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Abstract

Let A and B be abelian categories and F : A → B an additive and right exact functor which
is perfect, and let (F,B) be the left comma category. We give an equivalent characterization of
Gorenstein projective objects in (F,B) in terms of Gorenstein projective objects in B and A. We
prove that there exists a left recollement of the stable category of the subcategory of (F,B) consisting
of Gorenstein projective objects modulo projectives relative to the same kind of stable categories in
B and A. Moreover, this left recollement can be filled into a recollement when B is Gorenstein and
F preserves projectives.

1 Introduction

As a generalization of finitely generated projective modules, Auslander and Bridger [2] introduced

finitely generated modules of Gorenstein dimension zero over a commutative noetherian local ring. Then

Enochs and Jenda [6] generalized it to Gorenstein projective modules (not necessarily finitely generated)

over an arbitrary ring. The properties of Gorenstein projective modules and related modules have been

studied widely, see [1, 2, 5–7, 14–16] and references therein.

Let Λ and Γ be arbitrary rings and M a (finitely generated) (Λ,Γ)-bimodule, and let T :=

(
Λ M
0 Γ

)
be the upper triangular matrix ring. Recall from [16] that the (Λ,Γ)-bimodule M is called compatible if

the following two conditions are satisfied: (C1) if Q• is an exact sequence of finitely generated projective

Γ-modules, then M⊗ΓQ
• is exact; and (C2) if P • is a complete finitely generated Λ-projective resolution,

then HomΛ(P
•,M) is exact. Let Λ and Γ be artin algebras and the bimodule ΛMΓ compatible. Then

finitely generated Gorenstein projective T -modules can be constructed from finitely generated Gorenstein

projective Λ-modules and finitely generated Gorenstein projective Γ-modules ([16, Theorem 1.4]). More-

over, there exists a left recollement of the stable category GP(T ) of the category of finitely generated

Gorenstein projective T -modules modulo projectives relative to GP(Λ) and GP(Γ) ([16, Theorem 3.3]),

and this left recollement can be filled into a recollement when T is Gorenstein and ΛM is projective

([16, Theorem 3.5]). Under some conditions, Enochs, Cortés-Izurdiaga and Torrecillas proved that T is

(strongly) CM-free if and only if so are Λ and Γ ([5, Theorem 4.1]).

Let A and B be abelian categories and F : A → B an additive functor. The left comma category

(F,B) was introduced in [8]. Note that module categories of upper triangular matrix rings are comma
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categories and that the left comma category (F,B) is abelian if F is right exact ([8, 13]). The aim of

this paper is to generalize the results mentioned above from module categories of upper triangular matrix

rings to comma categories. The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.

For an abelian category A, we use GP(A) to denote the subcategory of A consisting of Gorenstein

projective objects, and use GP(A) to denote the stable category of GP(A) modulo projectives. Motivated

by the definition of compatible bimodules [16], we introduce the so-called perfect functors between abelian

categories (Definition 3.3). Let A and B be abelian categories and F : A → B an additive and right exact

functor such that F is perfect, and let (F,B) be the left comma category. Then we give an equivalent

characterization of Gorenstein projective objects in (F,B) in terms of Gorenstein projective objects in B

and A.

Theorem 1.1. (Theorem 3.5) The following statements are equivalent for an object
(
Y
X

)
ϕ
in (F,B).

(1)
(
Y
X

)
ϕ
∈ GP((F,B)).

(2) ϕ : FY → X is injective in B, Cokerϕ ∈ GP(B) and Y ∈ GP(A).

As an application, we get that the Gorenstein projective objects coincide with projective objects in

(F,B) if and only if both A and B also possess the same property (Corollary 3.9).

In Section 4, we prove the following

Theorem 1.2. (Theorem 4.6) There exists a left recollement

GP(B)
i∗ // GP((F,B))i∗oo

j∗ // GP(A).
j!oo

Moreover, this left recollement can be filled into a recollement when B is Gorenstein and F preserves

projectives (Theorem 4.8).

2 Preliminaries

In this section, we give some notions and some preliminary results.

Let A be an abelian category and the subcategories in A discussed in this paper are full and closed

under isomorphisms. We use P(A) and I(A) to denote the subcategories of A consisting of projective

and injective objects respectively. For an object A in A, pdA A and idA A are the projective and injective

dimensions of A respectively. For a subcategory X of A, set

pdA X := sup{pdA A | A ∈ X} and idA X := sup{idA A | A ∈ X}.

By using a standard argument, we have the following generalized horseshoe lemma.
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Lemma 2.1. Let A be an abelian category and

0 −→ Y
f−→ X

g−→ Z −→ 0

an exact sequence in A.

(1) Let

Y
c−1

// C0 c0 // C1 c1 // · · ·

be a complex and

0 // Z
d−1

// D0 d0
// D1 d1

// · · ·

an exact sequence in A. If Ext1A(Ker di, Ci) = 0 for any i ≥ 0, then there exist morphisms

∂−1 =

(
d−1g

σ−1

)
: X // D0 ⊕ C0 and ∂i =

(
di 0
σi ci

)
: Di ⊕ Ci // Di+1 ⊕ Ci+1

with σi : Di → Ci+1 for any i ≥ 0, such that

0 // X
∂−1

// D0 ⊕ C0 ∂0
// D1 ⊕ C1 ∂1

// · · · ∂i−1
// Di ⊕ Ci ∂i

// · · ·

is a complex in A and the following diagram with exact rows

0

��

0

��

0

��
0 // Y

f //

c−1

��

X
g //

∂−1

��

Z //

d−1

��

0

0 // C0 //

c0

��

D0 ⊕ C0 //

∂0

��

D0 //

d0

��

0

0 // C1 //

c1��

D1 ⊕ C1 //

∂1��

D1 //

d1��

0

...
...

...

commutes. Moreover, the middle column is exact if and only if the left column is exact.

(2) Let

· · · e2 // E1
e1 // E0

e0 // Y // 0

be an exact sequence and

· · ·
f2 // F1

f1 // F0
f0 // Z // 0

a complex in A. If Ext1A(Fi, Im ei) = 0 for any i ≥ 0, then there exist morphisms

∂0 = (π0, fe0) : F 0 ⊕ E0 // X and ∂i =

(
fi 0
πi ei

)
: Fi ⊕ Ei

// Fi−1 ⊕ Ei−1

with πi : Fi → Ei−1 for any i ≥ 1, such that
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· · ·
∂i+1// Fi ⊕ Ei

// · · · ∂2 // F1 ⊕ E1
∂1 // F0 ⊕ E0

∂0 // X // 0

is a complex in A and the following diagram with exact rows

...

��

...

��

...

��
0 // E1

//

e1

��

F1 ⊕ E1
//

∂1

��

F1
//

f1

��

0

0 // E0
//

e0

��

F0 ⊕ E0
//

∂0

��

F0
//

f0
��

0

0 // Y
f //

��

X

��

g // Z

��

// 0

0 0 0

commutes. Moreover, the middle column is exact if and only if the right column is exact.

Definition 2.2. ([8]) Let A be an abelian category and G : A −→ A an additive endofunctor. The right

trivial extension of A by G, denoted by AnG, is defined as follows. An object in AnG is a morphism

α : GA −→ A for an object A in A such that α ·G(α) = 0; and a morphism in AnG is a pair (Gγ, γ)

of morphisms in A such that the following diagram

GA
Gγ //

α

��

GA′

α′

��
A

γ // A′

is commutative.

Definition 2.3. ([8]) Let A and B be abelian categories and F : A −→ B an additive functor. We define

the left comma category (F,B) as follows. The objects of the category are
(
A
B

)
ϕ
with A ∈ A, B ∈ B

and ϕ ∈ HomB(FA,B); and the morphisms of the category are morphisms
(
α
β

)
in A × B such that the

following diagram

FA
Fα //

ϕ

��

FA′

ϕ′

��
B

β // B′

is commutative.

Remark 2.4. ([8, Section 1]) Let A and B be abelian categories, and let F : A −→ B be an additive

functor.
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(1) The functor F induces a functor F̃ : A× B → A× B by F̃(A,B) = (0,FA) and F̃(α, β) = (0,Fα).

It is not difficult to show that (F,B) and (A×B)n F̃ are isomorphic, by mapping the object
(
A
B

)
ϕ

in (F,B) to the object (0, ϕ) : F̃(A,B) −→ (A,B) in (A× B)n F̃.

(2) Assume that F is right exact. It is clear that F̃ above is also right exact. So (A×B)n F̃ is abelian

by [8, Proposition 1.1(a)], and hence (F,B) is also abelian by (1).

Recall that a complete A-projective resolution is an exact sequence

Q• := · · · → Q1 → Q0 → Q0 → Q1 → · · · (2.1)

in A with all Qi, Q
i projective, such that HomA(Q•, P ) is exact for any P ∈ P(A).

Definition 2.5. ([7]) An object G ∈ A is called Gorenstein projective if there exists a complete A-

projective resolution Q• as in (2.1), such that G ∼= Im(Q0 → Q0).

We write GP(A) := {G ∈ A | G is Gorenstein projective}. It is well known that GP(A) is a Frobenius

category such that each object in P(A) is projective-injective in GP(A) and its stable category GP(A)

modulo P(A) is a triangulated category.

3 Gorenstein projective objects

From now on, assume that A and B are abelian categories and F : A −→ B is an additive and right

exact functor, and (F,B) is the left comma category. Then (F,B) is abelian by Remark 2.4(2). In [8],

the projective object in (A × B) n F̃ is of the form (F̃(P,Q) ⊕ F̃2(P,Q) −→ (P,Q) ⊕ F̃(P,Q)) with P

projective in A and Q projective in B. We have the following

Lemma 3.1. The projective object in (F,B) is of the form
(
0
Q

)
⊕

(
P
FP

)
with P projective in A and Q

projective in B.

Proof. Now let
(
A
B

)
ϕ
be a projective object in (F,B). By Remark 2.4(1), the object (0, ϕ) : F̃ (A,B) →

(A,B) in (A×B)nF̃ is also projective. By [8, Corollary 1.6(c)], we have that both A ∈ A and Cokerϕ ∈ B

are projective, and (0, ϕ) ∼= (0,
(
0
1

)
) with (0,

(
0
1

)
) : (0,FA) → (A,Cokerϕ⊕FA). Thus

(
A
B

)
ϕ
is of the form(

A
Cokerϕ⊕FA

)
(01)

∼=
(

0
Cokerϕ

)
⊕
(

A
FA

)
.

By [8, Corollary 1.6(c)] and Remark 2.4(1), an object
(
0
Q

)
⊕

(
P
FP

)
with P projective in A and Q

projective in B is projective in (F,B).

The following result generalizes [5, Proposition 2.8(1)].

Proposition 3.2. Let
(
M1

M2

)
be an object in (F,B). If pdB FP(A) < ∞, then pd(F,B)

(
M1

M2

)
< ∞ if and

only if pdA M1 < ∞ and pdB M2 < ∞.
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Proof. Let pd(F,B)

(
M1

M2

)
< ∞. Then by Lemma 3.1, we have the following exact sequence of finite length

0 //
(

0
Pn

)
⊕
(

Qn

FQn

)
// · · · //

(
0
P2

)
⊕
(

Q2

FQ2

)
//
(

0
P1

)
⊕

(
Q1

FQ1

)
//
(

0
P0

)
⊕
(

Q0

FQ0

)
//
(
M1

M2

)
// 0

in (F,B) with all Qi projective in A and all Pi projective in B. Hence we have exact sequences

0 // Qn
// · · · // Q2

// Q1
// Q0

// M1
// 0, (3.1)

0 // Pn ⊕ FQn
// · · · // P2 ⊕ FQ2

// P1 ⊕ FQ1
// P0 ⊕ FQ0

// M2
// 0 (3.2)

in A and B respectively. By (3.1), we have pdA M1 < ∞. Since pdB FQi < ∞ for any 0 ≤ i ≤ n by

assumption, we have pdB M2 < ∞ by (3.2).

Conversely, assume pdA M1 < ∞ and pdB M2 < ∞. Let

0 // Qn

δ1n // · · ·
δ13 // Q2

δ12 // Q1

δ11 // Q0

δ10 // M1
// 0

be a projective resolution of M1 in A. Then pdA K1
i < ∞, where K1

i := Ker δ1i−1 for any 1 ≤ i ≤ n+ 1.

Fix a projective presentation P0 � M2 of M2 in B. Then we can construct a projective presentation(
Q0

P0⊕FQ0

)
�

(
M1

M2

)
of

(
M1

M2

)
in (F,B). If

(K1
1

K2
1

)
is its kernel, then there exists an exact sequence

0 // K2
1

// P0 ⊕ FQ0
// M2

// 0

in B. Because pdB FQ0 < ∞ by assumption, we have pdB K2
1 < ∞. Repeating this procedure, we get a

projective resolution

· · · δ3 //
(

0
P2

)
⊕
(

Q2

FQ2

) δ2 //
(

0
P1

)
⊕
(

Q1

FQ1

) δ1 //
(

0
P0

)
⊕
(

Q0

FQ0

) δ0 //
(
M1

M2

)
// 0

of
(
M1

M2

)
in (F,B) such that if

(K1
i

K2
i

)
is the kernel of δi−1, then pdB K2

i < ∞. Since Qn+1 = 0, we have

Ker δn =
(

0
K2

n+1

)
. As pdB K2

n+1 < ∞, we have a projective resolution

0 // Pn+m
// · · · // Pn+3

// Pn+2
// Pn+1

// K2
n+1

// 0

of K2
i+1 in B, which induces the finite projective resolution

0 //
(

0
Pn+m

)
· · · //

(
0

Pn+3

)
//
(

0
Pn+2

)
//
(

0
Pn+1

)
//
(

0
K2

n+1

)
// 0

(
0

K2
n+1

)
in (F,B). This means pd(F,B) Ker δn = pd(F,B)

(
0

K2
n+1

)
< ∞, and hence pd(F,B)

(
M1

M2

)
< ∞.

Motivated by the definition of compatible bimodules in [16, Definition 1.1], we introduce the following

Definition 3.3. The functor F is called perfect if the following two conditions are satisfied.

(P1) If Q• is an exact sequence of projective objects in A, then FQ• is exact.

(P2) If P• is a complete B-projective resolution, then HomB(P•,FQ) is exact for any Q ∈ P(A).
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For a ring Λ, ModΛ is the category of left Λ-modules and modΛ is the category of finitely generated

left Λ-modules. Let Λ and Γ be artin algebras, and let M be a compatible (Λ,Γ)-bimodule. If Q• is an

exact sequence of projective modules in modΓ, then the condition (C1) in [16, Definition 1.1] implies that

M ⊗Γ Q• is exact. Assume that P• is a complete Λ-projective resolution and Q ∈ P(modΓ). Then the

condition (C2) in [16, Definition 1.1] implies that HomΛ(P•,M) is exact. Since Q ∈ P(modΓ), we have

that HomΛ(P•,M ⊗ΓQ) is also exact. Thus the tensor functor M ⊗Γ− is perfect. Let T :=

(
Λ M
0 Γ

)
be the upper triangular matrix algebra. Then modT is the left comma category (M ⊗Γ −,modΛ).

Lemma 3.4. The following statements are equivalent.

(1) F satisfies (P2);

(2) Ext1B(G,FQ) = 0 for any G ∈ GP(B) and Q ∈ P(A);

(3) Ext≥1
B (G,FQ) = 0 for any G ∈ GP(B) and Q ∈ P(A).

Proof. The implications (1) ⇒ (3) ⇒ (2) are trivial. Applying the functor HomB(−,FQ) to a complete

B-projective resolution of G, we get (2) ⇒ (1).

We now give an equivalent characterization of Gorenstein projective objects in the left comma category

(F,B). It is a generalization of [16, Theorem 1.4].

Theorem 3.5. If F is perfect, then the following statements are equivalent for an object
(
Y
X

)
ϕ
in (F,B).

(1)
(
Y
X

)
ϕ
∈ GP((F,B)).

(2) ϕ : FY → X is injective in B, Cokerϕ ∈ GP(B) and Y ∈ GP(A).

In this case, X ∈ GP(B) if and only if FY ∈ GP(B).

Proof. (2) ⇒ (1) Assume that ϕ : FY → X is injective in B, Cokerϕ ∈ GP(B) and Y ∈ GP(A). Then

we have a complete A-projection resolution

(Q•, q·) := · · · // Q−1 // Q0 q0 // Q1 // · · ·

with Y = Ker q0. Since FQ• is exact by (P1), we have the following exact sequence

0 // FY // FQ0 Fq0 // FQ1 Fq1 // · · · .

Since Cokerϕ ∈ GP(B), we have a complete B-projective resolution

· · · // P−1 // P 0 d0
// P 1 // · · ·
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with Cokerϕ = Ker d0, so Ker di ∈ GP(B), and hence Ext1B(Ker di,FQi) = 0 for any i ≥ 0. Applying

Lemma 2.1(1) to the exact sequence

0 // FY
ϕ // X // Cokerϕ // 0 ,

we obtain an exact sequence

0 // X
∂−1

// P 0 ⊕ FQ0 ∂0
// P 1 ⊕ FQ1 ∂1

// · · ·

with ∂i =

(
di 0
σi Fqi

)
and σi : P i → FQi+1 for any i ≥ 0, such that the following diagram with exact

rows

0 // FY //

��

FQ0 //

��

FQ1 //

��

· · ·

0 // X // P 0 ⊕ FQ0 // P 1 ⊕ FQ1 // · · ·

commutes. By a dual argument we get the following diagram with exact rows

· · · // FQ−2 //

��

FQ−1 //

��

FY //

��

0

· · · // P−2 ⊕ FQ−2 // P−1 ⊕ FQ−1 // X // 0.

Combining these two diagrams to get the following diagram with exact rows

· · · // FQ−1 //

��

FQ0 //

��

FQ1 //

��

· · ·

· · · // P−1 ⊕ FQ−1 // P 0 ⊕ FQ0 // P 1 ⊕ FQ1 // · · · .

Actually, we have the following exact sequence of projective objects

L• = · · · //
(

Q−1

P−1⊕FQ−1

)
//
(

Q0

P 0⊕FQ0

)
//
(

Q1

P 1⊕FQ1

)
// · · ·

in (F,B). Since each Li is a projective object in (F,B), applying Hom(F,B)(L
i,−) to the exact sequence:

0 //
(

0
P̃⊕F̃Q

)
//
( Q̃

P̃⊕F̃Q

)
//
(
Q̃
0

)
// 0

we get the following exact sequence of complexes

0 // Hom(F,B)(L
•,
(

0
P̃⊕F̃Q

)
) // Hom(F,B)(L

•,
( Q̃

P̃⊕F̃Q

)
) // Hom(F,B)(L

•,
(
Q̃
0

)
) // 0,

that is,

0 // HomB(P
•, P̃ ⊕ F̃Q) // Hom(F,B)(L

•,
( Q̃

P̃⊕F̃Q

)
) // HomA(Q

•, Q̃) // 0.

Since P • is a complete B-projective resolution, it follows that HomB(P
•, P̃ ) is exact. By (P2), HomB(P

•, F̃Q)

is exact. Since Q• is a complete A-projective resolution, it follows that HomA(Q
•, Q̃) is exact. Thus
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Hom(F,B)(L
•,
( Q̃

P̃⊕F̃Q

)
) is also exact. Therefore we conclude that L• is a complete (F,B)-projective reso-

lution and
(
Y
X

)
ϕ
∈ GP((F,B)).

(1) ⇒ (2) Let
(
Y
X

)
ϕ
∈ GP((F,B)). Then we have a complete (F,B)-projective resolution

L• := · · · //
(

Q−1

P−1⊕FQ−1

)
//
(

Q0

P 0⊕FQ0

) (d
′0

∂0 ) //
(

Q1

P 1⊕FQ1

)
// · · ·

such that Ker
(
d′0

∂0

)
=

(
Y
X

)
ϕ
. Then we get an exact sequence (Q•, d′•) of projective objects in A with

Ker d′0 = Y and the following exact sequence

V • := · · · // P−1 ⊕ FQ−1 // P 0 ⊕ FQ0 ∂0
// P 1 ⊕ FQ1 // · · ·

with Ker ∂0 = X. By (P1), FQ• is exact. Since
(
d′i

∂i

)
:
(

Qi

P i⊕FQi

)
→

(
Qi+1

P i+1⊕FQi+1

)
is a morphism in (F,B),

we get that ∂i is of the form ∂i =

(
di 0
σi Fd′i

)
where σi : P i → FQi+1 for any i. We have the exact

sequence of complexes

0 // FQ• // V • // P • // 0

with P • exact. So we get the following diagram with exact columns and rows

0 // FQ0 //

Fd′0

��

P 0 ⊕ FQ0 //

∂0

��

P 0 //

d0

��

0

0 // FQ1 //

Fd′1

��

P 1 ⊕ FQ1 //

∂1

��

P 1 //

d1

��

0

0 // FQ2 //

��

P 2 ⊕ FQ2 //

��

P 2 //

��

0

...
...

...

such that KerFd′0 = FY . Applying the snake lemma we get the following exact sequence

0 // KerFd′0 // Ker ∂0 // Ker d0 // ImFd′1 // Im ∂1 // Im d1 // 0,

that is,

0 // FY
ϕ // X

π′
// Ker d0 // ImFd′1 // Im ∂1 // Im d1 // 0.

Because the morphism ImFd′1 → Im ∂1 is injective, it follows that π′ is surjective. Hence Ker d0 ∼=

Cokerϕ. Since Hom(F,B)(L
•,
(
0
P
)
) ∼= HomB(P

•,P) and L• is a complete projection resolution, it follows

that HomB(P
•,P) is exact. Hence P • is a complete B-projective resolution and Cokerϕ ∈ GP(B).

By (P2), HomB(P
•,FQ) is exact. Similarly, since each Li is a projective object in (F,B), applying

Hom(F,B)(L
i,−) to the exact sequence

0 //
(

0
P̃⊕F̃Q

)
//
( Q̃

P̃⊕F̃Q

)
//
(
Q̃
0

)
// 0,
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we get the following exact sequence of complexes

0 // HomB(P
•, P̃ ⊕ F̃Q) // Hom(F,B)(L

•,
( Q̃

P̃⊕F̃Q

)
) // HomA(Q

•, Q̃) // 0.

Since L• is a complete projective resolution, Hom(F,B)(L
•,
( Q̃

P̃⊕F̃Q

)
) is exact, and then HomA(Q

•, Q̃) is

also exact. It follows that Y ∈ GP(A).

As an application of Theorem 3.5, we have the following

Corollary 3.6. Let F be perfect. Then

(1) If (F,B) has finitely many isomorphism classes of indecomposable Gorenstein projective objects,

then so have A and B.

(2) If GP(B) = P(B), then
(
0
P

)
and

(
Y
FY

)
are exactly all indecomposable Gorenstein projective objects in

(F,B), where Y runs over all indecomposable objects in GP(A) and P runs over all indecomposable

objects in P(B).

(3) If GP(A) = P(A), then
(
0
X

)
and

(
Q
FQ

)
are exactly all indecomposable Gorenstein projective ob-

jects in (F,B), where Q runs over all indecomposable objects in P(A) and X runs over all the

indecomposable objects in GP(B).

Proof. (1) Let X ∈ GP(B) and Y ∈ GP(A). Then by Theorem 3.5, both
(
0
X

)
and

(
Y
FY

)
are Gorenstein

projective objects in (F,B). The assertion follows.

(2) + (3) Let
(
Y
X

)
ϕ
be Gorenstein projective in (F,B). Then by Theorem 3.5, there exists an exact

sequence

0 // FY
ϕ // X // Cokerϕ // 0

in B with Cokerϕ ∈ GP(B) and Y ∈ GP(A).

If GP(B) = P(B), then Cokerϕ ∈ P(B) and the above exact sequence splits. If GP(A) = P(A), then

Y ∈ P(A). By Lemma 3.4, we have Ext≥1
B (Cokerϕ,FY ) = 0. So the above exact sequence also splits.

So, in both cases, we have X = FY ⊕ Cokerϕ and
(
Y
X

)
ϕ
=

(
Y
FY

)
⊕

(
0

Cokerϕ

)
. The assertions (2) and (3)

follow.

Example 3.7. Let k be a field and T a finite-dimensional k-algebra given by the quiver

1

γ

��

3 // 2

OO

4oo

with relation γ3 = 0. Then

T =

(
e1Te1 e1T (1− e1)

0 (1− e1)T (1− e1)

)
,
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where e1 is the idempotent corresponding to the vertex 1. We have that Γ := (1 − e1)T (1 − e1) is a

finite-dimensional k-algebra given by the quiver

3 // 2 4oo ,

and Λ := e1Te1 is a finite-dimensional k-algebra given by the quiver

1

γ

��

with relation γ3 = 0. Take A := modΓ, B := modΛ and F := M ⊗Γ − with M = e1T (1 − e1). Then

(F,B) = modT . We have ΛM ∼= ΛΛ⊕Λ Λ⊕Λ Λ and MΓ
∼= I(2)Γ ⊕ I(2)Γ ⊕ I(2)Γ. Since Γ is hereditary,

pdMΓ ≤ 1 and F is perfect. Since Λ is self-injective, each module in modΛ is Gorenstein projective.

Then by Corollary 3.6, all indecomposable Gorenstein projective modules in modT are as follows.

k

0

��

0 // 0

OO

0,oo

k2

( 0 0
1 0 )

��

0 // 0

OO

0,oo

k3

(
0 0 0
1 0 0
0 1 0

)
��

0 // 0

OO

0,oo

k3

(
0 0 0
1 0 0
0 1 0

)
��

0 // k

OO

0,oo

k3

(
0 0 0
1 0 0
0 1 0

)
��

0 // k

OO

k,oo

k3

(
0 0 0
1 0 0
0 1 0

)
��

k // k

OO

0.oo

Example 3.8. Let k be a field and T a finite-dimensional k-algebra given by the quiver

1
α1

~~}}}
}}

5
β // 4

γ // 2
α2 // 3

α3
``AAAAA

with the relation α2α1 = α3α2 = α1α3 = 0. Then

T =

(
(e1 + e2 + e3)T (e1 + e2 + e3) (e1 + e2 + e3)T (e4 + e4)

0 (e4 + e5)T (e4 + e5)

)
,

where ei is the idempotent corresponding to the vertex i for any 1 ≤ i ≤ 5. We have that Γ :=

(e4 + e5)T (e4 + e5) is a finite-dimensional k-algebra given by the quiver

5 // 4,

and Λ := (e1 + e2 + e3)T (e1 + e2 + e3) is a finite-dimensional k-algebra given by the quiver

1
α1

~~}}}
}}

2
α2 // 3

α3
``AAAAA

with relation α2α1 = α3α2 = α1α3 = 0. Take A := modΓ, B := modΛ and F := M ⊗Γ − with

M = (e1 + e2 + e3)T (e4 + e5). Then (F,B) = modT . We have ΛM ∼= ΛP (2)⊕Λ P (2) and MΓ
∼=
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P (5)Γ ⊕ P (5)Γ, and so F is perfect. Notice that Λ is self-injective and Γ is hereditary, so by Corollary

3.6, all indecomposable Gorenstein projective modules in modT are as follows.

k

����
��

0 // 0 // 0 // 0,

ZZ5555
0

����
��

0 // 0 // k // 0,

ZZ5555
0

����
��

0 // 0 // 0 // k,

ZZ5555

k

����
��

0 // 0 // k // 0,

ZZ5555
k

����
��

0 // 0 // 0 // k,

ZZ5555
0

����
��

0 // 0 // k // k,

ZZ5555

0

����
��

0 // k // k // k,

ZZ5555
0

��





k // k // k // k.

ZZ666

By Theorem 3.5, we also have the following

Corollary 3.9. If F is perfect, then GP((F,B)) = P((F,B)) if and only if GP(A) = P(A) and GP(B) =

P(B).

Proof. We first prove the necessity. Let Y be Gorenstein projective in A. Then by Theorem 3.5,
(

Y
FY

)
is

Gorenstein projective in (F,B). So
(

Y
FY

)
is projective in (F,B) by assumption, and hence Y is projective

in A. Now let X be Gorenstein projective in B. Then by Theorem 3.5,
(
0
X

)
is Gorenstein projective in

(F,B). So
(
0
X

)
is projective in (F,B) by assumption, and hence X is projective in B.

We next prove the sufficiency. Let
(
Y
X

)
ϕ
be Gorenstein projective in (F,B). Then we have the following

exact sequence

0 // FY // X // Cokerϕ // 0

in B with Cokerϕ ∈ GP(B) and Y ∈ GP(A) by Theorem 3.5. So Cokerϕ is projective in B and Y is

projective in A by assumption, and hence X = FY ⊕ Cokerϕ and
(
Y
X

)
ϕ
=

(
Y
FY

)
⊕

(
0

Cokerϕ

)
. Thus

(
Y
X

)
ϕ

is projective in (F,B) by Lemma 3.1.

Recall from [5] that a ring R is called strongly left CM-free if each Gorenstein projective module in

ModR is projective. Let Λ and Γ be arbitrary rings and M a (Λ,Γ)-bimodule, and let T :=

(
Λ M
0 Γ

)
be the upper triangular matrix ring. Then ModT is the left comma category (M ⊗Γ −,ModΛ). If MΓ

has finite flat dimension and ΛM has finite projective dimension, then the functor M ⊗Γ− is perfect. So,

as an immediate consequence of Corollary 3.9, we have the following

Corollary 3.10. Let Λ and Γ be arbitrary rings and M a (Λ,Γ)-bimodule, and let T be the upper

triangular matrix ring as above. If MΓ has finite flat dimension and ΛM has finite projective dimension,

then T is strongly left CM-free if and only if so are Λ and Γ.

The above corollary generalized [5, Theorem 4.1], where the assumption that Λ is left Gorenstein

regular is needed.
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4 Recollements

Definition 4.1. ([9, 13]) A recollement, denoted by (A,B, C), of abelian categories is a diagram

A i∗ // B
i∗oo

i!oo
j∗ // C
j!oo

j∗oo

of abelian categories and additive functors such that

(1) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs.

(2) i∗, j! and j∗ are fully faithful.

(3) Im i∗ = Ker j∗.

The following lemma is fundamental in this section.

Lemma 4.2. ([13, Example 2.12]) There exists the following recollement of abelian categories:

B i∗ // (F,B)
i∗oo

i!oo
j∗ // A,
j!oo

j∗oo

where

i∗ :

(
Y

X

)
ϕ

7→ Cokerϕ, i∗ : X 7→
(
0

X

)
, i! :

(
Y

X

)
7→ X,

j! : Y 7→
(

Y

FY

)
, j∗ :

(
Y

X

)
7→ Y, j∗ : Y 7→

(
Y

0

)
.

Definition 4.3. ([4]) Let C′, C and C′′ be triangulated categories. The diagram of exact functors

C′ i∗ // C
i∗oo

i!oo
j∗ // C′′
j!oo

j∗oo
(4.1)

is a recollement of C relative to C′ and C′′, if the following four conditions are satisfied.

(R1) (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗) are adjoint pairs.

(R2) i∗, j! and j∗ are fully faithful.

(R3) j∗i∗ = 0.

(R4) For each object X ∈ C, the counits and units give rise to the following distinguished triangles

j!j
∗(X)

ϵX // X
ηX // i∗i∗(X) // j!j∗(X)[1],

i∗i
!(X)

ωX// X
ζX // j∗j∗(X) // i∗i!(X)[1],

where [1] is the shift functor.

A left recollement of C relative to C′ and C′′ is a diagram of exact functors consisting of the upper two

rows in the diagram (4.1) satisfying all the conditions which involve only the functors i∗, i∗, j!, j
∗.
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The following result is useful in the sequel.

Lemma 4.4. ([11, Section 1]) Let (4.1) be a diagram of triangulated categories. Then the following

statements are equivalent.

(1) The diagram (4.1) is a recollement.

(2) The conditions (R1), (R2) and Im i∗ = Ker j∗ are satisfied.

(3) The conditions (R1), (R2) and Im j! = Ker i∗ are satisfied.

(4) The conditions (R1), (R2) and Im j∗ = Ker i! are satisfied.

Remark 4.5. Each assertion in Lemma 4.4(2)–(4) involving only the functors i∗, i∗, j!, j
∗ is equivalent

to that the upper two rows in the diagram (4.1) is a left recollement.

The following result is a generalization of [16, Theorem 3.3].

Theorem 4.6. If F is perfect, then there exists a left recollement

GP(B)
i∗ // GP((F,B))i∗oo

j∗ // GP(A).
j!oo

Proof. We first construct the functors involved. By Theorem 3.5, we know the form of Gorenstein

projective objects in (F,B). If a morphism
(
X
Y

)
ϕ
→

(
X′

Y ′

)
ϕ′ factors through a projective object

(
0
P

)
⊕
(

Q
FQ

)
,

then we have the following diagram with exact rows

0 // FX
ϕ //

��

Y //

��

Cokerϕ //

��

0

0 // FQ //

��

FQ⊕ P //

��

P //

��

0

0 // FX ′ ϕ′
// Y ′ // Cokerϕ′ // 0.

Hence the functor i∗ in Lemma 4.2 induces a functor which we still denote by i∗ : GP((F,B)) → GP(B).

By Lemma 4.2, we have the functor i∗ given by Y →
(
0
Y

)
. It is obvious a functor GP(B) → GP((F,B)).

If a morphism Y → Y ′ in B factors through a projective object P , then
(
0
Y

)
→

(
0
Y ′

)
factors through a

projective object
(
0
P

)
in (F,B). Hence i∗ induces a functor i∗ : GP(B) → GP((F,B)), which is fully

faithful.

By Lemma 4.2, we have the functor j! given by A →
(

A
FA

)
. It is a functor GP(A) → GP((F,B)) by

Theorem 3.5. If a morphism X → X ′ in A factors through a projective object Q, then
(

X
FX

)
→

(
X′

FX′

)
factors through a projective object

(
Q
FQ

)
in (F,B). Hence j! induces a functor j! : GP(A) → GP((F,B)),

which is fully faithful.

By Lemma 4.2, we have the functor j∗ given by
(
X
Y

)
→ X. It is a functor from GP((F,B)) → GP(A)

by Theorem 3.5. If a morphism
(
X
Y

)
→

(
X′

Y ′

)
in (F,B) factors through a projective object

(
Q
FQ

)
⊕
(
0
P

)
, then
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X → X ′ factors through a projective objectQ inA. Hence j∗ induces a functor j∗ : GP((F,B)) → GP(A).

It follows easily from [10, Chapter I, Section 2] that i∗, j
∗ constructed above are exact functors. By

Lemma 4.2, we have that both (i∗, i∗) and(j!, j
∗) are adjoint pairs. Thus i∗ and j! are exact functors by

[12, Lemma 8.3].

By construction, we have Im i∗ ⊆ Ker j∗ and Ker j∗ = {
(
X
Y

)
∈ GP((F,B)) | X ∈ P(A)}. Let(

X
Y

)
∈ Ker j∗. By Theorem 3.5, we have the following exact sequence

0 // FX
ϕ // Y // Cokerϕ // 0

in B with Cokerϕ ∈ GP(B). Then Ext1B(Cokerϕ,FX) = 0 by Lemma 3.4. So the above exact splits and

Y ∼= FX ⊕ Cokerϕ. Thus we have(
X

Y

)
∼=

(
X

FX

)
⊕

(
0

Cokerϕ

)
= i∗(Cokerϕ),

which implies Ker j∗ ⊆ Im i∗.

Finally, applying Lemma 4.4(2) and Remark 4.5, we get the required left recollement.

It is natural to ask when the left recollement in Theorem 4.6 can be filled into a recollement. In the

following, we will study this question.

Recall from [3] that an abelian category B with enough projective and injective objects is called

Gorenstein if pdB I(B) < ∞ and idB P(B) < ∞.

Lemma 4.7. Let F be perfect. If B is Gorenstein and F preserves projectives, then F preserves Goren-

stein projectives.

Proof. Let Y ∈ A be Gorenstein projective. Then there exists a complete A-resolution

Q• := · · · → Q1 → Q0
d−→ Q0 → Q1 → · · ·

in A such that Y ∼= Im d. Since F is perfect, FQ• is exact and FY ∼= KerFd. If F preserves projectives,

then all terms in FQ• are projective in B. Let P ∈ B be projective. Because B is Gorenstein by

assumption, we have idB P < ∞. So HomB(FQ
•, P ) is exact, and hence FY is Gorenstein projective.

As a generalization of [16, Theorem 3.5], we have the following

Theorem 4.8. Let F be perfect. If B is Gorenstein and F preserves projectives, then there exists a

recollement

GP(B) i∗ // GP((F,B))
i∗oo

i!oo
j∗ // GP(A).
j!oo

j∗oo

Proof. By Theorem 4.6, there exists the following left recollement

GP(B)
i∗ // GP((F,B))i∗oo

j∗ // GP(A).
j!oo
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By Lemma 4.2, we have the functor i! given by
(
X
Y

)
→ Y . It is a functor GP((F,B)) → GP(B). If a

morphism
(
X
Y

)
ϕ
→

(
X′

Y ′

)
ϕ′ in (F,B) factors through a projective object

(
0
P

)
⊕

(
Q
FQ

)
with Q projective

in A and P projective in B, then Y → Y ′ factors through P ⊕ FQ. Since F preserves projectives, we

have that FQ is projective in B, and so P ⊕ FQ is also projective in B. Hence i! induces a functor

i! : GP((F,B)) → GP(B). By Lemma 4.2, (i∗, i
!) is an adjoint pair.

We claim that there exists a fully faithful functor j∗ : GP(A) → GP((F,B)) given by X →
(
X
P

)
with

P ∈ P(B), such that there exists an exact sequence

0 // FX
ϕ // P // Cokerϕ // 0

in B with Cokerϕ ∈ GP(B).

Let X ∈ GP(A). By Lemma 4.7, FX ∈ GP(B) and there exists an exact sequence

0 // FX
ϕ // P // Cokerϕ // 0

in B with P ∈ P(B) and Cokerϕ ∈ GP(B). Let g : X → X ′ be a morphism in GP(B) and P ′ ∈ P(B)

such that

0 // FX ′ ϕ′
// P ′ // Cokerϕ′ // 0

is an exact sequence in B with Cokerϕ′ ∈ GP(B). Since Ext1B(Cokerϕ, P
′) = 0, we have the following

diagram with exact rows

0 // FX
ϕ //

Fg

��

P //

f

���
�
� Cokerϕ //

���
�
� 0

0 // FX ′ ϕ′
// P ′ // Cokerϕ′ // 0.

If there exists a morphism f ′ : P → P ′ such that f ′ϕ = ϕ′Fg, then f ′ − f factors through Cokerϕ. Since

Cokerϕ ∈ GP(B), we have a monomorphism ρ : Cokerϕ → P̃ with P̃ projective in B. Then we easily see

that
(
g
f

)
−

(
g
f ′

)
factors through the projective object

(
0
P̃

)
in (F,B) and hence

(
g
f

)
=

(
g
f ′

)
in GP((F,B)).

Note that if we take g = idX , this also proves that the object
(
X
P

)
∈ GP((F,B)) is independent of the

choice of P . Thus we get a functor j′∗ : GP(B) → GP((F,B)).

Assume that g : X → X ′ in A factors through a projective object Q with g = g2g1. Since FQ is

projective in B by assumption, it is injective in GP(B), therefore there exists a morphism α : P → FQ such

that Fg1 = αϕ. Since (f−ϕ′Fg2α)ϕ = 0, there exists f̃ : Cokerϕ → P ′ such that (f−ϕ′Fg2α) = f̃π. Let

η : Cokerϕ → P1 be a monomorphism with P1 ∈ P(B). Then we get β : P1 → P ′ such that f̃ = βη. Thus(
g
f

)
factors through the projective object

(
Q
FQ

)
⊕
(

0
P1

)
in (F,B) with

(
g
f

)
=

(
g2

(ϕ′Fg2,β)

)( g1

( α
ηπ)

)
. Therefore j′∗

induces a functor j∗ : GP(B) → GP((F,B)) which given by X →
(
X
P

)
and g →

(
g
f

)
. If

(
g
f

)
factors through

a projective object
(
0
P

)
⊕
(

Q
FQ

)
in (F,B), then g factors through the projective object Q. Thus j∗ is fully

faithful. The claim is proved.

Let
(
g
f

)
:
(
X
Y

)
→

(
X′

P

)
be a morphism in GP((F,B)). By Theorem 3.5, there exists an exact sequence

0 // FX ′ ϕ // P // Cokerϕ // 0
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in B with P projective and Cokerϕ ∈ GP(B). Then
(
g
f

)
factors through the projective object

(
0
P ′

)
⊕
(

Q
FQ

)
in (F,B) if and only if g : X → X ′ factors through the projective object Q in A. It follows that the

isomorphism

HomGP(A)(X,X ′) ∼= HomGP((F,B))(

(
X

Y

)
,

(
X ′

P

)
)

is natural in both variables and (j∗, j∗) is an adjoint pair.

Finally, applying Lemma 4.4, we get the required recollement.
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