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Abstract

Let R be an arbitrary ring and E an injectively resolving class of left R-modules. We
prove that the class of E-Gorenstein flat right R-modules is closed under extensions, and
hence projectively resolving. This answers an open question in [Strongly E-Gorenstein
injective and flat modules, Rocky Mountain J. Math. 54 (2024), 143–160] affirmatively.
As a consequence, we get that this class is covering. In addition, we introduce the
notion of E-projectively coresolved Gorenstein flat modules, and prove that the class of
E-projectively coresolved Gorenstein flat right R-modules is projectively resolving and
closed under transfinite extensions.

1 Introduction

In Gorenstein homological algebra, Gorenstein injective and flat modules are important and

fundamental research objects, which were introduced by Enochs, Jenda and Torrecillas in

[7, 9]. It is well-known that the extension closure of Gorenstein flat modules is an important

topic in Gorenstein homological algebra, which has been studied by many authors, see [1,

5, 26, 28, 29]. Recently, S̆aroch and S̆t́ov́ıček [26] proved that the class of Gorenstein flat

modules is always closed under extensions and covering, regardless of the ring R.

On the other hand, the homological theory of various generalizations of these Gorenstein

modules has become a vigorously active area of research in the recent years, see [2, 3, 4, 8, 16,

23, 25, 27] and references therein. In particular, Mao and Ding [25] introduced the notion of

Gorenstein FP-injective modules. It was shown that such modules over coherent rings possess

many nice properties analogous to those of Gorenstein injective modules over Noetherian

rings [19, 25]. Along the same lines, Bravo, Gillespie and Hovey [4] introduced the notion

of Gorenstein AC-injective modules in terms of the so-called absolutely clean modules, and

many homological properties of Gorenstein AC-injective were obtained in [3, 4, 20]. Later,
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Bravo, Estrada and Iacob [2] introduced Gorenstein AC-flat modules by replacing injective

modules with absolutely clean modules in the definition of Gorenstein flat modules. In [12],

Estrada, Iacob and Pérez introduced and studied Gorenstein B-flat modules, where B is a

class of right R-modules. It was shown in [12] that if B is a semi-definable class (that is,

B is closed under products and contains an elementary cogenerator of its definable closure),

then the class of Gorenstein B-flat modules is a left orthogonal class, and hence it is closed

under extensions. In [2, 12], there are many nice results provided that the class of Gorenstein

AC-flat modules (respectively, Gorenstein B-flat modules) is closed under extensions. So it

is important question to study the extension closure of generalized Gorenstein flat modules.

Let E be an injectively resolving class of left R-modules. Certain nice generalizations of

Gorenstein injective and flat modules are E-Gorenstein injective and flat modules, respec-

tively, which were introduced in [15, 16], see Definition 2.3 for details. Note that the notion

of E-Gorenstein injective modules unifies the following notions: Gorenstein injective modules

[7], Gorenstein FP-injective modules [25] and Gorenstein AC-injective modules [3], and that

the notion of E-Gorenstein flat modules unifies some known modules such as Gorenstein flat

modules [9] and Gorenstein AC-flat modules [2]. In [15, 16, 17], some basic homological

properties of E-Gorenstein injective and flat modules have been obtained. Following the

above philosophy, Gao and Zhong [17, p.151] raised naturally an open question: whether is

the class of E-Gorenstein flat modules closed under extensions for any ring? Furthermore,

one can ask: whether is the class of E-Gorenstein flat modules covering for any ring? Our

aim is to answer these two questions affirmatively.

This paper is organized as follows. In Section 2, we will give some notions and notations

needed in the sequel. Let E be an injectively resolving class of left R-modules. In Section 3,

we prove the following result.

Theorem 1.1. (Theorems 3.1 and 3.4) It holds that

(1) The class of E-Gorenstein flat right R-modules is closed under extensions, and further

it is projectively resolving.

(2) The class of E-Gorenstein flat right R-modules is covering.

In Section 4, we introduce the notion of E-projectively coresolved Gorenstein flat modules.

Note that the class of E-projectively coresolved Gorenstein flat right R-modules is a subclass

of two classes consisting of projectively coresolved Gorenstein flat right R-modules and E-
Gorenstein flat right R-modules respectively. We prove the following result.

Theorem 1.2. (Theorem 4.5) The class of E-projectively coresolved Gorenstein flat right

R-modules is projectively resolving and closed under transfinite extensions.

2 Preliminaries

Throughout this paper, R is an arbitrary associative ring with identity, and all modules are

unitary. In this section, we collect some basic concepts and facts which will be useful in the

sequel.
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Definition 2.1. ([22])

(1) A class G of right R-modules is called projectively resolving if G contains all projective

right R-modules, and G is closed under extensions and kernels of epimorphisms.

(2) A class E of right R-modules is called injectively resolving if E contains all injective

right R-modules, and E is closed under extensions and cokernels of monomorphisms.

Let X be a class of left or right R-modules. A sequence of left or right R-modules is

called HomR(X ,−)-exact (respectively, HomR(−,X )-exact) if it is exact after applying the

functor HomR(X,−) (respectively, HomR(−, X)) for any X ∈ X . Let X be a class of left

(respectively, right) R-modules. A sequence of right (respectively, left) R-modules is called

(−⊗RX )-exact (respectively, (X ⊗R−)-exact) if it is exact after applying the functor −⊗RX

(respectively, X ⊗R −) for any X ∈ X ,

Definition 2.2. ([15, 16]) Let E be an injectively resolving class of left R-modules.

(1) A left R-module M is called E-Gorenstein injective if there exists a HomR(E ,−)-exact

exact sequence of injective left R-modules

· · · → E1 → E0 → E0 → E1 → · · ·

such that M ∼= Ker(E0 → E1).

(2) A right R-module M is called E-Gorenstein flat if there exists a (−⊗R E)-exact exact
sequence of flat right R-modules

· · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Ker(F 0 → F 1) .

We use GFE(R) to denote the class of Gorenstein E-flat right R-modules. When E is

the class of injective left R-modules, an E-Gorenstein injective module and an E-Gorenstein

flat module are exactly a Gorenstein injective module and a Gorenstein flat module module,

respectively.

Definition 2.3. ([7]) A right R-module M is called Gorenstein projective if there exists a

HomR(−,P(R))-exact exact sequence of projective right R-modules

· · · → P1 → P0 → P 0 → P 1 → · · ·

such that M ∼= Im(P0 → P 0), where P(R) is the class of projective right R-modules.

Definition 2.4. ([4, 14])

(1) A left R-module F is called super finitely presented if there exists an exact sequence

of left R-modules

· · · → Pn → · · · → P1 → P0 → F → 0

with all Pi finitely generated projective.
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(2) A left R-module M is called absolutely clean (or weak injective) if Ext1R(F,M) = 0 for

any super finitely presented left R-module F .

We use A to denote the class of absolutely clean left R-modules.

Definition 2.5. ([2, 4]) A right R-module M is called Gorenstein AC-flat if there exists a

(−⊗R A)-exact exact sequence of flat right R-modules

· · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Im(F0 → F 0).

Definition 2.6. ([6]) Let F be a class of right R-modules. A homomorphism f : F → M

of right R-modules with F ∈ F is called an F-precover of M if for any homomorphism

g : F0 → M of right R-modules with F0 ∈ F , there exists a homomorphism h : F0 → F such

that the following diagram commutes:

F0

g

��

h

~~
F

f //M.

A homomorphism f : F → M is called right minimal if an endomorphism h : F → F is

an automorphism whenever f = fh. An F-precover f : F → M is called an F-cover if f

is right minimal. The class F is called covering if every right R-module has an F-cover.

Dually, the notions of an F-preenvelope, a left minimal homomorphism, an F-envelope and

an enveloping class are defined.

3 Main results

In this section, assume that E is an injectively resolving class of left R-modules. We will

prove that the class GFE(R) of E-Gorenstein flat modules is closed under extensions, which

gives an affirmative answer to the open question in [17, p.151]. As a consequence, we get

that the class GFE(R) is covering.

We write (−)+ := HomZ(−,Q/Z), where Z is the additive group of integers and Q is the

additive group of rational numbers.

Theorem 3.1. The class GFE(R) is closed under extensions, and further it is projectively

resolving.

Proof. Let

0 → A → B → C → 0 (3.1)

be an exact sequence of right R-modules with A,C ∈ GFE(R). For any E ∈ E , applying the

functor −⊗R E to the exact sequence (3.1), we have the following exact sequence

0 = TorRi (A,E) → TorRi (B,E) → TorRi (C,E) = 0
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for any i ≥ 1 by [15, Proposition 2.6]. Thus TorR≥1(B,E) = 0 for any E ∈ E .
Since both A and C are Gorenstein flat by [15, Remark 2.2(1)], we get that B is Goren-

stein flat since the class of Gorenstein flat modules is closed under extensions by [26, Theorem

4.11]. Then there is an exact sequence of right R-modules

0 → B → F 0 → F 1 → F 2 → · · · (3.2)

with all F i flat and all cycles Gorenstein flat.

In the following, we will show that the sequence (3.2) is (−⊗R E)-exact. Putting B1 :=

Im(F 0 → F 1), we obtain an exact sequence

0 → B → F 0 → B1 → 0, (3.3)

with F 0 flat and B1 Gorenstein flat. This induces the following exact sequence

0 → B1+ → F 0+ → B+ → 0,

where F 0+ is injective and B1+ is Gorenstein injective by [24, Theorem] and [22, Theorem

3.6], respectively. On the other hand, the exact sequence (3.1) gives rise to the exact sequence

0 → C+ → B+ → A+ → 0,

with both A+ and C+ E-Gorenstein injective by [15, Proposition 2.5]. Then B+ is E-
Gorenstein injective by [16, Theorem 2.7]. It follows from [16, Proposition 2.6] that there

exists an exact sequence of left R-modules

0 → K → I → B+ → 0

with I injective and K E-Gorenstein injective. Consider the following pullback diagram:

0

��

0

��
K

��

K

��
0 // B1+ // D

��

// I

��

// 0

0 // B1+ // F 0+ //

��

B+

��

// 0

0 0.

In the middle column, both K and F 0+ are E-Gorenstein injective, then so is D by [16,

Theorem 2.7]. Since B1+ is Gorenstein injective, we have Ext≥1
R (I,B1+) = 0 by [22, Theorem

2.22], and thus the middle row splits. It follows that B1+ is E-Gorenstein injective by [16,

Theorem 2.7]. So for any E ∈ E , we have

[TorR1 (B
1, E)]+ ∼= Ext1R(E,B1+) = 0

5



by [21, Lemma 1.2.11(2)], and hence TorR1 (B
1, E) = 0. It implies that the sequence (3.3) is

(−⊗R E)-exact.
Now putting B2 := Ker(F 2 → F 3), we obtain the following exact sequence

0 → B1 → F 1 → B2 → 0 (3.4)

with F 1 flat and B2 Gorenstein flat. This gives the following exact sequence

0 → B2+ → F 1+ → B1+ → 0

with F 1+ injective and B2+ Gorenstein injective. Notice that B1+ is E-Gorenstein injective

by the foregoing proof, we have an exact sequence

0 → K1 → I1 → B1+ → 0,

where I1 is injective and K1 is E-Gorenstein injective by [16, Proposition 2.6]. Consider the

following pullback diagram:

0

��

0

��
K1

��

K1

��
0 // B2+ // D1

��

// I1

��

// 0

0 // B2+ // F 1+ //

��

B1+

��

// 0

0 0

By repeating the argument as above, we get TorR1 (B
2, E) = 0 for any E ∈ E . It follows that

the sequence (3.4) is (−⊗R E)-exact. Continuing this process, we get that the sequence (3.2)

is (−⊗R E)-exact. Consequently, B is E-Gorenstein flat by [15, Proposition 2.6]. This proves

that the class GFE(R) is closed under extensions, and then it is projectively resolving by [15,

Theorem 2.7].

Now one naturally asks the following question: whether is the class GFE(R) covering for

any ring? In the remainder of this section, we will show that, over any ring R, this class

is covering. We first note that, the class GFE(R) is precovering for any ring R. General

background materials of complexes are referred to [18, 29].

Proposition 3.2. The class GFE(R) is precovering.

Proof. Let F̃ be the class of exact complexes of flat right R-modules F and I ∈ E such that

F ⊗R I is exact. The class F̃ is special precovering by [11, Theorem 3.7]. In the following,

we use an argument similar to that in the proof of [30, Theorem A] to deduce that any right

R-module has an E-Gorenstein flat precover.
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Let M be a right R-module and let g : F → M [1] be an F̃-precover. Then we get the

following commutative diagram

F =: · · · // F−2 //

g−2

��

F−1 //

g−1

��

π

��

F 0 //

g0

��

F 1 //

g1

��

· · ·

G

@@

g̃

��

M [1] =: · · · // 0 //M //

= ��

0 // 0 // · · · ,

M

AA

where G = Z0(F ) is E-Gorenstein flat. Next we will show that g̃ : G → M is an GFE(R)-

precover of M .

Let f̃ : H → M be a homomorphism with H ∈ GFE(R). Then there exists a complex

Q ∈ F̃ such that H = Z0(Q). Now one can extend f̃ to a morphism f : Q → M [1] of

complexes as follows:

Q =: · · · // Q−2 //

f−2

��

Q−1 //

f−1

��

σ

��

Q0 //

f0

��

Q1 //

f1

��

· · ·

H

AA

f̃

��

M [1] =: · · · // 0 //M //

= ��

0 // 0 // · · ·

M

AA

Notice that g : F → M [1] is an F̃-precover, then there exists a morphism h : Q → F of

complexes such that the following diagram

Q

h

}}

f

��
F

g //M [1]

commutes. The morphism h gives rise to a homomorphism h̃ : H → G such that the following

diagram

Q =: · · · // Q−2 //

h−2

��

Q−1 //

h−1

��

σ

��

Q0 //

h0

��

Q1 //

h1

��

· · ·

H

AA

h̃

��

F =: · · · // F−2 // F−1 //

π ��

F 0 // F 1 // · · ·

G

AA
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commutes. Since

f̃σ = f−1 = g−1h−1 = g̃πh−1 = g̃h̃σ

and σ is an epimorphism, we have f̃ = g̃h̃. It follows that g̃ : G → M is an GFE(R)-precover

of M .

Enochs and López-Ramos [10, Proposition 2.3] proved that if a class of R-modules F is

closed under well-ordered direct limits, then it is closed under arbitrary direct limits. Holm

[22, Theorem 3.7] showed that the class of Gorenstein flat left R-modules is closed under

direct limits over a right coherent ring. Then, Yang and Liu [29] extended this result to left

GF-closed rings. Here we have the following result.

Proposition 3.3. The class GFE(R) is closed under direct limits.

Proof. The following argument is similar to that of [29, Lemma 3.1], we provide a complete

proof here for readability. By Theorem 3.1, the class GFE(R) is closed under extensions.

Assume that (Mα)α<λ is a well-ordered direct system of modules in GFE(R). If λ = n < ω,

then lim−→Mα = Mn−1 is E-Gorenstein flat, as desired.

Now suppose λ = ω. We first show that lim−→Mn(n < ω) is E-Gorenstein flat. Since M0 is

E-Gorenstein flat, there exists an exact sequence

G(0) =: 0 → M0 → F 0
0 → F 1

0 → F 2
0 → · · ·

with all F i
0 flat, such that G(0)⊗R I is exact for any I ∈ E . Set Ki

0 := Ker(F i
0 → F i+1

0 ) for

i ≥ 0 (where K0
0 = M0). Then each Ki

0 is E-Gorenstein flat by [15, Remark 2.2(1)].

Consider the following pushout diagram of M0 → F 0
0 and M0 → M1:

0 //M0
//

��

F 0
0

//

��

K1
0

// 0

0 //M1
// C // K1

0
// 0.

Since M1,K
1
0 ∈ GFE(R), we have C ∈ GFE(R) by Theorem 3.1. Then by [15, Proposition

2.6], there exists an exact sequence of right R-modules

0 → C → F 0
1 → N → 0

with F 0
1 flat and N ∈ GFE(R). Now consider the following pushout diagram:

0

��

0

��
0 //M1

// C

��

// K1
0

��

// 0

0 //M1
// F 0

1
//

��

K1
1

��

// 0

N

��

N

��
0 0.
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From the right column of the above diagram, one gets that K1
1 ∈ GFE(R) by Theorem 3.1.

Thus we obtain the following commutative diagram:

0 //M0
//

��

F 0
0

//

��

K1
0

//

��

0

0 //M1
// F 0

1
// K1

1
// 0.

Using the same method as above, one gets the following commutative diagram:

0 // K1
0

//

��

F 1
0

//

��

K2
0

//

��

0

0 // K1
1

// F 1
1

// K2
1

// 0,

where F 1
1 is flat and K2

1 ∈ GFE(R). Repeating the argument as above, we can deduce the

following exact sequence:

G(1) =: 0 → M1 → F 0
1 → F 1

1 → F 2
1 → · · ·

with each F i
1 flat and each Ki

1 = Ker(F i
1 → F i+1

1 ) ∈ GFE(R) for i ≥ 0. One checks readily

that G(1) ⊗R I is exact for any I ∈ E . Also, we get a morphism G(0) → G(1) induced by

M0 → M1. Continuing this process, we have the following commutative diagram with exact

rows:

G(0) =: 0 //M0
//

��

F 0
0

//

��

F 1
0

//

��

F 2
0

//

��

· · ·

G(1) =: 0 //M1
//

��

F 0
1

//

��

F 1
1

//

��

F 2
1

//

��

· · ·

G(2) =: 0 //M2
//

��

F 0
2

//

��

F 1
2

//

��

F 2
2

//

��

· · ·

...
...

...
...

...

with each F i
j flat and each Ki

j := Ker(F i
j → F i+1

j ) ∈ GFE(R) for any i ≥ 0 and j ≥ 0 (where

K0
j = Mj), and all sequences G(n) are (−⊗R E)-exact. Now applying the exact functor lim−→

to the above commutative diagram, we obtain an exact sequence

lim−→G(n) := 0 → lim−→Mn → lim−→F 0
n → lim−→F 1

n → lim−→F 2
n → · · · ,

such that all lim−→F i
n are flat. Notice that lim−→ commutes with the tensor product functor, then

we have

lim−→G(n)⊗R I ∼= lim−→(G(n)⊗R I)

is exact for any I ∈ E . On the other hand, since all Mn are in GFE(R), one easily gets that

TorRi (lim−→Mn, I) ∼= lim−→TorRi (Mn, I) = 0
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for any I ∈ E and i > 0. Thus lim−→Mn ∈ GFE(R).

Finally, we reindex the modules

M0,M1, · · · ,Mω,Mω+1 · · ·

such that Mω = lim−→Mn and Mω+1 is the old of Mω and so on. We may assume that the

system (Mα)α<λ is continuous, i.e., Mβ = lim−→Mα (α < β) if β is a limit ordinal with β < λ.

Then using transfinite induction, we have that lim−→Mα (α < λ) is in GFE(R). The proof is

finished.

We are now in a position to state the following result.

Theorem 3.4. The class GFE(R) is covering.

Proof. By Propositions 3.2 and 3.3, the class GFE(R) is precovering and closed under direct

limits, and then it is covering by [8, Corollray 5.2.7].

By Theorems 3.1, 3.4 and [13, Proposition 2.6(1)], we immediately get the following

result.

Corollary 3.5. ([2, 12]) The class of Gorenstein AC-flat right R-modules is projectively

resolving and covering.

4 A subclass of GFE(R)

We introduce the following notion.

Definition 4.1. Let E be an injectively resolving class of left R-modules. A right R-module

M is called E-projectively coresolved Gorenstein flat if there exists a (− ⊗R E)-exact exact

sequence of projective right R-modules

· · · → P1 → P0 → P 0 → P 1 → · · ·

with M ∼= Ker(P 0 → P 1).

When E is the class of injective left R-modules, an E-projectively coresolved Gorenstein

flat module is exactly a projectively coresolved Gorenstein flat module introduced in [26].

We use PGFE(R) to denote the class consisting of all E-projectively coresolved Gorenstein

flat modules. It is clear that PGFE(R) ⊆ GFE(R).

In the following result, we give some equivalent characterizations of E-projectively core-

solved Gorenstein flat modules. Since the proof is similar to [15, Proposition 2.6], we omit

it.

Proposition 4.2. For any right R-module M , the following statements are equivalent.

(1) M ∈ PGFE(R).
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(2) M satisfies the following two conditions:

(2.1) TorR≥1(M,E) = 0 for any E ∈ E.

(2.2) There exists a (−⊗R E)-exact exact sequence of right R-modules

0 → M → P 0 → P 1 → · · ·

with all P i projective.

(3) There exists an exact sequence of right R-modules

0 → M → P → N → 0

with P projective and N ∈ PGFE(R).

We use PGF(R) and GP(R) to denote the classes consisting of all projectively coresolved

Gorenstein flat right R-modules and Gorenstein projective modules, respectively.

Lemma 4.3. PGFE(R) ⊆ PGF(R) ⊆ GP(R),

Proof. The first inclusion is clear, and the second one follows from [26, Theorem 4.4].

Definition 4.4. Let C be a class of right R-modules and σ an ordinal. A right R-module

M is called C-filtered if there exists a well-ordered chain (Mα)α<σ:

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mα ⊆ · · · ,

such that M = lim−→α<σ
Mi = ∪Mi and Mα+1/Mα ∈ C for any α < σ. The class C is said to

be closed under transfinite extensions if any C-filtered module is in C.

By the adjoint isomorphism theorem, we have

(−⊗R E)+ ∼= HomR(−, E+)

for any E ∈ E , which yields that a sequence of right R-modules is (−⊗R E)-exact if and only

if it is HomR(−, E+)-exact, where E+ = {E+ | E ∈ E}.

Theorem 4.5. It holds that

(1) The class PGFE(R) is closed under extensions and kernels of epimorphisms.

(2) The class PGFE(R) is projectively resolving.

(3) The class PGFE(R) is closed under transfinite extensions.
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Proof. (1) Let

0 → A → B → C → 0 (4.1)

be an exact sequence of right R-modules with C ∈ PGFE(R). By Proposition 4.2, we have

TorR≥1(C,E) = 0 for any E ∈ E , and so the sequence (4.1) is (− ⊗R E)-exact (equivalently,

HomR(−, E+)-exact). Also from Proposition 4.2, we get a (− ⊗R E)-exact (equivalently,

HomR(−, E+)-exact) exact sequence

· · · → Q1 → Q0 → Q0 → Q1 → · · · (4.2)

with all Qi and Qi projective, such that C ∼= Im(Q0 → Q0).

Suppose A ∈ PGFE(R). By Proposition 4.2, for any E ∈ E , we have TorR≥1(A,E) = 0

and there exist a (−⊗R E)-exact exact sequence

0 → A → G0 → G1 → · · · → Gi → · · · (4.3)

with all Gi projective. Thus

TorR≥1(B,E) = 0

for any E ∈ E . Since C ∈ GP(R) by Lemma 4.3, the sequence (4.1) is HomR(−,P(R))-exact.

By [23, Lemma 3.1(2)], we get from (4.2) and (4.3) the following exact sequence:

0 → B → G0 ⊕Q0 → G1 ⊕Q1 → · · · → Gi ⊕Qi → · · · .

It is easy to see that this sequence is (− ⊗R E)-exact. Thus B ∈ PGFE(R) and the class

PGFE(R) is closed under extensions.

Now suppose B ∈ PGFE(R). It follows from Proposition 4.2 that there exists a (−⊗RE)-
exact (equivalently, HomR(−, E+)-exact) exact sequence

· · · → P1 → P0 → P 0 → P 1 → · · · (4.4)

with all Pi and P i projective, such that B ∼= Im(P0 → P 0). Then by [23, Theorem 3.2(1)],

we get the following two exact sequences:

· · · → Qi+1 ⊕ Pi → · · · → Q2 ⊕ P1 → G → A → 0, (4.5)

0 → G → Q1 ⊕ P0 → Q0 → 0. (4.6)

By (4.5), we have that G is projective. Since both (4.2) and (4.4) are HomR(−, E+)-exact, it

follows from [23, Theorem 3.2(2)] that (4.5) is HomR(−, E+)-exact (equivalently, (−⊗R E)-
exact), and thus

TorR≥1(A,E) = 0 (4.7)

for any E ∈ E .
Since the image of each homomorphism in (4.4) is in PGFE(R), all these images are

in GP(R) by Lemma 4.3, and thus (4.4) is HomR(−, P (R))-exact. Then by [23, Theorem

3.8(1)], we get the following exact sequence:

0 → A → P 0 → P 1 ⊕Q0 → P 1 ⊕Q1 → · · · → P i+1 ⊕Qi → · · · . (4.8)
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Since all of (4.1), (4.2) and (4.4) are HomR(−, E+)-exact, it follows from [23, Theorem 3.8(3)]

that (4.8) is HomR(−, E+)-exact (equivalently, (−⊗R E)-exact). In view of (4.7) and (4.8),

we have B ∈ PGFE(R) by Proposition 4.2, and thus the class PGFE(R) is closed under

kernels of epimorphisms.

(2) It is trivial that P(R) ⊆ PGFE(R), thus the assertion follows from (1).

(3) Let

0 = A0 ⊆ A1 ⊆ A2 ⊆ · · ·

be a well-ordered chain with Aα+1/Aα ∈ PGFE(R) for any 0 ≤ α ≤ σ, where σ is an ordinal.

Putting A′ := ∪α<σAα, we will use the transfinite induction on σ to prove A′ ∈ PGFE(R).

For the successor case, since

0 → Aα → Aα+1 → Aα+1/Aα → 0

is exact with Aα, Aα+1/Aα ∈ PGFE(R), we have Aα+1 ∈ PGFE(R) by (1). For the limit

case, suppose that β is a limit ordinal. By the construction of projective coresolution in the

proof of (1), let

Sα : 0 → Aα → P 0
α → P 1

α → · · ·

be a (− ⊗R E)-exact (equivalently, HomR(−, E+))-exact projective coresolution of Aα such

that the following diagram

Sα :

��

0 // Aα� _

��

// P 0
α

//

f0
α+1,α

��

P 1
α

//

f1
α+1,α

��

· · · // Pn
α

fn
α+1,α

��

// · · ·

Sα+1 : 0 // Aα+1
// P 0

α+1
// P 1

α+1
// · · · // Pn

α+1
// · · · .

commutes with each fn
α+1,α a split monomorphism. It follows that Aβ = lim−→α<β

Aα admits

a HomR(−, E+)-exact (equivalently, (−⊗R E)-exact) projective coresolution:

0 → Aβ → lim−→α<β
P 0
α → lim−→α<β

P 1
α → · · · → lim−→α<β

Pn
α → · · · .

Since lim−→ commutes with the tensor product functor, we obtain A′ ∈ PGFE(R).
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[21] Göbel, R. and Trlifaj, J.: Approximations and Endomorphism Algebras of Modules,

de Gruyter Exp. in Math. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006.

[22] Holm, H.: Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004),

167–193.

[23] Huang, Z. Y.: Proper resolutions and Gorenstein categories, J. Algebra 393 (2013),

142–169.

[24] Lambek, J.: A module is flat if and only if its character module is injective, Canad.

Math. Bull. 7 (1964), 279–289.

[25] Mao, L. X. and Ding, N. Q.: Gorenstein FP-injective and Gorenstein flat modules, J.

Algebra Appl. 7 (2008), 491–506.
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