
��

B //

��

C
δ //

Y //

j2
��

X
i //

k
��

C
j1?δ //

A′ // X ′
i′ // C

j?δ //

with i = i′k ∈ I. Thus i is an object-special I-precover of C.

In view of Proposition 5.2, it is natural to ask when the right perpendicularity of a

special precovering ideal is an object ideal. To study it, we consider the following condition
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(J) Let I be an ideal of C . There exists an object ideal J ⊆ I⊥E such that any C ∈ C

admits an I-precover i : X → C together with an E-triangle A // X
i // C

δ // ,

where A ∈ J .

Let X and Y be two classes of objects in C . We write

X � Y := {Z ∈ C | there exists an E-triangle X // Z // Y
δ // with X ∈ X and Y ∈ Y}.

Proposition 5.3. Let (C ,E, s) be an extriangulated category with enough injective objects

and I be a special precovering ideal of C . The condition (J) is satisfied if and only if I⊥E

is an object ideal; in this case, we have

I⊥E = 〈Ob(J ) �Ob(E-inj)〉.

Proof. The sufficiency is trivial. In the following, we prove the necessity.

Let Z ∈ Ob(J ) � Ob(E-inj), that is, there exists an E-triangle X // Z // Y
δ //

with X ∈ J and Y an E-injective object. By assumption, we have X ∈ I⊥E , and hence

Z ∈ I⊥E by Lemma 4.3. This shows that 〈Ob(J ) �Ob(E-inj)〉 ⊆ I⊥E .

Conversely, let A ∈ C . Then there exists an E-triangle A // E
e // C

δ // with E

an injective object by assumption. For the object C, by (J) there exists an E-triangle

K // X
i // C

γ // with K ∈ J and i : X → C an I-precover of C. By (ET4), we get

the following commutative diagram

K

��

K

��
A

a // Z //

��

X

i
��

i?δ //

A // E
e //

e?γ

��

C
δ //

γ

��.

By the middle column in the above diagram, we have that Z ∈ Ob(J ) � Ob(E-inj). On

the other hand, as in the proof of Theorem 4.4, the morphism a : A→ Z is a special I⊥E-

preenvelope of A; in particular, it is an I⊥E-preenvelope of A. Thus any f ∈ I⊥E(A,B)

factors through a, that is, there exists b : Z → B such that f = ba, which shows that

f ∈ 〈Ob(J )�Ob(E-inj)〉. Thus I⊥E ⊆ 〈Ob(J )�Ob(E-inj)〉, and therefore I⊥E = 〈Ob(J )�
Ob(E-inj)〉; in particular, I⊥E is an object ideal.

By Propositions 5.2 and 5.3, we immediately have the following
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Corollary 5.4. Let (C ,E, s) be an extriangulated category with enough injective objects.

If the condition (J) is satisfied, then any special precovering ideal of C is an object-special

precovering ideal.

The additive subfunctor F of E is said to have enough special injective objects if for

any A ∈ C , there exists an F-triangle A
e // B // C

δ // with B ∈ F-inj, together with

a morphism of E-triangles

A
e // B //

��

C

ϕ
��

δ //

A // B′
i // C ′

δ′ // ,

where ϕ is an F-phantom morphism.

Now we give the object-ideal’s version of Theorem 4.6; compare it with [10, Theorem 2].

Theorem 5.5. Let (C ,E, s) be an extriangulated category. Then we have the following

implications.

There exists an additive subfunctor

F ⊆ E having enough (special)

injective objects and I = Ph(F)

(I)

C has enough
projective morphisms

+3 I is an object-special

precovering ideal

(II)

C has enough
injective objectspx

The additive subfunctor I? ⊆ E

having enough special injective

objects and I = Ph(I?)

(V)

KS

(III)

C has enough
projective morphisms

+3

I is a special precovering

ideal and I⊥E is an

object ideal

(IV)

KS

Proof. (I) For any C ∈ C , there exists an E-triangle E // Y
ϕ // C

δ // with ϕ an F-

phantom morphism and E an F-injective object. Because I = Ph(F) and F-inj ⊆
Ph(F)⊥E , we have that ϕ is an object-special I-precover of A. Thus I is an object-special

precovering ideal.

(II) Since I is an object-special precovering ideal, it is clearly an special precovering

ideal, and hence I = Ph(I?) by Corollary 3.10. Let A ∈ C , by assumption there exists

an E-triangle A // E
e // C

δ // with E an injective object. For the object C, since I
is an object-special precovering ideal, there exists an E-triangle K // X

i // C
γ // with
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i ∈ I and K ∈ I⊥E . By (ET4), we get the following commutative diagram

K

��

K

��
A

a //

��

Z //

��

X

i
��

i?δ //

A // E
e //

e?γ

��

C
δ //

γ

��.

The middle row in the above diagram is an I?-triangle. Moreover, since K ∈ I⊥E and

E is an injective object, we have Z ∈ I⊥E by Lemma 4.3. By Proposition 3.5, we have

I⊥E = I?-inj. Thus Z ∈ I?-inj. Since i ∈ I = Ph(I?), the above diagram shows that I?

has enough special injective objects.

(III) Assume that I? has enough special injective objects. Of course, I? has enough

injective morphisms, and then by Theorem 4.2, I = Ph(I?) is a special precovering ideal.

By assumption, for any A ∈ C , there exists an E-triangle A
e // E // X

δ // with E an

I?-injective object, together with a morphism of E-triangles

A
e // E //

��

X

ϕ

��

δ //

A // B
i // C

δ′ //

with ϕ ∈ Ph(I?). By Proposition 3.13, we have Ph(I?) = ⊥E(I?-inj), and hence ϕ ∈
⊥E(I?-inj), which shows that e is a special I?-injective preenvelope of A.

By Proposition 3.5(2), I?-inj = I⊥E . So for any a : A → A′ ∈ I⊥E , there exists

e′ : E → A′ such that a = e′e. This means that each morphism in I⊥E factors through an

I?-injective object, and therefore I⊥E is an object ideal.

(IV) By Proposition 5.2.

(V) It is trivial.

The above theorem shows that if (C ,E, s) is an extriangulated category with enough

injective objects and projective morphisms, then we have the following bijective corre-

spondence.

(5.1)
all object-special

precovering ideals of C

(−)? // all additive subfunctors of E having

enough special injective objectsPh(−)
oo

Note that (4.2) follows from (4.1) and the morphism version of the Salce’s lemma.

Now, in view of (5.1), it is natural to pose the following
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Question 5.6. Does the Salce’s lemma hold for object-special precovering ideals and

object-special preenveloping ideals?
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